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ABSTRACT

In the CA1 area of the hippocampus N-methyl-p-aspartate receptors (NMDARs) mediate the induction of
long-term depression (LTD), short-term potentiation (STP) and long-term potentiation (LTP). All of these
forms of synaptic plasticity can be readily studied in juvenile hippocampal slices but the involvement of
particular NMDAR subunits in the induction of these different forms of synaptic plasticity is currently
unclear. Here, using NVP-AAMO77, Ro 25-6981 and UBP145 to target GIuN2A-, 2B- and 2D-containing
NMDARs respectively, we show that GluN2B-containing NMDARs (GluN2B) are involved in the induction
of LTD, STP and LTP in slices prepared from P14 rat hippocampus. A concentration of Ro (1 uM) that
selectively blocks GIuN2B-containing diheteromers is able to block LTD. It also inhibits a component of
STP without affecting LTP. A higher concentration of Ro (10 uM), that also inhibits GluN2A/B trihe-
teromers, blocks LTP. UBP145 selectively inhibits the Ro-sensitive component of STP whereas NVP in-
hibits LTP. These data are consistent with a role of GluN2B diheretomers in LTD, a role of both GluN2B-

NMDA receptors

and GluN2D- containing NMDARs in STP and a role of GluN2A/B triheteromers in LTP.
This article is part of the Special Issue entitled ‘lonotropic glutamate receptors’.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

N-Methyl-p-aspartate receptors (NMDARs) are centrally
involved in synaptic transmission, synaptic plasticity and learning
and memory (Bliss and Collingridge, 2013, 1993; Volianskis et al.,
2015). NMDARs are glutamate gated ion channels that form het-
erotetrameric complexes. They usually consist of two GluN1 sub-
units and two GluN2 subunits, of which there are four possible
types (GIuN2A, 2B, 2C, 2D) (Collingridge et al., 2009). At the ma-
jority of excitatory synapses, and notably the CA1 area of the hip-
pocampus, the induction of long-term potentiation (LTP) and one
form of long-term depression (LTD) requires NMDA receptor
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activation. Use of the NMDAR specific antagonist, D-AP5, demon-
strated the receptor involvement in LTP (Collingridge et al., 1983)
and de novo LTD (Dudek and Bear, 1992) in rodent hippocampal
slices.

The role of NMDAR's in synaptic plasticity has been studied
extensively (Collingridge et al., 1983; Tsien et al., 1996); however,
there has been considerable disagreement about the involvement
of specific receptor subtypes in both LTP and LTD (Bartlett et al.,
2007; Berberich et al., 2005; Cull-Candy et al., 2001; Hrabetova
et al., 2000; Li et al., 2007; Liu et al., 2004; Massey et al., 2004;
Paoletti et al., 2013; Sakimura et al., 1995; Tang et al., 1999). One
suggestion that has gained considerable traction is that GIuN2A-
containing NMDARs are required for LTP and that GIuN2B-
containing NMDARs are involved in LTD (Bartlett et al., 2007,
Kohr et al.,, 2003; Liu et al., 2004; Massey et al., 2004; Sakimura
et al., 1995). However, there is also considerable evidence that
GIuN2B-containing NMDARs are important for LTP (Barria and
Malinow, 2005; Bartlett et al., 2007; Berberich et al., 2007; Tang

0028-3908/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


http://creativecommons.org/licenses/by/4.0/
mailto:A.Volianskis@bristol.ac.uk
mailto:A.Volianskis@qmul.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuropharm.2016.08.010&domain=pdf
www.sciencedirect.com/science/journal/00283908
http://www.elsevier.com/locate/neuropharm
http://dx.doi.org/10.1016/j.neuropharm.2016.08.010
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.neuropharm.2016.08.010
http://dx.doi.org/10.1016/j.neuropharm.2016.08.010

G. France et al. / Neuropharmacology 112 (2017) 76—83 77

et al,, 1999) and the role of GluN2B-containing NMDARs in LTD has
been challenged (Bartlett et al., 2007; Li et al., 2007; Morishita et al.,
2007).

It is possible that there are age-dependent differences in
experimental observations due to a developmental change in
subunit composition of NMDARs with GIuN2As being expressed
less at younger ages (Barria and Malinow, 2005; Loftis and
Janowsky, 2003; Monyer et al., 1994). This cannot, however, be
the only explanation since at a given stage of development there is
also controversy regarding the role of GluN2A and GIuN2B subunits
(Berberich et al., 2007, 2005; Liu et al., 2004; Morishita et al., 2007).

Another complicating factor could be in the selectivity profiles
of the pharmacological agents that are commonly used to investi-
gate the role of the different NMDA receptor subtypes. The most
commonly used antagonists have a narrow selectivity window or,
in the case of ifenprodil-like GIuN2B antagonists, a complex mode
of action (Fischer et al., 1997; Hansen et al., 2014).

Recently we rigorously characterized three antagonists NVP-
AAMO77 (NVP), Ro 25-6981 (Ro) and UBP145 and showed that
they could be used to identify the roles of GIuN2A, GIuN2B-
containing diheteromers, GIuN2A/B triheteromers and GIuN2D-
containing NMDARs in synaptic plasticity in the CA1 region of
adult rat hippocampal slices (Volianskis et al., 2013a). We found
that the predominant receptor required for the induction of LTP
was the GIuN2A/B triheteromer. In addition we found that a sig-
nificant component of short-term potentiation (STP), an initial
decremental phase of LTP that is observed following high frequency
activation and low frequency test stimulation (Volianskis and
Jensen, 2003), involved both GIuN2B and GIuN2D subunits
(Volianskis et al., 2013a).

In the present study we have investigated the role of NMDAR
subunits in LTP and de novo LTD in P14 animals using these three
antagonists. In particular, we also sought to establish the role of
GluN2B and GluN2D-containing NMDARs (GluN2B, GIuN2D) in rats
of this age.

2. Materials and methods
2.1. Compounds

D-(-)-2-Amino-5-phosphonopentanoic acid (D-AP5) and
(aR,BS)-a-(4-hydroxyphenyl)-G-methyl-4-(phenylmethyl)-1-piperi
dinepropanol maleate (Ro 25-6981) were purchased from Tocris
Bioscience (Bristol, UK). (R)-[(S)-1-(4-bromophenyl)ethylamino]-
(2,3-dioxo-1,2,3,4-tetrahy-droquinoxalin-5-yl)-methyl|phosphonic
acid (NVP-AMMO77) and (2R*,35*)-1-(9-bromophenanthrene-3-
carbonyl)piperazine-2,3-dicarboxylic acid (UBP145) were syn-
thesised in house as described previously (Costa et al., 2009; Irvine
et al., 2012).

2.2. Electrophysiology

Experiments were performed as described previously (Bartlett
et al., 2007), following institutional approval and according to the
national and EU guidelines for animal care. Briefly, P14 Wistar rats
were decapitated following cervical dislocation (UK Scientific Pro-
cedures Act, 1986). Hippocampi were dissected and sliced with a
Microslicer (DSK DTK-1000). Parasagittal slices (400 um) were
placed in an interface chamber and perfused with aCSF solution
containing 124 mM NaCl, 26 mM NaHCOs, 3 mM KCl, 1.4 mM
NaH;PO4, 1 mM MgSO4, 2 mM CaCl, and 10 mM p-glucose, satu-
rated with 95% 0,/5% CO, at 28 °C.

Test stimuli (100 ps) were delivered at 0.033 Hz through bipolar
nickel-chromium electrodes, which were placed in the CA1 area of
the hippocampal slice to stimulate the Schaffer collateral fibres.

Field excitatory postsynaptic potentials (fEPSPs) were recorded
using glass microelectrodes filled with 3 M NaCl solution (resis-
tance ~2—5 MQ) and positioned in the stratum radiatum of the CA1.
A 30 min baseline was recorded at a stimulus intensity that gave
60—70% of the maximal response. LTD was induced by low fre-
quency stimulation (LFS, 1 Hz stimulation for 15 min) and LTP was
induced using high frequency stimulation (HFS, 100 Hz for 1 s). The
data were collected and analysed using WinLTP (Anderson and
Collingridge, 2007).

Extracellular fEPSP recordings were amplified using an Axo-
clamp 2B amplifier (Axon Instruments, Foster City, CA), filtered at
1-3 kHz and digitised at 20 kHz (CA-1000, National Instruments).
The early slopes of the fEPSPs were measured starting at the point
of the fibre volley termination (0.2—0.5 ms). Post-LFS/HFS re-
sponses were normalised to baseline.

2.3. Data analysis

A single slice from one animal was used for each experimental
group (hence n values refer to both the number of slices and the
number of animals) and pharmacological experiments were ran-
domized and interleaved with controls. Data are presented as mean
values + SEM. The LTD/LTP levels were estimated at the end of each
single experiment (1 h post LFS/HFS) from 4 min averages, gener-
ating the mean values for each of the groups. The values from the
single experiments were used for the statistical comparison. Sig-
nificance of LTD/LTP was assessed using paired t-tests when
comparing to the pre-LFS/HFS baseline. One-way ANOVAs with
Bonferroni post-hoc tests were used to compare the normalised
fEPSP slopes between the groups (SigmaPlot). Decay times of STP
were analysed as described previously (Volianskis et al., 2013a;
Volianskis and Jensen, 2003). Briefly, decay of STP was fitted us-
ing a mono-exponential fitting routine in GraphPad Prism and
statistical comparisons between decay time constants (t) were
done with extra sum-of-squares F-test (Prism). T values are pre-
sented together with their confidence interval (CI). Statistical dif-
ferences were set at p < 0.05.

3. Results

3.1. GluN2A- and GluN2D-preferring antagonists have no effect on
LTD

Low frequency stimulation (LFS, 1 Hz 900 stimuli) induced
robust LTD in P14 hippocampal slices (Fig. 1A, open circles, 26 + 4%
1 h post-induction; n = 9, p < 0.05 when compared to the pre-LFS
baseline, paired t-test). A 20-min long pre-application of AP5
(50 pM) prevented LTD demonstrating NMDAR involvement in the
induction of synaptic depression (Fig. 1A, closed circles, 1.0 + 6%,
n = 6 p = 0.01, Bonferroni correction). In contrast, the GIuN2A se-
lective concentration of NVP-AMMO77 (NVP, 0.1 uM) was insuffi-
cient for blockade of LTD (Fig. 1B, open triangles, 24 + 3%), which
was indistinguishable from that in the control (n = 6, p = 1, Bon-
ferroni correction). Similarly, the GluN2D-preferring compound
UBP145 (10 uM, Fig. 1C) had no effect on LTD (18 + 4%, n=6,p =1,
Bonferroni correction).

3.2. Inhibition of GIuN2B receptors is sufficient for blockage of LTD

The results of experiments using GIuN2A- and GIuN2D-
preferring antagonists suggested that these subunits are not
required for the induction of LTD. We therefore tested whether Ro
25-6981 (Ro, Fig. 2), which effectively blocks GIuN2B-containing
diheteromers selectively at a concentration of 1 pM, is able to
block LTD. A 20 min pre-application of Ro had a variable effect on
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Fig. 1. GIuN2A and GIuN2D subunits are not required for the induction of LTD. (A) LTD induced by low frequency stimulation (LFS, 900 stimuli @ 1 Hz; open circles; n = 9) is readily
blocked by application of 50 M D-AP5 (filled circles, n = 6). Insets show representative field responses from a control experiment (Ctrl) and from an AP5 experiment. (B) 0.1 uM NVP
(open triangles; n = 6) and (C) 10 pM UBP145 (UBP, filled triangles; n = 6) are ineffective in blocking LTD. In this and subsequent figures, each point plots the mean + SEM. The
example traces were obtained at the times indicated by colour-coded numbers, the stimulation artefacts have been truncated for demonstration purpose in this and all the subsequent
figures. The duration of the application of compounds is indicated by bars. The same set of interleaved control experiments is plotted in each panel for ease of comparison.

LTD; in 8 experiments it had no effect whereas in 7 experiments a
significant block was observed (Fig. 2D). In contrast, when Ro was
pre-applied for 30 min, complete inhibition of LTD was observed in
all experiments. Representative single example experiments for Ro
(filled symbols) and NVP (open symbols) are shown for a 20 min

pre-incubation (Fig. 2A) and a 30 min pre-incubation (Fig. 2B). This
clearly shows the time-dependence of the block of LTD by Ro but
not by NVP. The pooled data for Ro experiments, showing no overall
significant effect with 20 min pre-incubation (15 +4% vs 26 + 4%,
n = 15, p = 0.3, Bonferroni correction) but complete inhibition with



G. France et al. / Neuropharmacology 112 (2017) 76—83 79
A Antagonist
150 1
& 1 5 NVP
£
2 100 TYL IR Tevwgregy S iuneots §
J 07 W e 1 z
5 00000, SGVOTEFIvSe 0 @ 0
£ A% 0 ¥ v =]
& . ’.VVVVV v v 10 ms
Q. 50+ V 0.1uMNVP, 20 mins prior LFS v Ro
E 4 1M Ro, 20 mins prior LFS v
- ﬁ T 2 >
1S
0 - LFS 1 0
r T T T T [S]
10 ms
0 0.5 1 1.5 2
B Antagonist
150
D D GED GED B b b G -G a» o
i~ NVP
) 1 2
£
[
2 100 1 e - ) 5 >
o £
G A 1 ©
& v v o v 10 ms °
& 50 V 0.14MNVP 30 mins prior LFS Ro
o M 1 uM Ro, 30 mins prior LFS
w
- L 1 2
0 - LFS 2 0
) ' j i 10 ms e
0 0.5 1 1.5 2
Time (h)
C Ro 25-6981 D
150 150 -
- s s on e en o a» a» @
—_ 1 2 — < No block
.g g O Block o
© ©
TR oo 2onagar s ase oo or SUts] 2
o Rl [m]
k] S 1004 — — =
= g ' '%'
% 50 4 O Control (n=9) %
o 4 1M Ro, 20 mins prior LFS (n=15) o
LI.._I.I M 1M Ro, 30 mins prior LFS (n=5) _.uil
0 - 50- ¢
r T T T T B I E—
0 0.5 1 1.5 2 1uMRo, 1uMRo,
Time (h) 20 min 30 min

Fig. 2. Blockade of GluN2B-containing NMDARs is sufficient to prevent induction of LTD. (A) A 20 min application of 1 uM Ro (filled diamonds) or 0.1 uM NVP (open triangles) prior
to LFS is insufficient to block LTD. (B) A 30 min pre-application of 1 uM Ro (filled squares) inhibits LTD whereas a similarly long application of 0.1 uM NVP (open triangles) has no
effect on LTD. (C) Summary of the experiments using 1 M Ro showing that a 30 min pre-application time is necessary for complete blockade of LTD (filled squares, n = 5) whereas a
20 min pre-application is insufficient (filled diamonds, n = 15). (D) The data show the 4 min estimates of LTD (1 h post LFS) from single experiments. Robust inhibition of LTD is only
seen with longer pre-incubation with Ro whereas a shorter application time leads to variable effects.

30 min pre-incubation (2 +4%, n = 5, p = 0.03, Bonferroni correc-
tion) when compared to control experiments (26 +4%) are pre-
sented in Fig. 2C, D.

3.3. Effects of NMDAR antagonists on the induction of STP and LTP

In control experiments, tetanisation (100 Hz, 1 s, HFS) induced
STP that declined with a t value of 5.2 min (CI 3.7—8.5 min) to a
stable level of LTP (Fig. 3A, open circles, LTP = 53 +5%, n = 10,
p < 0.05 when compared to the pre-HFS baseline, paired t-test).
Both STP and LTP were abolished by pre-application of 50 uM AP5
(Fig. 3A, filled circles, n = 4). By the end of experiments using AP5,
potentiation was 2 + 8% and significantly different from the control
LTP (p < 0.001, Bonferroni correction).

In contrast to AP5, a low concentration of NVP (0.1 uM) had no
effect on the induction of STP or LTP (open triangles, Fig. 3A) and
STP declined with a t value of 3.3 min (CI 1.9—11.1 min, p = 0.32 vs
control) to a LTP level of 54 + 9% (n = 4, p = 1 vs control, Bonferroni
correction). However, both STP and LTP were completely blocked by
a high concentration of NVP (1 pM, n = 5, filled triangles, Fig. 3A,

LTP = —0.6 + 13%).

Ro had concentration-dependent effects on synaptic potentia-
tion. Thus, 1 uM Ro reduced the decay time of STP significantly
(filled squares, Fig. 3B, T = 1.2, CI 1.14—1.26 min, p = 0.03 vs control)
without affecting induction of LTP (45 + 8%, n = 4, p = 1 vs control,
Bonferroni correction). However, LTP was blocked completely by
10 uM Ro (open squares, Fig. 3B, n = 4, LTP = 2 + 10%). Similarly to
the low concentration of Ro, UBP145 reduced the decay time of STP
significantly (7 = 1.6, C1 0.98—15.5 min, p = 0.04 vs control) without
affecting LTP (Fig. 3C filled triangles, LTP = 47 + 7%, p = 1 vs control,
Bonferroni correction).

4. Discussion

The present study investigated the role of NMDAR subunits in
LTD and LTP in P14 animals using GluN2A, 2B and 2D subunit-
preferring antagonists. NMDARs are most commonly composed of
two GIuN1 and two GluN2 subunits and it is the identity of the
GIuN2 subunit, which contains the glutamate binding site, that
confers the receptors with distinct biophysical properties,
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Fig. 3. GIuN2B- and GluN2D-containing receptors are involved in the induction of STP. (A) Tetanic stimulation (100 Hz, 1 s) induced both STP and LTP (open circles, n = 10). 50 uM
D-AP5 (filled circles, n = 4) reliably blocks the induction of STP and LTP. 0.1 uM NVP (open triangles, n = 4) has no effect on the induction of potentiation whereas 1 uM NVP blocks
both STP and LTP (filled triangles, n = 5). (B) STP is significantly reduced after pre-incubation with 1 pM Ro (filled squares, n = 4) whereas LTP is not affected. 10 uM Ro (open
squares, n = 4) completely abolishes LTP. (D) 10 uM UBP (filled triangles, n = 4) reduces STP but spares LTP.

determining their affinity to binding glutamate, regulating the
probability of channel opening and the decay kinetics of macro-
scopic currents and distinct pharmacological properties (Erreger
et al., 2005; Monyer et al., 1994, 1992; Vicini et al., 1998). GluN1
subunits bind the co-agonists glycine or p-serine and their activa-
tion is obligatory to the channel function. The voltage sensitivity of
the channel is due to the Mg>" block that gets relieved during
depolarizing membrane potentials (Ault et al., 1980; MacDonald
and Wojtowicz, 1980; Mayer et al., 1984; Nowak et al., 1984). The
sensitivity of channels to the Mg>* block is also dependent on the
identity of GIuN2 subunits, which can be found in a functional re-
ceptor in either “homomeric” (i.e. both GIuN2 subunits are iden-
tical) or in “heteromeric” (i.e. two, different GIuN2 subunits are
found in the receptor assembly) form. Thus, NMDARs, containing
two identical GIuN2 subunits (e.g. 2GIuN1/2GIuN2A) are frequently
referred to as diheteromeric whereas receptors that include
different GIuN2 subunits (e.g. 2GluN1/GIuN2A/GIuN2B) are
referred to as triheteromeric (Hansen et al., 2014; Paoletti and
Neyton, 2007). The expression of NMDARs is regulated both
regionally in the brain and throughout development and matura-
tion of an animal (Buller et al., 1994; Monyer et al., 1994; Thompson

et al, 2002; Watanabe et al,, 1992). Thus, expression of GluN2As
starts postnatally and then increases with development to steady
adult levels in the hippocampus. In contrast, GluN2B subunits are
expressed highly across the different developmental stages
whereas a low expression of the GluN2Ds has been observed
postnatally. GluN2C subunits are not expressed in rodent hippo-
campus, postnatally.

4.1. GIluN2 subunit-preferring antagonists

In the present study, in addition to AP5, which is routinely used
to block synaptic plasticity at the Schaffer collateral — CA1 synapse
(Collingridge et al., 1983; Dudek and Bear, 1992), we used three
subunit-preferring antagonists: NVP-AAMO077 (Auberson et al,
2002), Ro 25-6981 (Fischer et al., 1997) and UBP145 (Costa et al.,
2009; Irvine et al., 2012) to block GluN2A-, GIuN2B- and GluN2D-
containing receptors, respectively. We have previously character-
ized NVP, Ro and UBP in detail and used these antagonists to
determine subunit composition of NMDARs involved in the in-
duction of STP and LTP in adult hippocampus (Volianskis et al.,
2013a). NVP and UBP145 bind to the glutamate-binding site of
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NMDARs with differential potency at the receptors dependent on
the identity of the GIuN2 subunit, whereas Ro is a negative allo-
steric modulator of GluN2B-containing NMDARs with a complex
mode of action (Karakas et al., 2011).

NVP is about 10-fold more potent at the GluN2A-containing
NMDARs when compared to the GIuN2B and can, at a concentra-
tion of 0.1 uM, discriminate between these receptor subtypes as
shown previously in recombinant receptor assays (Feng et al., 2004;
Frizelle et al., 2006; Volianskis et al., 2013a). NVP blocks GIuN2D-
containing receptors also, where it presents with intermediate
potency (GIuN2A > GluN2D > GluN2B, rank order potency). UBP145
is ~10-fold more potent at the GIuN2D subunits than at the other
receptor subtypes (GluN2D > GIluN2A = GIuN2B) and at a con-
centration of 10 puM it blocks ~90% of recombinant GluN2D-
containing receptors expressed in HEK293 cells (Volianskis et al.,
2013a). Ro is the most selective of the three subunit-preferring
antagonists that were used in this study. At concentrations of up
to 1 uM it blocks diheteromeric GluN2B-containing receptors, with
an ICsp value in the low nanomolar range, although its potency is
inversely dependent on the concentration of the agonist (Volianskis
et al., 2013a). Furthermore, at low agonist concentrations, Ro can
potentiate diheteromeric GluN2B-containing receptor response, a
feature that is shared with ifenprodil and not seen at the other
receptor subtypes (Fischer et al., 1997; Hansen et al., 2014;
Volianskis et al., 2013a). At concentrations of 3—30 uM, Ro blocks
triheteromeric NMDARs containing both GIuN2A and GIuN2B
subunits, whereas at higher concentrations (>30 uM) it starts
showing inhibitory effects at the GluN2A-containing diheteromers
(Fischer et al., 1997; Hansen et al., 2014; Volianskis et al., 2013a). At
concentrations of up to 30 uM Ro does not inhibit GIluN2D subunits
(higher concentrations of this antagonist have not been tested at
the GIuN2D subunit).

In summary, although NVP, Ro and UBP145 have limited selec-
tivity towards the different NMDA receptor subtypes, a direct
comparison of the actions of these antagonists at appropriate
concentrations enables firm conclusions to be drawn about the
involvement of these receptor subtypes in the induction of synaptic
plasticity.

4.2. NMDARs in synaptic plasticity

Although there is no doubt about the involvement of NMDARSs in
generating synaptic plasticity in the CA1 area of the hippocampus
(Bliss and Collingridge, 2013, 1993; Collingridge et al., 1983;
Volianskis et al., 2015), considerable disparity remains in allo-
cating selective functional roles for the specific NMDAR-subunits in
the induction of synaptic plasticity. Some of the differences in the
results might be explained by differences in experimental condi-
tions, animal species and their developmental stage (Bartlett et al.,
2007, 2011; Berberich et al., 2007, 2005; Hendricson et al., 2002;
Kohr et al., 2003; Liu et al., 2004; Massey et al., 2004; Morishita
et al., 2007). In addition, as mentioned previously, allosteric mod-
ulators such as ifenprodil and Ro can function as potentiators at low
glutamate concentrations (Fischer et al., 1997; Hansen et al., 2014;
Volianskis et al., 2013a), potentially confusing the results. Further-
more, various induction paradigms may engage NMDARs subtypes
differently due to their distinct biophysical properties and
localization.

In the current study we have used two of the most-common
induction paradigms, i.e. low frequency stimulation (1 Hz for
15 min) and high frequency tetanisation (100 Hz for 1 s) to induce
LTD and STP/LTP respectively.

4.3. NMDAR subunits in LTD

The role for GIuN2B receptors in the induction of LTD was
originally suggested by the observation that both Ro and ifenprodil
can block LFS-induced LTD in slices from adult rat perirhinal cortex
(Bartlett et al., 2007; Massey et al., 2004) and from 3 to 4 week old
rat hippocampus (Liu et al., 2004). However, in other experiments,
Ro and ifenprodil were unable to block LTD in rat hippocampal
slices from 3 to 4 week old animals (Morishita et al., 2007), for
reasons that are still unclear.

In the present study, we focused on LTD at a slightly earlier
developmental stage, 2 weeks of age. Our observation that Ro
completely blocked LTD at a concentration selective for GIuN2B-
containing diheteromers is consistent with the canonical view
that this NMDAR-subtype can mediate LTD induction. However,
blockade of this subtype is not invariably sufficient to inhibit LTD at
this developmental stage (Bartlett et al., 2007) with other factors
such as slice orientation playing a role (Bartlett et al., 2011).

We conclude therefore, that GIuN2B receptors are required for
LTD under some circumstances but their involvement may be
compensated for under other conditions. Developmental changes
in the expression of GIuN2B receptors may be one determinant but
other factors, such as the level of cholinergic modulation (Bartlett
et al,, 2011), may be involved. In the present study, we observed
no effect on LTD with concentrations of NVP and UBP145 that are
selective for GIuN2A and GIuN2D, respectively. This supports the
idea, that GIuN2B can be the major determinant of LTD.

4.4. NMDAR subunits in LTP

The role of NMDAR subunits in the induction of LTP is also highly
controversial (e.g. Bartlett et al., 2007; Berberich et al., 2007, 2005;
Li et al,, 2007; Liu et al., 2004; Massey et al., 2004; Volianskis et al.,
2013a). In the current study, LTP was completely blocked by either
50 uM AP5,1 uM NVP or 10 uM Ro. However, 1 uM Ro and UBP145
were ineffective. These data suggest that triheteromeric NMDARs,
containing both GIuN2A and GIuN2B subunits, play an important
role in the induction of LTP at this stage of development, as pre-
viously shown in adults (Volianskis et al., 2013a).

4.5. NMDAR subunits STP

STP, the transient enhancement in synaptic transmission that
overlaps with LTP, has been shown to have a different NMDAR-
dependence compared to LTP in adult rats (Volianskis et al.,
2013a). More specifically, in slices prepared from adult rats, STP
comprises two overlapping components; a fast component, termed
STP4, that has the same sensitivity to antagonists as LTP, and a slow
component, termed STPs, that is sensitive to both Ro and UBP145. It
was therefore proposed that STP, involves both GIuN2B and
GIuN2D subunits. A similar slow component of STP with high
sensitivity to both Ro and UBP was observed in the present study.
Therefore STP, shows no obvious developmental regulation. Its
function remains to be determined although a role in working
memory has been postulated (Volianskis et al., 2013a,b). In terms of
STP; the parallel developmental regulation in both its sensitivity
and that of LTP to NVP reinforces the view that these two forms of
synaptic plasticity are closely associated with one another.

4.6. Concluding remarks

In this study on slices obtained from P14 hippocampus, using
GIuN2A, 2B and 2D subunit-preferring concentrations of NVP, Ro
and UBP145, we have demonstrated that activation of GluN2B-
containing receptors can be sufficient for the induction of LTD.
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We have also shown that GIuN2B- and GluN2D-containing re-
ceptors are involved in the induction of a component of STP. Finally,
we have presented evidence that GluN2A/2B triheteromers are the
dominant form involved in LTP. These data support the view that
different NMDA receptor subtypes play distinct roles in various
forms of synaptic plasticity. They also demonstrate that a single
subunit, in this case GIuN2B, is involved in multiple forms of syn-
aptic plasticity at the same set of synapses.
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