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Mapping genomic loci 

implicates genes and synaptic 

biology in schizophrenia  



SUMMARY 

Schizophrenia has a heritability of 60-80%, much of which is attributable to common risk alleles. Here, in 

a 2-stage genome-wide association study of up to 76,755 people with schizophrenia and 243,649 

controls, we report common variant associations at 287 distinct genomic loci. Associations were 

concentrated in genes expressed in CNS neurons, excitatory and inhibitory, but not other tissues or cell 

types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) as 

likely to underpin associations at some of these loci, including 16 genes with credible causal non-

synonymous or UTR variation. We also implicate fundamental processes related to neuronal function, 

including synaptic organisation, differentiation, and transmission. Fine-mapped candidates were 

enriched for genes associated with rare disruptive coding variants in people with schizophrenia, 

including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched 

for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes 

relevant to schizophrenia pathophysiology, show convergence of common and rare variant associations 

in schizophrenia and neurodevelopmental disorders, and provide a rich resource of prioritised genes 

and variants to advance mechanistic studies. 

  



MAIN TEXT 

INTRODUCTION  

Schizophrenia typically manifests in late adolescence or early adulthood1 and is associated with reduced 
life expectancy, elevated risk of suicide2, serious physical illnesses3, and substantial health and social 
costs. Treatments are at least partially effective in most people, but many have chronic symptoms, and 
adverse treatment effects are common4. There is a need for novel therapeutic target discovery, a 
process impeded by our limited understanding of pathophysiology.  

Much of the between-individual variation in risk is genetic, involving large numbers of common alleles,5 
rare copy number variants (CNVs)6, and rare coding variants (RCVs)7,8. A recent genome-wide association 
study (GWAS) reported 176 genomic loci containing common alleles associated with schizophrenia9 but 
the causal variants driving these associations and the biological consequences of these variants are 
largely unknown. To increase our understanding of the common variant contribution to schizophrenia, 
we performed the largest GWAS of the disorder to date and analysed the findings to prioritise variants, 
genes and biological processes that contribute to pathogenesis. 

RESULTS 

Association Meta-Analysis  

We carried out a primary GWAS in 74,776 cases and 101,023 controls followed by an Extended 
GWAS which included additional data for the most significant SNPs (Methods). In the primary GWAS, we 
combined by meta-analysis i) individual genotypes from a core PGC dataset of 90 cohorts of European 
(EUR) and East Asian (ASN) ancestry from the Psychiatric Genomics Consortium (PGC) totalling 67,390 
cases and 94,015 controls. ii) summary-level data from 7,386 cases and 7,008 controls from 9 cohorts of 
African-American (AA) and Latino (LAT) ancestry10. We analysed up to 7,585,078 SNPs with MAF ≥ 1% in 
175,799 individuals of whom 74.3% were EUR, 17.5% ASN, 5.7% AA, and 2.5% LAT (Supplementary 
Cohort Descriptions). This primary GWAS identified 313 independent SNPs (linkage disequilibrium (LD) 
r2 < 0.1) that exceeded genome-wide significance (p<5x10-8) (Extended Data Figure 1; Supplementary 
Table 1), spanning 263 distinct loci. 

In the Extended GWAS, we meta-analysed the primary GWAS results with summary statistics from 
deCODE Genetics (1,979 cases, 142,626 controls) for index SNPs with P<10-5 and identified 342 LD-
independent significant SNPS (Supplementary Table 2) located in 287 loci (Supplementary Table 3; 
Supplementary Figures 1-2).  Comparisons with the 128 associations (108 loci) we reported in 2014 are 
provided (Supplementary Note); one association (rs3768644; chr2:72.3Mb) is no longer supported11.  

Separate GWAS for males and females had a genetic correlation statistically indistinguishable from 1 
(rg=0.992, SE 0.024). These and other analyses (Supplementary Note) show that common variant 
genetic liability to schizophrenia is essentially identical in males and females despite reported sex 
differences in age at onset, symptom profile, course, and outcome12.   

SNP-based heritability and Polygenic Prediction  

In the EUR sample, the SNP-based heritability (h2
SNP) (i.e. proportion of variance in liability attributable 

to all measured SNPs) was estimated13 to be 0.24 (SE 0.007).  Using the all ancestry primary GWAS as the 
discovery sample, polygenic risk score (PRS) analysis explained a median of 0.073 of variance in liability 



(SNPs with GWAS p<0.05), and 0.024 when restricted to genome-wide significant SNPs. For almost all 
cohorts, PRS had more explanatory power based on risk alleles derived from the larger combined 
ancestry GWAS than from the matched ancestry GWAS; given the ancestry specific sample sizes, 
unsurprisingly9, this effect was strongest for the non-EUR samples (Extended Data Figure 2 
Supplementary Table 5). 

PRS explained most variance in liability in cohorts of European ancestry (again a result of the ancestry 
composition of the GWAS9) and in samples which by ascertainment likely include the most severe cases 
(hospitalised patients or those treated with clozapine) (Supplementary Note).  However, even in EUR 
cohorts, the median Area Under the Receiver Operating Characteristic Curve (AUC) is only 0.72, meaning 
the liability explained is insufficient for predicting diagnosis in the general population. Nevertheless, as a 
quantitative estimate of liability to schizophrenia, PRS has applications in research, and in those 
contexts, PRS can index substantial differences in liability between individuals in the primary GWAS. 
Compared to the lowest centile of PRS, the highest centile of PRS has an OR for schizophrenia of 39 (95% 
CI=29-53), and 5.6 (CI 4.9-6.5) when the top centile is compared with the remaining 99% of individuals 
(Supplementary Table 6). An extended discussion of heritability and polygenic prediction is provided in 
the Supplementary Note.  

Post-GWAS processing  

We next performed a number of secondary analyses in the core PGC dataset in which individual 
genotypes were available based on fully aligned QC and imputation procedures, and where the data in 
the HRC reference dataset allowed us to account for LD. 

Gene Set Enrichments 

Tissue and cell types  

Genes with relatively high specificity for bulk expression in every tested region of human brain14 were 
significantly enriched for associations (Extended Data Figure 3. Comparison with our earlier studies11,15 
shows increasingly clear contrast between the enrichments in brain and non-brain tissues. More 
strongly than in prior studies16, from human single cell expression data17, we found associations were 
enriched in genes with high expression in excitatory glutamatergic neurons from cerebral cortex and 
hippocampus (pyramidal CA1 and CA3 cells, and granule cells of dentate gyrus) and also human cortical 
inhibitory interneurons (Figure 4a). In mouse single-cell RNA-seq data16, we found similar patterns of 
enrichments in genes with high expression in excitatory glutamatergic pyramidal neurons from the 
cortex and hippocampus (Figure 4b), and inhibitory cortical interneurons. We also found associations 
were enriched in inhibitory medium spiny neurons, the predominant cells of the striatum. 

Supportive results were also obtained using a different dataset of 265 cell types in the mouse central 
and peripheral nervous system18. Very strong enrichments were again seen for genes expressed in 
excitatory glutamatergic neurons of the cortex (especially the deep layers) and hippocampus but also 
the amygdala (Supplementary Figure 3). Highly significant enrichments were also seen for other 
neuronal populations, including as above, inhibitory medium spiny neurones in striatum, but also both 
excitatory and inhibitory neurons from the midbrain, thalamus and hindbrain, and inhibitory cells from 
the hippocampus. There was little evidence for enrichment of genes with highly specific expression in 
glia or microglia. Overall, the findings across all the datasets are consistent with the hypothesis that 
schizophrenia is primarily a disorder of neuronal function, but do not suggest that pathology is restricted 
to a circumscribed brain region.  



Associations enriched in Neuronal Ontologies  

Of 7,315 gene ontology (GO) classifications 24 were associated with schizophrenia (Supplementary 
Table 7). All were relevant to neuronal function including development, differentiation, and synaptic 
transmission, and involved multiple cellular components including ion channels, synapses, and both 
axon and dendritic annotations. Using the expert-curated ontology of the SynGO consortium19, we 
further examined the synaptic signal and found that conditionally significant annotations were mainly 
within postsynaptic terms (Supplementary Tables 8, 9), although enrichment was also found for genes 
involved in synaptic organisation and signalling.  

Gene Prioritisation 

To facilitate biological interpretation and laboratory follow up, we sought to prioritise specific variants 
and genes most likely to explain associations using a combination of fine-mapping, transcriptomic 
analysis, and functional genomic annotations. The initial steps in these procedures were necessarily 
based on 293 index SNPs (255 loci) that attained significance in the core PGC dataset (Methods, 
Supplementary Table 10), we then focussed on the loci that remained significant in the full Extended 
GWAS to maximise robustness (Figure 1).  

Fine-mapping  

We performed stepwise analyses (Supplementary Note), conditioning associations in loci on their index 
SNP (and any subsequent conditionally independent associations) to identify regions that contained 
independent signals (conditional p<10-6). This analysis supported the existence of independent 
associations in ~10% of loci (Supplementary Table 10b).  

We also employed the Bayesian fine-mapping method implemented in FINEMAP20 to infer the most 
likely number of distinct causal variants driving our GWAS results. FINEMAP was based on 255 regions 
determined by the LD clumping procedure (Supplementary Table 11e), after merging clumps if their 
boundaries physically overlapped and excluding the extended MHC region (Methods). For regions 
predicted to contain 3 or fewer causal variants (N=249; Figure 1; Supplementary Tables 11a, 11b), we 
extracted from FINEMAP the posterior probabilities (PP) of being causal for every SNP across the region, 
and constructed credible sets of SNPs that cumulatively capture 95% of the regional PP (Supplementary 
Note).  

For 33 regions, the 95% credible set contained 5 or fewer SNPs (Supplementary Table 11c) and for 9, 
only a single SNP. We highlight rs4766428 (PP>0.99) which is the only credible SNP in a locus that 
contains 25 genes and is located within ATP2A2. Mutations in ATP2A2 cause Darier Disease21, which co-
segregates with bipolar disorder in several multiplex pedigrees and is associated with bipolar disorder 
and schizophrenia at a population level22.  ATP2A2 encodes a sarcoplasmic/endoplasmic reticulum 
calcium pump, suggesting that its role in schizophrenia pathogenesis may be through regulating 
neuronal cytoplasmic calcium levels. The likely relevance of calcium metabolism is also suggested by 
enrichment for associations in and around voltage-gated calcium channels (Supplementary Tables 3 and 
7).  

We denote as our broad fine-map set 628 genes (435 protein coding) that contained at least one 
credible SNP (Figure 1a). To identify the most credible causal genes, we prioritised those mapping to the 
287 loci that were genome-wide significant in our Extended GWAS that also contained a) at least one 
nonsynonymous (NS) or untranslated region (UTR) variant with a PP> 0.1 b) the entire credible set 
(Supplementary Tables 13, 14). These protein-coding genes had a greater than 3-fold enrichment for 



loss of function intolerance compared with other protein-coding genes within the loci that were not 
tagged by credible SNPs (Supplementary Table 15; Supplementary Note), supporting our strategy to 
delimit credible causal genes.  

Among the 70 FINEMAP prioritised genes (64 protein-coding) were 16 genes (protein-coding by 
definition) based on NS or UTR variants (Supplementary Table 13). These include SLC39A8 in which 
rs13107325, previously a moderately high credible SNP23, is now strongly supported as causal (PP > 
0.99). Other non-synonymous variants with high PP were found in genes with minimal functional 
characterization including THAP8, WSCD2, and in two E3 ubiquitin ligases PJA1 and CUL9.  Missense and 
UTR variants prioritised interferon regulatory factor 3 (IRF3 while KLF6, a transcription factor, was 
highlighted by three variants in the 3’ UTR. Finally, we identified 61 genes (55 protein-coding) in which 
the 95% credible set is restricted to a single gene (Supplementary Table 14). 

Prioritisation by Gene Expression 

To detect GWAS associations that are credibly explained by eQTLs, that is, variants that influence gene 
expression, we used summary-based Mendelian randomisation (SMR)24 to find evidence that GWAS 
signals co-localise with eQTLs (from adult brain25, fetal brain26 or whole blood27) and the HEIDI test24 to 
then reject co-localisations due to LD between distinct schizophrenia-associated and eQTL variants 
(Supplementary Table 16). To retain brain relevance, we considered only findings from blood that 
replicated in brain. After removing duplicates identified in multiple tissues (Supplementary Tables 17a-
c), we identified 101 SMR-implicated genes (Supplementary Table 17d); the use of alternative 
methodologies supported the robustness of the SMR findings (Supplementary Note and Supplementary 
Table 17e).  

We used three approaches to prioritise genes from these 101 candidates (Supplementary Note; 
Supplementary Tables 17f, 17g, 18). We identified (i) 32 genes as the single SMR-implicated gene at the 
locus or through conditional analysis of a locus containing multiple candidates: (ii) 16 genes where the 
putatively causal eQTLs captured 50% or more of the FINEMAP posterior probability (iii) 29 genes where 
chromatin conformation analysis (Hi-C analysis of adult and fetal brain) suggested that a promoter of 
that gene interacted with a putative regulatory element containing a FINEMAP credible SNP28.  

After removing duplicates, there were 55 SMR/SMR-Hi-C prioritised genes (Supplementary Table 12) of 
which 46 were protein-coding. Genes where putatively causal eQTLs captured a particularly high 
FINEMAP PP (>95%)  (Supplementary Table 17g) include ACE encoding angiotensin converting enzyme, 
the target of a major class of anti-hypertensive drugs (schizophrenia under-expression), DCLK3 encoding 
a neuroprotective kinase29(schizophrenia under-expression) and SNAP91 (discussed below; 
schizophrenia over-expression).  

Combining all approaches, FINEMAP and SMR, we prioritised 120 genes of which 106 are protein-coding 
(Figure 1; Extended Data Table 1). 

Synaptic Location and Function of Prioritised Genes  

Following the findings from the genome-wide enrichment tests, we examined prioritised genes in the 
context of synaptic location and function in the SynGO database19 (Figure 3. Of the 106 proteins 
encoded, 15 have synaptic annotations (Supplementary Table 19); 7 postsynaptic, 5 both pre- and post- 
synaptic, 2 presynaptic, and 1 gene is not mapped to any specific compartment. 

The results are consistent with the genome-wide enrichment tests pointing to postsynaptic pathology. 
However, many prioritised genes had additional locations suggesting that presynaptic pathology may 



also be involved. The encoded proteins map to 16 unique biological terms in the hierarchy 
(Supplementary Table 19), but there are specific themes. Multiple genes encode receptors and ion 
channels, including voltage-gated calcium and chloride channels (CACNA1C, CLCN3), metabotropic 
receptors (glutamate (GRM1) and GABA (GABBR2)), and the ligand-gated NMDA receptor subunit 
(GRIN2A). Others involve proteins playing a role in endocytosis (SNAP91), synaptic organisation and 
differentiation (DLGAP2, LRRC4B, GPM6A, PAK6), including PTPRD a receptor protein tyrosine 
phosphatase presynaptic organizer that trans‐synaptically interacts with multiple postsynaptic cell 
adhesion molecules (e.g. IL1RAPL1), and modulation of chemical transmission (MAPK3, DCC, CLCN3, 
DLGAP2). The diversity of synaptic proteins identified in this study suggests multiple functional 
interactions of schizophrenia risk converging on synapses. It remains to be determined whether these 
interactions occur at a limited set of specific synapse types, or whether the diversity points to multiple 
types in different brain regions.  

Convergence of Common and Rare Variant Associations  

The Schizophrenia Exome Sequencing Meta-Analysis (SCHEMA) consortium (companion paper) 
identified 32 genes with damaging ultra-rare mutations associated with schizophrenia (FDR<0.05), 
including 10 at exome-wide significance. We found both sets of genes were enriched for common 
variant associations, as were more weakly associated SCHEMA genes down to uncorrected P<0.001 
(Figure 2a, Supplementary Tables 20, 21). Moreover, within associated loci, protein coding genes 
containing one or more FINEMAP credible SNPs were enriched for SCHEMA genes relative to other 
protein-coding genes (Figure 2b; Supplementary Table 21). There are rare variant overlaps in liability to 
schizophrenia, autism spectrum disorder (ASD) and developmental disorder (DD)8,30,31. We tested for 
and found that genes in which rare variants increase risk of ASD and DD32,33   are also enriched for 
schizophrenia common variant associations. Moreover, they are also enriched among genes containing 
FINEMAP credible SNPs (Figure 2 Supplementary Tables 20, 21).  

Convergences between rare variants and fine-mapped GWAS signals have been previously observed in 
other traits e.g.,34,35, suggesting that genes most strongly implicated by fine-mapping and which have 
additional support from rare variant data are compelling candidates. Of the 10 exome-wide significant 
genes identified by SCHEMA36, two were prioritised candidates from fine-mapping; GRIN2A encoding a 
glutamatergic NMDA receptor subunit, and SP4, a transcription factor highly expressed in brain and 
which is regulated by NMDA transmission, and also regulates NMDA receptor abundance37. Two other 
genes supported by SCHEMA at FDR<0.05 had strong support from fine-mapping: STAG1, which is 
involved in controlling chromosome segregation and regulating gene expression, and FAM120A, which 
encodes an RNA binding protein. SNPs mapping to these genes had cumulative FINEMAP PP of 0.88 and 
0.72 respectively (Supplementary Table 11b). The prioritised fine-mapped set also contained 4 genes 
implicated in DD; a transcriptional regulator (BCL11B), the well-known CACNA1C38, and genes mentioned 
elsewhere in this paper (GRIN2A and SLC39A8). Genes encoding additional transcriptional regulators are 
also of note; RERE, FOXP1 and MYT1L. RERE was prioritised by SMR and is associated with DD. FOXP1 
and MYT1L are associated with both DD and ASD and met our fine-mapping prioritisation criteria in the 
core PGC dataset (Supplementary Table 12).  

DISCUSSION 

We have performed the largest GWAS of schizophrenia to date and in doing so, identify a substantial 
increase in the number of associated loci. We show that genes we prioritise within associated loci by 
fine-mapping are enriched for those with an increased burden of rare deleterious mutations in 
schizophrenia, and identify GRIN2A, SP4, STAG1, and FAM120A as specific genes where the convergence 



of rare and common variant associations strongly supports their pathogenic role in the disorder. 
Importantly, this convergence also implies that the pathogenic relevance of altered function of these 
genes extends beyond the small proportion of cases carrying rare mutations. We also demonstrate that 
common variant schizophrenia associations are enriched at genes implicated in neurodevelopmental 
disorders, opening the door for using the increasing power of rare variant studies of those disorders to 
further prioritise genes from GWAS studies. Exploiting this, in addition to GRIN2A we identify BCL11B, 
CACNA1C, RERE, FOXP1, MYT1L and SLC39A8 as genes with strong support.  

Enrichment of common variant associations was restricted to genes expressed in CNS neurons, both 
excitatory and inhibitory, and fundamental biological processes related to neuronal function. This points 
to neurons as the most important site of pathology in the disorder. We also show that genes with high 
relative specificity for expression in almost all tested brain regions are enriched for genetic association. 
This suggests that abnormal neuronal function in schizophrenia is not confined to a small number of 
brain structures, which in turn might explain its diverse psychopathology, association with a broad range 
of cognitive impairments, and lack of regional specificity in neuroimaging measures1.   

Disrupted neuronal function in schizophrenia is unlikely to be restricted to the synapse, but the 
concentration of associations in genes with pre- and post-synaptic locations, and with functions related 
to synaptic organisation, differentiation and transmission, point to the pathophysiological importance of 
these neuronal compartments and their attendant functions. This is further supported by studies 
showing substantial effects on schizophrenia risk of CNVs39 and rare damaging coding variants in genes 
with similar functions, including some of the same genes (SCHEMA; companion paper). Genomic studies, 
therefore, converge in highlighting these areas of biology as targets for research aiming for a 
mechanistic understanding of the disorder; the large number of prioritised genes and variants identified 
here offer an unprecedented empirically-supported resource for that endeavour. 
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MAIN FIGURE LEGENDS 

Figure 1: Overview of GWAS and gene prioritisation.  

Flow diagram summarising GWAS, fine-mapping and SMR analyses and how these informed gene 
prioritisation. 

Figure 2: Gene set enrichment tests at genome-wide level and for protein coding 

genes containing FINEMAP credible SNPs. 

Gene sets tested were retrieved from sequencing studies of schizophrenia (SCHEMA; companion paper), 
autism-spectrum disorder33 and developmental disorders32. Sets representing genes that are intolerant 
to loss-of function mutations40 (LoF-intolerant) and brain-expressed genes41are also shown. A) MAGMA 
gene set enrichment analysis, dotted line indicates nominal significance (p=0.05). B) Logistic regression 
(with Firth's bias reduction method) showing the odds-ratio (and 95% CI) for association between 
protein-coding genes containing at least 1 credible FINEMAP SNP (N=418 after excluding genes with no 
LoF-intolerance data) and genes from the sets indicated. Odds-ratios are relative to protein-coding 
genes within GWAS K≤3.5 loci (1,283 genes, squares) or across the genome excluding the xMHC (19,547 
genes; circles). Dotted line indicates no enrichment. 

Figure 3: Mapping of all FINEMAP/SMR genes (A) and prioritised genes (B) to 

synaptic locations using SYNGO. 

Sunburst plots depict synaptic locations with child terms in concentric rings, starting with the synapse 
(center), pre- and postsynaptic locations in the first ring and child terms in subsequent ring. The number 
of genes in each term is indicated by the colour scheme in the legend. A) FINEMAP/SMR genes are 
protein coding genes tagged by at least one credible SNP identified by FINEMAP and/or associated using 
SMR (N=470) of which N=58 are SynGO annotated, 51 to cellular components. B) Prioritised (Extended 
Data Table 1; N=106) of which 15 are SynGO annotated, 14 to cellular components. 
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Overview of Samples 

Details of each of the samples (including sample size, ancestry, and whether included in the previous 
publication by the PGC) are given in Supplementary Cohort Descriptions. The core PGC dataset included 
90 cohorts for which we had individual level genotype data fully processed under a uniform pipeline. 
This core dataset contains genotypes on 161,405 unrelated subjects; 67,390 
schizophrenia/schizoaffective disorder cases and 94,015 controls, equivalent in power to 73,189 of each. 
A parent-proband trio is considered to comprise one case and one control. Approximately half (31,914 
cases and 47,176 controls) of the samples were not included in the previous GWAS of the PGC1. Around 
80% of the probands (53,386 cases and 77,258 controls) were of European Ancestry, and the remainder 
(14,004 cases and 16757 controls) were of East Asian ancestry2. We additionally included in the Primary 
GWAS summary statistics from 9 cohorts comprising African-American (AA; 6152 cases 3918 controls) 
and Latino (1234 cases, 3090 controls) participants; the combined sample is equivalent in power to 
6,551 each of cases and controls. 1249 LD – independent (r2 > 0.1) Variants showing evidence for 
association (P< 1x10-5) were further meta-analysed with an additional dataset of 1,979 cases and 
142,626 controls of European ancestry obtained from deCODE genetics, thus the final analysis 
represents 320,404 diploid genomes.  

  



Association Analysis 

Technical Quality Control of the 90 cohorts comprising the primary PGC sample.   
Technical Quality control was performed on the core PGC cohorts separately according to standards 
developed by the PGC3 including SNP missingness < 0.05 (before sample removal); subject missingness < 
0.02; autosomal heterozygosity deviation (| Fhet | < 0.2); SNP missingness < 0.02 (after sample removal); 
difference in SNP missingness between cases and controls < 0.02; and SNP Hardy-Weinberg equilibrium 
(HWE: P > 10−6 in controls or P > 10−10 in cases). For family-based cohorts we excluded individuals with 
more than 10,000 Mendelian errors and SNPs with more than 4 Mendelian errors. For X-Chromosomal 
genotypes we applied an additional round of the above QC to the male and female subgroups 
separately.  

Genomic Quality Control: Principal Component Analysis (PCA) and Relatedness Checking in the 
core PGC dataset 
We performed PCA for all 90 cohorts separately using SNPs with high imputation quality (INFO >0.8), 
low missingness (<1%), MAF>0.05 and in relative linkage equilibrium (LD) after 2 iterations of LD pruning 
(r2 < 0.2, 200 SNP windows). We removed well known long-range-LD areas (MHC and chr8 inversion). 
Thus, we retained between 57K and 95K autosomal SNPs in each cohort. SNPs present in all 90 cohorts 
(N=7,561) were used for robust relatedness testing using PLINK v1.94; pairs of subjects with PIHAT > 0.2 
were identified and one member of each pair removed at random, preferentially retaining cases and trio 
members over case-control members.   

To control for false positive associations due to inflated test statistics we evaluated the effectiveness of 
the primary technical and genomic quality control parameters on the genome-wide inflation of test 
statistics using the lambda GC (median)5 and as necessary made the QC parameters more stringent until 
this value was between 1.0 and 1.4 (before inclusion of principal components as covariates) and/or 
between 1.0 and 1.15 after inclusion of PCA covariates. Additionally, we applied loose PCA filters for 
strongly stratified datasets even if we did not observe strong inflation of test statistics in order to 
retrieve reliable test statistics (see Supplementary Figure 4). Since the core PGC cohorts came from 
many distinct centres, countries, and continents, various measures (e.g., tightening of the technical QC 
parameters and/or genomic quality control) had to be taken in an iterative process to achieve this goal. 

Supplementary Table 22 lists detailed per cohort exclusion numbers for individuals in the non-Asian 
samples. The Asian cohorts were sufficiently homogeneous as they did not show marked population 
structure in principal component analyses. The exclusion numbers for individuals during technical QC 
are in most cohorts low. For six cohorts (marked in yellow in Supplementary Table 22) it was necessary 
to exclude more than 100 cases during genomic QC so that Lambda GC fell within the window 
mentioned above. Supplementary Figure 4 gives details about this process and explains why the 
excluded cases could not be used with the presently available control cohorts for this manuscript. 

Imputation of the core PGC dataset  
Genotype imputation of case-control cohorts was performed using the pre-phasing/imputation stepwise 
approach implemented in EAGLE 26 / MINIMAC37 (with 132 genomic windows of variable size and 
default parameters). The imputation reference consisted of 54,330 phased haplotypes with 36,678,882 
variants from the publicly available HRC reference, release 1.18 Chromosome X imputation was 
conducted using individuals passing quality control for the autosomal analysis. ChrX imputation and 
association analysis was performed separately for males and females. For trio-based cohorts, families 
with multiple (N) affected offspring were split into N parent-offspring trios, duplicating the parental 
genotype information. Trios were phased with SHAPEIT 39. We created pseudo-controls based on the 



non-transmitted alleles from the parents. Phased case-pseudo-control genotypes were then taken 
forward to the IMPUTE4 algorithm10 into the above HRC reference panel.   

Association / Meta-analysis 
In each individual cohort, association testing was based on an additive logistic regression model using 
PLINK11. As covariates we used a subset of the first 20 principal components (PCA), derived within each 
cohort. By default, we included the first 4 PCAs and thereafter every PCA that was nominally significantly 
associated (p<0.05) to case-control status.  PCAs in trios were only used to remove extreme ancestry 
outliers. We conducted a meta-analysis of the results (including the 9 cohorts comprising African-
American and Latino participants) using a standard error inverse-weighted fixed effects model. For chrX, 
gene dosages in males were scored 0 or 2, in females, 0/1/2. We summarised the associations as 
number of independently associated index SNPs. Index SNPs were LD independent and had r2 < 0.1 
within 3 Mb windows. We recorded the left and rightmost variant with r2<0.1 to an index SNP to define 
an associated clump. To define loci, we added a 50kb window on each side of the LD clump and 
combined overlapping LD-clumps into a single locus. 

Due to the strong signal and high linkage disequilibrium in the MHC, only one SNP was kept from the 
extended MHC region (chr6:25-35Mb).  

We additionally examined the X chromosome for evidence of heterogeneity between the sexes and X 
chromosome dosage compensation using the methods described by Lee and colleagues12,13 
(Supplementary Note). To minimise possible confounding effects of ancestry on effect sizes by sex, we 
restricted this analysis to those of European ancestry.   

We obtained summary association results from deCODE genetics for 1,228 index SNPs (P < 1x10-5) based 
on 1,979 cases and 142,626 controls of European ancestry. Genotyping was carried out at deCODE 
Genetics. We used this sample to establish that SNP associations from the primary GWAS replicated en 
masse in an independent sample (see Supplementary Note) by showing the directions of effect of index 
SNPs differed from the null hypothesis of randomly oriented effects and also comparing the expected 
number of same direction effects with those if all associations were true, taking into account the 
discovery magnitude of effect, and the replication effect-estimate precision (Supplementary Note).  

The summary statistics from deCODE were combined with those from our primary GWAS dataset using 
an inverse variance-weighted fixed effects model. Similarly to the discovery meta-analysis (see above) 
we merged overlapping LD-clumps to a total of 287 distinct genomic regions (5 on the X-chromosome) 
with at least one genome-wide significant signal. 

Polygenic Prediction  

We estimated the cumulative contribution of SNPs to polygenic risk of schizophrenia using a series of 
leave-one-out polygenic prediction analyses based on LD-clumping and P-value thresholding (P+T)14 
(also known as C+T) using PLINK11. For calculating polygenic scores, we included the most significant SNP 
for any pair of SNPs within <500kb and with LD R2 >0.1. We included only those with minor allele 
frequency >1%. We considered a range of P-value thresholds; 5×10-8, 1×10-6, 1×10-4, 1×10-3, 1×10-2, 5×10-

2, 1×10-1, 2×10-1, 5×10-1 and 1.0. We performed logistic regression analysis within each case-control 
sample, to assess the relationship between case status and PRS (P+T) quantiles. The same principal 
components used for each GWAS were used as covariates for this analysis. Whenever the number of 
controls at a quantile was fewer than 5 times the number of covariates15, or if the higher bound for the 
PRS Odds Ratio (OR) became infinity, Firth’s penalised likelihood method was used to compute 
regression statistics, as implemented in the R package “logistf”16. ORs from these calculations were then 



meta-analysed using a fixed-effects model in the R package “metafor”17. To ensure stability of the 
estimates, meta-analysis was conservatively restricted to case-control samples which contained more 
than 10 individuals in the top 1% PRS, with at least one of them being a control. Analogous analyses 
were conducted to assess the ORs between individuals at the top and bottom quantiles. To assess the 
performance of PRS as a predictor of schizophrenia case status, we calculated liability R2, Nagelkerke’s 
R2 following Lee et. al. 201218 and a combined area under the receiver operating characteristic curve 
(AUROC). Both liability R2 and Nagelkerke's R2 included any principal components marginally associated 
with the outcome within each cohort, in the baseline model. AUROC was estimated using the non-
parametric meta-analysis implemented in the R package “nsROC”19. Polygenic score analysis of the 
African-American and Latino cohorts were conducted by the authors of the study reporting those 
datasets20.  

Secondary analyses in core PGC dataset 

Some of the secondary analyses (Gene-set enrichments, conditional SNP association analyses, fine-
mapping) necessitate access to individual level data, require identical QC and imputation procedures, 
and/or an accurate LD reference panel meaning these analyses could only be reliably performed in a 
subset of the dataset.  The following analyses focussed on the core PGC dataset for which these 
conditions are met.   

Gene Set Enrichments 

Tissue and cell types 
We collected bulk RNA-seq data across 53 human tissues (GTEx v8, median across samples)21; from a 
study of 19,550 nuclei from frozen adult human post-mortem hippocampus and prefrontal cortex 
representing 16 different cell types22; from a study of ~10,000 single cells from 5 mouse brain regions 
(cortex, hippocampus, hypothalamus, midbrain and striatum, in addition to specific enrichments for 
oligodendrocytes, dopaminergic neurons, serotonergic neurons and cortical parvalbuminergic 
interneurons) that identified 24 cell types23; from a study of~500,000 single cells from the mouse 
nervous system (19 regions) that identified 265 cell types24. 

Datasets were processed uniformly25. First, we calculated the mean expression for each gene for each 
type of data if these statistics were not provided by the authors. We used the pre-computed median 
expression (transcript per million (TPM)) across individuals for the GTEx tissues (v8). For the GTEx 
dataset, we excluded tissues with less than 100 samples, merged tissues by organ (with the exception of 
brain tissues), excluded non-natural tissues (e.g. EBV-transformed lymphocytes) and testis (outlier in 
hierarchical clustering), resulting in 37 tissues. Genes without unique names and genes not expressed in 
any cell types were excluded. We scaled the expression data to 1M Unique Molecular Identifiers (UMIs) 
or TPM for each cell type/tissue. After scaling, we excluded non-protein coding genes, and, for mouse 
datasets, genes that had no expert curated 1:1 orthologs between mouse and human (Mouse Genome 
Informatics, The Jackson laboratory, version 11/22/2016). We then calculated a metric of gene 
expression specificity by dividing the expression of each gene in each cell type/tissue by the total 
expression of that gene in all cell types/tissue, leading to values ranging from 0 to 1 for each gene (0: 
meaning that the gene is not expressed in that cell type/tissue, 1 that 100% of the expression of that 
gene is performed in that cell type/tissue). We selected the 10% most specific genes per cell type (or 
tissue) with an expression level of at least 1TPM, or 1 UMI per million, for downstream analyses and 
used MAGMA v1.0826 to test whether they were enriched for genetic associations. We performed a one-
sided test as we were only interested in enrichments for genetic associations (in contrast with 
depletions). We also applied partitioned LD score regression (LDSC) as described27 to the top 10% genes 



for each cell type for heritability enrichment. We selected the one-sided coefficient z-score p-value as a 
measure of the association of the cell type/tissue with schizophrenia.  

Ontology Gene sets 
Gene set analyses were performed using MAGMA v1.0826. Gene boundaries were retrieved from 
Ensembl release 92 (GRCh37) using the “biomaRt” R package28 and expanded by 35 kb upstream and 10 
kb downstream to include likely regulatory regions29. Gene-wide p-values were calculated from 
European and Asian summary statistics separately using the SNP-wise “mean” Imhof method, and meta-
analysed within the software. LD reference data files were from the European and East Asian 
populations of the Haplotype Reference Consortium30. Within each gene set analysis, p-values were 
corrected for multiple testing using the Bonferroni procedure.  Specifically, we tested the following gene 
sets: 

(i) Gene ontology: 7,315 sets extracted from the GO database (http://geneontology.org/, accession 
date: 09/11/2020) curated to include only annotations with experimental or phylogenetic 
supporting evidence.  

(ii) SynGO ontology: Described elsewhere31, this collection was analysed as two subsets; “biological 
process” (135 gene sets) and “cellular component” (60 gene sets). We controlled for a set of 
10,360 genes with detectable expression in brain tissue measured as Fragments Per Kilobase of 
transcript per Million mapped reads (FPKM)32 to detect synaptic signals above signals simply 
reflecting the property of brain expression. Exploiting the hierarchical structure of SynGO, gene 
sets were reconstructed using a “roll-up” method, in which parent categories contained all 
genes annotated to child categories. For stepwise conditional testing33, we prioritised the most 
specific child annotations34 (i.e. the lowest possible level) as regression covariates. 

Conditional SNP Association Analyses 

We performed stepwise conditional analyses of 248 loci that were genome wide significant in the core 
PGC dataset looking for independent associations. We performed association testing and meta-analysis 
across each locus, adding the allele dosages of the index SNP as a covariate. Where a second SNP had a 
conditional p-value of less than 1x10-6, we considered this as evidence for a second signal and repeated 
the process adding this as an additional covariate. We repeated this until no additional SNPs in the 
region achieved p<1x10-6. We also searched for long range dependencies. Here we tested the all pairs of 
independent signals for conditional independence (Supplementary Note).  

Fine-mapping 

We used FINEMAP35 to fine-map regions defined by LD clumps (r2>0.1), excluding the MHC locus due to 
its complex LD structure. Clumps which overlapped (without adding the additional 50kb used to define 
physically distinct loci) were combined. As fine-mapping requires data from all markers in the region36 
we only performed fine-mapping on regions that attained genome-wide significance (GWS) in the core 
PGC GWAS. In total, we attempted to fine-map 255 non-overlapping regions (Supplementary Table 
11e). Further details about the fine-mapping process are given in the Supplementary Note.   

Summary-data-based Mendelian Randomization (SMR) analysis, FUSION and 

EpiXcan   

We used SMR37 as our primary method to identify SNPs which might mediate association with 
schizophrenia through effects on gene expression. The significance for SMR is set at the Bonferroni 
corrected threshold of 0.05/M where M is the number of genes with significant eQTLs tested for a given 

http://geneontology.org/


tissue. Significant SMR associations imply colocalization of the schizophrenia associations with eQTL. We 
applied the HEIDI test37 to filter out SMR associations (PHEIDI < 0.01) due to linkage disequilibrium 
between SCZ-associated variants and eQTLs. cis-eQTL summary data were from three studies: fetal brain 
(N=120)38, adult brain (n = ~1,500)39 and blood (n = ~32,000)40. Linkage disequilibrium (LD) data required 
for the HEIDI test37 were estimated from the Health and Retirement Study (HRS)41 (n = 8,557). We 
included only genes with at least one cis-eQTL at PeQTL < 5×10−8, excluding those in MHC regions due to 
the complexity of this region. For blood, we included only genes with eQTLs in brain. This left 7,803 
genes in blood, 10,890 genes in prefrontal cortex and 754 genes in fetal brain for analysis (see 
Supplementary Note for further details). SMR was performed using data from the primary GWAS. The 
results were then filtered to exclude significant SMR implicated genes where the eQTLs did not map 
within our definition of an associated locus in the Extended GWAS meta-analysis of our primary GWAS 
dataset and the dataset provided by deCODE genetics.  

For genomic regions where there were multiple genes showing significant SMR associations, we 
attempted to resolve these with conditional analysis using GCTA-COJO42,43. We selected the top-
associated cis-eQTL for one gene (or a set of genes sharing the same cis-eQTL) ran a COJO analysis in the 
schizophrenia GWAS data and the eQTL data for each of the other genes conditioning on the selected 
top cis-eQTL. We then re-ran the SMR and HEIDI analyses using these conditional GWAS and eQTL 
results. 

We used FUSION44 and EpiXcan45 as tests of robustness of the SMR results. Details are supplied in the 
Supplementary Note as are our approaches to prioritising SMR associated genes.  

 

    

  



DATA AVAILABILITY 

Summary statistics for the “Extended”, “Core”, ancestry specific and sex-stratified analyses is 
available at “https://www.med.unc.edu/pgc/download-results/scz/”. Genotype data are available 
for a subset of cohorts, including dbGAP accession numbers and/or restrictions, as described in 
the Supplementary Information section “Cohort Descriptions”. 

CODE AVAILABILITY 

Core analysis code for RICOPILI can be found at 
“https://sites.google.com/a/broadinstitute.org/ricopili/”. This wraps PLINK (“https://www.cog-
genomics.org/plink2/”), EIGENSOFT (“https://www.hsph.harvard.edu/alkes-price/software/”), 
EAGLE2 (“https://alkesgroup.broadinstitute.org/Eagle/”), MINIMAC3 
(“https://genome.sph.umich.edu/wiki/Minimac3”), SHAPEIT3 
(“https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html”), METAL 
(“https://genome.sph.umich.edu/wiki/METAL_Documentation”), LDSR 
(“https://github.com/bulik/ldsc”). For downstream analyses, FINEMAP can be found at 
“http://christianbenner.com/”, and our utility for meta-analysing cohort-specific LD matrices can 
be found at https://github.com/Pintaius/LDmergeFM. MAGMA can be found at 
”https://ctg.cncr.nl/software/magma” and the GO gene sets and automated curation pipeline are 
provided in https://github.com/janetcharwood/pgc3-scz_wg-genesets. SMR is available at 
“https://cnsgenomics.com/software/smr/” and SbayesS at 
“https://cnsgenomics.com/software/gctb/”. 
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EXTENDED DATA LEGENDS 

Extended Data Figure 1: Primary GWAS Manhattan plot 

The x-axis indicates chromosomal position and the y-axis is the significance of association (−log10(P)). 

The red line represents genome-wide significance level (5×10−8). SNPs in green are in linkage 

disequilibrium (LD; R2 >0.1) with index SNPs (diamonds) which represent LD independent genome-wide 

significant associations. 

Extended Data Figure 2: Polygenic risk prediction 

A) Distributions of liability scale R2 across 98 left-out-cohorts for polygenic risk scores built from SNPs 

with different p-value thresholds. Distributions of liability R2 (assuming schizophrenia life-time risk of 

1%) are shown for each p-value threshold, with point size representing size of the left-out cohort and 

colour representing ancestry.  The median liability R2 is represented as a horizontal black line. B) Liability 

R2 of predicted and observed phenotypes in left-out cohorts using variants with p-value threshold 

p=0.05, from the fixed effect meta-analysis of variant effects, unadjusted for multiple comparisons. The 

polygenic risk scores are derived from two separate sets of leave-one-out GWAS meta-analyses: y-axis 

R2 based on the results of primary GWAS including all ancestries; x axis R2 based on cohorts of the same 

ancestry as the test samples.  Circles denote core PGC samples. Triangles denote African American and 

Latino samples processed external to PGC by the providing author.   

Extended Data Figure 3: Association between 37 human tissues and 

schizophrenia. 

The mean of the evidence (-log10P) obtained from two methods (MAGMA, LDSC) for testing GWAS data 

for enrichment of association in genes with high expression in each tissue as determined from bulk RNA-

seq20. The bar colour indicates whether gene expression in the tissue is significantly associated with both 

methods, one method or none. The black vertical line represents the significance threshold corrected for 

the total number of tissues tested in this experiment. We also analysed previous waves of PGC 

schizophrenia GWAS11,21 for comparison. 

Extended Data Figure 4 Legend: Associations between schizophrenia and cell 

types from multiple brain regions in human and mouse 

The mean of the evidence (-log10P) obtained from two methods (MAGMA, LDSC) for testing GWAS data 

for enrichment of associations in genes with high expression in cell types.  The 15 human cell types 

(derived from single nuclei) from the cortex and hippocampus. 

Extended Data Table1: List of prioritized genes 

List of genes meeting prioritisation criteria summarised in Figure 1. Index SNP: index associated SNP for 

the locus from the GWAS. Ensembl ID: Ensembl gene identifier. Symbol ID: HGNC gene symbol. Gene 

Biotype: as classified by Ensembl. FINEMAP and SMR priority genes: genes meeting the prioritisation 

criteria described in the text. Rare priority genes: genes implicated by rare coding variants in 



schizophrenia, autism spectrum disorders or developmental disorder. Full details regarding the 

prioritisation criteria for each gene are given in Supplementary Tables 11-18. 

 

 

 


