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A B S T R A C T
The Cutter Suction Dredger (CSD) is one of the key equipment dedicated to the construction and main-
tenance projects of harbours, ports and navigational channels. Among the dredging manipulations,
the swing process is the most tedious and recurring work for human operators, which often leads to
accidents because of carelessness or fatigue of the operators. This paper aims at producing a learning
approach for the intelligent control of the swing process of a CSD so as to release human operators
from such a boring and heavy task. To this end, the swing process control is formulated as a sequen-
tial decision making problem, and Deep Reinforcement Learning (DRL) is employed to design the
learning approach based on deterministic policy gradient. The novel feature of the proposed approach
is that the manipulation skills are obtained via trial-and-error interactions with a predicting network
constructed by human demonstration data. In our approach, human demonstrations can provide a
channel to predict state transitions, and also can regulate the exploration procedure for the learning
agent. In addition, we carry out empirical studies to investigate how to treat the demonstration data
with regard to self exploration, and the experimental results show that the proposed approach provides
an effective means of controlling the swing process of CSDs.

1. Introduction
The Cutter Suction Dredger (CSD) is a special type of

vessels for the construction and maintenance projects of har-
bours, ports and navigational channels, and it can excavate
nearly all kinds of soil (i.e., sand, clay or rock) on the river/sea
bed (Tang et al., 2009). The outstanding dredging ability of
the CSD depends on a rotating cutter head, mounted in front
of the ladder (see Figure 1), which can cut hard soil or rock
into fragments. Afterwards, the dredged materials will be
sucked up by the dredge pumps from an inlet underneath the
cutter head, and then transported to a disposal area through
a pipeline.

Currently, all CSDs are manipulated by trained human
operators, and their work usually follows a three 8-hour (or
four 6-hour) shift rotation system. Among the dredging ma-
nipulations, the swing process control is the most tedious
and recurring work for the operators, which often leads to
accidents due to carelessness or fatigue, especially in a night
shift. Thus, this work seeks to produce a learning approach
for the swing process control so as to release the operators
from such a heavy workload. Of course, it is a challenge to
control the swing process in complex ocean environments,
since many factors, such as hydrology, meteorology, soil and
underwater sundries, are uncertain and dynamic for dredg-
ing manipulations (Bai et al., 2019). Even for a trained op-
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erator, it is hard to accurately predict the changes of exter-
nal environments so as to make quick and appropriate re-
sponses (Wei et al., 2019). Thus, it is intractable to construct
a precise model that can handle all unforeseen situations in
dredging various types of sand, clay or rock.

Figure 1: Outline and the swing process of a cutter suction
dredger.

Learning is an effective methodology for the design of
adaptive methods that can satisfy state constraints in nonlin-
ear systems (Pan and Yu, 2015; Liu et al., 2016). Among the
learning paradigms, Reinforcement Learning (RL) has the
advantage of directly obtaining the optimal control policies,
without knowing the system dynamics (Mnih et al., 2015;
Lewis et al., 2012). Recent advances in RL have shown
great successes in a variety of domains, such as games (Sil-
ver et al., 2018), robots (Gu et al., 2017; Xu et al., 2018),
unmanned vehicles (Zhang et al., 2017), smart manufactur-
ing (Lin et al., 2019) and smart microgrids (Wang et al.,
2016). However, most RL approaches mainly focus on how
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to learn the optimal control policies from a virtual environ-
ment, where the learning agent can easily make trial-and-
error interactions.

Thus, it still remains difficult to apply RL algorithms to
real-world industrial applications, because an accurate vir-
tual environment is not ready-made. It is also inefficient and
dangerous for an agent to learn from scratch in a physical en-
vironment, since the optimal control policy can only be ob-
tained after millions of learning steps with very poor perfor-
mance. Such a case can be resolved if a perfect simulator or
a virtual environment is available. However, it is intractable
for many practical applications to provide an acceptable sim-
ulator in advance. In this case, the control agent must be able
to perform well at the start of learning, taking account of the
direct consequences of actions. To this end, the agent can
make use of historical data performed by human or other
controllers to regulate its initial behaviour, with the aim of
performing well at the beginning of learning. Afterwards,
the agent can continuously improve its behaviour based on
online self-generated actions, which offers the possibility of
applying RL algorithms to real industrial applications.

This work aims at developing an intelligent agent that
can learn the optimal control policy for manipulating the
swing process of a CSD. To this end, we employ the DRL
framework to design a novel actor-critic approach based on
deterministic policy gradients. In order to regulate the ex-
ploration behaviour of the learning agent, our approach in-
corporates human demonstrations to speed up the learning
procedure. Then, the agent’s behaviour can also be continu-
ously improved by self-generated actions. The main contri-
butions of this paper are summarized as follows.

1. To our best knowledge, we are the first to present a
DRL approach for the swing process control of a CSD
in continuous action spaces.

2. The learning agent can directly interact with a predict-
ing network trained by operational data from human
experts, instead of a virtual environment, to learn the
optimal control policies.

3. In order to speed up the learning procedure, human
demonstrations are also used to regulate the policy ex-
ploration, which can help the agent perform reason-
ably at the start of learning, and then continue improv-
ing its behaviour by self-generated data.

4. Simulation results show that the proposed approach
can imitate the operational behaviour of human ex-
perts. It opens up the possibility of applying DRL to
many practical industrial problems where demonstra-
tion data is accessible but accurate simulators do not
exists.

The paper is organized as follows. We discuss the related
work in Section 2, and formulate the swing process control
as a sequential decision making problem in Section 3. The
proposed approach is described in Section 4, and Section 5
discusses the simulation results. Finally, we conclude this
work and discuss future plans in Section 6.

2. Related Work
In this section, we will discuss the related work with re-

gard to the intelligent control of a CSD and the state-of-the-
art RL methods concerning the optimal control in uncertain
and dynamic environments.
2.1. Intelligent Control of a CSD

Designing an intelligent CSD has always been of interest
of dredging industrials. IHC Holland, the leading dredger
builders in the world, claims that an automatic cutter con-
troller has been integrated into the centralized control system
of a CSD built by them. However, we cannot find any scien-
tific research or report on the actual performance of the con-
trol system. According to the feedback on its performance
from end users, there is still a big gap between the automatic
control and manual operation.

As mentioned previously, it is a challenge to design an
intelligent control system of a CSD, due to many uncertain
factors. Early studies have presented an expert system (Tang
et al., 2009, 2008), with the aim of maximizing the produc-
tivity under safety constraints. This system integrates spe-
cific knowledge of several dynamics models of a CSD, such
as diesel engines, pumps and pipeline transportations. Thus,
it cannot be easily migrate to the control of other CSDs,
and the model-based control method cannot adapt well to
the changes of dynamic ocean environments. The work (Bai
et al., 2019) investigates four machine learning algorithms
to predict the productivity of a CSD, but it does not discuss
how to control a CSD in an intelligent manner. Recently, RL
has also been employed to study the swing process control
problem in (Wei et al., 2019), but it only consider the sim-
ple case in discrete state and action spaces. Notably, such
a method suffers from the curse of dimensionality. More-
over, the discretization of the action space can, in particular,
throw away some essential information about the structure
of the action domain. For the swing process control, the ac-
tion needs finer grained adjustments in response to dynamic
changes.
2.2. Reinforcement Leaning for Optimal Policy

Recent advances in RL often take games as a benchmark
to evaluate an algorithm’s performance, as the progress of
a game can be easily measured repeatedly. Moreover, the
goal state of a game can be defined clearly, such as Go (Sil-
ver et al., 2017), Atari (Oh et al., 2015) and Starchraft (Shao
et al., 2018). In games, the agent usually has to interact with
a virtual environment via trial-and-error, instead of directly
interacting with a physical environment. Comparatively, in
many real-world applications, it is hard to specify a good re-
ward function in practice (Quillen et al., 2018; Yahya et al.,
2017), and a fair amount of domain knowledge is required to
be considered when designing an appropriate reward func-
tion. Moreover, the desired goal state of practical control
problems is usually unclear and cannot be predefined by a
scalar value. In addition, for the sake of repeatability and
efficiency, the RL agent has to interact with an affordable
environment or an accurate simulator which does not exist
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in many real-world industrial applications.
RL is also related to the control theory of optimal control

and adaptive control. To control nonlinear systems, optimal
controllers require complete knowledge about the system dy-
namics to solve Hamilton-Jacobi-Bellman equations (Lewis
et al., 2012), whereas adaptive controllers can use online
data to control unknown systems (Chan et al., 2014). RL
techniques are used to design adaptive controllers without
having any prior knowledge about the system dynamics (Liu
et al., 2014; Cui et al., 2017).

For the swing process control studied in this work, we
also face the problem of lacking suitable reward functions.
Even an expert operator does not have an explicit under-
standing of the objective or the goal state of this problem,
so we need domain-dependent knowledge to design such a
reward function. Moreover, we do not have a virtual envi-
ronment or a simulator that can allow the agent to learn from
scratch. Thus, we need to consider how to utilize the histor-
ical data generated by human operators to construct a pre-
dicting network that can work as the state transition function
for the learning agent.
2.3. Learning from Demonstration

RL algorithms typically require a huge amount of train-
ing runs to obtain good results, which is reasonable for vir-
tual simulated environments. For real-world applications, it
is intractable and expensive to allow the agent to learn in
the real environments (Hester et al., 2018). Learning from
demonstrations is often treated as a supervised learning prob-
lem, in which the control policies are obtained by regressing
expert’s actions (Brys et al., 2015). Imitation learning fo-
cuses on how to match the performance of demonstrations,
e.g., DAGGER (Ross et al., 2011) and its extension (Sun
et al., 2017) require that an expert has to be available so as to
provide feedback or a value function to the agent. Most im-
portantly, such an imitation learning cannot learn to improve
upon the expert. Usually, most real applications can produce
historical data operated by human or other controllers, and
such demonstrations can be used to pre-train the agent at the
start of learning. In this work, human demonstrations will
also be applied to regulate the policy exploration, which can
speed up the learning procedure. Afterwards, the agent can
continuously improve its behaviour by self-generated data.

3. Problem Statement
The CSD is an efficient tool to excavate nearly all kinds

of soils, and the swing process of a CSD is depicted in Fig-
ure 2. Two spud poles are essential for the control of the
swing process. The main spud pole, mounted on a movable
spud carriage, moves lengthwise along the vessel, while the
auxiliary spud pole is set out of the centerline, usually on the
starboard side of the stern of the pontoon. The auxiliary spud
pole is used to keep the CSD in position when the working
spud pole is raised, and the spud carrier is move back to its
initial position. The cutter head is used to cut hard soil or
rock by rotating around the main spud, producing an arc tra-

jectory. Such a movement is called swing, and the associated
control action is to adjust the swing speed.

Auxiliary Spud

Main Spud

Portside
Winch

Cutter Head

Ladder Winch

Portside 
Anchor

Swing Width

Starboard 
Anchor

Starboard
Winch

Figure 2: The swing process of a CSD.

For the swing process control, an agent has to determine
the swing speed to adjust the amount of materials to be cut.
The swing movement around the main spud is achieved by
slacking (or pulling) the cable of the starboard anchor (or
the portside anchor). Deck winches are connected to those
anchors by cables, so if the deck winches pull or slack the
cables, the cutter head will produce an arc trajectory around
the working apud pole. Thus, we can conclude that the swing
speed control is achieved by manipulating the deck winches.

In swing control, the agent should ensure that the produc-
tion rate of dredged materials must be maintained in an ap-
propriate range. Otherwise, the slurry transportation pipeline
can be blocked if the slurry density is too high. Usually, the
CSD has to use a nuclear-based gamma densitometer to mea-
sure the slurry density of the pipeline. Because the flow state
inside the stern pipeline is relatively stable, the densitometer
has to be installed at the stern of a CSD. As a consequent,
the measured slurry density has a time lag with respect to
the swing speed control, as depicted in Figure 3.
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Figure 3: The measured slurry density has a time lag, but we
can still infer the performance of the swing operation by other
signals, i.e., the suction vacuum.
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As mentioned before, the swing speed determines the ex-
tent to which the soil is cut by the cutter head, we still can in-
fer the real-time performance of the swing speed from other
correlated signals, e.g., the suction vacuum (see Figure 3).
In other words, the immediate responses of the changes of
the swing speed can be evaluated by those correlated sig-
nals, and we still need to look at the resulting slurry density
in the long run. All of those measurements will constitute
the state space for decision making, which will be discussed
later. With regard to an intelligent control, we seek to find
the optimal policy for the swing speed control so as to stabi-
lize the slurry density in complex and dynamic situations of
the pipeline.
3.1. Reinforcement Learning Model

The swing process control can be considered as a sequen-
tial decision making problem, formulated by Markov Deci-
sion Process (MDP). Without loss of generality, a MDP is
defined by a tuple ⟨𝑆,𝐴,𝑅,𝑃 , 𝛾⟩, where 𝑆 and 𝐴 indicate
the state space and the action space, 𝑅 and 𝑃 represent the
reward function and the transition function, and 𝛾 denotes
the discount factor. At each time-step 𝑡, the learning agent
has to select an action 𝑎𝑡 ∈ 𝐴 in state 𝑠𝑡 ∈ 𝑆 to perform,
which will lead to a new state 𝑠𝑡+1 according to a probability
distribution 𝑃 (𝑠𝑡+1|𝑠𝑡, 𝑎𝑡), and the agent will receive an im-
mediate reward 𝑟𝑡 from the environment. The return from a
specific state is defined as the sum of discounted reward

𝑅(𝑠𝑡, 𝑎𝑡) =
�𝑇

𝑖=𝑡
𝛾 (𝑖−𝑡)𝑟𝑡, (1)

where 𝛾 ∈ [0, 1] is the discounting factor. A control policy 𝜋
maps states to actions, i.e., specifying what action the agent
should take in each state. Thus, the goal of the learning agent
is to find the optimal control policy that can maximize the
expected total future discounted reward, which is defined by
an action value function

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝔼𝜋[𝑅(𝑠𝑡, 𝑎𝑡)|𝑠𝑡, 𝑎𝑡], (2)
where 𝔼𝜋 describes the expected return when following the
policy 𝜋 after performing action 𝑎𝑡 in state 𝑠𝑡. For a con-
tinuous control problem, we can use neural networks to ap-
proximate the action value function, and thus maximizing
the expected return from the start distribution can be formu-
lated as to maximize a mean value

𝐽 (𝜃) = 𝔼𝑠∼𝜇[𝑄𝜋(.|𝜃)(𝑠𝑡,𝜋(𝑠𝑡|𝜃)], (3)
where the policy 𝜋 is parameterised by 𝜃, and 𝜇 denotes the
initial state distribution. To maximize the mean value, the
parameter 𝜃 can be updated by a gradient approach as fol-
lows:

𝜃 → 𝜃 + 𝛼∇𝜃𝐽 (𝜃). (4)
Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al.,
2016) is an actor-critic algorithm that consists of an actor
network 𝜋(.|𝜃𝜋) and a critic network 𝑄(.|𝜃𝑄). The actor net-
work outputs the action to perform based on 𝑎 = 𝜋(𝑠|𝜃𝜋) +

 , where  is used to add random noise for action ex-
ploration. Performing actions will produce new transitions
(𝑠𝑡, 𝑎𝑡, 𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡), 𝑠𝑡+1 ∼ 𝑃 (.|𝑠𝑡, 𝑎𝑡)). All the new transi-
tions will be added into a replay buffer𝐵. The critic network
can be updated by minimizing the following loss:

𝐿(𝜃𝑄) = 𝔼(𝑠𝑡,𝑎𝑡,𝑟𝑡,𝑠𝑡+1)∼𝐷[𝑄(𝑠𝑡, 𝑎𝑡|𝜃𝑄) − 𝑦𝑡]2, (5)
where

𝑦𝑡 = 𝑟𝑡 + 𝛾𝑄′(𝑠𝑡+1,𝜋′(𝑠𝑡+1|𝜃𝜋′ )|𝜃𝑄′ ). (6)
Here 𝐷 is the distribution over transitions, and 𝜋′(.|𝜃𝜋′ ) and
𝑄′(.|𝜃𝑄′ ) represents the target networks of𝜋(.|𝜃𝜋) and𝑄(.|𝜃𝑄),
respectively. The actor network can be updated by a gradient
step,
∇𝜃𝜋𝐽 (𝜃𝜋) ≈ 𝔼(𝑠𝑡,𝑎𝑡)∼𝐷[∇𝑎𝑄(𝑠𝑡,𝜋(𝑠𝑡|𝜃𝑄)∇𝜃𝜋𝜋(𝑠𝑡|𝜃𝜋)]. (7)

We can see that the DDPG algorithm is off-policy, consisting
of two neural networks with the same structure but different
update frequencies. However, for the swing process control
of a CSD, it is intractable to directly apply DDPG to find the
optimal control policy because we do not have an accurate
simulator for the agent to learn from scratch. Our approach
is modified based on DDPG but has to consider the issue of
lacking an accurate simulator or a virtual environment for the
agent to interact with, as well as the problem of regulating
the exploration policy at the start of learning.

4. Learning Approach
To obtain the optimal control policy for the swing pro-

cess via learning, although an accurate simulator or a vir-
tual environment is not ready-made, we still have access to
the historical data operated by experienced humans. The
demonstration data can provide us with the possibility of ob-
taining dynamics of dredging environment, and also let the
agent learn as much as possible from human demonstrations
before making trial-and-error interactions. The general ideal
of our approach is depicted in Figure 4.

As we have access to the human manipulation data, we
can use the collected data represented by the MDP model
to form the demonstration fragments. Small batches of the
demonstration fragments can be sampled according to the
sample strategy discussed in Section 4.4, along with the sam-
ples from the experience replay buffer. This means that hu-
man demonstrations can be considered a set of pre-collected
experiences for initializing the experience replay buffer. Thus,
the agent does not have to learn from scratch when interact-
ing with the external environment in the beginning. More-
over, we can also find that the human manipulation data can
be used to construct a neural network that predicts the state
transition, which will be detailed in Section 4.2. The pre-
dicting neural network works as an interactive environment
that reflects the dynamics of the swing process. To be spe-
cific, when the agent chooses an action 𝑎𝑡 to perform at state
𝑠𝑡, the predicting neural network can output the coming state
𝑠𝑡+1 and the environmental reward 𝑟𝑡.
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Data
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MDP Model

Sample 
Strategy

Actor Critic

Figure 4: The general framework of our proposed approach.

The right part of Figure 4 depicts the learning mecha-
nism, where the actor networks output the action to perform,
and the critic networks will be updated by minimizing the
loss function. It should be noted that a copy of the actor and
critic networks are used to calculate the target values, and
𝜃′ of the target networks can be updated by tracking learned
networks: 𝜃′ ← 𝜏𝜃 + (1 − 𝜏)𝜃′. Having the target networks
can ensure that the critic can be trained consistently without
divergence.

In addition, in order to speed up the learning period,
we require the agent to learn as much as possible from hu-
man demonstrations before interacting with the predicting
network. The agent determines whether to learn from the
demonstrations or the replay buffer based on the sampling
priority mechanism. In this way, the human demonstrations
can regulate initial policy and decrease the randomness of
exploration at the start of learning. In our work, the experi-
ence replay mechanism allows off-policy learning, and thus
the agent can use the experiences from the replay buffer as
well as the demonstration data. Since we cannot sample the
experience transitions from the replay buffer in an uniform
manner, we need to consider the significance of the experi-
ence transitions in our work.
4.1. State and Action Space

In order to learn the manipulation skills of human oper-
ators, the state space is defined based on the measured data
that can also be observed by human operators. As men-
tioned above, the learning agent has to make sure that the
production rate of dredged materials must be maintained in
an appropriate range. The variables of the state space must
reflect the dynamics of the swing process. Since the mea-
sured slurry density has a time lag between the soil cutting
and the measurement at the stern of the CSD, we still can
have other correlated signals to infer to what extent the soil
by the cutter head. In this work, the state space includes the
motor current of the cutter head 𝐼𝑐 , the motor current of the
underwater pump 𝐼𝑝, the degree of suction vacuum 𝐷𝑣, the
flow velocity 𝑉𝑓 , and the measured slurry density 𝐶𝑣, that is
𝑠 = [𝐼𝑐 , 𝐼𝑝,𝐷𝑣,𝑉𝑓 ,𝐶𝑣].

As the dredging environment is very complex, the rea-
son why those variables are selected to constitute the state
space mainly relies on the observations of the human op-
erators. Because the learning agent discussed in this work
seeks to imitate the manipulation skills of human operators,
we believe that what the human operators can observe in the
monitoring screen of a CSD can reflect enough information
about the complex and dynamic dredging process.

Besides, the constitution of the state space can also be ex-
plained based on the working principle of a CSD. We usually
use a nuclear-based gamma densitometer to directly measure
the slurry density𝐶𝑣 of the pipeline, but this value has a time
lag because the densitometer has to be installed at the stern
of a CSD. The slurry density can directly reflect the solids
level in the pipeline, and the control objective of the learning
agent is to track the desired slurry density. During the swing
process, the cutter head has to rotate around the spud pole
by slacking (or pulling) the cable of anchors, and, thus, the
motor current of the cutter head 𝐼𝑐 can reflect the reaction
forces. The increase of the amount of the dredged materi-
als will lead to the augmentation of this value. At the same
time, dredged materials determine the slurry density in the
pipeline, and the underwater pump needs to suck up all the
materials to improve the pressure for pipeline transportation.
Thus, the motor current of the underwater pump 𝐼𝑝 is also
related to the amount of the dredged materials. If the un-
derwater pump needs to suck up the dredged materials with
high density, the degree of suction vacuum 𝐷𝑣 will also in-
crease. Since the dredged materials need to be transported to
the disposal area through a pipeline, the energy for carrying
the dredged materials is supplied by the flow velocity 𝑉𝑓 .

The action space is a set of permissible values to contin-
uously control the swing speed 𝑉𝑠, which has to be kept in a
safety range. At each time-step 𝑡, the learning agent has to
change the swing speed to determine the amount of soil to
be dredged. The swing speed is restricted by the permitted
torque on the swing winches.
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4.2. State Transition Prediction
Since an accurate simulator or a virtual environment of

a CSD is not ready-made for the learning agent to interact
with, we will develop a neural network to predict the state
transitions of the swing process. For a stochastic MDP, the
state transition function should specifics the distribution over
the possible next states. Thus, the neural network 𝑓𝜙(𝑠, 𝑎)should be able to output the coming state based on the cur-
rent state 𝑠 and action 𝑎. Here we will first cover the consid-
erations of how to build a one-step model for predicting the
state transitions. Recurrent Neural Networks (RNNs) can es-
tablish the connections between time series issues via cycles
in a network, where the action at time-step 𝑡 can affect the
state transition at time-step 𝑡 + 1. Thus, we can use RNNs
to construct a model to predict what the coming state will
be when the agent performs an action. As typical RNNs has
the difficulty to handle the problem with long-term temporal
correlations, we borrow the idea of the Deep Long Short-
Term Memory (DLSTM) as in (Sagheer and Kotb, 2019) to
predict the state transitions of the dredging dynamics. The
DLSTM is a variety of the LSTM structure (Hochreiter and
Schmidhuber, 1997), containing multiple LSTM layers to
learn the nonlinearity and complexity of time-series data.
4.2.1. Single LSTM Structure

The basic structure of a single LSTM block is shown in
Figure 5. We can see that the cell state is the key unit that
runs along the entire straight line. The cell state is regulated
by the gates to ensure that the information can be inserted or
removed from it.
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Figure 5: The basic structure of a single LSTM block.

The input of a single LSTM structure is a sequence of
data points 𝑥𝑡 indexed by time-step 𝑡, and in this work, the in-
put consists of the current state and action, i.e., 𝑥𝑡 = [𝑠𝑡, 𝑎𝑡].The target of a LSTM is demoted by 𝑦𝑡, we have 𝑦𝑡 = 𝑠𝑡+1for the swing process. In order to maintain temporal corre-
lations, memory blocks with input and output gates are used
in the recurrent hidden layer. In the LSTM structure, the for-
get gate 𝑓𝑡 is used to determine which information should be
discarded from the cell state. The basic idea is that it will
cut off the flow if the value is zero and will allow all flow
to pass through if the value is one. Moreover, the cell state
can be updated by the input gate 𝑖𝑡, and the new optional val-
ues 𝑐𝑡 are generated by an activation function. The gates and

activation vectors are updated by the following formulas,
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑖𝑡 =𝜎
(
𝑈𝑖𝑥𝑥𝑡 + 𝑈𝑖𝑚𝑚𝑡−1 + 𝑈𝑖𝑐𝑐𝑡−1 + 𝑏𝑖

)

𝑓𝑡 =𝜎
(
𝑈𝑓𝑥𝑥𝑡 + 𝑈𝑓𝑚𝑚𝑡−1 + 𝑈𝑓𝑐𝑐𝑡−1 + 𝑏𝑓

)

𝑜𝑡 =𝜎
(
𝑈𝑜𝑥𝑥𝑡 + 𝑈𝑜𝑚𝑚𝑡−1 + 𝑈𝑜𝑐𝑐𝑡−1 + 𝑏𝑜

)

𝑐𝑡 =𝑔
(
𝑈𝑐𝑥𝑥𝑡 + 𝑈𝑐𝑚𝑚𝑡−1 + 𝑏𝑐

)

𝑐𝑡 =𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐𝑡
𝑚𝑡 =𝑜𝑡 ⊙ ℎ

(
𝑐𝑡
)

𝑦𝑡 =𝜙
(
𝑈𝑦𝑚𝑚𝑡 + 𝑏𝑦

)
.

(8)

Here 𝑖𝑡, 𝑓𝑡 and 𝑜𝑡 denote the input gate, forget gate and output
gate, respectively, and 𝑐𝑡 and 𝑚𝑡 have the same size, repre-
senting the cell activation vectors. The notable weight ma-
trices are denoted by 𝑈 terms, in which 𝑈𝑖𝑥 indicates the
weights from the input gate to the input node, and the other
terms (e.g., 𝑈𝑖𝑐 , 𝑈𝑓𝑐), and 𝑈𝑜𝑐 represent the diagonal weight
matrices. We also have the 𝑏 terms that denote the bias vec-
tors, e.g., 𝑏𝑓 means the forget gate bias vector. The cell in-
put and output activation functions are denoted by 𝑔 and ℎ,
representing the tanh activation function and the softmax ac-
tivation function. We use 𝜎, 𝜙 and the symbol ⊙ to denote
the logistic sigmoid function, the softmax output activation
function, and the element-wise product of vectors, respec-
tively.
4.2.2. Deep LSTM Architecture

In order to improve the overall performance of a neural
network, the depth of the LSTM structure can be expanded
into a deeper architecture. As depicted in Figure 6, the DL-
STM recurrent network consists of multiple LSTM blocks.
The input of the first LSTM block is a sequence of data points
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Figure 6: The architecture of the DLSTM recurrent network.

𝑥𝑡 indexed by time-step 𝑡 and previous hidden state ℎ1𝑡−1. Af-
terwards, its output will be sent to the second LSTM block as
the input, and so forth. Consequently, the 𝑚-th LSTM block
can output the predicted target. In this work, we use the DL-
STM network to predict the state transitions of the swing
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process based on historical collected data. Afterwards, this
network can work as a virtual environment that provides the
feedback about the coming state when the agent performs an
action.
4.3. Reward Function

In order to define the reward function for the learning
agent, we have to take account of the safety concerns and the
control objective. Specifically, the dredged materials should
be able to maintain at a high level, but the other parameters
should not exceed the permitted values. Here we use 𝑟dis

𝑡 to
denote the tendency towards the desired goal state 𝑠𝑔𝑜𝑎𝑙,

𝑟dis
𝑡 =

{
0 if ‖𝑠𝑡 − 𝑠goal‖ < ‖𝑠𝑡−1 − 𝑠goal‖
−1 otherwise. (9)

Here ‖𝑠𝑡 − 𝑠goal‖ indicates the distance to the desired goal
state 𝑠goal from the current state𝑠𝑡. The basic idea is that if
the agent moves farther away from the desired goal state in
comparison with the last step, it will get a penalty. Then, the
reward function at time step 𝑡 is defined by

𝑟𝑡 = 𝑟dis
𝑡

�
𝑖

𝑠𝑖𝑡 − 𝑠min
𝑡

𝑠max
𝑡 − 𝑠min

𝑡
+ 𝑟safe

𝑡 , (10)

where we use 𝑠𝑖𝑡−𝑠
min
𝑡

𝑠max
𝑡 −𝑠min

𝑡
to normalize the values of the current

state vector to eliminate the effect of different scales. Thus,
𝑠𝑖𝑡 represents the i-th element of the state vector, and 𝑠min

𝑡and 𝑠max
𝑡 represent the minimum and maximum values of

the current state vector, respectively. Moreover, in order to
consider the safety concerns, we also define the second term
𝑟safe
𝑡 ,

𝑟safe
𝑡 =

{−5 if (unsafe)
0 if (otherwise). (11)

Here the unsafe situation means that the current state exceeds
the permitted values, i.e., the motor current of the cutter
head 𝐼𝑐 > 955A, the motor current of the underwater pump
𝐼𝑝 > 180A, the degree of suction vacuum 𝐷𝑣 < −70bar,
and the flow velocity 𝑉𝑓 < 5m/s. The permitted values for
each CSD are different, and in this work those values are pro-
vided by the experienced human operator that manipulates
the CSD for data acquisition. In the learning approach, a big
negative reward −5 will be sent to the agent so as to avoid
such a situation. The basic idea of the reward function is
that the agent is expected to pursue the goal state associated
with high slurry density; otherwise, the penalty will be en-
larged along with the distance to the goal state. At the same
time, the agent should also pay attention to the limit of the
permitted values with regard to the safety concerns.
4.4. Sample Strategy

In RL, the agent has to incrementally update its control
policy by collecting a stream of experience, while it inter-
acts with the environment. The experience replay mecha-
nism allows the mixture of recent transitions. For example,

DQN (Mnih et al., 2015) uses a sliding window to sample
the transitions uniformly. In this work, we borrow the idea
of prioritizing some transitions than others (Schaul et al.,
2015), with the aim of utilizing the replay memory in a more
effective manner.

At the beginning of exploration, the agent has to take
considerable steps until it reaches to the goal state. As a
consequent, many transitions stored in the replay memory
are redundant, and the most useful transitions will be hidden
by those redundant ones. In order to prioritize the most use-
ful transitions, we have to measure the importance of each
transition. This value cannot be obtained directly, but we can
use temporal difference (TD) error to approximately indicate
the magnitude.

In order to consider variations in the distribution, we as-
sess the sampling weights to update the network. Thus, we
use 𝑃 (𝑖) to denote the probability of selecting a transition 𝑖,
and it will be calculated based on its priority 𝑝𝑖

𝑃 (𝑖) =
𝑝𝛼𝑖∑
𝑘 𝑝

𝛼
𝑘
. (12)

Here, the higher the probability 𝑃 (𝑖) of a transition 𝑖 is, the
more likely the transition 𝑖will be sampled in the next episode.
In addition, 𝛼 is chosen as 0.3 representing the sampling
weight of the agent’s initial exploration. We use the follow-
ing formula to determine the priority of a transition,

𝑝𝑖 = |𝛿𝑖| + 𝜆 ���∇𝑎𝑄
(
𝑠𝑖, 𝑎𝑖 ∣ 𝜃𝑄

)��� + 𝜖, (13)
where the first term 𝛿𝑖 is the TD error: 𝛿𝑖 = 𝑟𝑖+1+𝜆𝑄(𝑠𝑖+1)−
𝑄(𝑠𝑖), the second term is the actor’s loss: 𝑄(𝑠𝑡, 𝑎𝑡|𝜃𝑄) − 𝑦𝑡(see Equation 5), and the third term 𝜖 is used to ensure that
all the transitions have a change to be sampled. Here we use
𝜆 to balance the contributions between the TD error and the
actor’s loss.
4.5. Learning with Demonstrations

As mentioned before, it is expensive for the agent to learn
the optimal policy from scratch in a real industrial environ-
ment, so we will apply human demonstrations to regulate the
exploration policy from the beginning of actual interaction.
Before the agent performs exploration, the state transitions
from human experts can be stored in the replay buffer. The
pseudo-code of learning with demonstrations is sketched in
Algorithm 1. Before the agent interacts with the interac-
tive environment, the actor network and critic network are
initialized with their respective parameters, and the replay
buffer is initialized with human demonstrations in the form
of (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) transitions. To learn the optimal policy,
the initial state for exploration will be set randomly in each
episode, and the total learning steps and episodes are set to T
and M, respectively. In each time-step, the agent chooses an
action to execute according to the current policy and noise,
and then gets the corresponding reward and arrives at the
next state. Of course, the replay buffer can also be updated
along with the agent’s exploration, and the oldest transitions
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Algorithm 1 Swing process learning with demonstrations.
1: Inputs: 𝐷𝑟𝑒𝑝𝑙𝑎𝑦 the replay buffer initialized with demonstrations; 𝜃𝑄 parameters for initial critic network 𝑄(𝑠, 𝑎|𝜃𝑄); 𝜃𝜇

parameters for initial actor network 𝜇(𝑠|𝜃𝜇). 𝜃𝑄′ parameters for initial critic target network 𝑄(𝑠, 𝑎|𝜃𝑄′ ); 𝜃𝜇′ parameters
for initial actor target network 𝜇(𝑠|𝜃𝜇′ ); 𝑘 is the number of human demonstrations.

2: for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 𝑒 = 1 to 𝑀 do
3: Initialize environmental state 𝑠𝑜
4: for 𝑠𝑡𝑒𝑝 𝑡 = 1 to 𝑇 do:
5: Sample noise from Gaussian 𝑛𝑡 =  (0, 𝜉)
6: Select an action 𝑎𝑡 = 𝜇(𝑠|𝜃𝜇) + 𝑛𝑡 to perform
7: Get the next step 𝑠𝑡+1 and reward 𝑟𝑡
8: Store the transition (𝑠𝑡,𝑎𝑡,𝑟𝑡,𝑠𝑡+1) to 𝐷𝑟𝑒𝑝𝑙𝑎𝑦

9: Overwrite oldest transitions if the capacity is full
10: Sample a minibatch from 𝐷𝑟𝑒𝑝𝑙𝑎𝑦 with prioritization.
11: Set 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠𝑖+1,𝜇′(𝑠|𝜃𝜇′ |𝜃𝑄′ ))
12: Update the critic by minimizing the loss 𝐿(𝜃𝑄)
13: Update the actor ∇𝜃𝜋𝐽 (𝜃𝜋)
14: Update the target networks: 𝜃𝑄 → 𝜃𝑄′ ;𝜃𝜇 → 𝜃𝜇′

15: end for
16: end for

can be overwritten if the capacity is full. Thus, at the begin-
ning of exploration, the sampled mini-batch of transitions al-
ready contains human demonstrations, and the sample strat-
egy can ensure that the most useful transitions can be pri-
oritized. Then the actor collects samples according to the
priority sampling mechanism, and the critic network and the
actor target network are updated by computing the loss func-
tion and the policy gradient, respectively. When enough ex-
ploration has been performed, the replay buffer can be in-
crementally replaced by the transitions of the agent’s self-
exploration. In such a way, the agent’s behavior can be reg-
ulated by demonstrations in the beginning, but it still pos-
sesses the possibility to exceed the performance of human
experts through self-exploration.

5. Evaluation and Results
To evaluate the proposed approach, we will first validate

the accuracy of predicting the state transitions of the swing
process. Thus, an experienced human operator is required
to manipulate a real CSD for 6 hours to collect the opera-
tional data. We utilize the collected data to train the DLSTM
network, as well as to initialize the replay buffer with state
transitions generated by the human expert. Specifically, the
DLSTM network needs the training data to learn the dynam-
ics or state transitions of the swing process, and, afterwards,
it can output the predicted states for the RL agent. The his-
torical data operated by the human expert will also be con-
sidered as demonstrations to regulate the exploration of the
RL agent.
5.1. State Transition Prediction by DLSTM

As mentioned above, the raw dataset for the state tran-
sition prediction contains 21600 observations (6 hours), in
which 19440 observations (90% of the dataset) have been
used for training the network, and the remaining 2126 ob-

servations (10% of the dataset) are used for evaluating the
performance. Figure 7 depicts the performance of the DL-
STM network to predict the state transitions of the swing
process. In this work, the DLSTM network is responsible for
providing the feedback on what the next state will be when
the agent performs an action. As mentioned previously, the
states includes the slurry density, the motor current of the
cutter head, the motor current of the pump, the suction vac-
uum and the flow velocity, whereas the action is the swing
speed.

In comparison with the actual collected data, we can con-
clude that, in general, the predicted state transitions satisfy
the dynamic changes of the environment in response to the
actions. Thus, it can serve as a state transition function to
output the coming state. As mentioned before, the mea-
sured slurry density has a time lag with respect to the con-
trol action. As shown in Figure 7, the predicted slurry den-
sity curve closely matches the tendency of the actual mea-
sured curve. Thus, we can claim that the proposed DLSTM
network can take account of the time delay when predicting
state transitions.

With regard to the prediction accuracy, we consider the
root mean square error (RMSE), the root mean square per-
centage error (RMSPE), the relative error and the coeffi-
cient of determination (𝑅2). The best results of the DLSTM
network are achieved using three LSTM layers after 2000
episodes, in which RMSE and RMSPE are 0.22 and 2.98
respectively, and 𝑅2 = 0.99. In addition, we can see the
relative errors in Figure 8, where the suction vacuum is the
worst case but the relative error is only 3.66%. Thus, we can
say that the DLSTM network introduced in this work is ac-
ceptable to predict the state transitions for the following RL
agent.
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Figure 7: The state transition prediction by the DLSTM network.

5.2. Learn the Control Policy with Demonstrations
To evaluate the performance of the proposed approach

with demonstrations, the well-known deep deterministic pol-
icy gradients (DDPG) algorithm is implemented as the base-
line for comparison. Since our proposed approach combines
deep deterministic policy gradients with human demonstra-
tions, DDPGwD is used as abbreviation throughout this work.
In the experiment we also investigate how the fragments of

the demonstration data in the replay buffer will influence
the learning performance. Thus, the proposed approach is
distinguished by three groups: (i) DDPGwD-beginning, (ii)
DDPGwD-interleaved and (iii) DDPGwD-first-half. In the
first group, all the demonstration data is stored into the re-
play buffer before the self-exploration of the DRL agent.
In the second group, the demonstration data is divided into
10 fragments, and each fragment is inserted into the replay
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Figure 8: Relative error between the real and predicted tran-
sitions.

buffer every 100 learning episodes. In the third group, the
demonstration data is divided into two parts, and the first half
is stored into the replay buffer before the self-exploration,
while the second half is inserted into the replay buffer after
500 learning episodes. In order to reduce variance and fil-
ter out random effects, each algorithm has been run for 20
times in the experiments. The maximum learning episodes
is 1000, and the maximum step for each episode is 500.

As shown in Figure 9, we can clearly see that the pro-
posed DDPGwD approach can outperform the baseline. Ac-
cording to Equation 10, the cumulative reward of each episode
can reveal whether the agent moves towards the desired goal
state or not, as well as whether safety concerns have been
triggered during each learning episode. Thus, if the cumula-
tive reward is negative, it means the agent has swayed back
and forth towards the desired goal state, or the trajectory of
the agent exceeds the limit of the safety range.
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Figure 9: The cumulative reward for each learning episode.

With regard to the performance of the four algorithms,
we can also conclude that the way of storing the demonstra-
tion data indeed influences the learning performance. The
most promising case is the DDPGwD-beginning, where all
the demonstration data has been stored into the replay buffer
before self-exploration. More demonstrations can facilitate
the regulation of exploration behaviour at the beginning of
learning. In contrast, if demonstrations are gradually stored

into the replay buffer, as in DDPGwD-interleaved and the
first-half case, they can be overwhelmed by exploration data,
thereby reducing the probability of being sampled in the mini-
batch. Thus, we can claim that the proposed approach can
find the optimal control policy through the least number of
learning steps. Once the optimal control policy is converged,
it can directly output the optimal control action for each state.
5.3. Comparison with Human Expert Operation

In order to demonstrate the effectiveness of the proposed
learning approach, we take the performance of a human ex-
pert as the baseline. Figure 10 depicts the control curves of
how our learning approach in comparison with a human ex-
pert operates the swing process of a CSD. The dashed curves
represent a fragment of the operation data by a human ex-
pert, in which the CSD has started excavating the soil from
a standstill state. Thus, the standstill state is also consid-
ered as the initial state to evaluate the optimal control policy
obtained by our learning approach. In each step, we add ran-
dom noise to take account of the environmental disturbances
during the swing process. The solid curves represent how
the obtained control policy operates the CSD from the stand-
still state. In particular, we can see that the slurry density is
maintained at a high level, and all the other safety concerns
(i.e., the motor current of the cutter head, the motor current
of the pump, the suction vacuum, and the flow velocity) are
kept within the safety range.

In comparison, the human expert cannot stabilize the
slurry density at a high value because of the safety concerns.
For example, as shown in Figure 10, the motor current of the
cutter head begins to increase at 270s and reaches a peak at
290s where its value exceeds the maximum allowable value
(955A). In this case, the human expert immediately reduces
the swing speed so as to avoid causing potential accidents.
As a result, the slurry density has dropped below 20%, which
cannot lead to a good performance with regard to the produc-
tion rate for a CSD. Thus, we can draw obvious conclusion
that the proposed learning approach can outperform the hu-
man expert by make quicker responses to the dynamics of the
swing process. Moreover, all the safety concerns have been
taken into consideration during the stabilization of the slurry
density. The proposed approach can provide a competitive
solution to the intelligent control of the swing process of a
CSD.

With regard to the actual engineering application of the
proposed approach, the intelligent control mechanisms can
be summarized in three aspects. Firstly, the effect of control
actions will always satisfy the safety constraints, as defined
in Equation 10, where all the key variables should not exceed
the permitted values. Otherwise, negative penalties will be
sent to the learning agent. Secondly, the optimal control pol-
icy will always try to minimize the difference between the
current state and the desired goal state (see Figure 9), tak-
ing account of the safety constraints as well. Of course, the
desired goal state is provided by the end user, and, in par-
ticular, the goal state should explicitly indicate the desired
slurry density. This means that the real-time slurry density
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Figure 10: Performance comparison between human expert operation and our learning
approach.

will track the desired value so as to avoid potential pipeline
blockage. Thirdly, since it is inefficient and dangerous for
an agent to learn from scratch in a real CSD, the proposed
approach can allow the agent to obtain acceptable manipu-
lation skills based on historical data. Afterwards, the pre-
trained control policy can be applied to a real CSD so as to
continuously improve the policy network by real-time gen-
erated data.

6. Conclusions and Future Work
The manipulation of the swing process of a CSD involves

various uncertainties, so it is hard to design a precise model
to handle the dynamics of the environment. In this paper, we
focus on a reinforcement learning approach that can learn
the optimal control policy with human demonstrations for
the swing process control. Specifically, a DLSTM network
is introduced to serve as the state transition function to pro-
vide one-step transition prediction, and it is trained by the
collected demonstration data. Moreover, the DRL agent can
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make use of the demonstration data to regulate its explo-
ration behaviour at the start of learning, and then continue
improving its behaviour by self-generated data. The experi-
ment results show that the proposed approach can provide a
competitive solution to the swing process control problem.
The work also opens up the possibility of apply the DRL
framework to many practical applications, where accurate
simulators do not exists and we cannot allow the agent to
learn from scratch in real environments.

Of course, fully automated and intelligent manipulation
control of a CSD involves many other control variables, such
as the rotation speed of the cutter head, the inclination angle
of the ladder, and the swing width of the ladder. In this work,
we only focus on the swing speed control because it is the
most tedious and recurring work for the operators. Accord-
ing to on-site investigations, the rotation speed of the cutter
head does not need to be adjusted frequently, as it is mainly
determined by the soil type, and the swing width of the lad-
der is often regulated by the construction process. The incli-
nation angle of the ladder decides the cutting depth, which
means that when one layer of soil is excavated, the cutting
depth needs to be adjusted intermittently. Moreover, when
a swing movement is completed, the CSD may need to be
pushed forward a small step through the cooperation of the
main spud pole and the auxiliary spud pole. Therefore, in fu-
ture work, we will also look at the decision making problem
of finding the optimal control policies for the cutting depth
and the step length of the spud poles. In this case, multiple
learning agents will be required to find their own optimal
control policies in a cooperative manner.
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