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Abstract
In this paper, we study the behaviour of the so-called k-simplicial distances and k-
minimal-variance distances between a point and a sample. The family of k-simplicial
distances includes the Euclidean distance, the Mahalanobis distance, Oja’s simplex
distance and many others. We give recommendations about the choice of parameters
used to calculate the distances, including the size of the sub-sample of simplices
used to improve computation time, if needed. We introduce a new family of distances
which we call k-minimal-variance distances. Each of these distances is constructed
using polynomials in the sample covariance matrix, with the aim of providing an
alternative to the inverse covariance matrix, that is applicable when data is degenerate.
We explore some applications of the considered distances, including outlier detection
and clustering, and compare how the behaviour of the distances is affected for different
parameter choices.

Keywords Mahalanobis distance · Scatter · Generalized inverse · Simplices

1 Introduction

The Mahalanobis distance is one of the most useful tools in multivariate data science,
underpinning a huge variety of practical data analysismethods. This distancemeasures
the proximity of a point x ∈ R

d to a d-dimensional set of points X = {x1, . . . , xN } ⊂
R
d×N . It was introduced in Mahalanobis [27]. The Mahalanobis distance corresponds

to the Euclidean distance in the standardized space where variables are uncorrelated
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and have unit variance. It has applications in cluster analysis [16,44], outlier detection
[35], financial settings [40], text classification [39] and image processing [32,45], to
name a few.

The Mahalanobis distance requires the inversion of the d × d sample covariance
matrix, which we denote byW . This covariance matrix is commonly singular (or very
close to being singular) in high-dimensional settings [13], which often causes insta-
bility when computing the Mahalanobis distance and sometimes makes it practically
unusable.

The Moore–Penrose pseudo-inverse W− is commonly used in cases where the
covariancematrix is not invertible, seeWei et al. [41] andLahav et al. [22], for example.
This pseudo-inverse is constructed using the nonzero eigenvalues and corresponding
eigenvectors of the covariance matrixW , and satisfies the four Moore–Penrose condi-
tions [17]. However, by using all nonzero eigenvalues, it can be adversely affected by
very small eigenvalues, creating discrepancies between W− and the true inverse, if it
exists [6,19]. The Moore–Penrose pseudo-inverse is unique, and so has no flexibility
in these cases where eigenvalues close to zero can cause issues.

Knowing how to deal with high-dimensional data is extremely important, as our
ability to collect and store large quantities of data continues to grow. Although there
are benefits to having datasets with large amounts of information, analysing and under-
standing these datasets can presentmany challenges. For example, the concentration of
points in high dimensions can cause distances between them to be (approximately) the
same [5], yielding difficulties in determining whether points are ‘close’ or ‘far away’
to each other [1]. Given a high enough dimension, there will exist at least one subspace
such that a significant number of points can be classified as being ‘close’ together [46].
Huge datasets create combinatorially intractable search spaces and extracting informa-
tion or patterns may not be computationally possible. Such datasets also increase the
probability of detecting spurious relations [38]. Existing rudimentary data processing
algorithms do not scale to scenarios of degenerate data in big dimensions [2].

High-dimensional data is usually highly correlated [9,33]. Measures of proximity
that typically work well in low-dimensional settings, such as the Euclidean and Man-
hattan distance, do not take correlations into consideration when measuring the scatter
of the data. Using a distance measure like theMahalanobis distance accounts for these
correlations and therefore produces more accurate and meaningful results in such set-
tings. However, the correlated variables also result in an intrinsic dimensionality that
is lower than the given dimensionality of the data [46], causing degeneracy. As such,
it is important to have methods that can account for correlations, that can effectively
deal with the possibility of singular covariance matrices, and that are not limited by
the problems of the Moore–Penrose pseudo-inverse.

A common solution to some of the problems outlined is to use an estimator which
produces an invertible sample covariance matrix, rather than using the sample covari-
ancematrix produced by themaximum likelihood estimator (MLE). Examples include
methods which shrink the MLE sample covariance matrix towards some other target
matrix: Ledoit andWolf [25] use the identity matrix as the target, whereas Schäfer and
Strimmer [37] allow for a user-defined target matrix. However, it is hard to know what
the ideal target matrix is [24]. Other methods include shrinking only the largest and
smallest eigenvalues [43], tapering off-diagonal elements to zero [3,15], applying �1
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penalties directly to covariance matrix entries [10] and many others. We recommend
Fan et al. [12] and Lam [23] for detailed overviews of such methods.

Methods which estimate the inverse covariance matrix directly, such as neighbour-
hood selection [29], modified Cholesky decompositions [21] and �1 regularization
approaches [7,14], prevent inversion errors and can improve computation time. How-
ever, these methods still suffer from the potentially impractical assumption that the
inverse covariance matrix should be sparse.

Pronzato et al. [34] introduced a family of so-called k-simplicial distances which,
according to the claim in that paper, resemble the squared Mahalanobis distance and
could be used in situations where the data is degenerate or close to being degen-
erate. These k-simplicial distances are defined as averaged volumes of all possible
k-dimensional simplices formed by x and all points from the set X , for a user-defined
k ∈ {1, . . . , d}. The distances are raised to a user-defined power δ > 0. For gen-
eral δ > 0, the choice k = 1 gives the �δ-distance in R

d . For δ = 2, the parameter
choices k = 1 and k = d give distances proportional to the squared Euclidean and
Mahalanobis distances, respectively. The choice of parameter k indicates the dimen-
sion of the simplices used, and can be chosen in such a way as to avoid the problems
of degeneracy and small eigenvalues, which cause issues in other methods, such as
the Moore–Penrose pseudo-inverse. When δ = 2, there is a more efficient method of
finding the k-simplicial distance using a matrix polynomial in W , rather than through
computation of volumes of simplices, which is outlined in Sect. 2. For other values
of the parameter δ, we demonstrate a sub-sampling method which improves compu-
tational speed, with very little observed change to the distances measured.

We also introduce a new distance, the k-minimal-variance distance, which con-
structs a matrix polynomial in W of degree k − 1. In this method, the constructed
polynomial yields a squared distance with minimum variance. Like the k-simplicial
distance, the k-minimal-variance distance can be used when W is singular, and pro-
duces a distance measure which accounts for correlations in the dataset. We explore
the choice of the parameter k, and show that k can be relatively low to produce good
results, making the k-minimal-variance distance a quick and viable alternative to the
Mahalanobis distance. We will use examples to show how minimizing the variance
of the distances can provide a more intuitive distance measure for use with correlated
data.

We consider the performance of the k-minimal-variance distance and compare it
to the k-simplicial distance, the Euclidean distance and the Mahalanobis distance. We
also show in Sect. 5.2 that both distances proposed may produce more accurate results
than the Euclidean and Mahalanobis distances when used for clustering applications.

The structure of this paper is as follows: Sect. 2 introduces and further studies
the k-simplicial distance formulated in Pronzato et al. [34]. Section 3.1 explores the
effects of the parameters k and δ in the k-simplicial distance through numerical exam-
ples. Section 3.2 introduces the sub-sampling method which reduces computation
time and allows us to consider large sample sizes. Section 3.3 uses outlier detection
examples to produce parameter recommendations for the k-simplicial distance. Sec-
tion 4 introduces the k-minimal-variance distance. We compare the k-simplicial and
k-minimal-variance distances to each other in both their efficiency at minimizing vari-
ance in Sect. 5.1 and compare their performance at clustering some real-life datasets
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against theMahalanobis and Euclidean distances in Sect. 5.2.We give our conclusions
about the distance measures in Sect. 6.

2 k-Simplicial Distances

Assume we are given a set of N points in d-dimensions X = {x1, . . . , xN } ⊂ R
d×N ,

with no assumptions on how this set of points has been generated. The sample mean
and covariance matrix associated with X are defined, respectively, as follows:

μ = 1

N

N∑

j=1

x j , W = 1

N

N∑

j=1

(x j − μ)(x j − μ)� . (1)

The squared Euclidean distance between a point x ∈ R
d and the set X is

ρ2
E (x, X) = (x − μ)�(x − μ) .

The squared Mahalanobis distance between x ∈ R
d and X is defined by

ρ2
M (x, X) = (x − μ)�W−1(x − μ) , (2)

where W−1 is the inverse of the sample covariance matrix W . If the matrix W is
singular then its inverse does not exist, and so the Moore–Penrose pseudo-inverse
W− is often used in place of W−1 in (2). A pseudo-inverse is a type of generalized
inverse, satisfying some but not necessarily of all the properties of an inverse matrix;
the Moore–Penrose pseudo-inverse satisfies the four Moore–Penrose conditions [17].
When we useW− in the Mahalanobis distance we will call it the pseudo-Mahalanobis
distance.

To compute the k-simplicial distance between x ∈ R
d and X = {x1, . . . , xN } ⊂

R
d×N , we calculate volumes of k-dimensional simplices raised to a given power δ > 0.

Let r ≤ d be the intrinsic dimension of the dataset X , which is the rank of X when X
is considered as a d × N matrix. The volumes of all k-dimensional simplices are zero
for k > r and so it makes no sense to use k > r .

Let Vk(x, z1, . . . , zk) be the volume of a k-dimensional simplex with vertices x and
z1, . . . zk ∈ R

d . This volume can be computed by

Vk(x, z1, . . . , zk) = 1

k!
∣∣∣det(Z�Z)

∣∣∣
1/2

,

where det(A) is the determinant of the matrix A and |a| is the absolute value of the
scalar a [34]. Z is the d × k matrix with columns [(z1 − x) (z2 − x) . . . (zk − x)].
Let

J =
{
( j1, . . . , jk) ∈ {1, . . . , N }k | j1 < · · · < jk

}
(3)
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be the set of all ordered k-combinations of the indices in {1, . . . , N }. Define

Pk,δ(x, X) = 1
(N
k

)
∑

( j1, j2,..., jk )∈J

V δ
k (x, x j1 , . . . , x jk ) , (4)

which is the average volume of all k-dimensional simplices created by the query point
x and points in X , raised to the power of a user-defined scalar δ > 0. For given δ > 0
and 1 ≤ k ≤ r , the centre of the set X (that is, the k-simplicial multidimensional
median) is defined as

μk,δ = argmin
x

Pk,δ(x, X) ,

which may not be uniquely defined for δ ≤ 1. Recommendations for these parameters
will be discussed in Sects. 3 and 5. We then define the k-simplicial outlyingness
function by

Ok,δ(x, X) = Pk,δ(x, X)

Pk,δ(μk,δ, X)
− 1 . (5)

The function (5) is non-negative, has value 0 at the centre of the sample and is
unitless; these are the required properties that an outlyingness function must possess,
see Wilks [42]. For any δ > 0, we define the k-simplicial distance (here to the power
of δ) from the query point x to the dataset X by

ρδ
k,δ(x, X) = ck,δOk,δ(x, X) = ck,δ

(
Pk,δ(x, X)

Pk,δ(μk,δ, X)
− 1

)
, (6)

where the constant ck,δ is chosen so that

1

N

N∑

j=1

ρ2
k,δ(x j , X) = 1 . (7)

The normalization (7) is introduced to ensure consistency of the k-simplicial dis-
tances for different k. In the next section we see that, for δ = 2 and all k ≤ r , this
normalization constant is ck,2 = 1/k. For δ �= 2, we find constants ck,δ numerically
from (7).

As shown in [34, Theorem 5], for δ = 2 and any eligible k we get μk,δ = μ, the
sample mean. Moreover, we obtain, similarly to [34, Sect. 3.1]

1

N

N∑

j=1

Pk,2(x j , X) = (k + 1)Pk,2(μ, X) . (8)

We then define the squared k-simplicial distance (of order δ = 2) from x to the
dataset X as

ρ2
k,2(x, X) = 1

k
Ok,2(x, X) = 1

k

(
Pk,2(x, X)

Pk,2(μ, X)
− 1

)
. (9)
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The difference between (9) and the corresponding definition in [34, Eq. 17] is
the introduction of the normalizing constant 1/k, which provides consistency of the
distances for different k in the sense that (7) holds for δ = 2 and all k = 1, 2 . . . , r .
The equality in (7) with δ = 2 directly follows from (8).

Direct evaluation of the distances given by (9), i.e. by empirical calculation of the
volumes of all

(N
k

)
simplices, can be computationally time-consuming. Below, we

consider an alternative method for the case with δ = 2, which is much faster and
easier. Reducing this computational time when δ �= 2 is considered in Sect. 3.2.

Let � = {λ1, . . . , λd} be the set of eigenvalues of the sample covariance matrixW
defined in (1). The elementary symmetric function of degree k ≤ d associated with
the set � is given by

ek(�) =
∑

1≤i1<i2<···<ik≤d

λi1 . . . λik ,

with e0(�) = 1. If k > r = rank(X) then ek(�) = 0 and the k-simplicial distance
is always 0.

For k ≤ r , define the function

qk(W ) =
k−1∑

i=0

(−1)i ek−i−1(�)Wi (10)

and the associated matrix

Sk = qk(W )

ek(�)
.

As follows from [34, Sect. 3.2], for any k ≤ r ,

ρ2
k,2(x, X) = 1

k
(x − μ)�Sk(x − μ) . (11)

Note that thematrices Sk , k = 1, . . . , r , are polynomials in the covariancematrixW .
Since S1 = Id/trace(W ), where Id is the identity d × d matrix, for k = 1 the

squared distance (11) is equal to the squared Euclidean distance divided by the trace
of the covariance matrix W :

ρ2
1,2(x, X) = (x − μ)�S1(x − μ) = (x − μ)� q1(W )

e1(�)
(x − μ) = (x − μ)�(x − μ)

trace(W )
.

When k = d and W is invertible, we have Sd = W−1 and therefore the squared
k-simplicial distance (11) is equal to the squared Mahalanobis distance multiplied by
a factor 1/d (for details see [34, Sect. 3.1]):

ρ2
d,2(x, X) = 1

d
(x − μ)�Sd(x − μ) = 1

d
(x − μ)�W−1(x − μ) .

We prove the following theorem comparing the variance of the squared Euclidean
distance, Mahalanobis distance and k-simplicial distance with k = 2 and δ = 2.
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Theorem 1 Assume X = {x1, . . . , xN } is a set of N normally distributed d-
dimensional vectors (data points) with sample mean μ and sample covariance matrix
W, as defined in (1). Let � = {λ1, . . . , λd} be the set of eigenvalues of the matrix W,
and assume rank(X) = r ≤ d. Then

Var
(
ρ2
r ,2(x, X)

)
≤ Var

(
ρ2
2,2(x, X)

)
< Var

(
ρ2
1,2(x, X)

)
,

where ρ2
k,2(x, X) is the squared k-simplicial distance between the point x and set X

as defined in (6) with δ = 2.

Proof We can write the k-simplicial distance between a point x and set X with k =
2, δ = 2 as

ρ2
2,2(x, X) = (x −μ)� Sk

k
(x −μ) = (x −μ)� S2

2
(x −μ) = (x −μ)� q2(W )

2e2(�)
(x −μ)

with q2(W ) = e1(�)Id −W , from (10). From (24) in Appendix A, the variance of
the k-simplicial distance with k = 2, δ = 2 may be written as

Var
(
ρ2
2,2(x, X)

)
= 2trace

((
S2
2
W

)2
)

= trace
(
W 2(e1(�)Id − W )2

)

2e2(�)2
. (12)

Let η j = ∑
i �= j λi = ∑r

i=1 λi − λ j = e1(�) − λ j . Consider the second-order
elementary symmetric polynomial:

e2(�) =
∑

i< j

λiλ j = 1

2

∑

i �= j

λiλ j = 1

2

⎛

⎝
r∑

i=1

r∑

j=1

λiλ j −
r∑

i=1

λ2i

⎞

⎠ = 1

2

r∑

j=1

λ jη j .

Then (12) can be rewritten as:

Var
(
ρ2
2,2(x, X)

)
= trace

(
W 2(e1(�)Id − W )2

)

2e2(�)2

=
∑d

j=1 λ2j (e1(�) − λ j )
2

2( 12
∑d

j=1 λ jη j )2
= 2

∑r
j=1 λ2jη

2
j

(
∑r

j=1 λ jη j )2
(13)

and similarly, using (25) from Appendix A, we may write

Var
(
ρ2
1,2(x, X)

)
= 2

∑r
j=1 λ2j

(
∑r

j=1 λ j )2
. (14)
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Consider the denominator in (14). By the Cauchy–Schwartz inequality,

⎛

⎝
r∑

j=1

λ j

⎞

⎠
2

=
⎛

⎝
r∑

j=1

1 · λ j

⎞

⎠
2

≤
r∑

j=1

12
r∑

j=1

λ2j = r
r∑

j=1

λ2j ,

and so it follows that

Var
(
ρ2
1,2(x, X)

)
= 2

∑r
j=1 λ2j

(
∑r

j=1 λ j )2
≥ 2

∑r
j=1 λ2j

r
∑r

j=1 λ2j
= 2

r
= Var

(
ρ2
r ,2(x, X)

)
.

Again using the Cauchy–Schwartz inequality for the denominator in (13), we have

⎛

⎝
r∑

j=1

λ jη j

⎞

⎠
2

≤ r
r∑

j=1

λ2jη
2
j ,

and so it follows

Var
(
ρ2
2,2(x, X)

)
= 2

∑r
j=1 λ2jη

2
j

(
∑r

j=1 λ jη j )2
≥ 2

∑r
j=1 λ2jη

2
j

r
∑r

j=1 λ2jη
2
j

= 2

r
= Var

(
ρ2
r ,2(x, X)

)
.

It remains to show that

Var
(
ρ2
1,2(x, X)

)
= 2

∑r
j=1 λ2j

(∑r
j=1 λ j

)2 ≥ 2
∑r

j=1 λ2jη
2
j

(
∑r

j=1 λ jη j )2
= Var

(
ρ2
2,2(x, X)

)
. (15)

The validity of the inequality in (15) does not depend on the change λi → cλi
for all i and for any constant c > 0. Therefore, we can choose λ1, λ2, . . . , λr such
that

∑r
i=1 λi = 1 and express quantities in (15) as moments of a random variable ξ

concentrated on [0, 1] having values λi with probabilities λi .
Let τ j = E[ξ j ]. In this notation, we have the following properties:

r∑

j=1

λ j = E[ξ0] = 1,

r∑

j=1

λ2j = E[ξ ] = τ1,

r∑

j=1

λ jη j =
r∑

j=1

λ j (1 − λ j ) = 1 − E[ξ ] = 1 − τ1,

r∑

j=1

λ2jη
2
j =

r∑

j=1

λ2j (1 − λ j )
2 = E[ξ ] − 2E[ξ2] + E[ξ3] = τ1 − 2τ2 + τ3.
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Table 1 Details of datasets generated to be used in examples

Notation d r Eigenvalues

�A 10 9 ([100, 4, 3, 2, 1], [0.0001] × 4, [0])
�B 50 40 ([100, 10], [1] × 5, [0.0001] × 33, [0] × 10)

�C 50 22 ([100, 100], [1] × 10, [0.00001] × 10, [0] × 28)

500 points are sampled from a multivariate normal distribution with zero mean and diagonal covariance
matrix, with eigenvalues given in the table. The rank r of the dataset is also given

Using these properties, the inequality in (15) has the form

τ1 ≥ τ1 − 2τ2 + τ3

(1 − τ1)2
.

Rearranging gives τ 31 + 2τ2 − 2τ 21 − τ3 ≥ 0, which is true for all probability
measures on [0, 1]. 	


3 Applying the k-Simplicial Distance

3.1 Choosing k in the k-Simplicial Distance

The choice of the parameter k is integral to the performance of the k-simplicial dis-
tance. In this section, we show how different choices of k affect the distance through
experimental results. We use three examples, in each of which we generate N = 500
points from a d-dimensional multivariate normal distribution, with zero mean and
diagonal covariance matrix. The value of d and the eigenvalues of the covariance
matrix used to generate the points are given in Table 1. We use the sample covariance
matrix when computing our distance measures, and so the true eigenvalues of the
matrix will differ slightly from those in the table.

For given values of k ≤ r = rank(X), we find the k-simplicial distances between
all points in the dataset to the dataset X itself, for both δ = 2 and δ = 1. Note that
for distances using δ = 1, sub-sampling is used to find the distance, using the method
described in Sect. 3.2. We compare the empirical cumulative distribution functions
(CDF) produced by the k-simplicial distances in Figs. 1, 2 and 3. For examples with
δ = 2 we also consider the squared pseudo-Mahalanobis distance multiplied by 1/r ,
which is equal to the k-simplicial distance with k = r .

Example 1 Eigenvalues� = �A. The CDFs for the distances measured for Dataset
A using the k-simplicial distance with δ = 2 are given in Fig. 1a and indicate that
the squared Euclidean distance (proportional to the k-simplicial distance with k =
1, δ = 2) produces a large range of distances with high variance, when compared to
the distances produced when using other values of k. We see, in the δ = 2 case, low
values of k (compared to the rank r = 9) begin to converge away from the squared

123



9 Page 10 of 30 Journal of Statistical Theory and Practice (2022) 16 :9

(a) δ = 2 (b) δ = 1

Fig. 1 CDFs of k-simplicial distances with eigenvalues � = �A a δ = 2, b δ = 1

(a) δ = 2 (b) δ = 1

Fig. 2 CDFs of k-simplicial distances with eigenvalues � = �B a δ = 2, b δ = 1

(a) δ = 2 (b) δ = 1

Fig. 3 CDFs of k-simplicial distances with eigenvalues � = �C a δ = 2, b δ = 1

Euclidean distance, and towards the squared pseudo-Mahalanobis distance quickly.
Figure 1b shows a similar pattern for the distance with δ = 1.

Example 2 Eigenvalues � = �B . The CDFs for the k-simplicial distances using
δ = 2 on Dataset B are given in Fig. 2a. For relatively low values of k (compared to
the rank r = 40), such as k = 10, we see the distances converging to those produced
when k = r , i.e. the pseudo-Mahalanobis distance in the case where δ = 2. A similar
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profile is observed for δ = 1 in Fig. 2b, with CDFs of distances converging towards
the CDF with k = r = 40 as k increases.

Example 3 Eigenvalues � = �C . The CDFs for the distances with δ = 2 are given
in Fig. 3a. Again, we see for relatively low values of k (compared to rank r = 22)
the distance measure converges towards the distance where k = r . Note that for the
k-simplicial distances with δ = 1, k = 10 in Fig. 3b, the CDF lies underneath that of
k = 22, as the distances produced are so similar.

Figures 1, 2 and 3 all demonstrate that the k-simplicial distance transitions from
the squared Euclidean distance multiplied by 1/trace(W ) to the squared Mahalanobis
distance multiplied by 1/r for δ = 2 as k increases. A similar monotonic behaviour is
shown for δ = 1. The eigenvalues of the covariance matrix have an effect on what an
appropriate choice of kmaybe. It is important to ensure themost influential dimensions
(that is, those with the largest eigenvalues) are all considered, by taking k larger than
the number of large eigenvalues.

For example, consider Fig. 3. The two large eigenvalues in �C result in k = 2
behaving similarly to k = 1, particularly in the δ = 2 case, whereas in Fig. 1, the CDF
produced using the distance with k = 2 is very different to the CDF where k = 1, as
there is only one large eigenvalue.

In general, we recommend using a value of k that is larger than the number of ‘large’
eigenvalues the covariance matrix W has, relative to the size of the other eigenvalues.
This is easier to see when there is a clear elbow or ‘drop-off’ in the value of the
eigenvalues. Otherwise, it can be appropriate to find the k-simplicial distances with
several values of k and measure the best value according to somemetric appropriate to
the task. This is a commonmethod for choosing a parameter value in many parameter-
dependent tasks, such as K -means clustering.

Not much performance gain is made by choosing a value of k that also encompasses
the smaller eigenvalues. As an example of this, see Fig. 2, where there are seven
‘large’ eigenvalues, 33 ‘small’ eigenvalues and 10 zero eigenvalues. Using k = 10
does not give a huge improvement in performance compared to using k = 5 (where
performance is measured here by the minimizing of variance) but it is computationally
more expensive.

3.2 Numerical Computation of k-Simplicial Distances Using Sub-Sampling

When δ �= 2, the k-simplicial distance is calculated by averaging the volumes of all
(N
k

)

simplices formedwith x and X . This can be computationally intensive, particularly for
large N and d. To circumvent this problem, we can sample a subset of the simplices
to reduce computation time to milliseconds. The size of the sub-sample of simplices
depends on the user’s wish for precision. This size does not have to be large to achieve
practically accurate approximations, which will be demonstrated in the examples that
follow, where we use less than 0.05% of all possible simplices when we use k = 3,
and less than 0.0004% when using k = 4.

Let J be as defined in (3). To compute the k-simplicial distances, we have to
compute the values of Pk,δ(x, X) defined in (4). The procedure to approximate these

123



9 Page 12 of 30 Journal of Statistical Theory and Practice (2022) 16 :9

values is as follows. For any sampling proportion γ ∈ [0, 1], we form J (γ ), a subset

of J of size |J (γ )| =
⌈
γ × (N

k

)⌉
and approximate (4) with

Pk,δ,γ (x, X) = 1

|J (γ )|
∑

( j1,..., jk )∈J (γ )

V δ
k (x, x j1 , . . . , x jk ).

A simple but efficient way of constructing J (γ ) consists of taking random samples
of size k without replacement from the set {1, 2, . . . , N }, see Blom [4]. This reduces
computation time dramatically, and in examples that follow we see such sub-sampling
is highly effective in producing results extremely close to those of the ‘full’ distance
measure, in which we average the volumes over all available simplices.

In the following examples we revisit the sets of eigenvalues given in Table 1 and
calculate the distances from all points in a dataset to the dataset itself, using the full
sample (where possible) and then a smaller sample using 10,000 simplices. We gener-
ate data according to the procedure outlined in the beginning of Sect. 3.1. We compare
the effect that different sampling sizes have on the distribution of distances calcu-
lated though investigating histograms and moments of these distances. Our analysis
in Sect. 3.1 indicates that using low values of k gives good performance, and is less
computationally intensive than using higher values, so we will use k = 3 and k = 4
in the sub-sampling examples that follow.

Example 1 Eigenvalues � = �A. Figure 4a shows histograms of the distances
between all points of dataset A to the dataset itself, as produced by the k-simplicial
distance with δ = 2, k = 3. The blue solid histogram shows the ‘full’ distances with
no sub-sampling (using polynomials), and the orange dotted histogram shows the sub-
sampled distance with 10,000 simplices. This is repeated for other parameters in the
rest of Fig. 4, as detailed in the captions.

These histograms show that the distribution of distances produced using a small
sample of simplices is extremely similar to the distribution of distances produced
using the full sample of simplices available. For the examples using δ = 1, we cannot
produce the full distance directly as it requires the computation of the volume of(500

k

)
simplices, so we compare the distances produced using a sub-sample of 10,000

simplices to the distances when using a larger sub-sample of simplices (1% of the total
amount of simplices in the k = 3 case, 0.01% in the k = 4 case). In both cases, the
distribution of the larger sample and the 10,000 simplex sample remain very similar.
Table 2a and b also demonstrate this, with the summary statistics remaining close even
for small samples.

Example 2 Eigenvalues � = �B . We again see in Fig. 5 and Table 3a and b that
using a low number of simplices (compared to the full amount of simplices available,
or a large sample) produces distances that are mostly the same as the full distance
measure. This example illustrates that the sampling method is effective even in cases
with a lot of small and zero eigenvalues.

Example 3 Eigenvalues� = �C . Figure 6 and Table 4a and b show that the number
of small or zero eigenvalues does not influence the performance of the sub-sampling.
Overall, we see sub-sampling is an effective way to drastically reduce computation
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(a) k = 3, δ = 2 (b) k = 3, δ = 1 (c) k = 4, δ = 2 (d) k = 4, δ = 1

Fig. 4 Histograms to compare the distribution of the k-simplicial distances from all points to the mean for
eigenvalues �A with different parameters k and δ for different sampling amounts. Blue, solid histograms
show the distances produced using the full sample of simplices when k = 3, and a larger sample when
k = 4. The orange dotted histograms show the distances producedwhen using a sample of 10,000 simplices.

Table 2 Summary statistics of
the distances when (a) k = 3, (b)
k = 4 with eigenvalues �A

(a) k = 3
δ = 2 δ = 1

2.07 · 107 104 2.07 · 105 104

Mean 1.00 1.00 1.00 1.00

Variance 0.11 0.11 0.27 0.28

Skewness 0.49 0.49 0.81 0.81

Kurtosis 0.31 0.31 0.85 0.87

(b) k = 4
δ = 2 δ = 1

2.57 · 109 104 2.57 · 105 104

Mean 1.00 1.00 1.00 1.00

Variance 0.10 0.10 0.23 0.23

Skewness 0.38 0.40 0.61 0.60

Kurtosis 0.10 0.12 0.34 0.34

Table headers indicate the number of simplices sampled

(a) k = 3, δ = 2 (b) k = 3, δ = 1 (c) k = 4, δ = 2 (d) k = 4, δ = 1

Fig. 5 Histograms to compare the distribution of the k-simplicial distances from all points to the mean for
eigenvalues �B with different parameters k and δ for different sampling amounts. Blue, solid histograms
show the distances produced using the full sample of simplices when k = 3, and a larger sample when
k = 4. The orange dotted histograms show the distances producedwhen using a sample of 10,000 simplices.

time while maintaining the same results as the full k-simplicial distance. This means
that using the distance with δ �= 2 is much more accessible than it otherwise would
be.
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Table 3 Summary statistics of
the distances when (a) k = 3, (b)
k = 4 with eigenvalues �B

(a) k = 3
δ = 2 δ = 1

2.07 · 107 104 2.07 · 105 104

Mean 1.00 1.00 1.00 1.00

Variance 0.06 0.06 0.16 0.16

Skewness 1.08 1.08 1.29 1.29

Kurtosis 1.42 1.42 2.00 1.97

(b) k = 4
δ = 2 δ = 1

2.57 · 109 104 2.57 · 105 104

Mean 1.00 1.00 1.00 1.00

Variance 0.04 0.04 0.11 0.11

Skewness 0.91 0.91 1.09 1.08

Kurtosis 1.20 1.16 1.58 1.52

Table headers indicate the number of simplices sampled

(a) k = 3, δ = 2 (b) k = 3, δ = 1 (c) k = 4, δ = 2 (d) k = 4, δ = 1

Fig. 6 Histograms to compare the distribution of the k-simplicial distances from all points to the mean for
eigenvalues �C with different parameters k and δ for different sampling amounts. Blue, solid histograms
show the distances produced using the full sample of simplices when k = 3, and a larger sample when
k = 4. The orange dotted histograms show the distances producedwhen using a sample of 10,000 simplices.

3.3 Outlier Labelling Example

In this section, we illustrate one potential application of the k-simplicial distance
measure. The k-simplicial distance could be a useful tool in identifying outlying points
in high-dimensional degenerate datasets, where the Euclidean distance struggles to
measure distance meaningfully due to the sparse and correlated nature of the data,
and the Mahalanobis relies on the inversion of a matrix possessing many small (and
potentially zero) eigenvalues. We investigate how different values of the parameter k
and the scalar power δ perform in identifying outliers.

We perform the following experiments. We consider three 10-dimensional exam-
ples, each with different sets of data. Each dataset Di , i = {I , I I , I I I }, is made up
of two clusters: Di = Di,1 + Di,2. The first cluster Di,1 has 450 points, mean μ1
as specified in Table 5 and covariance matrix produced by a matrix with eigenvalues
as specified in the table, rotated by a rotation matrix. The second cluster Di,2 has 50
points, a different mean μ2 but the same covariance matrix as Di,1. By doing this, we
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Table 4 Summary statistics of
the distances when (a) k = 3, (b)
k = 4 with eigenvalues �C

(a) k = 3
δ = 2 δ = 1

2.07 · 107 104 2.07 · 105 104

Mean 1.00 1.00 1.00 1.00

Variance 0.08 0.08 0.22 0.22

Skewness 0.81 0.81 1.10 1.11

Kurtosis 1.64 1.64 2.43 2.47

(b) k = 4
δ = 2 δ = 1

2.57 · 109 104 2.57 · 105 104

Mean 1.00 1.00 1.00 1.00

Variance 0.06 0.06 0.14 0.14

Skewness 0.62 0.62 0.86 0.86

Kurtosis 1.36 1.34 1.82 1.84

Table headers indicate the number of simplices sampled

Table 5 Datasets to be used in outlier labelling

Dataset Eigenvalues μ1 μ2

I �I = ([100, 10, 1, 1], [0.00001] × 5, [0]) ([0] × 10) ([1] × 10)

I I �I I = ([100, 10, 1, 1], [0.00001] × 5, [0]) ([0] × 10) ([0] × 5, [1] × 5)

I I I �I I I = ([100, 4, 3, 2, 1], [0.00001] × 4, [0]) ([0] × 10) ([1] × 10)

Datasets are made of two clusters of different sizes and different means, but the same covariance matrix

test the robustness of the distances against rotations and correlations in the data, as
well as its ability to tell two similar but separate clusters apart.

We measure the distance of all points in the dataset Di to the largest cluster, Di,1.
We label the furthest 50 points from this cluster Di,1 as outliers for each dataset
i . We consider how many of the points the k-simplicial distances correctly label as
outliers from Di,1 for different values of k and δ. If it were to incorrectly label all
the outlying points as inliers, we would have a minimum value of 400. If the distance
correctly labels all points, we will get a value of 500. Table 6 contains the number
of points correctly labelled by the distance measures using different values of k and
δ for the k-simplicial distances. In Table 7, we provide the Area Under the Receiver
Operating Characteristic Curve (AUC) score for the labels produced by the distances,
for different values of k and δ. The AUC score measures the overall performance
of a binary classifier, where a score of 1 indicates a perfect labelling and 0.5 is the
minimum score [18].

Considering the k-simplicial distance with δ = 2, we see that the values of k which
perform best are those slightly larger than the number of ‘large’ eigenvalues. For
Dataset I , we have 4 ‘large’ eigenvalues and values of k = 5, 6 perform best when
using δ = 2. Similar results are shown inDatasets I I and I I I . Larger values of k begin
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Table 6 Number of points
correctly labelled by the distance
measures using different values
of k for the k-simplicial
distances

Dataset I Dataset I I Dataset I I I

k δ = 2 δ = 1 δ = 2 δ = 1 δ = 2 δ = 1

1 412 412 408 408 406 406

2 412 412 418 418 420 416

3 440 444 432 442 436 436

4 492 500 482 498 444 448

5 500 500 500 500 482 496

6 500 500 500 500 500 500

7 414 500 416 500 498 500

8 410 500 408 500 406 500

9 412 500 410 500 406 500

Minimum score is 400, maximum score is 500. Bold values indicate
perfect labellings

Table 7 AUC scores for outlier
detection when using the
k-simplicial distance with
different values of k and δ

Dataset I Dataset I I Dataset I I I

k δ = 2 δ = 1 δ = 2 δ = 1 δ = 2 δ = 1

1 0.51 0.51 0.49 0.49 0.48 0.48

2 0.51 0.51 0.54 0.54 0.56 0.53

3 0.67 0.69 0.62 0.68 0.64 0.64

4 0.96 1.00 0.90 0.99 0.69 0.71

5 1.00 1.00 1.00 1.00 0.90 0.98

6 1.00 1.00 1.00 1.00 1.00 1.00

7 0.52 1.00 0.53 1.00 0.99 1.00

8 0.50 1.00 0.49 1.00 0.48 1.00

9 0.51 1.00 0.50 1.00 0.48 1.00

Minimum score is 0.5, maximum is 1. Bold values indicate perfect
labellings

to break down when δ = 2 as they require the use of the smaller eigenvalues when
forming the simplices. This indicates that lower values of k outperform the squared
pseudo-Mahalanobis distance multiplied by 1/r .

Distances using δ = 1 are more robust to the effect of degeneracy. The performance
improves as k increases, but unlike the δ = 2 case, there is no breakdown in success
once k encompasses the smaller eigenvalues too, making it less sensitive to the choice
of k than the distance with δ = 2. These distances were computed using very low sub-
sampling amounts, and so there is not considerable computational time disadvantage
in using δ = 1 over δ = 2. Overall, this example illustrates that using δ = 1, even
with sub-sampling, can give a more stable distance measure than using δ = 2 as k
increases, particularly for outlier detection applications.
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4 k-Minimal-Variance Distances

Assume that X is a normally distributed d-dimensional dataset, with sample mean μ

and sample covariance matrix W . We now introduce a family of generalized squared
distances from a point x to the set X , in the form

ρ2
A(x, X) = (x − μ)�A(x − μ), (16)

where A is a matrix polynomial in W of user-defined degree k − 1 ≤ r , where
r = rank(X). From the moments of a quadratic form (see (23) in Appendix A), we
have

E
(
ρ2
A(x, X)

)
= trace(AW ), Var

(
ρ2
A(x, X)

)
= 2trace

(
(AW )2

)
.

For given k ≤ r , we wish to find the matrix A such that trace(AW ) = d holds and
Var

(
ρ2
A(x, X)

)
isminimized. The condition trace(AW ) = d ensures the identifiability

of a solution from the minimization of the Lagrange function (20) and weights the
solution towards W−1 (if W−1 exists).

We can motivate minimizing the variance of the distances by considering the CDFs
in Figs. 1, 2 and 3. The Mahalanobis distance has the smallest variance out of all
distances considered, and can be written as a (d − 1)-degree polynomial when the
covariancematrix is non-singular.We aim to replicate theminimization of the variance
of the distances produced through lower degree polynomials that also work in the case
of a singular covariance matrix, making for a quicker and more versatile method.

Let A be a polynomial in W , expressed as

A =
k−1∑

i=0

θiW
i . (17)

The first moment of the distance (16) is E
(
ρ2
A(x, X)

) = ∑k−1
i=0 θi trace(Wi+1).

Note that trace(Wi ) = ∑d
j=1 λij , where λ1, . . . , λd are the eigenvalues of W . Then

let θ = (θ0, θ1, . . . , θk−1)
�, and define the matrix

Y = (
y ji

)
j=1,...,d, i=0,...,k−1 =

(
λi+1
j

)

j=1,...,d, i=0,...,k−1
.

Using this notation, the variance of the distance (16) can be written using (23) from
Appendix A as

Var
(
ρ2
A(x, X)

)
= 2θ�Y�Y θ. (18)

Proposition 1 For given k ≤ r , let Ak−1 be the set of matrices A of the form (17)
satisfying the condition trace(AW ) = d. The solution to the optimization problem

A∗ = argminA∈Ak−1
Var

(
ρ2
A(x, X)

)
=

k−1∑

i=0

θ∗
i W

i
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is given by the set of coefficients

θ∗ = d

S�(Y�Y )−S
(Y�Y )−S,

where

S� =
(
trace(Wi+1)

)k−1

i=0
=

(
trace(W ), trace(W 2), . . . , trace(Wk)

)
.

For the matrix A∗, the variance of the distance (16) is given by

Var(ρ2
A∗(x, X)) = 2d2/

(
S�(Y�Y )−S

)
. (19)

If the matrix Y�Y is non-degenerate, then (Y�Y )− becomes (Y�Y )−1.

Proof The Lagrange function used to minimize the variance (18) with the constraint
trace(AW ) = ∑k−1

i=0 θi trace(Wi+1) = d is

L(θ, ω) = 1

2
θ�Y�Y θ − ω(θ�S − d). (20)

Note that θ�S = trace(AW ).
Differentiating the Lagrange function with respect to θ and setting the result equal

to 0, we get Y�Y θ = ωS, which gives: θ∗ = ω(Y�Y )−S. The required value of ω is
found from the unbiasedness condition trace(AW ) = d, giving ω = d/S�(Y�Y )−S.

Substituting θ∗ into (18) gives the variance of the distance as in (19). 	


5 Experimental Analysis

5.1 Efficiency of k-Minimal-Variance Distances Compared to k-Simplicial Distances

We consider the efficiency of the k-minimal-variance distances (16) with A = A∗
as derived in Theorem 1 and k-simplicial distances (11) with δ = 2 relative to the
(sometimes pseudo-)Mahalanobis distance. As we consider the Mahalanobis distance
multiplied by 1/r to align with the k-simplicial distance, we must also consider the
k-minimal-variance distance multiplied by 1/d for comparability.

We define the efficiency of the k-minimal-variance distances as

eff(k)MV =
Var

(
ρ2
A∗/d(x, X)

)

Var
(
ρ2
r ,2(x, X)

) = 2/
(
S�(Y�Y )−S

)

2/r
, (21)
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Table 8 Efficiencies (21) and
(22) for different k, with three
different sets of eigenvalues of
the covariance matrix W given
by �i , i = 1, 2, 3.

�1 �2 �3

k eff(k)simp eff(k)MV eff(k)simp eff(k)MV eff(k)simp eff(k)MV

1 1.51 1.51 2.16 2.16 2.06 2.06

2 1.40 1.18 1.64 1.20 1.62 1.22

3 1.32 1.05 1.38 1.02 1.37 1.03

4 1.24 1.01 1.23 1.00 1.21 1.00

5 1.17 1.00 1.13 1.00 1.12 1.00

6 1.12 1.00 1.07 1.00 1.06 1.00

7 1.07 1.00 1.04 1.00 1.02 0.99

8 1.03 1.00 1.01 1.00 1.00 1.00

9 1.01 1.00 1.00 1.00 1.00 1.00

10 1.00 0.00 1.00 0.00 N/A 0.00

with Var
(
ρ2
A∗(x, X)

)
derived in (19). We define the efficiency of the k-simplicial

distances with δ = 2 as

eff(k)simp =
Var

(
ρ2
k,2(x, X)

)

Var
(
ρ2
r ,2(x, X)

) = (2/k2)trace
(
(SkW )2

)

2/r
, (22)

with Var
(
ρ2
k,2(x, X)

)
stated in (24) in Appendix A.

We generate N = 500 points X = {x1, . . . , xN } ⊂ R
d×N from a d-dimensional

multivariate normal distribution with zero mean and diagonal covariance matrix W
with eigenvalues � = {λ1, . . . , λd}. We take the eigenvalues to be:

�1 = (10, 7, 6, 5, 4, 3, 2, 1, 1, 1) ,

�2 = (10, 4, 3, 2, 1, 1, 1, 1, 1, 1) ,

�3 = (10, 5, 3, 2, 1, 1, 1, 1, 1, 0) .

Table 8 demonstrates the high-efficiency of the k-minimal-variance distances even
for small k. Note that k − 1 is the order of the polynomial in W minimizing (18); in
this example, linear and quadratic polynomials perform well. The efficiency of the
k-simplicial distances improves as k gets larger but also has variance tolerably close
to that of the Mahalanobis distance even for k significantly smaller than r .

For larger dimensions, with covariancematrices possessing a number of zero eigen-
values, the examples are more striking. Table 9 gives the results of performing the
same exercise on the datasets described in Sect. 3.1, with eigenvalues given in Table
1. Table 9 shows that the k-minimal-variance distances start to have similar variance
to the squared (pseudo-)Mahalanobis distance using much lower values of k than in
the k-simplicial distance with δ = 2. For values as low as k = 2, we see the variance
of the k-minimal-variance distance is much closer to that of the Mahalanobis distance
than the k-simplicial distances.
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Table 9 Efficiencies (21) and
(22) for different k, with three
different sets of eigenvalues of
the covariance matrix W as
given in Table 1 in Sect. 3.1.

�A �B �C

k eff(k)simp eff(k)MV eff(k)simp eff(k)MV eff(k)simp eff(k)MV

1 7.58 7.58 24.25 24.25 10.00 10.00

2 2.83 2.07 9.79 4.72 9.17 5.55

3 2.09 1.84 5.87 1.95 4.77 1.87

4 1.87 1.80 4.21 1.90 3.20 1.83

Table 10 Real datasets used to
evaluate performance of
distances when used with
K -Means clustering

Dataset d N No. of Clusters

Iris 4 150 3

Wine 13 178 3

Image Seg. 19 210 7

Digits 64 1797 10

Protein 77 1080 8

d is the number of variables in the dataset, and N is the number of
observations

We note little performance gain when choosing k > 3 in these examples, indicating
that A∗ even with small k is often a good enough approximation to the inverse of the
covariance matrix from the viewpoint of the distance generated by this matrix. From
an efficiency perspective, the k-minimal-variance produces better results at a lower
computational cost than the k-simplicial distance.

5.2 Comparison of Performances of the K-Means Clustering Algorithmwith
Different Distances

We compare the performance of the K -Means clustering algorithm [26] when applied
using the Euclidean distance, the Mahalanobis distance, the k-minimal-variance dis-
tance and the k-simplicial distance (with δ = 2). We do this by applying K -Means
to 5 real datasets, obtained from the UCI Machine Learning Repository [11], with
the exception of the ‘Digits’ dataset, which was obtained through the Python package
sklearn’s data loading functions [31]. The details of these datasets are given in Table
10.

Each dataset was appropriately preprocessed: rows with missing values were
removed, and the data was normalized such that each variable has values in range
[0, 1]. It is important to note that the K used in the K -Means clustering algorithm
is used to indicate how many clusters we seek, and is different to the k used in our
distance measures. For each dataset, the choice of K in the K -Means algorithm is
used as the ‘true’ number of clusters, given in Table 10, as these datasets are all fully
labelled.

The K -Means algorithm is classically applied using the Euclidean distance, but
research has shown success in applying the algorithm with the Mahalanobis distance
to exploit the covariance structure of a dataset (see Gnanadesikan et al. [16], or more
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recently [30]). The method of applying K -Means with the Mahalanobis, k-minimal-
variance or k-simplicial distances is given in Algorithm 1, following the algorithm
given inMelnykov andMelnykov [8]. These distance measures require the covariance
matrix of each cluster; and as suchwe require initial estimates of the clusters.Weobtain
these initial estimates by performing a few iterations of the K -Means algorithm using
the Euclidean distance. Clearly, this initial estimate can have a large influence on the
resulting clusters found by the other distances, and so we run the K -Means algorithm
1000 times for each distance.

Algorithm 1:Applying K -Means with theMahalanobis, k-minimal-variance or
k-simplicial distance
Apply K -Means clustering with Euclidean distance for a small number of iterations;
Calculate the centroids μi of each cluster Ci by taking the mean of all points in the cluster
while Distance between old centroids and new centroids is less than some small chosen tolerance
do

Calculate the covariance matrix Wi of each cluster Ci ;
Calculate the distance from each point to each cluster Ci using the Mahalanobis,
k-minimal-variance or k-simplicial distance with the corresponding covariance matrix Wi and
cluster centroid μi ;
Assign each point to its closest cluster;
Calculate new centroids μi for each new cluster

end

As this is a supervised task, we can compare the labels given by K -Means to the
‘true’ labels to assess the performance of the clustering algorithm. We do this using
two external evaluation methods, namely the adjusted rand (AR) score [20,31] and the
purity score [28]. We use these two different evaluation methods to corroborate the
results. The adjusted rand score is calculated as follows.

Let LT be the vector of true labels, and let LP be the labels assigned by the K -
Means clustering. Define a as the number of pairs of points in the same set in LT and
in the same set in LP , i.e. the number of points whose labels are the same in LT and
LP . Define b as the number of pairs of points in different sets in LT and in different
sets in LP , i.e. the number of points whose labels are different in LT and LP . The
unadjusted rand score is given by

R = a + b

ν
,

where ν is the total number of possible pairs in the dataset, without ordering. The unad-
justed rand score does not account for the possibility that random label assignments
can perform well, so we discount the expected rand score E[R] of random labellings
by defining the adjusted rand score as

AR = R − E[R]
max(R) − E[R] .
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(a) Iris, AR (b) Iris, Purity

(c) Wine, AR (d) Wine, Purity

(e) Image, AR (f) Image, Purity

(g) Digits, AR (h) Digits, Purity

(i) Protein, AR (j) Protein, Purity

Fig. 7 Adjusted rand scores and purity scores of the clusterings produced by K -Means when using different
distance measures. ED: Euclidean distance, MD: Mahalanobis distance, MV-k: Minimal-variance distance
with parameter k, SD-k: Simplicial distance with parameter k

123



Journal of Statistical Theory and Practice (2022) 16 :9 Page 23 of 30 9

Table 11 Iris dataset: Median
AR scores (and standard
deviations) for each given
distance

k k-simp k-MV

2 0.716 (0) 0.562 (0)

3 0.904 (0) 0.869 (0)

4 0.904 (0) 0.904 (0)

Euc. 0.716 (0)

Mah. 0.904 (0)

Bold figures denote the highest score(s) out of all methods used

The adjusted rand score takes values in [-1, 1], where 1 indicates a perfect matching
between LT and LP .

To find the purity score, we proceed as follows: let T = {t1, t2, . . . , tm} be the set
of ‘true’ clusters in the data, and let P = {p1, p2, . . . , pK } be the set of predicted
clusters. The purity score measures the extent to which a predicted cluster pi only
contains points from a single ‘true’ cluster t j :

P(T , P) = 1

N

K∑

i=1

max
j

|pi ∩ t j |,

where N is the total number of points. That is, for each predicted cluster pi , we count
the highest number of points from a single true cluster t j predicted to be in pi . These
counts are summed and divided by the total number of observations. The purity score
takes values in [0, 1], with 1 being a perfect clustering.

Figure 7 gives the AR and purity scores for the K -Means clustering of each dataset
using the varying distance measures being considered. For the k-minimal-variance
and k-simplicial distances, we show the distances with values of k which produced the
highest scores. Note that the pseudo-Mahalanobis distance is used in cases where the
data is degenerate. The eigenvalues for each of the datasets in Table 10 can be found
in Appendix B. The influence of these eigenvalues on the performance of the different
distance measures is important, particularly when choosing values of k. When we
discuss eigenvalues being ‘close to zero’, this is in relation to the largest eigenvalue of
the dataset. There is no specific threshold for being ‘close to zero’, but the examples
should give some intuition about choosing the parameter k.

Table 11, 12 and 13 give the median AR score for each dataset by each method of
clustering, and the standard deviation of these scores, with bold values denoting the
highest score(s) out of all methods used. Although the AR score and the purity score
measure distinct aspects of the success of a clustering, Fig. 7 shows that the same
patterns emerge for both evaluation methods, and so we only consider the AR score
in the tables.

Iris is a 4-dimensional dataset, with no extreme small eigenvalues in comparison to
its largest eigenvalue. Figure 7a, b and Table 11 show that the Mahalanobis distance
performs best, joint with the k-simplicial and k-minimal-variance distances when k =
4 (recall that these distances are equal to the Mahalanobis distance when k = d). The
Iris dataset is low-dimensional and full-rank, and hence the Mahalanobis distance can
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Table 12 Median AR scores
(and standard deviations) for
each given dataset and distance

(a) Wine dataset

k k-simp k-MV

2 0.714 (0.000) 0.817 (0.017)

3 0.759 (0.000) 0.917 (0.007)

4 0.759 (0.000) 0.915 (0.007)

5 0.818 (0.005) 0.915 (0.007)

6 0.833 (0.004) 0.915 (0.007)

7 0.899 (0.004) 0.915 (0.007)

8 0.899 (0.006) 0.915 (0.007)

9 0.917 (0.004) 0.915 (0.006)

10 0.915 (0.006) 0.913 (0.005)

11 0.915 (0.006) 0.869 (0.017)

12 0.915 (0.006) 0.899 (0.006)

13 0.899 (0.012) 0.854 (0.000)

Euc. 0.854 (0.01)

Mah. 0.899 (0.01)

(b) Image Segmentation dataset

k k-simp k-MV

2 0.360 (0.063) 0.238 (0.084)

3 0.247 (0.074) 0.344 (0.063)

4 0.339 (0.070) 0.448 (0.027)

5 0.392 (0.047) 0.465 (0.027)

6 0.451 (0.051) 0.460 (0.026)

7 0.451 (0.022) 0.456 (0.023)

8 0.451 (0.044) 0.454 (0.021)

9 0.449 (0.047) 0.454 (0.028)

Euc. 0.464 (0.020)

Mah. 0.285 (0.067)

Bold figures denote the highest score(s) out of all methods used

use the true inverse of the covariance matrix. This example illustrates the performance
gains that can be made in cluster analysis by taking the correlations in the data into
consideration. Even when we use k = 3 in the k-simplicial and k-minimal-variance
distances, we achieve better results than the Euclidean distance.

Figure 7c, d and Table 12a consider the Wine dataset, and show that the Maha-
lanobis, k-minimal-variance and k-simplicial distances outperforms the Euclidean
distance, again highlighting the importance of accounting for correlation. The Wine
dataset has some very small eigenvalues compared to its largest eigenvalue, and as
such the Moore–Penrose pseudo-inverse is likely to have been adversely impacted
[19]. Choosing the k-minimal-variance or k-simplicial distance avoids this impact,
and as such produces better clustering results. This example also highlights that the
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k-minimal-variance distance performs very well with lower values of k, whereas the
k-simplicial distance requires a higher value of k to achieve its best results, as seen
before in the efficiency evaluations in Sect. 5.1. This gives better computational-time
for the best results when using the k-minimal-variance distance, but does make the
distance more sensitive to a too-high choice of k, as seen by the decrease in AR scores
in Table 12a.

The Image Segmentation dataset has a number of very large eigenvalues, some
eigenvalues very close to zero, and five zero eigenvalues. Figure 7e and f shows that
the Mahalanobis distance performs worse than the Euclidean distance, perhaps due
to the effect of very small eigenvalues on the Moore–Penrose pseudo-inverse. The k-
minimal-variance and k-simplicial distance outperform theMahalanobis distance here,
as they are less likely to be adversely affected by these small eigenvalues. Table 12b
shows that the k-minimal-variance distance attains the highest AR score out of all the
distances, but does not improve greatly on the Euclidean distance.

The Digits and Protein datasets (Table 13a, and b, respectively) both have a sub-
stantial number of small and zero eigenvalues (see Appendix B), indicating why our
distances perform better than the pseudo-Mahalanobis distance. The Mahalanobis
distance does not add much performance gain compared to the Euclidean distance in
these examples, but the correct choice of k in the k-minimal-variance or k-simplicial
distances provides improvement.

In these examples, we see that K -Means with the k-minimal-variance distance
reaches its best adjusted rand score with relatively low k, whereas the k-simplicial
distance needs higher values of k to reach this. However, the k-simplicial distance is
less likely to breakdown for too-high a choice of k, as we see in Table 12a and 13a with
the k-minimal-variance. For the k-simplicial distance, the values of k that produce the
best adjusted rand score roughly match with the number of ‘larger’ eigenvalues in the
datasets.

6 Conclusion

In this paper,we have continued thework done byPronzato et al. [34] in researching the
k-simplicial distance. This distance considers the covariance structure of the data, but
is less adversely affected by the presence of small eigenvalues than the Mahalanobis
distance.

We have studied the choice of the parameter k in detail, through the use of numerical
examples, illustrating that too low a choice of k does not givemuch improvement on the
Euclidean distance, and too high a choice of k doesn’t give much performance benefit
over lower values, but does increase computational complexity. We recommend a
choice of k influenced by the number of ‘large’ eigenvalues present, with respect to
the other eigenvalues of the sample covariance matrix. We also discuss the benefits
and limitations of different choices of the parameter δ: δ = 1 is more robust, and
well suited to applications such as outlier detection, but does not have a fast method
of full computation. If δ = 2, we have a significantly faster and easier method of
producing the distance, but this is more likely to be influenced by the presence of
outliers. We discuss the implementation of sub-sampling simplices, which greatly
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Table 13 Median AR scores
(and standard deviations) for
each given dataset and distance

(a) Digits dataset

k k-simp k-MV

2 0.596 (0.019) 0.709 (0.018)

3 0.620 (0.017) 0.707 (0.017)

4 0.642 (0.019) 0.701 (0.016)

5 0.657 (0.019) 0.696 (0.017)

6 0.663 (0.017) 0.693 (0.016)

7 0.677 (0.019) 0.695 (0.016)

8 0.686 (0.019) 0.691 (0.015)

9 0.690 (0.019) 0.689 (0.142)

10 0.693 (0.019) 0.686 (0.144)

11 0.695 (0.018) 0.689 (0.111)

12 0.696 (0.018) 0.679 (0.230)

13 0.697 (0.018) 0.664 (0.174)

14 0.696 (0.018) 0.605 (0.226)

15 0.696 (0.017) 0.673 (0.166)

16 0.695 (0.017) 0.679 (0.173)

17 0.694 (0.017) 0.658 (0.180)

18 0.692 (0.017) 0.664 (0.222)

Euc. 0.666 (0.012)

Mah. 0.677 (0.014)

(b) Protein dataset

k k-simp k-MV

2 0.140 (0.057) 0.130 (0.057)

3 0.140 (0.055) 0.185 (0.020)

4 0.141 (0.050) 0.208 (0.021)

5 0.143 (0.044) 0.195 (0.015)

6 0.156 (0.024) 0.194 (0.019)

7 0.164 (0.024) 0.189 (0.014)

8 0.176 (0.026) 0.183 (0.017)

9 0.183 (0.026) 0.181 (0.027)

10 0.189 (0.028) 0.179 (0.032)

11 0.192 (0.026) 0.178 (0.041)

12 0.194 (0.021) 0.186 (0.058)

13 0.197 (0.020) 0.184 (0.022)

14 0.196 (0.019) 0.185 (0.008)

15 0.191 (0.021) 0.184 (0.026)

Euc. 0.172 (0.012)

Mah. 0.172 (0.012)

Bold figures denote the highest score(s) out of all methods used
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improves computation time when we are using the distance with δ = 1 with minimal
changes to the results of the distance.

We have also introduced a newmeasure of distance, namely the k-minimal-variance
distance. Again, this distance is less affected by the presence of small eigenvalues than
the Euclidean and Mahalanobis distances (for appropriate choices of the parameter k)
but is highly influenced by the choice of the parameter k which needs to be chosen
carefully to ensure good performance of the distance.

Overall, we show that the k-minimal-variance distance is more efficient at mini-
mizing the variance of the distances for lower choices of k (and therefore has better
computation time) than the k-simplicial distance, but that the k-simplicial distance is
less likely to be negatively affected by too-high a choice of k. We have given several
examples where the k-minimal-variance and/or the k-simplicial distances outperform
the multivariate distances commonly used. Namely, these proposed distances perform
well where other classical distances often fail: when data is correlated, degenerate and
has small eigenvalues, as well as possibly zero-valued eigenvalues.
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Appendix A: Moments and Distributions of Distances

FromRencher and Schaalje [36], let y be a random vector with meanμ and covariance
matrix W , and let A be a symmetric matrix of constants, then

E
(
y�Ay

)
= trace(AW ) + μ�Aμ.

If y is normally distributed with sample mean μ and sample covariance matrix W ,
then

Var
(
y�Ay

)
= 2trace

(
(AW )2

)
+ 4μ�AW Aμ.

Our distances considered in this paper are generalized squared distances of the
form

ρ2
A(x, X) = (x − μ)�A(x − μ),

where x is normally distributed with sample meanμ and sample covariance matrixW .
Therefore we replace y with (x − μ), which is normally distributed with zero mean,
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giving:

E
(
ρ2
A(x, X)

)
= trace(AW ), Var

(
ρ2
A(x, X)

)
= 2trace

(
(AW )2

)
. (23)

A1: Moments of the k-Simplicial DistanceWhen (ı = 2)

For a point x ∈ X , where X is normally distributed with sample mean μ and sample
covariance matrix W , consider ρ2

k,2(x, X) = (x − μ)� Sk
k (x − μ), i.e. the squared

k-simplicial distance from the sample mean μ to a point x . We have

E
(
ρ2
k,2(x, X)

)
= 1

k
trace(SkW ), Var

(
ρ2
k,2(x, X)

)
= 2

k2
trace

(
(SkW )2

)
. (24)

A2: Moments of the Squared Euclidean Distance Divided by Trace(W)

Applying the formulae for the moments of quadratic forms to the squared Euclidean
distance divided by trace(W ), where we take A = Id

trace(W )
, we have

E
(
ρ2
1,2(x, X)

)
= trace

(
W

trace(W )

)
= trace(W )

trace(W )
= 1,

Var
(
ρ2
1,2(x, X)

)
= 2trace

(
W 2

trace(W )2

)
= 2trace(W 2)

trace(W )2
= 2

∑d
i=1 λ2i

(
∑d

i=1 λi )2
. (25)

Appendix B: Eigenvalues of the Five Real-Life Datasets

Below are the eigenvalues of the real datasets used in the K -Means clustering examples
in Sect. 5.2.

Iris: [4.2, 0.24, 0.08, 0.02]
Wine: [99201.8, 172.5, 9.4, 5.0, 1.2, 0.84, 0.28, 0.15, 0.11, 0.07, 0.04, 0.02, 0.008]
Image Seg.: [11393.8, 9183.6, 5479.5, 2300.1, 217.2, 161.7, 55.7, 14.4, 3.6, 1.2,

0.2, 0.02, 0.001, 0.001, 0, 0, 0, 0, 0]
Digits: [179.0, 163.7, 141.8, 101.1, 69.5, 59.1, 51.9, 44.0, 40.3, 37.0, 28.5, 27.3,

21.9, 21.3, 17.6, 16.9, 15.9, 15.0, 12.2, 10.9, 10.7, 9.6, 9.2, 8.7, 8.4, 7.2, 6.9, 6.2, 5.9,
5.2, 4.5, 4.2, 4.0, 3.9, 3.7, 3.5, 3.1, 2.7, 2.7, 2.5, 2.3, 1.9, 1.8, 1.7, 1.4, 1.3, 1.3, 0.93,
0.67, 0.49, 0.25, 0.09, 0.06, 0.06, 0.04, 0.02, 0.008, 0.004, 0.001, 0.001, 0, 0, 0, 0]

Protein: [2.4, 1.6, 0.5, 0.3, 0.2, 0.1, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.03, 0.03,
0.02, 0.02, 0.01, 0.01, 0.01, 0.008, 0.008, 0.006, 0.006, 0.005, 0.005, 0.004, 0.004,
0.003, 0.003, 0.003, 0.002, 0.002, 0.002, 0.002, 0.001, 0.001, 0.001, 0.001, 0.001,
0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0]
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