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In development, differentiation from a pluripotent state results in global epigenetic
changes, although the extent to which this occurs in induced pluripotent stem cell-
based neuronal models has not been extensively characterized. In the present study,
induced pluripotent stem cell colonies (33Qn1 line) were differentiated and collected
at four time-points, with DNA methylation assessed using the Illumina Infinium Human
Methylation EPIC BeadChip array. Dynamic changes in DNA methylation occurring
during differentiation were investigated using a data-driven trajectory inference method.
We identified a large number of Bonferroni-significant loci that showed progressive
alterations in DNA methylation during neuronal differentiation. A gene–gene interaction
network analysis identified 60 densely connected genes that were influential in the
differentiation of neurons, with STAT3 being the gene with the highest connectivity.

Keywords: aging, DNA methylation, EPIC array, epigenetics, epigenome-wide association study, induced
pluripotent stem cells, neuronal differentiation, trajectory inference

INTRODUCTION

Neuronal development is a complex and protracted process that begins early in gestation with
the differentiation of stem cells into neuronal progenitors (Stiles and Jernigan, 2010). Both gene
expression and environmental stimuli are known to be very important regulators of this process,
and disruptions to either of these can ultimately affect brain development (Stiles, 2008). One process
through which gene expression can be controlled is via epigenetic mechanisms, the most widely
studied of which is DNA methylation (Henikoff and Matzke, 1997; Lande-Diner et al., 2007).
There is considerable literature that shows that DNA methylation changes occur throughout the life
course and in every tissue and cell type (Kitamura et al., 2007; Illingworth et al., 2008; Murgatroyd
and Spengler, 2011). These changes begin very early in the brain, with dynamic DNA methylation
changes reported across fetal development (Spiers et al., 2015), and further changes throughout the
life course as we age (Horvath and Raj, 2018).

As neuronal development is such a critical process, it is important to understand the epigenetic
changes that drive cell specification and differentiation in the brain using the most appropriate
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model system that can recapitulate the dynamic changes
occurring in this process. Owing to advances in genomic
technology, epigenome-wide association studies (EWAS) of DNA
methylation have been undertaken to study the methylomic
trajectories of fetal brain development (Spiers et al., 2015;
Li et al., 2020). However, while these studies have provided
considerable insight into the epigenomic landscape of neuronal
development, there are caveats to this approach. For example
postmortem brain tissue was used, with different samples
analyzed at different stages of development, which thus have
different genetic backgrounds, which is known to impact the
epigenome (Gutierrez-Arcelus et al., 2013).

One promising avenue for longitudinal modeling of neuronal
development is through the use of induced pluripotent stem
cell (iPSC)-derived neuronal cells, as iPSCs are derived from
human tissue, can be monitored over time, and, in theory, can
be transformed into any cell type in the body while having
the same genetic background (Imm et al., 2017). Despite iPSC-
derived neurons being functionally mature, displaying mature
electrophysiological features, including spontaneous electrical
activity, regenerative induced action potential train activity,
and hyperpolarized resting membrane potentials (Telezhkin
et al., 2016), they do not retain their age-related transcriptomic
or epigenomic profiles (Mertens et al., 2015). This lack
of maturity makes them a good candidate for studying
neuronal development.

To our knowledge, no studies have yet longitudinally profiled
DNA methylation patterns and the epigenetic “age” of iPSC-
derived neurons during differentiation and maturation. This
is an important area to investigate as it will provide valuable
information on the development of neurons, which could later
be compared to iPSC-derived neurons harboring mutations
known to affect neurological function. In this study, we have
differentiated iPSCs into cortical neurons and assessed their DNA
methylation profile at different time points during differentiation
and maturation to identify DNA methylomic trajectories of
neuronal differentiation.

MATERIALS AND METHODS

iPSC Culture and Neuronal
Differentiation
This study was performed using one extensively characterized
feeder-free human iPSC line (33Qn1), originally derived
from human fibroblasts by transfection of episomal plasmid
vectors expressing the six transcription factors Oct4, Sox2,
Klf4, cMyc, Nanog, and Lin28 (The Hd iPsc Consortium,
2012). Differentiation was achieved using the SCM1/2 protocol
outlined in Telezhkin et al. (2016). Briefly, iPSCs were
maintained on vitronectin-coated plates in an Essential 8 flex
medium, passaged using dispase according to the manufacturer’s
instructions (Stem Cell Technologies, Vancouver, Canada),
and were collected 4 days after initial plating for DNA
extraction (Day 0—iPSCs). Neuronal differentiation was started
at approximately 70% confluency. Differentiation into neuronal
precursors was achieved using SLI media (Advanced DMEM:F12

(with Glutamax); 1% Penicillin/Streptomycin; all from Life
Technologies, California, United States); 10 µM SB431542
(Abcam, Cambridge, Cambs., United Kingdom); 1 µM LDN
193189 (Stemgent, Cambridge, MA, United States); 1.5 µM
IWR1 (Tocris Bioscience, Abingdon, Oxon., United Kingdom);
and 2% NeuroBrew-21 without RA (Miltenyi Biotec: Bisley,
Surry, United Kingdom) for the first 8 days followed by
LI media for another 8 days (Advanced DMEM:F12, 2 mM
L-glutamine, 1% Penicillin/Streptomycin, 200 nM LDN 193189,
1.5 µM IWR1, and 2% NeuroBrew-21 without RA), after
which neuronal precursor cells (NPCs) were collected for DNA
extraction (Day 16—NPCs). The remaining neuronal precursors
were then terminally differentiated and matured as described
previously (Telezhkin et al., 2016) using the sequential addition
of the SCM1 for 7 days {SCM1 contained Advanced DMEM:F12
(with Glutamax); 1% penicillin/streptomycin; 2% NeuroBrew21
(Miltenyi Biotec); 2 µM PD0332991 (Selleckchem); 10 µM DAPT
(Sigma-Aldrich); 0.6 mM CaCl2 [to give 1.8 mM total CaCl2
in final complete medium (Sigma-Aldrich); 200 µM ascorbic
acid (Sigma-Aldrich); 10 ng/mL BDNF (Miltenyi Biotec); 1
µM LM22A4 (Tocris Bioscience); 10 µM Forskolin (FSK,
Tocris Bioscience); 3 µM CHIR 99021 (Tocris Bioscience); and
300 µM GABA (Tocris Bioscience)]} and then SCM2 for the
remainder of the maturation period for a further 37 and 58 days
{SCM2 contained 1:1 Advanced DMEM/F12 (with Glutamax):
Neurobasal A (Life Technologies); 1% penicillin/streptomycin
(Life Technologies); 2% NeuroBrew21 with RA (Miltenyi Biotec);
2 µM PD0332991 (Selleckchem); 3 µM CHIR 99021 (Tocris
Bioscience); 0.3 mM CaCl2 [to give 1.8 mM total CaCl2 in the
final complete medium (Sigma-Aldrich); 200 µM ascorbic acid
(Sigma-Aldrich); 10 ng/mL BDNF (Miltenyi Biotec)]}. At these
time points, the cells were collected for DNA extraction (Days 37
and 58—mature neurons). At each time point, cells were collected
separately from four wells, representing four technical replicates.
All collected cells were washed with PBS, pelleted down, frozen,
and stored at –80◦C.

Genome-Wide Quantification of DNA
Methylation
DNA was extracted from the 16 cell pellets using a standard
phenol chloroform protocol. Subsequently, 500 ng of genomic
DNA was sodium bisulfite converted using the Zymo EZ 96 DNA
methylation kit (Zymo Research) according to the manufacturer’s
instructions. Samples were profiled using the Illumina Infinium
Human Methylation EPIC BeadChip array (Illumina) and the
Illumina HiScan System (Ilumina).

All data analysis was performed in R version 3.6.1 (Eggshell
Igloo). The methylumi package (Davis et al., 2017) was used
to extract signal intensities for each CpG probe and perform
initial QC, with data normalization and preprocessing using
the WateRmelon package (Pidsley et al., 2013). Additional QC
checks were performed using the “p-filter” function within the
methylumi package, assessing bisulfite conversion efficiency, and
the median methylated and unmethylated sample intensities as
previously described (Smith et al., 2019). Two iPSC samples
failed the p-filter checks due to low median (un)methylated
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sample intensities. As a result, they were removed from the
study. For the remaining 14 samples, the data were normalized
with the dasen function from the wateRmelon package (Pidsley
et al., 2013). Prior to any analyses, probes with common (>5%
minor allele frequency [MAF]) single nucleotide polymorphisms
(SNPs) within 10 bp of the single base extension and probes
with sequences previously identified as potentially hybridizing to
multiple genomic loci were excluded (McCartney et al., 2016),
resulting in a final dataset of 837,018 probes.

Epigenetic Age Calculation
In this study, we used two epigenetic age calculators: first, the
pan-tissue DNA methylation age estimator (Horvath et al., 2018),
which predicts chronological age based on the DNA methylation
levels of 353 CpGs that were identified in human adult tissues,
and second, a recently developed epigenetic clock using DNA
methylation data from fetal brain tissue, based on 107 CpGs (Steg
et al., 2020). The coefficients and intercept for both the Horvath
and Steg age calculators were downloaded and were applied
using the agep function of the wateRmelon package (Pidsley
et al., 2013). The epigenetic ages calculated by the Horvath clock
were then converted from years to days post-conception to allow
comparisons to be made. To test for differences in predicted
epigenetic age between cell stages for each clock, we used an
ANOVA followed by Tukey’s honest significant difference (HSD)
test to allow for multiple comparisons.

Probe Filtering and Dimensionality
Reduction
Median absolute deviation (MAD) was computed as a robust
measure of variability for each CpG site across the four cell
stages, with the upper fifth percentile value used as a cutoff
to determine the most variably methylated loci (41,851 loci).
Principal component analysis (PCA) without scaling the probes
by their variance was then applied to obtain a lower-dimensional
feature subspace, representing the information explaining most
of the variance in the dataset.

Pseudotime Trajectory Analysis
A pseudotime trajectory through the cell stages was inferred
and plotted using the infer_trajectory and draw_trajectory_plot
functions in the SCORPIUS package (version 1.0.7), respectively
(Cannoodt et al., 2016). The first two principal components of
the DNA methylation data were subjected as the coordinate of the
samples to the infer_trajectory function, which performs k-means
clustering, calculates the distance matrix between cluster centers
and finds the shortest path connecting all cluster centers using a
custom distance function, and finally fits a curve to the given data
using principal curves (Cannoodt et al., 2016).

Next, to identify the loci with the largest contribution to the
trajectory inference, we regressed each CpG site’s methylation
values on the pseudotime variable that had been inferred by
trajectory analysis after rounding off the pseudotime values to
two decimal places. We used a general additive model (GAM),
which allowed the detection of non-linear methylation patterns
throughout neuronal differentiation. The loci that remained

significant after Bonferroni correction for 41,851 tests were
considered as robust markers of neuronal differentiation and
subjected to further downstream analyses.

Gene Ontology, Pathway, and Genomic
Enrichment Analyses
We performed Gene Ontology (GO) pathway analysis using
the missMethyl R package (Phipson et al., 2016), which adjusts
for the uneven number of CpGs per gene on the Illumina
Infinium Human Methylation EPIC BeadChip array. Pathways
are reported if they were false discovery rate (FDR) significant.
To test for an enrichment of DMPs in specific genomic features
(i.e., CpG islands, shelves, shores, and non-CpG island regions)
and genomic regions related to transcription (TSS1500, TSS200,
5′UTR, 3′UTR, first exon, and gene body), we annotated all DMPs
based on their Illumina annotation and performed a two-sided
Fisher’s exact test.

Gene–Gene Interaction Network Analysis
We used MetaCore (Clarivate Analytics) to obtain a set of
directed functional regulatory interactions between the unique
genes annotated to the CpG sites with the largest contribution
to the trajectory inference. The MetaCore database contains a
compilation of manually curated and experimentally validated
directed gene–gene interactions based on existing literature. Its
high level of manual curation ensures the creation of highly
confident interaction network maps. The network reconstruction
was restricted to interactions reported in humans from the
categories “transcriptional regulation,” “influence on expression,”
“co-regulation of transcription,” and “regulation” with the
interaction type (i.e., activation or inhibition) provided when
available. Subsequently, the R package igraph (version 1.2.6)
(Csardi and Nepusz, 2006) was used to extract the strongly
connected component (SCC) from the network obtained through
Metacore. The network analyzer tool from Cytoscape (version
3.4.0) (Shannon et al., 2003) was used to conduct a network
topological analysis in order to identify key genes with high
centrality and connectivity in the network.

Gene Expression Data
We utilized the iPSC transcriptomics resource generated by
Burke et al. (2020) to explore the patterns of gene expression
throughout the differentiation for genes identified in our
gene–gene interaction network analysis. Their online tool1

contains RNA-sequencing data generated in 5 iPSC donor and
13 subclonal lines over a range of different conditions and
timepoints postdifferentiation. For the purposes of quantifying
gene expression changes for all genes identified in our gene-
gene interaction network analysis we have extracted from their
database the direction of change and FDR-adjusted P value
(Q-value) over time for all samples in their study. We also
downloaded directly from the website plots for selected genes of
interest we identified.

1http://stemcell.libd.org/scb/
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RESULTS

iPSC-Derived Neurons Have a Fetal
Epigenome
One concern when using iPSC-derived neurons to study
diseases, particularly age-related neurodegenerative disorders,
is the biological age of the neurons. To address this, we
used two different epigenetic age calculators to calculate the
epigenetic age of the samples, including the latest iteration of
the Horvath age calculator (Horvath et al., 2018) and a new
fetal brain clock developed by Steg et al. (2020). The Horvath
calculator predicted an increase in epigenetic age throughout
differentiation and maturation, although these increases were
not significant (Figure 1A). However, the samples were all
predicted to be fetal (i.e., <280 days post-conception), with the
highest predicted epigenetic age being 137 days post-conception.
The fetal brain clock also predicted all samples to be fetal,
with the samples ranging from 48 to 97 days post-conception
(Figure 1B). The fetal brain clock did not predict a completely
linear increase in epigenetic age with differentiation status.
There was a significant increase in predicted epigenetic age
for the mature neuron stages compared to both the iPSCs
and NPCs (iPSC v Day 37 neuron: P = 1.36 × 10−3; iPSC
v Day 58 neuron: P = 3.57 × 10−3; NPC v Day 37 neuron:
P = 4.72 × 10−3; NPC v Day 58 neuron: P = 0.0169), but with
no difference between the iPSCs and NPCs, nor the Days 37 and
58 neurons.

Cell Trajectory Modeling Highlights
Methylation Patterns During
Differentiation
In order to further explore how DNA methylation levels
change throughout neuronal differentiation and maturation, we
generated a cellular lineage trajectory signature to identify groups
of loci that become progressively hyper- or hypomethylated
throughout differentiation. First, we reduced the dimensionality
of the dataset containing the most variable CpG probes (41,851
loci) to 14 principal components (PCs), of which the first 2
explained ∼78% of the variation in that dataset. These two
PCs were used as the coordinates for samples to cluster them
according to the stage of differentiation/maturation (Figure 2A).
Samples within each cellular stage clustered together, with the
exception of one Day 37 neuron sample, which clustered with
the Day 58 neuron samples. This could indicate that this sample
had aged quicker than the others in the same group; however,
the “epigenetic age” of this sample corresponded to the second
youngest of the four Day 37 neuronal samples when using
the Steg fetal brain clock. To ensure that this sample was not
a general outlier, we clustered all 14 samples based on the
Euclidean distance (prior to the trajectory inference analysis).
This highlighted that this Day 37 sample was not an outlier
in general and clustered together with the Day 58 samples
(Supplementary Figure 1).

Using the pseudotime generated in the trajectory analysis as
a predictor, a GAM was fitted to the 41,851 probes in order to

FIGURE 1 | The predicted biological ages of iPSC-derived neurons through differentiation using two different clocks. As two iPSC samples did not pass the quality
control checks, there are only two samples in the iPSC group on each graph. (A) The estimated epigenetic age (Y-axis) of the four cellular stages (X-axis) increased
throughout differentiation using the epigenetic age clock created by Horvath et al. (2018), although there were no significant differences between cellular stages.
(B) The estimated epigenetic age of iPSCs and NPCs were significantly lower than the mature Days 37 and 58 neurons using the fetal brain epigenetic age clock
created by Steg et al. (2020), but with no difference between iPSCs and NPCs or between Days 37 and 58 neurons. The age of each sample is given in days
post-conception. Key: ∗P < 0.05, ∗∗∗P < 0.005.
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FIGURE 2 | Trajectory inference modeling identifies a signature of 6,843 probes that distinguish cell stage. (A) To create the trajectory model dimensionality
reduction was first performed, using principal component analysis (PCA), followed by estimating pseudo-time to model the lineage trajectory. The different samples
grouped together based on the first two principal components (PCs). (B) Using the pseudo-time estimation, a generalized additive model (GAM) was used to
determine which of the 6,843 probes were becoming hypomethylated (blue) or hypermethylated (red) over time. The patterns of hypomethylation and
hypermethylation were grouped into nine modules (M1-9) that could distinguish the different cell stages. (C) The DNA methylation patterns occurring at the most
significant probe (cg00908292) throughout differentiation. Left: plot of methylation beta-value (Y-axis) against pseudo-time (X-axis) and right: plot of methylation
beta-value (Y-axis) against cellular stage (X-axis).

identify the loci that contributed most to the trajectory inference
model. In total, we identified 6,843 of the 41,851 loci that showed
Bonferroni significant variation in methylation across the cell
stages (Figure 2B), which we termed the “epigenetic trajectory
signature.” Full details on these loci, including the change
in methylation, genomic coordinates, and gene annotation,
can be found in Supplementary Table 1. The Bonferroni
significant loci were then grouped into nine modules according
to their pattern of methylation changes across differentiation.
Interestingly, the probes in module 7 (M7) seem to particularly
characterize the iPSC stage, as they undergo an average decrease
in methylation of 59% between the iPSC and NPC cell stages
(Supplementary Table 2).

The largest change in DNA methylation occurring through
differentiation occurs at the cg00908292 probe, which is
intergenic and located closest to the CCR7 gene (Bonferroni
corrected P = 4.36 × 10−9). This locus is hypermethylated
in iPSCs, becoming hemimethylated in NPCs, before
becoming progressively demethylated over time and being
largely unmethylated in the terminally differentiated mature
neurons (Figure 2C).

Pathway Analysis of Loci Contributing to
the Epigenetic Trajectory Signature
Implicates Neuronal Pathways
We took the 6,843 loci that comprised the epigenetic trajectory
signature and used GO enrichment analysis to identify the most

significant pathways that were changing throughout neuronal
differentiation. The epigenetic trajectory signature resided in
genes that featured in specific pathways relating to “neuron
projection morphogenesis,” “cell growth,” and “movement of
cell or subcellular component” (Supplementary Table 3 and
Supplementary Figure 2).

Enrichment of Loci in the Epigenetic
Trajectory Signature in Specific Genomic
Features and Regions
Next, we investigated whether loci comprising the epigenetic
trajectory signature resided in specific genomic regions. Overall,
we saw an enrichment of these probes in the gene body
(odds ratio [OR] = 1.07, P = 0.021) and the 3′ untranslated
region (3′UTR) (OR = 1.20, P = 0.048) (Supplementary
Table 4 and Supplementary Figure 3). Interestingly, when we
examined the enrichment of hypomethylated (N = 4,954) and
hypermethylated (N = 1,889) loci independently, we observed
a difference in their genomic location; hypomethylated loci
were underrepresented within both 1,500 and 200 bp of the
transcription start site (TSS1500: OR = 0.73, P = 2.33 × 10−8;
TSS200: OR = 0.72, P = 4.80 × 10−5) and enriched in the gene
body (OR = 1.20, P = 1.38 × 10−9), while hypermethylated loci
were enriched in the TSS1500 (OR = 1.48, P = 1.39 × 10−7),
TSS200 (OR = 1.99, P = 1.22 × 10−12), and 3′UTR (OR = 1.93,
P = 2.85 × 10−6) and underrepresented in the gene body
(OR = 0.77, P = 1.37 × 10−7). When we investigated the
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enrichment of loci within specific genomic features related
to the CG content, we observed a significant enrichment
of the loci comprising the epigenetic trajectory signature in
CpG island (CGI) shelves (OR = 1.17, P = 5.09 × 10−3)
and shores (OR = 1.22, P = 1.67 × 10−8) (Supplementary
Table 4 and Supplementary Figure 3). Hypomethylated probes
were significantly underrepresented in CGIs (OR = 0.26,
P = 6.74 × 10–76) and shores (OR = 0.74, P = 9.65 × 10−12)
and enriched in shelves (OR = 1.18, P = 0.011), while
hypermethylated probes were significantly enriched in CGIs
(OR = 3.82, P = 3.08 × 10−103) and shores (OR = 2.73,
P = 6.23× 10−78).

Transcriptional Regulation Is a Highly
Interconnected Process Throughout
Differentiation
To explore the connectivity between key genes that display
progressive DNA methylomic changes through differentiation,
we performed gene–gene interaction analyses on the 2,659
unique genes that were annotated (Illumina [UCSC] annotation)
to the 6,843 loci comprising the epigenetic trajectory signature.
The prior knowledge network (PKN) obtained from MetaCore
contained 398 genes and 622 interactions. Only one strongly
connected component (SCC) existed in this network (i.e.,
there is only one subnetwork in which every gene can be
reached through any other gene in the same subnetwork),
comprised of 60 genes and 158 interactions between them
(Supplementary Table 5 and Figure 3). The conducted
topological network analysis highlighted the key genes in this
SCC with outstanding topological characteristics, including
out-degree (set of target genes it regulates), in-degree (set
of upstream regulating genes), betweenness centrality (most
influential genes based on their shortest paths to other genes
in the network), and clustering coefficient (a measure of gene
tendency to cluster with other genes in the network). STAT3
was the gene with the highest connectivity (Neighborhood
Connectivity = 5.42, Clustering Coefficient = 0.045) in the
SCC, according to its in-degree (7) and out-degree (20),
suggesting that it may play a key regulatory role in the
subnetwork. Previously, alterations in STAT3 signaling have
already been observed to be associated with age-related changes
in different cell types (Chazaud and Mouchiroud, 2014;
O’Brown et al., 2015).

In order to add additional meaning to the methylation
changes we see throughout differentiation, we assessed the
gene expression changes of our 60 genes comprising the
SCC using the online tool created by Burke et al. (2020)
available at http://stemcell.libd.org/scb/. In total, 53 of
the 60 genes in the SCC showed FDR significant gene
expression changes in the Burke dataset (Supplementary
Table 6 and Supplementary Figure 4). Included in these
53 genes are the epigenetic modulators DNMT3B and
DNMT3A (Supplementary Figure 5) as well as loci known
to be important for neuronal differentiation such as PAX6
(Simpson and Price, 2002) and STAT3 (Yadav et al., 2005;
Snyder et al., 2011).

DISCUSSION

In this study, we quantified genome-wide DNA methylation in
iPSCs and throughout their differentiation and maturation into
cortical neurons. We have shown that iPSCs, NPCs, and post-
terminally differentiated neurons have an immature epigenomic
profile according to both the Horvath epigenetic age calculator
and the Steg fetal brain clock. While the Horvath epigenetic age
calculator has been shown to accurately predict the epigenetic
age of brain samples (Horvath et al., 2018), it has been reported
to be inaccurate in juvenile samples, presumably because DNA
methylation changes are more dynamic in children (McEwen
et al., 2019). For this reason, we also used the Steg fetal brain
clock as this was trained using human fetal brain samples
(Steg et al., 2020). Both methods predicted that the iPSC-
derived neurons are epigenetically immature, with the Steg fetal
clock showing significant differences between cellular stages.
Interestingly, although there was a significant increase in the
predicted epigenetic age using the Steg fetal clock between the
iPSCs or NPCs and the Days 37 or 58 neurons, there was no
difference between iPSCs and NPCs nor between the Days 37 and
58 neuronal samples. This suggests that between the NPC and the
terminally differentiated neuron stage, there is a change in DNA
methylation at the loci that constitute the clock, but these probes
are not altered as cortical neurons age in culture. Previous studies
of iPSC-derived neurons using the same (33Qn1) line have
demonstrated that at Days 37 and 58, these cells are functionally
mature (Telezhkin et al., 2016), which could be one reason that
these “clock” probes are no longer altered.

One of the main objectives of our study was to identify
an epigenetic trajectory signature of iPSC differentiation into
cortical neurons. One interesting observation from this was that
one of the Day 37 terminally differentiated neuron samples
clustered more closely with the Day 58 terminally differentiated
neuron samples than with other samples of the same cellular
stage. We considered that this sample may have “aged” faster than
the other Day 37 neurons. However, upon further investigation,
this sample actually had the second lowest epigenetic age
using the Steg clock and has the second highest age using
the Horvath clock of the Day 37 group. This could therefore
suggest that the probes used to determine epigenetic age are not
contributing to the epigenetic trajectory signature we identified
that distinguished between the different cellular stages.

Our pathway analysis highlighted that probes comprising
the epigenetic trajectory signature are involved in “neuron
projection morphogenesis,” “cell growth,” and “movement of
cell or subcellular component.” The gene–gene interaction
network analysis of the epigenetic trajectory signature identified a
highly connected, epigenetically altered subnetwork of 60 genes,
featuring 158 interactions. STAT3 was the most connected gene
in the SCC subnetwork. This gene is known to be involved in
neuronal survival and function; for example, STAT3 and other
members of the JAK/STAT pathway have been shown to play
key roles in the control of neuronal proliferation, survival, and
differentiation (Yadav et al., 2005; Snyder et al., 2011). Primary
neuronal and SH-SY5Y cells have been shown to be highly
susceptible to treatment with the STAT3 inhibitor tryphostin,
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FIGURE 3 | A subnetwork of 60 genes constituting the strongly connected component (SCC) in the gene–gene interaction network. Directed gene–gene interaction
network was constructed for 2,659 unique genes that were annotated to the 6,843 loci comprising the epigenetic trajectory signature. The prior knowledge network
(PKN) obtained from Metacore contained 398 genes and 622 interactions. Only one strongly connected component (SCC) in this network, comprised of 60 genes
and 158 interactions between them, was identified; blue nodes indicate genes becoming progressively hypomethylated, red nodes indicate genes becoming
progressively hypermethylated, and gray ovals indicate genes that have more than one probe annotated to them that have different patterns of methylation change.

with a significant percentage of both cell types (80–100%) dying
even at low concentrations (Yadav et al., 2005). The fact that
STAT3 was identified as a hub gene by the network analysis
highlights its importance in the epigenetic trajectory signature,
which is further confirmed by its already proven pivotal role in
the development and differentiation of neurons.

To confirm that there were corresponding gene expression
changes alongside methylation changes in our loci, we used
the online tool created by Burke et al. (2020). This highlighted
that 53 of our 60 most strongly connected genes (including
STAT3 and other epigenetic modulators) do undergo significant
changes in both gene expression and methylation throughout
overall neuronal differentiation. This suggests that the epigenetic
changes occurring in the majority of genes in the SCC

are having functional consequences in the differentiation of
iPSCs into neurons.

There are some limitations to our study. First, our “oldest”
time point was the Day 58 neurons, and it would be interesting
to study neurons that have been cultured for longer periods
to investigate whether these eventually develop a postnatal
epigenetic age, and what changes occur to the epigenetic
trajectory signature. Second, it would also be of interest to explore
the epigenetic trajectory signature in inducible neurons (iNs),
which are neurons generated directly from fibroblasts that do
not go through the intermediate stem cell phase (Mertens et al.,
2015). This is because previous studies have highlighted that iNs
exhibit age-dependent nucleocytoplasmic compartmentalization
and retain the age-related transcriptomic profiles and epigenetic
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age of their donor, which is lost in iPSC-derived neurons and
so may be a more appropriate system for modeling age-related
disease (Mertens et al., 2015). Third, we have only used one cell
line (33Qn1) in our study, and it will be important for future
studies to examine other cell lines, particularly ones harboring
mutations known to be present in age-related neurological
disease. In addition, the present study has utilized technical
replicates, and future studies should characterize multiple iPSC
clones for each line as the use of biological replicates would
make the results more generalizable and robust. Fourth, future
studies could also validate the epigenetic signature using an
alternative technology such as bisulfite sequencing. Finally, in the
current study, we have leveraged on a publicly available iPSC
transcriptomics resource to explore patterns of gene expression
through differentiation in various iPSC donors and clones over
differentiation, highlighting differential expression of key genes
we have identified in our epigenetic signature. However, it will
be important in the future to explore whether the epigenetic
patterns we identified lead to changes in gene expression in
the same samples.

In conclusion, we have characterized genome-wide
patterns of DNA methylation and identified an epigenetic
trajectory signature comprising loci that become progressively
hypermethylated or hypomethylated during the course of
neuronal differentiation and maturation from iPSCs.
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