Paleoproterozoic manganese oxide precipitation in oxic seawater surface and reductive enrichment in anoxic seafloor

Felipe Holanda dos Santosa, b, Wagner da Silva Amaralb, Ernest Chi Fruc, Ana Clara Braga de Souzad, Alice Bosco-Santosb

a Institute of Geosciences and Engineering, Federal University of Western Pará (UFOPA), Santarém, Pará, Brazil
b Institute of Geosciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
c Centre for Geobiology and Geochemistry, School of Earth and Environmental Sciences, Cardiff University, United Kingdom
d Geology Graduate Program (PPGG), Federal University of Ceará (UFC), Fortaleza, Ceará, Brazil

Abstract

Accelerated precipitation of Mn-rich rocks in the early Paleoproterozoic ocean is considered to reflect the irreversible rise of oxygen in the atmosphere during the Great Oxidation Event (GOE), 2.501-2.220 billion years ago. But the precipitation conditions, pathways, mechanisms, and linkages to ocean redox, broadly remain unresolved. The Lagoa do Riacho Mn deposit in Borborema Province, northeastern Brazil, Ceará state, consists mainly of manganese-rich and manganese-poor silicates deposited during the GOE epoch. Negative Ce anomalies in the manganese-poor silicates point to the scavenging of Ce3+ onto Mn-oxyhydroxide reactive surfaces in the oxygenated surface waters. In contrast, samples with positive Ce anomalies, predominantly associated with the manganese-rich silicates, indicate a reductive dissolution of Mn-oxyhydroxides across a redoxcline, enriching the anoxic bottom water with Ce and Mn2+. A paleoredox reconstruction based on couple Mn, Mo, and U systematics supports the existence of the proposed Mn-oxide redox shuttle that enriched the anoxic sediment pile with Mn precipitated from the oxygenated shallow surface waters. This study uncovers a unique pathway in Paleoproterozoic Mn mineralization involving the transfer of Mn oxides from an oxygenated upper ocean reservoir to a predominantly deep anoxic silicate reservoir that was subsequently metamorphosed. The proposed Mn oxide sink switch mechanism is different from the commonly reported reductive transfer of Mn to a diagenetic carbonate sink during the Paleoproterozoic.

Keywords: Manganese-rich rocks; Paleoproterozoic; Great Oxidation Event; Borborema Province; Redoxcline
1. Introduction

The Paleoproterozoic, spanning 2.5-1.6 billion years ago (Ga) was a time of environmental, biogeochemical and tectonic upheavals (Kirschvink et al., 2000; Bekker et al., 2004, 2006; Bakker and Holland 2012; Lyons et al., 2014; Chi Fru et al., 2015, 2016, 2019; Gumsley et al., 2017; Javaux and Lepot, 2018). Expansion of oxygenic photosynthesis is believed to have driven the Great Oxidation Event (GOE between 2.501-2.220 Ga, Canfield et al., 2013; Bekker, 2014; Lyons et al., 2014), leading oxygen to concentrated permanently in the atmosphere to exceed 10^{-5} present day atmospheric levels (PAL) compared to the preceding Archean interval (Karhu and Holland, 1996; Holland, 2006; Lyons et al., 2014; Warke et al., 2020; Poulton et al., 2021). Geochemical evidence for the unprecedented atmospheric oxygen accumulation is the disappearance of mass-independent fractionation of sulfur isotopes (MIF-S) in sedimentary pyrite, the lack of detrital pyrite and uraninite in fluvial and deltaic sediments and the increasing enrichment of Fe in paleosols, after 2.501 Ga (Farquhar et al., 2000; Lyons et al., 2014; Warke et al., 2020). The accumulation of redox-sensitive metals (e.g., Mo and U enrichments) and metalloids in marine sediments, including global-scale precipitation of manganese and iron oxides, are also evidence for a major ocean redox change (e.g., Roy, 2006; Scott et al., 2008; Maynard, 2010; Partin et al., 2013a, 2013b; Lyons et al., 2014; Chi Fru et al., 2016, 2019; Robbins et al., 2016; Konhauser et al., 2017). At this time, novel oxidative biogeochemical pathways probably emerged due to increased electron acceptor availability as nitrate, sulfate concentration and arsenate concentration (e.g., Kah et al., 2004; Zerkle et al., 2017; Chen et al., 2020; Chi Fru et al., 2019).

Although more than 60% of the global manganese deposition through time occurred during the GOE timespan (Roy, 2006; Maynard, 2010; Johnson et al., 2016), suggesting a correlation with the biological turnover, the specific mechanisms that led to intense manganese oxidation and precipitation are not yet fully understood. Possibilities include (i) the oxidation of Mn$^{2+}$ by molecular O$_2$ or its derivatives, such as superoxides (Calvert and Pedersen, 1996; Post, 1999; Tebo et al., 2005; Johnson, 2015); (ii) biological mediated reactions by anoxygenic phototrophs where Mn$^{2+}$ acts as an electron donor (Johnson et al., 2013; Daye et al., 2019); and (iii) UV-catalyzed photochemical oxidation by ultraviolet (UV) radiation without contributions from life or O$_2$ (Anbar and Holland, 1992, Liu et al., 2020). Further transformation of the primary Mn oxides to carbonate minerals by early diagenetic processes in some sedimentary settings, like the Franceville Basin in Gabon (Leclerc and Weber, 1980; Gauthier-Lafaye and Weber, 2003; Beukes et al., 2016), has been interpreted to reflect a redoxcline (Okita et al., 1988; Maynard et al., 2010; Beukes et al., 2016; Ossa Ossa et al., 2018; Mayika et al., 2020).
Therefore, the designated mechanisms, anoxic or oxic, for the deposition of Mn deposits in marine sediments, is an important proxy for dimension and reconstructing Earth's surface oxygenation during the Paleoproterozoic, a matter of intense debate (Lyons et al., 2014, 2020; Hodgskiss and Sperling, 2021; Poulton et al., 2021).

The hypothesis of a global oxygen catastrophe across the GOE that resulted in a radical transition from globally anoxic to globally oxic habitats was unlikely given the geological evidence for the pace of oxygenation, which better supports the “Canfield Ocean” model of a protracted period of an intermediate ocean oxidation state (Canfield 1998; Canfield et al., 2000). Oxygen accumulation probably began in localized and isolated shallow-waters before gradually expanding (on the timescale of millions of years) into the global marine photic zone and into relatively deeper waters (Canfield et al., 2008). Here, on a detailed geochemical examination of manganese-bearing rocks from the Borborema Province, northeastern Brazil, we provide novel insights on Paleoproterozoic redox ocean reconstruction. Our results support ocean redox shifts that are temporally related to the Lomagundi-Jatuli Event, in the GOE aftermath, among the most important records for enhanced primary productivity in the Paleoproterozoic (c.f. Bekker et al., 2006; Melezhik et al., 2007; Kump et al., 2011; Bekker and Holland, 2012; Bekker, 2014).

2. Geological setting
2.1. Borborema Province

The Borborema Province of the Northeast Brazil region lay adjacent to the West African Congo and São Francisco cratons before the opening of the Atlantic Ocean, following the breakup of West Gondwana during Phanerozoic times (Caby, 1989; Castaing et al., 1994; Brito Neves et al., 2000; Neves, 2003; De Wit et al., 2008; Fig. 1A-B). In this context, the Borborema Province represents Gondwana’s westernmost segment (Torsvik and Cocks, 2013).

The significantly voluminous Palaeoproterozoic rocks in the Borborema Province overlying the Archean tonalite-trondhjemite-granodiorite (TTG) basement (Fetter 1999; Dantas et al. 2013; Ganade et al., 2017), consist predominantly of orthogneisses, migmatites and diverse metasedimentary rocks (Fetter et al., 2000; Hollanda et al., 2011; Souza et al., 2016; Costa et al., 2018). A series of Meso- to Neoproterozoic granitic bodies, supracrastal rocks and shear zones (e.g., Patos, Pernambuco, and Transbrasiliano) developed towards the end of the Neoproterozoic Era, are common in this locality (Vauchez et al. 1995; Neves and Mariano 1999; Viegas et al. 2014; Fig. 1B).

A proposal has been made to divide the Borborema Province into three major structural
domains, namely (1) the Northern Borborema Province, including the Médio Coreaú, Ceará Central, and the Rio Grande do Norte domains; (2) the Central Domain; and (3) the Southern Domain (Brito Neves et al., 2000). The Northern Borborema Province, which is the focus of this study, comprises an expressive Rhyacian granitic and gneissic belt, as well as related metavolcanic–sedimentary sequences of the same proposed age hosting the manganese-rich rocks studied here (Fetter et al., 2000; Hollanda et al., 2011; Garcia et al., 2014; Costa et al., 2015; Souza et al., 2016; Calado et al., 2019).

2.2. Manganese mineralization from Northern Borborema Province

Several manganese-rich sequences occur for at least 70 km along a N-NE trending linear belt within the Paleoproterozoic units of the Northern Borborema Province (Souza and Ribeira Filho, 1983; Gomes, 2013; Costa and Palheta, 2017). These manganese-rich rocks, in many cases containing up to 40 wt% MnO$_2$, are interbedded with amphibolite facies metamorphic rocks, including graphitic pelites, garnet-bearing quartzites, meta-wackes, meta-conglomerates and calc-silicate rocks (Souza and Ribeira Filho, 1983; Gomes, 2013).

Manganese-bearing minerals consist predominantly of rhodochrosite (Mn$^{2+}$CO$_3$), spessartine (Mn$^{2+}$Al$_2$[SiO$_4$)$_3$), rhodonite-pyroxangite (Mn$^{2+}$, Fe$^{2+}$, Mg, Ca, SiO$_4$), and tephroite (Mn$^{2+}$SiO$_4$), along with non-manganese minerals such as graphite (C), pyrite (Fe$^{2+}$S$_2$) and pyrrhotite ([Fe$^{2+}$]$^{1-x}$S). Massive ores record localized supergene enrichment to manganese ores with pyrolusite, manganite (Mn$_3^[OH])$, cryptomelane, and todorokite ([Na,Ca,K,Ba,Sr]$^{1-x}$[Mn,Mg,Al]6O$_{12}•nH$_2$O (Souza and Ribeira Filho, 1983; Gomes, 2013).

For this study, we use the Lagoa do Riacho manganese deposit within the manganese mineralization trend (Fig. 1C). The Lagoa do Riacho is the largest Mn deposit from the Northern Borborema Province where Mn ore is extracted from three open-pit mines. Furthermore, the most occurrence of manganese-rich rocks from the Borborema Province comes from out-crop samples, which are weathered and with some degree of supergene alteration. Thus, the Lagoa do Riacho manganese deposit was studied as a representative site for drill-core sampling and analysis. At this deposit, post-metamorphic changes related to the supergene enrichment of silicate manganese minerals are recorded mainly at the top of the drill cores and evidenced by the presence of late oxides and hydroxides (e.g., pyrolusite and cryptomelane) (Santos et al., 2021). The manganese mineralization in the Lagoa do Riacho manganese deposit is hosted within the Canindé do Ceará Complex, which is subdivided into (1) paragneisses and schist layers, interbedded with marbles, quartzites, calc-silicate rocks, amphibolites, and manganese- and iron formations; and (2) orthogneisses of granitic to tonalitic
composition and subordinate amphibolites (Fetter et al., 2000; Castro, 2004; Torres et al., 2007; Costa and Palheta, 2017) (Fig. 2B).

The U-Pb detrital zircon ages obtained for the high-grade metasedimentary rocks of the Canindé do Ceará Complex mostly fall between 2.2 and 1.9 Ga (Kalsbeek et al., 2013; Costa and Palheta, 2017), which are very similar to the 2.2-1.9 Ga U-Pb zircon ages of the associated orthogneisses (Fetter et al., 1999; Castro, 2004; Garcia et al., 2014; Costa and Palheta, 2017). Close to the Canindé do Ceará Complex, a 2.1 arc-related mafic outcrop and intermediate volcanic-plutonic rocks, are hosts to Mn-rich silicate rocks (Fetter, 1999; Martins et al., 2009; Costa et al., 2015; Sousa et al., 2019). To the east of the Canindé do Ceará Complex, in the neighboring Jaguaretama Complex, a migmatite paragneiss hosting Mn-rich rocks, and petrographically similar to sample #10029 of the present study, yielded a U-Pb zircon age of 2046 Ma, is interpreted to coincide with the timing of high-grade metamorphic transformation of the sedimentary protolith (Calado et al., 2019). In addition, further south to the study area and in the same Mn mineralization trend of the Northern Borborema Province, migmatized orthogneisses hosting manganese silicate rocks have yielded a U-Pb isochron at ca. 2046 Ma (Gomes, 2013). All these constrains support a Paleoproterozoic age for manganese mineralization in this region, consistent with the age of the vast Lagoa do Riacho Mn deposit dated in the present study.

3. Material and methods

3.1 Sampling

A total of twenty manganese-bearing rocks from drill cores Ocr-1, 4 and 8 were selected for whole-rock geochemical analyses (Appendix Table 1). These rocks were categorized into manganese-rich (silicate manganese rock-SMR) and manganese-poor (manganese-quartzite and garnetite) lithotypes. Fresh rocks, free of alteration, with no evidence of supergene enrichment and without any late hydrothermal feature (e.g., veinlets), were prioritized during sampling.

3.2 Petrography

Petrographic features of representative manganese-bearing drill core samples (Ocr-1, 4 and 8) were investigated on polished thin sections at the Microscopy Laboratory of the Institute of Geosciences, University of Campinas, and in the SEMlab of the Federal University of Ceará, using polarized light on Leica microscope model DM 50P. Common and secondary phases, including pre-, sin- and post-metamorphic minerals and their respective textures, were imaged
at the Federal University of Ouro Preto using a JEOL JXA-8230 super probe operated with an
acceleration voltage of 15 kV and a 20 nA beam current.

3.3. Geochemistry

For geochemical analyses performed at ALS Global Laboratories Ltd. (subsidiaries in
Minas Gerais, Brazil and Lima, Peru), approximately 400 g of fresh lithotypes were crushed
and ground to <200 mesh size with a jaw crusher and agate mill. Rock samples were analyzed
for determination of trace (As, Co, Cu, Mo, Ni, Pb, Sc, La, Ce, Pr, Nd, Sm, Gd, Eu, Tb, Dy,
Ho, Er, Yb, Lu, Y, Cr, Hf, Nb, Rb, Sr, Ta, Th, Y, V, Zr) and major (Si, Al, Fe, Ca, Mg, Na, K,
Cr, Ti, Mn, P, Sr) elements. Concentrations were measured by inductively coupled plasma-
atomic emission spectrometry (ICP-AES) or inductively coupled plasma-mass spectrometry
(ICP-MS) after chemical treatment (Appendix Table 2). In summary, powdered sample-
portions (0.2 g) were digested with multiple acids (HF + HClO$_4$ + HCl + HNO$_3$), fused with
lithium borate, or fused with lithium metaborate/tertraborate, followed by melt dissolution with
HNO$_3$ (5%). Detailed geochemistry methods are available online (www.alsglobal.com).

For chemical and instrumental quality control, certified reference materials of different
rock matrices (GBM908-10 Low Cu Oxide; GRE-3 Carbonatite; SY-4 Diorite gneiss; OREAS-
45c Soil developed over a Ni-Cu-PGE mineralised contact; OREAS 146 Mineralised REE + Y
hornblende-biotite schist; OREAS 602 Au-Ag-Cu bearing ore blended with argillic rhyodacite;
NCSDC71301 Rock) were analyzed. Reference materials were reported within their
recommended ranges (median ± STD), with analytical recoveries from the average value
varying between 90 and 109%. Duplicates of selected samples (253A and 247) were analyzed
and produced values with deviations under 5% RSD, except for Na$_2$O that reached 9.8%.

3.3.1 Data management

Due to its low geochemical mobility Al normalizations (key major, minor and trace
elements) were used to avoid interpretations on detrital fractions of chemostratigraphy (e.g.,
Calvert and Pedersen, 1993; Morford and Emerson 1999; Smith et al., 2013). This approach
evaluates secular changes on authigenic mineral precipitation and basin-scale redox changes
because oxidative weathering promotes the enrichment of highly mobile redox sensitive
elements in sediments over poorly mobile ones, like Al, while the supply of detritus by physical
weathering does not result in significant fractionation. Normalizations (element/Al) were
carried out using the content on the Post-Archean Australian Shale (PAAS) (Taylor and
McLennan 1985; McLennan et al., 2001; McLennan, 2001). Furthermore enrichment factors
(EF), were calculated according to the equation $EF = \frac{(element/Al)_{sample}}{(element/Al)_{PAAS}}$.

Enrichments were considered when EF exceeded >2.0 and depletion when values were below <1. Moderate to strong authigenic enrichment is represented by an EF >10 and a moderate to strong authigenic depletion is represented by EF <0.1 (Tribovillard et al. 2006; Algeo and Tribovillard 2009). Appendix Table 3 shows the EFs of the elements of interest considered in this study.

3.4. Geochronology

To constrain the depositional age of the sedimentary protolith of the manganese-bearing rocks, one representative sample (#10029) was collected from the base of the drill core Ocr-1 and dated by zircon U-Pb geochronology using LA-SF-ICP-MS (Navarro et al., 2017). The medium- to coarse-grained metasedimentary rock is a well-foliated pelite composed of muscovite, feldspar, cordierite, quartz, graphite, garnet, biotite, and sillimanite. It is a graphite-bearing pelitic gneiss hosting manganese.

Zircon grains were separated by conventional magnetic and dense liquid techniques. After handpicking, the zircon grains were mounted in epoxy resin and polished. Laser zircon internal structures dating spots were selected after cathodoluminescence (CL) using a SEM operated at 15 kV and a beam current of 6-10 nA at the Laboratory of Isotopic Geology, University of Campinas.

A Photon Machines Excite.193 ionization laser system equipped with two HelEx cells was used in combination with a ThermoScientific Element XR ICP-MS, and helium was used as a transporting gas to increase the transport efficiency of the ionized material. The laser spot diameter was 25 µm. Isotopic data processing was performed with the software Iolite (Paton et al., 2010, 2011) and the Visual Age data reduction scheme geochronology (Petrus and Kamber, 2012). All measurements were normalized relative to the international standard zircon reference 91500 of 1065 Ma (Wiedenbeck et al., 1995). An internal standard, the Peixe zircon, which has an LA-ICP-MS U-Pb age of 571 ± 10 Ma (Navarro et al., 2017), was used to track the data reduction routine's quality. Analyses of the 91500-zircon standard resulted in a concordia age of 1063 ± 2 Ma, while Peixe zircon provided a concordia age of 573 ± 3 Ma.

The weighted average U-Pb plot, kernel density estimation (KDE) and cumulative probability diagrams were made using the IsoplotR off-line toolbox (Vermeech, 2018) on RStudio. Initially, only the analyses with concordance higher than 90% were considered in the calculations, following recommendations made by Spencer et al. (2016). Age data and concordia plots were reported at 2σ error. The analyzed dataset of zircon U–Pb analyses are
presented in Appendix Table 4.

4. Results

4.1. Petrography

The manganese-rich lithotype consists of a silicate manganese rock (SMR), whereas the manganese-poor lithologies are grouped into a finely banded garnet-rich rock (garnetite) with minor silicate manganese minerals and a manganese quartzite. The SMR contains tephroite, spessartine-garnet, manganese-pyroxene, and rhodochrosite. At >70%, manganese-pyroxene is the most common silicate in this lithological group (Figure 2A). They appear as up to 6 mm coarser-grained crystals that are sometimes replaced by manganese-amphibole (Figure 2B). Spessartine garnet, the second most abundant mineral, occurs in contact with manganese-pyroxene (Figure 2B and C). Tephroite and carbonate minerals appear in minor volumes (<5%). Other minerals of interest include several sulfides related to chalcopyrite, cobaltite and pyrite (Figure 2D), pyrophanite, graphite, and manganese oxides such as pyrolusite. The sulfide minerals, pyrophanite, and graphite occur in the rock matrix, through foliation planes, in straight contact with the silicate minerals and do not have any relationship with secondary texture fillings and veins (Figure 2C).

The Mn-quartzite rocks are composed primarily of plagioclase, quartz, mica, graphite, and garnet. This group of minerals appears as fine-grained crystals defining a continuous foliation (Figure 2E). In the Mn-quartzite, sulfide also occurs as minor minerals (Figure 2F and G). Abundant and well-developed graphite flakes aligned to the banding, are sometimes in contact with pyrite, covellite and chalcopyrite (Figure 2G). These sulfide minerals have anhedral to subhedral shapes and commonly are medium to fine-grained crystals.

The garnetite occurs as a thinly banded, mm-sized rock showing alternations of garnet and quartz-rich layers. In this lithological group, mica occurs in interstitial areas close to garnet (Figures 2H and I). Another distinguishing feature in this rock, also common in the Mn-quartzite, is the commonly observed alignment of fine millimetric flakes of graphite with the rock matrix, representing primary sedimentary bedding (S₀//S₁). Also, similarly to the SMR, carbonate and sulfide minerals appear as minor phases.

4.2. Geochemistry

4.2.1. Major element concentrations

The major element content and enrichment factors for the manganese-rich and manganese-poor silicates are available in Appendix Table 1. The manganese-rich silicates
presented MnO concentrations from 22-38 wt%, with Mn$_{\text{EF}}$ ranging from 349 to 1101 (Figures 3 and 4). SiO$_2$ and Al$_2$O$_3$ concentrations (33-53 wt% and 13-5 wt%, respectively) are minor, compared to concentrations of the manganese-poor silicates. Various other major oxides occur in minor concentrations in the manganese-rich silicates, including Fe$_2$O$_3$ (3.5-7.2 wt%), CaO (1.5-5.0 wt%), MgO (0.8-2.9 wt%), TiO$_2$ (0.1-0.8 wt%) and K$_2$O, Na$_2$O and P$_2$O$_5$ (generally < 0.1 wt%).

In the manganese-poor silicates, MnO concentrations and Mn$_{\text{EF}}$ range from 0.2-5 wt% and 2.2-82.3, respectively (Figures 3 and 4). SiO$_2$, Al$_2$O$_3$, Fe$_2$O$_3$ and Na$_2$O contents have minor variations of 55.8-61.6 wt%, 14.0-18.6 wt%, 2.6-7.0 wt% and 0.60-4.6 wt%, respectively (Appendix Table 1 and Figure 4). Compared to the manganese-rich silicates, mean negligible CaO concentrations of 0.58 wt% are recorded, while TiO$_2$ is uniformly low at <0.7 wt%.

Often, for the manganese-rich silicates, MnO displays a good negative correlation with SiO$_2$ (R = - 0.66), a moderate negative correlation with Al$_2$O$_3$ (R = -0.46) and a weak negative or absent linear regression with TiO$_2$ (R = -0.034) and CaO (R = -0.058) (Figure 4). Conversely, in the manganese-poor silicates, MnO shows a strong positive covariance with TiO$_2$ (R2 = - 0.87) and a moderate positive covariance with CaO (R = 0.5) (Figure 4). For more detail, see correlation matrix plots in figure 4.

4.2.2. Redox-sensitive trace element concentrations

Figure 6 displays the relationship between the redox-sensitive trace metal(loids)s Mo, U, V, Co, As, Cr, Cu, and Ni versus MnO, with their corresponding EFs in Figure 3 and Appendix Table 3. The concentration of redox-sensitive trace metals in the manganese-bearing samples shows a broad range.

The high enrichment factors of Mo (28-360), Co (18-113), As (4-1542) and Ni (6-58) in the manganese-rich silicates indicate a strong enrichment. Conversely, U$_{\text{EF}}$ and Cr$_{\text{EF}}$ values of 0.61-2.82 and 0.43-5.23, respectively, are only slightly above PAAS (Figures 3 and 5). Variations in V and Cu are spread with V$_{\text{EF}}$ from 2.4-9.3, and Cu$_{\text{EF}}$ from 0.4-19.

The manganese-poor silicates are also enriched in Mo (1-92) and As (3-84), although to a lesser magnitude relative to the manganese-rich silicates (Figure 5; Appendix Table 3). Average EFs of 3.74 and 3.23 for Co and Ni are similar to each other, while Cr$_{\text{EF}}$ of 0.3-2.6, is also slightly minor than for the manganese-rich silicates. Manganese-poor silicates presented an Cu$_{\text{EF}}$ of 10-53, U$_{\text{EF}}$ of 0.3-1.5 and V$_{\text{EF}}$ of 0.9-2.
4.2.3. Rare-earth element

The Ce, Pr, Eu and La anomalies (*) were calculated following shale-normalization with PAAS (SN) according to previously described linear methods (Bau and Dulske, 1996; Bolhar et al., 2004; Bau and Alexander 2006), using the equations: \((\text{Ce/Ce*})_{\text{SN}} = \text{Ce/(2Pr - 1Nd)}\); \((\text{Pr/Pr*})_{\text{SN}} = \text{Pr/(0.5Ce + 0.5Nd)}\); \((\text{Eu/Eu*})_{\text{SN}} = \text{Eu/(0.67Sm + 0.33Tb)}\); and \((\text{La/La*})_{\text{SN}} = \text{La/(3Pr - 2Nd)}\), respectively.

Manganese-bearing rocks REE+Y patterns PAAS normalized are presented in figure 6. The sum of REE+Y (ΣREE+Y) contents for the manganese-rich silicates ranges from 86-357 ppm, typically far away from the crustal values of 129 ppm. Sm/Yb ratios vary from 0.66 to 2.0, reflecting a medium REE (MREE) enrichment, consistent with Sm/Ho ratios and depletion in light REE (LREE), supported by La/Nd ratios compared to the Er/Lu ratios for heavy REEs (HREE) (Figure 6 and Appendix Table 1). There is a range of Eu anomalies, from strongly negative to slightly positive (Eu/Eu* = 0.38-1.27). LaSn anomalies are predominantly positive, from 0.84 to 1.36 and Y/HoSn ratios vary from 0.96 to 1.18. The REE+Y patterns either display a positive Ce anomaly or a lack of positive and negative Ce anomaly (0.88-1.24) (Figures 6 and 7 and Appendix Table 1). (Pr/Pr*)Sn range from 0.90 and 1.05 and.

ΣREE+Y content of the manganese-poor silicates is, on average, more abundant than in the manganese-rich silicates, falling within a narrower range from 179.42 to 280.91 ppm. REE patterns are flat or present a slight LREE enrichment (Figure 6). Accordingly, Sm/YbSn ratios range from 0.61-3.33, averaging 1.26. EuSn anomaly display variable values, from 0.56-1.50 and all samples presented positive LaSn anomaly (0.99 to 1.42), and Y/HoSn ratios varied from 0.93 to 1.08. The manganese-poor silicates Ce anomalies that span from 0.88-1.11 (Figure 7), trend from positive towards negative anomalies, while their associated (Pr/Pr*)Sn anomalies show limited variations from 0.95-1.12.

4.3 Geochronology

Representative cathodoluminescence (CL) images of the zircon crystals from the graphite-bearing pelitic gneiss (#10029) investigated in this work are shown in Figure 8, together with the \(^{207}\text{Pb}/^{206}\text{Pb}\) ages and Th/U ratios. Zircon U-Pb analyses are presented in concordia diagrams, probability density plots, histograms and weighted average diagram (Figure 8). For more detail on U–Pb analytical data, see Appendix Table 4.

Zircon crystals from the graphite-bearing pelitic gneiss sample (#10029) are colorless, transparent, or light brownish with a size range of 30–250 μm × 30–125 μm and length-width ratios ranging from 5:1 and 1:1. Most zircon crystals have subhedral to euhedral habits and
show mainly prismatic morphologies. Sub-rounded shapes are a common feature in some
ezircons, as well as stumpy morphologies. In general, the internal structure of the zircons varies
between oscillatory zoning and core-rimmed patterns. The detrital cores display weakly
oscillatory zoning, patchy zoning and simple broad zoning and are wrapped by dark-colored
overgrowth rims (Figure 8A).

A total of seventy-nine spots were analyzed on 69 zircons from sample 10029. Seventy-
three spots (73) yielded ages with concordance > 90% (Appendix Table 4), including 18
analyses on metamorphic overgrowth rims and 55 analyses on inherited cores. Th/U ratios in
the range of 0.01 to 0.22 for the 18 overgrowth rim spots agree with a metamorphic origin for
the zircons (Rubatto, 2017). These 18 overgrowth rims produced six concordant spots with an
upper intercept age of 2106 ± 9.5 Ma (MSWD = 4), a $^{207}\text{Pb} / {^{206}\text{Pb}}$ weighted mean age of 2099 ± 6 Ma (MSWD = 2.19) and the youngest remnants a lead-loss trend line (Figure 8D). This
dataset is interpreted to likely represent a metamorphic tectonothermal event, giving a
minimum constraint for the depositional age of the sedimentary protolith.

The assumed maximum sedimentation age for the protolith corresponds only to the
concordant zircons older than the metamorphism previously identified at ca. 2099 Ma and its
anchored lead-loss trending line. This approach followed Spencer et al., (2016) criteria for
defining maximum depositional ages. Therefore, the youngest population, given by 14 zircons,
excluding the metamorphic crystals, resulted in a weighted mean $^{207}\text{Pb} / {^{206}\text{Pb}}$ age of 2152 Ma
(Figure 8E).

5. Discussion
5.1. Provenance, detrital contribution and post-depositional features from the
manganese-bearing rocks

Because the mineral assemblage of the manganese-bearing rocks from the Borborema
Province is mainly composed of calc-silicate minerals (e.g., garnet, pyroxene, and minor
carbonate), primary silicic marlstones or likely a silicate-rich chemical precursor are
considered a potential protolith for the manganese-rich rocks. Thus, a first hypothesis is that
the mineral phases precursors are believed to be kutnohorite-like carbonate minerals (Johnson
et al., 2016; Santos et al., 2021). In the present study, this assumption comes from a textural
relationship where kutnohorite-like carbonate occurs as inclusions in the garnet-spessartine
crystals and manganese-pyroxene, suggesting a pre-metamorphic precipitation (Johnson et al.,
2016; Polgári et al., 2012; Santos et al., 2021). After that, metamorphic spessartine garnet and
manganese pyroxene minerals would develop by isochemical decarbonation and dehydration
reactions during prograde metamorphism, according to the following reactions:

\[3\text{MnCO}_3 \text{(Rhodochrosite or kutnohorite)} + \text{Al}_2\text{Si}_4\text{O}_{10}(\text{OH})_2 \text{(clay)} = \text{Mn}_3\text{Al}_2\text{(Si}_3\text{O}_{12}) \text{(Spessartine)} + \text{SiO}_2 \text{(Quartz)} + \text{H}_2\text{O} + 3\text{CO}_2 \ (1) \]

\[3\text{MnCO}_3 \text{(Rhodochrosite or kutnohorite)} + \text{SiO}_2 \text{(Quartz)} + \text{Al}_2\text{Si}_2\text{O}_5(\text{OH})_4 \text{(clay)} = \text{Mn}_3\text{Al}_2\text{(Si}_3\text{O}_{12}) \text{(Spessartine)} + 2\text{H}_2\text{O} + 3\text{CO}_2 \ (2) \]

\[\text{MnCO}_3 \text{(Rhodochrosite)} + \text{SiO}_2 \text{(Quartz)} = \text{MnSiO}_3 \text{(Rhodonite)} + \text{CO}_2 \ (3), \]

The fact that all manganese phases contain Mn\(^{2+}\) oxidation state (e.g., \(\text{Mn}^{2+}\text{Al}_2\text{(Si}_3\text{O}_{12}) \text{Spessartine}\) and \(\text{Mn}^{2+}\text{(SiO}_3\text{)} \text{Rhodonite}\)), which reflect diagenesis and metamorphism of an early-reduced Mn precursor, like Mn-carbonate, further supported our view. Alternatively, assuming that some of these silicates may have had a volcanic-exhalative origin (e.g., spessartite and rhodonite; see Spry et al., 2000), it is also possible that the listed above mineral assemblages may have fully developed chemically, producing a marl-like composition. This approach suggests that SiO\(_2\), clay minerals, and MnCO\(_3\) were formed authigenically rather than derived from detritus, explaining the low Ti values found in these rocks (Figure 4 and Appendix Table 1). In all manganese-bearing rocks, Al\(_2\)O\(_3\) and TiO\(_2\) displayed negative correlations with MnO concentrations, indicating that terrigenous components were not the dominant source of the manganese-bearing rocks (Figures 4 and 5). Conversely, once Ti is a good detrital proxy, the very low TiO\(_2\) (Appendix Table 1) values found in all manganese-bearing rocks support an absence of a detrital source or, at least, a Ti-poor source at the provenance of the manganese-bearing rocks. Also, Th and Sc yielded values lower than crustal average, with some samples showing detectable depletion (EF < 1).

Working with the alternative hypothesis where these rocks were pure chemical precipitates, then the SiO\(_2\) combined with diagenetic Mn carbonate (according to reactions below) to produce manganese-rich silicates may have been an authigenic product of a seafloor dissolved silicic acid delivered from a submarine basaltic weathering. Such fluids would have been acidic and therefore limited the precipitation of carbonates, which is consistent with the low carbonate content of these rocks. This association is also supported by the relationship between Al and Ti values found. For example, 20-30% of Al is authigenic (clay minerals) in the deep open ocean, while Ti is rarely authigenic (Wei et al., 2003). Thus, the low Ti values found in these manganese-bearing rocks are consistent with the lack of a detrital influence and
a Ti-poor source, suggesting a chemical origin. The likely leached mafic/ultramafic source rocks show low-Ti values (Appendix Table 1). A basic magmatic provenance is further supported by the A-CN-K and Th/Sc vs Zr/Sc diagrams (Fedo et al. 1995; Nesbitt, 2003;), which indicates that the manganese-rich silicates follow weathering trend of basalts (Figures 9a and b). Conversely, weathering of continental crust rocks should follow the sediment recycling trend, becoming rich in Zr content. However, Zr is not enriched in samples relative to UCC.

Although basaltic rocks are not associated with the drill cores, further south of the present study area, several volcanic mafic bodies with ages ranging from outcrops of 2.2-2.1 Ga mafic bodies in contact with manganese silicate rocks (Martins et al., 2009; Costa et al., 2015; Sousa et al., 2019; Appendix Table 1). The age range of these mafic rocks overlaps with the inferred depositional age of the manganese-bearing rocks in this study. It is believed that such mafic rocks were deposited as oceanic plateau basalts close to 2.2 Ga (Martins et al., 2009). The concentrations of Ni, V and Co of up to 920 ppm, 350 ppm and 90 ppm, respectively in these basaltic rocks (Martins et al., 2009; Sousa et al., 2019), as well as negative Eu anomalies, are comparable with those recorded in the Mn-rich samples, which makes them potential candidate source rocks. Thus, the incorporation of the reduced Mn$^{2+}$ into early bottom silicates that harbor a negative Eu anomaly, high Co, Ni, As and V concentrations may be related to Mn leaching of a seafloor basaltic source. Because such negative Eu anomalies in basalts reflect crystallization from magmas depleted by the precipitation of plagioclase-rich rocks in the magma crystallization series, it could also mean that Mn was leached from such magmas in contact with seawater into the sedimentary pile. Furthermore, basaltic volcanism as a metal source is also a common feature in the Phanerozoic as showed by carbonate sediments from the proto-North Atlantic deposited during the oceanic anoxic event 2 (OAE-2; Orth et al., 1993).

The systematic negative to low positive Eu anomalies (0.38-1.27) in our rock samples suggests that high-temperature hydrothermal processes did not contribute significantly to the manganese precipitation since positive Eu anomalies are a diagnostic feature of high-temperature hydrothermal fluids (>250°C; e.g., Derry and Jacobsen, 1990; Douville et al., 1999; German and Von Damm, 2003; Frei et al., 2017; Schier et al., 2020). Considering the paleogeography and the distribution of mafic rocks in the Northern Borborema Province, the distal deposition of manganese-rich rocks from the hydrothermal source might explain the diminished intensity of the positive Eu anomaly (Steadman and Spry, 2015). Other possibilities are Eu anomalies imprint by submarine weathering of a fractionated oceanic basaltic source
(Towell et al., 1969; Menzias et al., 1977; Rudnick, 1992) as suggested previously or lower
temperature hydrothermal fluids (e.g., Schier et al., 2020). The Ongeluk jaspilites (Hotazel
Formation, South Africa) is an example of a chemical precipitate lacking positive Eu anomaly
due to mixing of low-T hydrothermal fluids (<200ºC) with ambient seawater (Gutzmer et al.,
2001; Schier et al., 2020). Furthermore, it is also possible that the loss of positive Eu anomaly
may have been prompted by some detrital dilution of the seawater chemical components.
However, as true cerium anomalies are recorded in the manganese-bearing rocks and the TiO$_2$
is very low, diluting by terrigenous components may be unlikely.

Regardless, the trace and major element data, EFs and comparisons to the UCC, linked
to Eu anomalies, strongly oppose a detrital or pure hydrothermal source for the deposit. Instead,
the positive correlation between Co, V, As, and sedimentary Mn content in the manganese-rich
silicates, in the absence of a similar correlation with Cr, abundant in oxygenated seawater due
to oxidative weathering from continental rocks, suggest a non-UCC provenance (Figure 9a and
b). Furthermore, because Mn, As, Ni, Co and V, are strongly enriched in the manganese-rich
silicates, with much weaker patterns in the manganese-poor silicates (Figure 3; Appendix Table
3), a distinct provenance between these two lithologies may be taken into account. A basaltic
source is suggested for the Mn-rich rocks, whereas in the Mn-poor lithologies, a mixed-source
with some degree of detrital influence cannot be ruled out. Additionally, the strong positive
correlation between Co and V and MnO suggests the Mn-rich fluids were likely enriched in Co
and V. Similarly, the Mn-precipitating fluids are suggested to have been relatively depleted in
As, Ni, and as depicted by their strong enrichment factors but only moderate correlation with
MnO (Figure 5). However, another possibility to explain these moderate correlations is related
to a potential metamorphic redistribution of As and Ni in the rock. In this scenario, these
elements initially were deposited along with Mn and due to later diagenetic and metamorphic
processes, and then they were bound into other newly nucleated minerals. The data also suggest
that the fluids that combined to precipitate the Mn-rich rocks were generally depleted in Cu
and Cr, as depicted by weak enrichment factors and the extremely weak or inverse correlations
with the precipitated MnO.

Based on the above consideration, it is assumed that the reported redox signatures are
robust, in agreement with several studies that have used similar arguments to extract
paleoenvironment signals from late-diagenetic rocks and greenschist to amphibolite facies
sequences (e.g., Bolhar et al., 2004; Frei et al., 2017; Tashiro et al., 2017; Teixeira et al., 2017a;
Planavsky et al., 2018; Hood et al., 2018; Liu et al., 2019; Pitarrello et al 2019; Cabral et al.,
2019b; Bosco-Santos et al., 2020; Zhang et al., 2020).
5.2. Origin and paleoredox depositional conditions of the Mn-bearing rocks: Insights from trace element and REE systematics

The authigenic nature of some paleo-redox trace metals and metalloids (e.g., As, Co, Cu, Mn, Mo, Ni; see Figure 3) may suggest that the manganese-bearing rocks from this study were precipitated from a metal-rich, volcanically derived, seawater (Little et al., 2015). Co-precipitation of sulfide minerals (Mo, As, Cu), passive scavenging of Mo, Ni, and Cu by a particulate shuttle and the benthic Fe-Mn redox shuttle are secondary mechanisms potentially responsible for transferring these metals to the rocks. In support of this view, all lithological groups presented here contain sulfide minerals likely formed during the pre-metamorphic stages of diagenesis and only recrystallized during metamorphism. For example, sedimentary textural relationship demonstrated by cobaltite (CoAsS) and surrounding matrix minerals in triple contact at approximately 120º, suggest early mineral growth can occur without reacting with neighboring minerals (e.g., Cabral et al., 2019a). According to this feature, cobaltite either was crystallized during early diagenesis as an authigenic precursor of an As-S-bearing sedimentary rock or recrystallized during metamorphism. Furthermore, a previous volcanic activity in the manganese source area (e.g., Martins et al., 2009; Costa et al., 2015; Sousa et al., 2019), as discussed in the previous section, provides a reasonable explanation for the high As enrichment in the samples. For example, a sample from the SMR group (#10243) showed As concentrations of 978 ppm with an EF of 1542, comparable in magnitude to those achieved by Archean and Paleoproterozoic Mn-Fe-rich sequences (Chi Fru et al., 2019).

Covariance between U and Mo is observed and speculated to be related to an Mn-oxide particulate shuttle mechanism. However, U is unaffected in this process, remaining within concentrations close to the crustal average (Algeo and Tribovillard, 2009; Wu et al., 2016; Ma et al., 2019). Interestingly, the U enrichment factor detected in our Mn-bearing rocks is only slightly above crustal levels (EF up to 3), supporting the statement above. The \(\text{Mo}_{EF} \) versus \(\text{U}_{EF} \) plot (Figure 10) according to Algeo and Tribovillard (2009), reveals pronounced Mo enrichment of up to 360 relatives to a maximum of 2.8 for U, providing additional support for oxide shuttling from surface oxic to euxinic bottom sediments, similar to observations in the modern weakly restricted and stratified Cariaco and the Baltic Sea basins (Algeo and Tribovillard, 2009; Van Helmond et al., 2018). Normally Mn oxide shuttling to anoxic or eventually euxinic waters results in high Mo enrichment in the bottom sediments (Algeo and Tribovillard, 2009). Such high Mo EF is found in the manganese-rich silicate rocks (EF= 20 to 360), which is believed to have been deposited in an anoxic/euxinic setting according to Santos
et al. (2021). The ubiquitous dissemination of sulfide minerals (e.g., cobaltite and pyrite), as well as biogenic graphite (pyrolyzed remnants of organic matter; Fragomeni and Pereira, 2013) in these manganese-rich rocks, supports this interpretation. Thus, the high Mo enrichment in the Mn-rich rocks indicates simultaneous scavenging of seawater Mo and Mn from the oxic surface waters by Mn oxyhydroxides following a reductive dissolution mechanism of the Mn oxyhydroxides in the anoxic seafloor below the chemocline and later incorporation into the diagenetic-metamorphic Mn silicates. However, these results cannot fully differentiate between anoxic bottom waters and anoxic pore waters.

Besides the stated above, in anoxic/euxinic bottom sediments, Mn usually can react with carbonates to form authigenic Mn-carbonate minerals (e.g., kutnohorite and rhodochrosite; Calvert and Pedersen, 1993, 1996; Brumsack, 2006; Tribovillard et al., 2006; Johnson et al., 2016). Following this approach and according to other authoritative sources (De Putter et al., 2018; Chisonga et al., 2012; Cabral et al., 2019b; Mücke et al., 1999; Slack et al., 2000; Mancini et al., 2000; Nyame, 2001), it is suggested that the manganese-silicates (e.g., spessartine and rhodonite) may represent diagenetic/metamorphic products of authigenic silicates plus manganese-carbonate minerals reduced in the deep anoxic/euxinic seawater from Mn oxides precipitated above the chemocline. Support for this also comes from the strong true positive Ce anomaly (e.g., Warke et al. 2020).

To varying degrees, trace metals and metalloids such as V, Co, As and Ni, exhibit a reasonable covariance with Mn concentrations. Specifically, the reduction of vanadate to vanadyl ions (VO$_2^-$) as well as hydroxyl forms, occur in mildly reducing and non-sulfidic anoxic waters (Algeo and Maynard, 2004; Calvert and Pedersen, 1993; Morford and Emerson 1999; Tribovillard et al., 2006; Gambacorta et al., 2020). Additionally, V$^{3+}$ phases are further reduced to insoluble hydroxide forms under strongly reducing conditions when free H$_2$S is present in the euxinic environment (Tribovillard et al., 2006; Takahashi et al., 2014; Zhang et al., 2019). Since potential authigenic sulfide phases (e.g., pyrite and cobaltite) are mineralogically related to manganese minerals, most samples plot in the euxinic field on the Mo_{EF} versus U_{EF} graph, we suggest strongly reducing local conditions were associated with deposition of the Mn-protolith. Algeo and Maynard (2004) highlight that Cr is depleted in euxinic environments due to organic matter degradation by the action of sulfate-reducing bacteria. Although we do not have direct evidence for sulfate reduction, the co-occurrence of pyrite with graphitic lenses, coupled to the low Cr enrichment factor (Figure 3) and a lack of covariation between Cr and Mn (Figure 5), suggest a strong possibility for microbial sulfate to sulfide reduction with organic matter in low oxygen waters below the Mn-chemocline.
The proposition of euxinic bottom waters is reinforced by As cycling. Under oxidizing waters, As$^{5+}$ may be incorporated into Mn-oxyhydroxides reactive surfaces, forming insoluble arsenic forms (Tribovillard, 2020). While under reducing conditions, As$^{5+}$ is reduced to As$^{3+}$ and may react with sulfide species precipitated in euxinic bottom sediments (e.g., Morse and Luther, 1999; Huerta-Diaz and Morse, 1992; An et al., 2017; Hetzel et al., 2011; Tribovillard, 2020). Consequently, the reductive dissolution of Mn oxides across the chemocline would have released As$^{5+}$ into the seawater, which would have been reduced to As$^{3+}$ and incorporated into sulfide minerals forming in the water column and on the seafloor. The high As enrichment factor in our samples and the moderate positive covariance with Mn concentrations suggest this shift towards As enrichment in the anoxic/euxinic conditions existing beneath the chemocline. As the positive relationship between As and MnO enrichments accounts for only 40% of the data, As is suggested to have had a likely seawater surface and an association with the basaltic weathering fluids.

Cerium anomaly is an oxygen sensitive proxy widely used to unravel ocean water column redox (Elderfield et al., 1988; Liu et al., 1988; German and Elderfield, 1990; Shields and Stille 2001). In anoxic waters, Ce$^{3+}$ is soluble but oxidizes to Ce$^{4+}$ in oxic (<5 µmol German and Elderfield, 1990) near-neutral pH environments (Elderfield et al., 1988; German and Elderfield, 1990). When oxygen concentrations rise above 5 µmol, the oxidation of Ce$^{3+}$ to Ce$^{4+}$ lowers the solubility of Ce, leading to its precipitation and depletion from seawater (Elderfield et al., 1988; Liu et al., 1988). The removal of Ce$^{4+}$ from seawater is enhanced by Mn-Fe oxyhydroxides minerals, clay particles, and organic matter-rich deposits, which serve as templates for Ce precipitation and deposition on the seafloor (Bau, 1999; Bau and Koschinsky, 2009; Tostevin et al., 2016a). This depletion in seawater Ce concentration linked to negative Ce anomalies recorded in the water column is consistent with the concomitant dependence of Mn$^{2+}$ oxidization to Mn$^{3+/4+}$ on oxygen availability (Calvert and Pedersen, 1996; Post, 1999; Tebo et al., 2005; Johnson, 2015). Negative Ce anomalies can also develop during oxidative weathering of continental rocks, resulting in the discharge of Ce-depleted riverine waters into the ocean (Frei et al., 2017).

In general, three manganese-bearing samples yielded true negative cerium anomalies, which reflect deposition from oxic seawater (Figure 7). Conversely, positive Ce anomalies were recorded in seven manganese-bearing samples, six from manganese-rich silicates and one from the manganese-poor group (see Figure 7). Positive Ce anomaly is a reliable proxy for redox-stratified basins because the reductive dissolution of Mn-oxyhydroxides particles to soluble Mn$^{2+}$ across a redoxcline drives seawater Ce enrichment (e.g., Warke et al., 2020). In
our case, this would indicate the existence of a chemocline in the seawater, dividing an upper oxidized zone from a lower anoxic zone (Figure 11). Thus, the reductive release of Ce$^{4+}$ precipitated from the overlying oxic zone to Ce$^{3+}$ in the anoxic zone below the chemocline results in anomalous Ce enrichment to explain the positive anomalies, leading to the transfer of Ce and reduced Mn$^{2+}$ to anoxic bottom sediments (Planavsky et al., 2010; Tostevin et al., 2016b; Warke et al., 2020). Such a scenario results in Mn-oxide shuttle from oxic surface waters to the deep anoxic sediment-water interface (Dellwig et al., 2010; Planavsky et al., 2010; Tostevin et al., 2016b). Furthermore, manganese-(oxy)hydroxide minerals may re-precipitate during oxic events, likely on a regressive setting when chemocline shifts downward. Overall, this relationship agrees with the assumption that high authigenic Mo enrichment took place in anoxic/euxinic bottom carbonaceous sediments by the reductive dissolution of Mn(oxy)hydroxides particles.

The observed fractionations between LREE to HREE ratios (e.g., Sm$_{SN}$/Yb$_{SN}$ variations), mainly in the manganese-rich silicates, indicate a slight LREE depletion compared to MREE and HREE. This further suggests the existence of an Mn-chemocline because LREE is expected to be scavenged by Mn oxyhydroxides precipitated from oxic zones, leading to REE fractionation (Byrne and Sholkovitz, 1996; Bau et al., 1997; Planavsky et al., 2010). The fractionation range between REE ratios is a common feature of modern and ancient redox-stratified basins, contrasting from the early Paleoproterozoic basins characterized by a predominantly LREE depletion pattern (Planavsky et al., 2010). However, the possibility that LREE depletions are not systematically well characterized in our samples may indicate proximity to the Mn-chemocline (Planavsky et al., 2010). In many redox-stratified environments, the LREE to HREE ratios has shale-like patterns close to the Mn-redoxcline (Planavsky et al., 2010). The REE pattern from the manganese-poor rocks is similar to the average-shale composition pattern, suggesting their deposition across an Mn-redoxcline. Alternatively, another possibility for this pattern is that some REE dilution may have occurred by the influence of minor terrigenous components or alternatively by authigenic clays.

Furthermore, the preservation of positive Ce signals in our metamorphosed manganese rocks is in agreement that diagenesis and metamorphism have not interfered with the REEs arrays and anomalies, possibly because these reactions were isochemical (e.g., Bau, 1991; Cabral and Moore., 2012; Planavsky et al., 2018; Grenne and Slack, 2019; Cabral et al., 2019b; Wark et al., 2020). Strikingly, the Ce patterns and Ce$_{SN}$/Ce$_{SN}^*$ versus Pr$_{SN}$/Pr$_{SN}^*$ anomalies are similar to those recorded in the 1.9 Ga Biwabik Iron Formation, Lake Superior region.
precipitated from a redox-stratified ocean (Planavsky et al., 2010).

5.3. Implications for Paleoproterozoic seawater-atmosphere oxygenation

In the context of South America and Africa, the data suggest an association with the Transzamazonian and Eburnean orogenesis (Alkmim and Marshak, 1998; Rosa-Costa et al., 2006; Feybesse et al. 2006; Vasquez et al. 2008; Brito Neves., 2011; Baratoux et al., 2011; Teixeira et al., 2017b). It is suggested that these events were most probably responsible for the metamorphic fingerprints recorded in the rocks, similar to events in the Francevillian manganese deposits in the Congo craton. It has previously been shown that manganese-bearing rocks, both from South America and Northwest Africa, have experienced varying degrees of metamorphism (Klein and Moura, 2008; Neves, 2011; Costa et al., 2018; Grenholm, 2019 Grenholm et al., 2019), which may reflect the interaction of tectonic plates during the closing of ancient oceanic basins. Globally, the studied rocks are associated with an interval characterized by the agglutination of the so-called Columbia supercontinent, suggested to be related to triggering the metamorphism of the manganese precursors at this time (Roy, 2006; Maynard, 2010; Johnson et al., 2016).

A standard view state that manganese requires an electron receptor with high redox potential, such as oxygen, for oxidation (Calvert and Pedersen, 1996; Post, 1999; Tebo et al., 2005; Johnson, 2015). Additionally, O$_2$-free mechanisms can also be invoked for manganese precipitation (e.g., Johnson et al., 2013; Daye et al., 2019; Anbar and Holland, 1992, Liu et al., 2020). Nevertheless, as the manganese-bearing rocks from this study were deposited during the permanent rise of oxygen in the oceans and atmosphere (~2.22 Ga), it is likely that they were also affected by it, excluding an anoxygenic mechanism on the manganese deposition in a first approach. Although the oceanic and atmospheric oxygenation conditions in the aftermath of the Great Oxidation Event during the Lomagundi Jatuli-Event (e.g., 2.21-2.06 Ga.; Bekker et al., 2006; Melezhik et al., 2007; Kump et al., 2011; Bekker and Holland, 2012; Bekker, 2014) are still a matter of debated. While some workers point to a period of deoxygenation, others to oxygenated conditions (Bekker and Holland, 2012; Canfield et al., 2013; Asael et al., 2018; Ossa Ossa et al., 2018; Kump et al., 2011; Kreitsmann et al., 2020; Mänd et al., 2020). For example, in the ca. 2.1 Ga Franceville Group, Gabon, well-oxygenated shallow waters may have given way to stratified waters characterized by deep manganous/ferruginous waters separated waters from predominantly oxic surface ocean waters by a redoxcline (e.g., Canfield et al., 2013; Ossa Ossa et al., 2018; Mayika et al., 2020). Similar conditions have been reported for the Late Paleoproterozoic Animikie Basin (Planavsky et al., 2018). On the other hand, the
chemical record from the rocks in the Onega Basin, specifically in the Zaonega Formation, indicates predominantly oxygenated shallow water conditions in the aftermath of the GOE (Paiste et al., 2018; Kreitsmann et al., 2020; Mänd et al., 2020). These clues suggest that this period marked a transitional phase between the anoxic Archean ocean-atmosphere and the fully oxic modern ocean-atmosphere system. But overall, there is strong consensus that oxygenic photosynthesis played a significant role in this crucial environmental change (Canfield et al., 2013; Bekker, 2014; Lyons et al., 2014). Our finds agree with some of these works by pointing out a redox-stratified setting where manganese-bearing minerals precipitate and add a new sink (e.g., chemical silicates) in the manganese cycling.

6. Conclusion

Collective analysis of REEs and redox-sensitive trace metals in manganese-rich rocks from the Borborema Province in northeast Brazil, coupled to U-Pb geochronology, suggest a depositional pathway for ore grade manganese formation in the Paleoproterozoic Borborema basin. With a reconstructed age of 2.2-1.9 billion years ago, this study points to large-scale weathering and leaching of seafloor basaltic rocks or basaltic magmas in contact with seawater as the source of Paleoproterozoic manganese enrichment. The oxidation and shuttling of reduced Mn as Mn-oxide from oxic surface waters and subsequent reduction across the chemocline produced deep seafloor Mn deposits primarily associated with manganese silicate and carbonate minerals. This contribution adds to a growing body of work pointing to global seawater redox stratification during the Paleoproterozoic, linked to local seawater chemistry, mineralogy and basin-scale tectonic and sedimentary conditions.

Acknowledgments

The first author is grateful to the Federal University of Western Pará (UFOPA) for support throughout the time, and to the Geologist Renato Braz Sue (on behalf of Libra Ligas do Brasil company) for providing full access to drill cores and fieldwork assistance. FHS would like to thank the Society of Economic Geologists for the Student Research Grant received. This research is part of the first author's Ph.D. thesis. We truly appreciate the comments, suggestions and criticisms from Leslie Robbins, Eva Stüeken and two anonymous reviewers that helped to improve the quality of this manuscript. In addition, we also thank the editorial handling by Professor Michael E. Böttcher. WSA also acknowledges the Brazilian National Research Council (CNPq) for research grant (process. 305263/2020-0) and the Cardiff University.
References

Bau, M., Alexander, B., 2006. Preservation of primary REE patterns without Ce anomaly during dolomitization of Mid-Paleoproterozoic limestone and the potential reestablishment of marine anoxia immediately after the “Great Oxidation Event“. South Afr. J. Geol. 109, 81–86.

Schier, K et al., 2020. Chemical evolution of seawater in the Transvaal Ocean between 2426Ma (Ongeluk Large Igneous Province) and 2413 Ma ago (Kalahari Manganese Field). Gondwana Research, 88, 373-388.

Figure captions

Fig. 1. Simplified map of the Borborema Province (Northeast Brazil) within the West Gondwana and location of study area. (A) West Gondwana in the Middle Paleozoic with the Borborema Province location within the black line: 1 = Amazonian Craton; 2 = São Francisco Craton; 3 = São Luís Craton; 4 = West African Craton; and 5 = Congo Craton. Modified from Cordani et al. (2016). (B) Geological framework of the Northern Borborema Province (according to Brito Neves et al., 2000) highlighting study area in white star. MCD = Médio Coreaú Domain; CCD = Ceará Central Domain; TBL = Transbrasiliano Lineament; OASZ = Orós-Aiuaba Shear Zone; PSZ = Patos Shear Zone. (C) Local map of the Lagoa do Riacho manganese deposit (left) and schematic cross-section constructed from the core Ocr-1 (right) showing location of sample collected for U-Pb geochronology and the distribution of the manganese-rich lithological groups investigated in the present study. Core Ocr-1 is from the Open pit 3.

Fig. 2. A-D from MSR group; E-G from manganese-quartzite; H and I from garnetite. Hand-specimen photographs of the SMR and manganese-quartzite (A and E), respectively. Transmitted (B and I; under cross polarized) and reflected (G) light photomicrographs for the SMR, manganese-quartzite and garnetite. BSE (C, D, F and H) images showing petrographic aspects for all lithological groups. (A) Matrix minerals composed mainly (>70%) of coarse-grained manganese-pyroxene (Pxmn). (B) Manganese-pyroxene porphyroblast in contact with garnet-spessartine (Spss) and carbonate (Carb), defining a granoblastic texture. (C) Minor spots of manganese-oxide-hydroxide minerals (Mn-oh) replacing manganese-pyroxene. Spessartine garnet in contact with manganese-pyroxene. Diminute pyrite (Pyr) in contact with graphite (Gph) flakes. (D) Cobaltite (Cb; CoAsS) in triple contact with manganese-pyroxene and spessartine. (E) Graphite flakes distributed through fine-grained rock matrix composed of quartz-feldspar (Qtz-Fsp). (F) Graphite along foliation planes in contact with pyrite, spessartine and quartz-feldspar agglomerates. (G) Stretched pyrite in close relationship with graphite flakes. (H) Spessartine garnet porphyroblast, interstitial quartz-feldspar and mica. (I) Carbonate, spessartine and manganese-pyroxene in a granoblastic texture.

Fig. 3. Boxplot with the enrichment factors of selected trace metals investigated here. The filled gray line through EF=1 represents normal values concerning the crustal average (e.g., PAAS).
Fig. 4. Correlation matrix plots of major oxide elements for the manganese-bearing groups investigated in this work. Crustal average (e.g., PAAS) was plotted for comparison.

Fig. 5. Correlation matrix plots of trace elements for the manganese-bearing rocks. Crustal averages (e.g., PAAS and UCC) were plotted for comparison.

Fig. 6. Rare-earth elements (REE) patterns. In (a) and (b) rare-earth element concentrations normalized to the PAAS (Taylor and McLennan, 1985; McLennan et al., 2001; McLennan, 2001).

Fig. 7. Binary-plot of \((\text{Ce/Ce}^*)_{SN}\) vs \((\text{Pr/Pr}^*)_{SN}\) for the manganese-bearing rock samples from this study. Data are normalized to average Post-Archean Australian Shale (PAAS; Taylor and McLennan, 1985; McLennan et al., 2001; McLennan, 2001). Fields after Bau and Dulski (1996). Samples of manganese-bearing stromatolite from Planavsky et al. (2010) are plotted for comparison.

Fig. 8. Geochronological data for the graphite-bearing pelitic gneiss (#10029). (A) Selected cathodoluminescence images for representative metamorphic zircons. Red circles represent the laser spot location (25 µm) of the U-Pb analysis. (B) General concordia diagram for the U-Pb zircon analyses. (C) General histogram with age and relative probability for the zircon grains selected for this study. (D) Concordia diagram for the metamorphic zircons. (E) Concordia diagram for the youngest concordant population.

Fig. 9. Proxies for linking the manganese-rich rocks to source area. (a) A-CN-K ternary diagram vs. chemical index of alteration (CIA) for the manganese-bearing rocks (Fedo et al. 1995; Nesbitt, 2003). The green circle represents a MORB average composition from Albarède (2005). \(A = \text{Al}_2\text{O}_3\), \(\text{CN} = \text{CaO}^* + \text{Na}_2\text{O}\), \(K = \text{K}_2\text{O}\), \(\text{Ka} = \text{kaolinite}\), \(\text{Gib} = \text{gibbsite}\), \(\text{Sm} = \text{smectite}\), \(\text{Ms} = \text{muscovite}\), \(\text{Pl} = \text{plagioclase}\), \(\text{Kfs} = \text{K-feldspar}\), \(\text{Hbl} = \text{hornblende}\). (b) Relationship between \(\text{Th/Sc}\) and \(\text{Zr/Sc}\) and the UCC contribution of Mn deposition (McLennan et al. 2003). The samples preferentially show a magmatic compositional variation trend.

Fig. 10. Cross-plots of the U and Mo enrichment factors (EF), according to Algeo and Tribovillard (2009). Note the arrow indicating a particulate shuttle from suboxic to euxinic waters. This process occurs in weakly restricted basin, such as the Cariaco Basin and Holocene
Baltic Sea.

Fig. 11. A redox deposition model for the manganese-bearing rocks from the Northern Borborema Province. The model involves an upwelling of Mn reduced particles across a chemocline toward to oxic surface waters as well a Mn-oxide shuttle mechanism. At this model, manganese and cerium are oxidized on the oxic zone (Ce/Ce*<1) and subsequently reduced and incorporated in the bottom sediments at the anoxic/euxinic zone (Ce/Ce*<1). Manganese reduction takes place through the chemocline. Likely sedimentary precursors of the manganese rocks are also showed in the model. The behaviors of other trace metals present in this model (e.g., molybdenum and arsenic) are discussed in the next section. An inferred primary source for the metals, through submarine weathering of a basaltic rock, is also showed in the figure.
Graphite-bearing pelitic gneiss - Sample 10029

- (5.2) Th/U = 0.02, 2015 Ma conc. 97%
- (11) Th/U = 0.05, 2026 Ma conc. 96%
- (23.1) Th/U = 0.76, 2156 Ma conc. 98%
- (29.1) Th/U = 0.04, 2072 Ma conc. 102%
- (65) Th/U = 1.26, 2168 Ma conc. 100%
- (5.1) Th/U = 0.01, 2046 Ma conc. 102%
- (45.2) Th/U = 0.09, 1942 Ma conc. 98%
- (70.2) Th/U = 0.03, 1946 Ma conc. 94%
- (52) Th/U = 0.37, 2425 Ma conc. 101%
- (67) Th/U = 0.01, 2145 Ma conc. 101%
- (38) Th/U = 0.24, 1979 Ma conc. 98%

b

n = 73

207Pb/235U

n = 73

207Pb/206Pb Age [Ma]

Relative Probability

Metamorphic overgrowth

upper intercept = 2106.64 ± 9.54
MSWD = 4

mean = 2099.86 ± 6.42 Ma
(n = 6), MSWD = 1.9

Youngest concordant population

mean = 2152.40 ± 2.15
(n = 14), MSWD = 0.77