
Publishers page: http://dx.doi.org/10.1021/acs.inorgchem.1c02413

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.
Extreme g-tensor anisotropy and its insensitivity to structural distortions in a family of linear two-coordinate Ni(I) bis-N-heterocyclic carbene complexes

William J. M. Blackaby1, Katie L. M. Harriman2, Samuel M. Greer3,4, Andrea Folli6, Stephen Hill3,5, Vera Krewald7, Mary F. Mahon1, Damien M. Murphy6, Muralee Murugesu2, Emma Richards6, Elizaveta Suturina1 and Michael K. Whittlesey1

1Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U. K.
2Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
3National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, United States
4Department of Chemistry, Florida State University, Tallahassee, FL 32306, United States.
5Department of Physics, Florida State University, Tallahassee, FL 32306, United States.
6School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U. K.
7Theoretical Chemistry, TU Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt, Germany

ABSTRACT: We report a new series of homoleptic Ni(I) bis-N-heterocyclic carbene complexes with a range of torsion angles between the two ligands from 68° to 90°. Electron paramagnetic resonance (EPR) measurements revealed a strongly anisotropic g-tensor in all complexes with a small variation in \(g_{\parallel} = 5.6-5.9 \) and \(g_{\perp} = 0.6 \). The energy of the first excited state identified by variable-field far-infrared magnetic spectroscopy (FIRMS) and SOC-CASSCF/NEVPT2 calculations is in the range 270 to 650 cm\(^{-1}\). Magnetic relaxation measured by alternating current (AC) susceptibility up to 10 K is dominated by Raman and direct processes. \textit{Ab initio} ligand field analysis reveals that a torsion angle smaller than 90° causes the splitting between doubly occupied \(d_z \) and \(d_y \) orbitals which has little effect on the magnetic properties, while the temperature dependence of the magnetic relaxation appears to have no correlation with the torsion angle.

INTRODUCTION

Understanding magneto-structural correlations in transition metal complexes is one of the key aspects in the rational design of magnetic materials.1 In particular, the connection between magnetic anisotropy and the structure of coordination compounds has attracted a lot of attention, as it is linked to slow relaxation of the magnetization.2-6

Anisotropy of the magnetic properties at very low temperature is characterized by the effective g-tensor of the ground magnetic sublevels. At increased temperature, other magnetic sublevels get populated, which affects the overall magnetic properties. The energy separation between magnetic sublevels at zero magnetic field is called zero-field splitting (ZFS) - another important characteristic of magnetic anisotropy. Both ZFS and g-tensor anisotropy result from spin-orbit coupling (SOC), which is most pronounced when the orbital momentum is unquenched and the SOC constant is large. An unquenched orbital momentum is retained by a high symmetry of the first coordination sphere that leaves orbitals with unpaired electron(s) degenerate. For this reason, linear two-coordinate transition metal complexes (MX\(_2\)) are particularly interesting.2-6

There are several reported examples of transition metal MX\(_2\) complexes exhibiting slow magnetic relaxation. Metal complexes with a 3\(d^7\) electronic configuration, such as those of cobalt(II)\(^6\) and iron(I),\(^10,12\) have the largest magnetic anisotropy and the slowest relaxation of the magnetization.

A cobalt(II) dialkyl complex reported by Bunting et al.\(^9\) has the maximum possible contribution of the orbital momentum \(|M_z|=3 \) due to a non-Aufbau electronic configuration \((d_{xy}, d_{xz}, -d_{yz})^2(d_{yz}, d_{xy})^2(d_{xz})^4\). This leads to a doubly degenerate \(^4\Phi \) ground state (\(C_{4v} \) point group notation), which due to SOC, splits into four Kramers doublets (KD) with \(M_z=\pm9/2, \pm7/2, \pm5/2 \) and \(\pm3/2 \). The ground KD with \(M_z=\pm9/2 \) has theoretical limit for the effective g-tensor of \((0, 0, 12)\). A recently reported study of a cobalt(II) amido complex also shows a non-Aufbau ground state, however, \(\pi \)-antibonding interactions due to amido lone pair split \((d_{xz}, d_{yz})\) orbitals and quench orbital moment reducing overall magnetic anisotropy.\(^13\)
The electronic structure of an iron(I) dialkyl complex reported by Zadrozny et al. differs from the cobalt(II) analogue since the low oxidation state allows for a more pronounced 3d-4s mixing which stabilizes the d_{xz} orbital, leading to a (d_{xz})^2(d_{xy}, d_{-yz})^2 electronic configuration. This assignment was confirmed by multipole analysis of the X-Ray diffraction data. This means that the orbital contribution is largely unquenched in all cases.

In this work, we focus on nickel(I) bis-NHC complexes i.e. a slow relaxation of the magnetization. We now report a detailed analysis of nickel(I) bis-amido complexes, a strong correlation between the ZFS parameters and the interligand torsion angle has been reported. In another recently reported iron(I) bis-amido complex, the ropy has been studied thoroughly.

Complexes with 3d^8 configuration, in particular iron(II), were among the first MX₄ complexes reported to show slow magnetic relaxation and their electronic structure and magnetic anisotropy has been studied thoroughly. It was shown by ab initio analysis that changes in the ligand environment has little effect on the Λ ground state as the orbital contribution |M_z|=2 remains largely unquenched in all cases.

In the case of cobalt(I) bis-N-heterocyclic carbene (NHC) complexes, a strong correlation between the ZFS parameters and the interligand torsion angle has been reported. In that study, only one of the three carbene ligands leads to an observation of the slow relaxation of the magnetization.

In this work, we focus on nickel(I) bis-NHC complexes i.e. a 3d^8 configuration, where only one example has been published previously by some of us. We now report a detailed analysis of static and dynamic magnetic properties and electronic structures of three new nickel(I) bis-NHC complexes with a wide range of interligand torsion angles.

METHODS

Synthesis and general procedures. All manipulations were carried out using standard Schlenk line, high vacuum and glovebox techniques. Solvents were purified using an MBraun SPS solvent system (hexane, pentane, diethyl ether, toluene, dichloromethane) or distilled from sodium benzophenone ketyl (benzene, THF), before sparging with argon and stored over regenerative molecular sieves. CaH₂ and CdCl₂ were vacuum transferred from K and CaH₂ respectively. NMR spectra were recorded at 298 K on Bruker Avance 400 and 500 MHz NMR spectrometers and referenced to solvent signals: benzene (δ_H, δ 7.16; ¹³C(¹H), δ 128.1), dichloromethane (δ_H, δ 5.32; ¹³C(¹H), δ 53.8). Elemental analyses were performed by Elemental Microanalysis Analytical Services, Oakhampton, Devon. U.K. Ni(COD)₂ (Strem) and Ni(PPH₃)₂Br₂ (Sigma) were used as received. 2-6Mes was prepared as previously reported.

Ni(6Xyl)(PPh₃)Br (1-6Xyl). 6Xyl (300 mg, 1.03 mmol). Ni(COD)₂ (141 mg, 0.51 mmol) and Ni(PPh₃)₂Br₂ (381 mg, 0.51 mmol) were combined in THF and stirred for 1 h in a J.

Young’s ampule fitted with a PTFE tap. The resulting yellow solid was transferred from K and CaH₂ in benzene at 298 K. Molecular structure is shown on Figure 1.

Ni(7Mes)(PPh₃)Br (1-7Mes). As for 1-6Xyl, but using 7Mes (100 mg, 0.30 mmol), Ni(COD)₂ (41 mg, 0.15 mmol) and Ni(PPh₃)₂Br₂ (111 mg, 0.15 mmol). Yield: 148 mg (67%). ¹H NMR (CD₂Cl₂, 500 MHz): δ 12.3 (br s), 10.6 (br s), 9.9 (br s), 8.6 (br s), 8.1 (br s), 4.5 (s), 3.3 (br s), 2.9 (m), 2.8 (s), 2.5 (s), 2.4 (br s), 1.8 (v br s), 0.9 (br s), -1.3 (br s). Anal. calcld. (found) for CaH₃N₄NiBr (%): C 65.83 (65.50), H 5.67 (5.50), N 4.04 (4.05). Solution magnetic moment (Evans method): 2.0 µB in benzene at 298 K.

Ni(7Xyl)(PPh₃)Br (1-7Xyl). As for 1-6Xyl, but using 7Xyl (250 mg, 0.82 mmol), Ni(COD)₂ (112 mg, 0.41 mmol) and Ni(PPh₃)₂Br₂ (303 mg, 0.41 mmol). Analytically pure product was achieved by recrystallization from C₆H₆/benzene. Yield: 377 mg (65%). ¹H NMR (CD₂Cl₂, 500 MHz): δ 11.7 (br s), 10.6 (br s), 10.1 (br s), 8.5 (br s), 7.9 (br s), 3.4 (br s), 2.8 (s), 2.4-2.3 (br m), 0.9 (br s), -1.2 (br s). Anal. calcld. (found) for CaH₃N₄NiBr (%): C 67.59 (67.80), H 5.94 (5.76), N 3.75 (3.61). Solution magnetic moment (Evans method): 1.9 µB in benzene at 298 K. Molecular structure is shown on Figure 1.

Ni(6Xyl)(PPh₃)Br (2-6Xyl). A flame dried Schlenk flask was charged with 1-6Xyl (96 mg, 0.14 mmol) and 6Xyl (64 mg, 0.22 mmol) in THF (30 mL) and the mixture stirred for 16 h to form an off-white suspension. The precipitate was isolated by canula filtration, washed with Et₂O (2 x 10 mL) and dried under reduced pressure. Recrystallization from C₆H₆/hexane yielded an off-white product. Yield: 54 mg (58%). ¹H NMR (CD₂Cl₂, 500 MHz): δ 54.3 (br s, 4H), 52.1 (br s, 8H), -13.3 (br s, 24H), -15.6 (s, 4H), -21.2 (s, 8H). Anal. calcld. (found) for CaH₃N₄NiBr (%): C 66.41 (66.62), H 6.69 (6.70), N 7.74 (7.54). Solution magnetic moment (Evans method): 3.3 µB in dichloromethane at 298 K.

Ni(7Mes)(PPh₃)Br (2-7Mes). As for 2-6Xyl, but using 1-7Mes (200 mg, 0.34 mmol) and 7Mes (171 mg, 0.51 mmol). Yield: 181 mg (66%). ¹H NMR (CD₂Cl₂, 500 MHz, 298 K): δ 49.2 (br s, 8H), 38.7 (br s, 8H), -8.3 (s, 12H), -11.2 (br s, 24H), -17.7 (s, 8H). Despite multiple recrystallizations, efforts to determine accurate elemental analyses repeatedly gave a low %C value e.g. Anal. calcld. (found) for CaH₃N₄NiBr (%): C 68.41 (67.43), H 7.49 (7.51), N 6.93 (6.82). Solution magnetic moment (Evans method): 3.0 µB in dichloromethane at 298 K.

Ni(7Xyl)(PPh₃)Br (2-7Xyl). As for 2-6Xyl, but using 1-7Mes (200 mg, 0.35 mmol) and 7Xyl (162 mg, 0.53 mmol). Yield 205 mg (77%). ¹H NMR (CD₂Cl₂, 500 MHz): δ 51.1 (br s, 8H), 40.0 (br s, 8H), -11.8 (br s, 24H), -14.1 (s, 4H), -18.2 (s, 8H). Anal. calcld. (found) for CaH₃N₄NiBr (%): C 67.13 (67.39), H 6.97 (6.82), N 7.46 (7.31). Solution magnetic moment (Evans method): 3.1 µB in dichloromethane at 298 K.
SQUID magnetometry. Magnetic susceptibility measurements were obtained using a Quantum Design SQUID magnetometer MPMS-XL7 operating between 1.8 and 300 K. Direct current (dc) measurements were performed on polycrystalline samples of 26 mg, 27 mg, and 26 mg for 2-6Xyl, 2-7Mes, and 2-7Xyl respectively. The samples were prepared under an inert atmosphere in an MBraun glovebox and wrapped in a polyethylene membrane. The samples were subjected to dc fields up to 7 T, and a 3.78 Oe driving field was used for alternating current (ac) measurements. The magnetization data was collected at 100 K to check for ferromagnetic impurities which were absent in all samples. Diamagnetic corrections were applied for the sample holder.

Electron paramagnetic resonance (EPR). Samples for EPR measurements were prepared under an N₂ atmosphere in a glovebox. A solution of each complex was prepared by dissolving ca. 4 mg of 2-6Xyl/7Mes/6Mes/7Xyl in 100 μL of dry CH₂Cl₂. The solutions were transferred to an EPR tube, sealed in the glove box and then cooled to 77 K before rapid transfer to the pre-cooled EPR cavity. The X-band CW EPR measurements were performed on a Bruker EMX spectrometer utilizing an ER 072 magnet/ ER 081 power supply combination (maximum field 0.6 T), an ER4119HS resonator, operating at 100 kHz field modulation and 10 mW microwave power at 140 K. Additional EPR measurements were performed on a Bruker E500 spectrometer equipped with an Oxford Instruments liquid-helium cryostat utilizing an ER 073 magnet/ ER 083 power supply combination (maximum field 1.45 T), an ER4102ST resonator, operating at 100 kHz field modulation and 0.63 mW microwave power at 10 K. High Frequency Electron Paramagnetic Resonance spectra were collected on microcrystalline powder samples contained in a polyethylene cup. The transmission-type spectrometer used in this study employed a 17 T superconducting magnet. Microwave frequencies were generated in the 52 to 314 GHz range using a phase-locked Virginia Diodes source combined with a series of frequency multipliers. The field modulated signal was detected by an InSb hot-electron bolometer (QMC Ltd., Cardiff, U.K.). Temperature control was realized using an Oxford Instruments liquid nitrogen cryostat utilizing an ER 073 magnet/ ER 083 power supply combination (maximum field 1.45 T), an ER4102ST resonator, operating at 100 kHz field modulation and 0.63 mW microwave power at 10 K.

The synthesis of the new complexes 2-6Xyl, 2-7Mes and 2-7Xyl (Scheme 1) involved reactions of the three-coordinate Ni(I) precursors Ni(NHC)(PPh₃)Br ([NHC]) with a pronounced variation of the interligand torsion angle (τ).
Isolation of crystals suitable for X-ray crystallography revealed linear CsNc-Ni-CsNc (178.92(11)-179.78(15)) arrangements in 2-NHC and very little variation in Ni-C bond lengths (1.943(2)-1.959(3) Å, Figure 1). The crystal packing varies with the type of NHC: 2-6Xyl - C2/c, 2-7Mes - Pca21, 2-6Mes - P21/n, 2-7Xyl - C2/c. The shortest intermolecular Ni···Ni distances are 10.4, 10.6, 10.3, and 10.4 Å, respectively (Figure S2). The asymmetric units of 2-6Xyl and 2-7Xyl each contain half of a cation; the remainder being generated by virtue of a 2-fold crystallographic rotation axis in each case. There is solvent of crystallization present, in a CH2Cl2:cation ratio of 2:1 for 2-6Xyl and 2-7Xyl, while the comparative ratio for 2-7Mes is 1:1. The crystal structures also highlight variation in the torsion angle between the two NHCs coordinated to each nickel center. In particular, the angles between mean planes based on the metal center, ligand nitrogens and carbene-carbon for each ligand decreases from 89.49(11)° for 2-6Xyl to 85.82(13)° for 2-6Mes, 77.85(11)° for 2-7Mes and, smallest of all, 68.08(10)°, for 2-7Xyl.

Solution magnetic moment measurements of 2-NHC in dichloromethane (Evans method) revealed \(\mu_{\text{eff}} \) values of 3.0-3.3 \(\mu_B \), which is much higher than the spin-only value of 1.73 \(\mu_B \).

SQUID measurements of the magnetic susceptibility for polycrystalline powders under a 0.1 T static field also showed \(\chi_T \) values at 300 K in the range of 1.2-1.3 cm\(^3\) K mol\(^{-1}\) (3.1-3.2 \(\mu_B \)) – much higher than the theoretical spin-only value of 0.375 cm\(^3\) K mol\(^{-1}\). Upon lowering the temperature, the \(\chi_T \) value stayed nearly constant until approximately 5 K, where it decreased sharply suggesting a relatively small intermolecular interaction (Figure S11). The molar magnetization measured between 1.8 – 7 K and 0 – 7 T has near-saturation values of 1.7-1.9 \(\mu_B \) (Figure S11). Assuming axial anisotropy of the \(g \)-tensor, the high temperature powder magnetic susceptibility and magnetization saturation values can be approximated as

\[
\chi_T = \frac{N\mu_p^2S(S+1)}{9k}\left[g_\parallel^2 + 2g_\perp^2\right]
\]

where \(N \) is Avogadro’s number, \(S \) is the total spin, \(k \) is the Boltzmann constant and \(g_\parallel, g_\perp \) are components of the \(g \)-tensor.

SQUID measurements are not sufficient to identify both \(g_\parallel \) and \(g_\perp \) independently, nevertheless, they set limitations on the combinations of \(g_\parallel \) and \(g_\perp \) (Figure S12).

Solution \(^1\)H NMR spectra of 2-NHC featured five strongly paramagnetically shifted peaks in the range -25 to 55 ppm at 298 K (Figures S6-S9). DFT calculations of the hyperfine tensors suggest that the proton paramagnetic shifts are dominated by a pseudo-contact contribution (PCS). Assuming uniaxial anisotropy, the best-fit for the axiality of the magnetic susceptibility tensor, \(\Delta\chi_{\text{ax}} \), extracted from the PCS data at 298 K is 0.13-0.15 Å\(^3\) (Table S2), suggesting a large anisotropy of the \(g \)-tensor with \(g_\parallel \approx g_\perp \) in the range of 19-22. Considering both paramagnetic NMR and SQUID constraints together, we can estimate \(g_\parallel \approx 5 \) and \(g_\perp \approx 2 \).

To determine definitively the \(g \)-values, we employed a series of high-field EPR experiments on a single crystal, as well as a polycrystalline powder of 2-6Mes (Figure S16). These experiments revealed a remarkably anisotropic \(g \)-tensor: \(g_\parallel = 5.42, g_\perp = 0.36 \). This observation showed that an analogous measurement at X-band (9.5 GHz) would require a magnetic field above the maximum attainable for most X-band magnets (typically <1 T). The X-band results were therefore acquired using two magnet systems (see ESI). Measurements on frozen solutions of 2-NHC showed that the \(g_\parallel \) values for all complexes are in the range of 5.7-5.9 (Figure 2 and Figure S14) and \(g_\perp \approx 0.6 \) (Figure 2); the differences between the solid-state and solution are likely due to small variations in the molecular structures. Such highly anisotropic \(g \)-tensors are uncommon for 3d\(^n\) electronic configuration. Examples of similar magnetic anisotropy in complexes with \(S=1/2 \) occur in actinide and lanthanide systems, and some rare cases of low-spin \(d^9 \) complexes such as Os(III).
Figure 2. Continuous wave X-band EPR spectra of frozen CH$_2$Cl$_2$ solutions of 2-NHC measured at 10 K up to 130 mT (Bruker EMX, 8” magnet) and from 700 to 1400 mT (Bruker E500, 10” magnet). The microwave frequencies from top to bottom are 9.3820, 9.3814, 9.3926 and 9.3928 GHz plotted normalized to 9.5 GHz. The red lines show EasySpin simulations with parameters given in Table 1.

Table 1. Experimental and ab initio calculated (shown in parentheses, CASSCF(9,5)/NEVPT2/def2-TZVP) g-tensors of 2-NHC.

<table>
<thead>
<tr>
<th></th>
<th>g1</th>
<th>g2</th>
<th>g3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-6Xyl</td>
<td>0.55</td>
<td>0.56</td>
<td>5.887</td>
</tr>
<tr>
<td></td>
<td>(0.53)</td>
<td>(0.53)</td>
<td>(5.89)</td>
</tr>
<tr>
<td>2-7Mes</td>
<td>0.55</td>
<td>0.62</td>
<td>5.755</td>
</tr>
<tr>
<td></td>
<td>(0.60)</td>
<td>(0.66)</td>
<td>(5.77)</td>
</tr>
<tr>
<td>2-6Mes</td>
<td>0.565</td>
<td>0.585</td>
<td>5.66</td>
</tr>
<tr>
<td></td>
<td>(0.72)</td>
<td>(0.74)</td>
<td>(5.77)</td>
</tr>
<tr>
<td>2-7Xyl</td>
<td>0.58</td>
<td>0.602</td>
<td>5.70</td>
</tr>
<tr>
<td></td>
<td>(0.64)</td>
<td>(0.66)</td>
<td>(5.81)</td>
</tr>
</tbody>
</table>

The origin of the large magnetic anisotropy in 2-NHC was unveiled by ab initio ligand field analysis (AI LFT) based on CASSCF(9,5)/NEVPT2 calculations (Figure 3).

Following a simple crystal-field model, one would expect that the energetic ordering of the d-orbitals in a linear two-coordinate system with point charges in comparison with the ligand field splitting in 2-NHC calculated using AI LFT based on CASSCF(9,5)/NEVPT2/def2-TZVP (see also Figure S18 for AI LFT orbitals).

Figure 3. Ligand field splitting of d-orbitals expected for a linear two-coordinate system with point charges in comparison with the ligand field splitting in 2-NHC calculated using AI LFT based on CASSCF(9,5)/NEVPT2/def2-TZVP (see also Figure S18 for AI LFT orbitals).

Variation of the torsion angle between ligands across the series primarily affects the splitting of the (d$_{xx}$, d$_{yy}$) orbitals. They are degenerate in the case of \angleN-C-C-N $= 90^\circ$ (2-6Xyl), and their splitting increases as the torsion angle decreases (Figure 3). However, both orbitals (d$_{xx}$, d$_{yy}$) are doubly occupied and their energy splitting does not significantly affect the magnetic properties. The splitting of (d$_{xy}$, d$_{xz}$) and relative position of d$_{z^2}$ is much more important for the g-tensor anisotropy of 2-NHC.

Such variation of the torsion angle in linear two-coordinate metal(I) bis-carbene complexes is expected to affect the magnetic properties of a 3d2 configuration (e.g. Mn(I)) where an odd number of electrons occupy the (d$_{xx}$, d$_{yy}$) orbitals, but the only examples of such complexes for manganese are [Mn(cAAC)$_2$], which feature Mn(II) and radical ligands. Linear Fe(I) bis-carbene complexes may also be affected by ligand rotation if the highest energy (d$_{xx}$, d$_{yy}$) orbitals become degenerate with (d$_{xy}$, d$_{xz}$) at a torsion angle of 0°, which seems to be the case for [Fe(cAAC)$_2$], as it was reported to have large effective magnetic moment $\mu_{eff} \approx 5 \mu_B$ (spin-only value is 3.8 μ_B) and slow magnetic relaxation.

The separation between the ground doublet, and the first excited doublet in 2-6Mes was measured by variable-field FIRMS spectroscopy to be ~643 cm$^{-1}$ (Figures 4 and S17). Ab initio results for the SOC corrected first excited doublet state show some variation within the series: 653 cm$^{-1}$ for 2-6Xyl, 277 cm$^{-1}$ for 2-7Mes, 514 cm$^{-1}$ for 2-6Mes and 407 cm$^{-1}$ for 2-7Xyl. There appears to be no correlation between relative orientation of the two carbene ligands and predicted energy gap as more subtle non-bonding interactions with the N-aryl substituents of the ligands are responsible for splitting and mixing of d$_{x^2-y^2}$, d$_{xy}$ and d$_{z^2}$ orbitals. A simple ligand field model suggests that the effects of SOC on a degenerate d$_{xy}$ and d$_{x^2-y^2}$ orbital pair will produce two Kramers doublets $M_s=\pm 5/2$ and...
\[\pm 3/2 \] separated by \(\zeta \) where \(\zeta \) is the spin-orbit coupling constant (Ni(I) \(\zeta \approx 600 \text{ cm}^{-1} \)). This suggests that the first spin-orbit state exists \(\geq 1200 \text{ cm}^{-1} \) above the ground state, a prediction that is incompatible with the experimentally observed gap of \(\sim 643 \text{ cm}^{-1} \) and suggests that an additional state is present. Examination of the AI LFT orbital splitting shows that the \(d_{z^2} \) orbital is similar in energy to the \(d_{xy} \) and \(d_{x^2-y^2} \) orbitals and, thus, gives rise to a third low-lying Kramers doublet (Table S3). The \textit{ab initio} calculations reveal that these orbitals are highly mixed, which makes qualitative rationalization of trends in excited state energies difficult. However, a simple ligand-field model (See SI) considering only the effects of SOC on a degenerate \(d_{z^2}, d_{xy} \text{ and } d_{x^2-y^2} \) orbital set results in three Kramers doublets, each separated by \(\zeta (\sim 600 \text{ cm}^{-1}) \). This value is extremely close to the gap observed by the FIRMS experiments.

![Figure 4](image)

\textbf{Figure 4.} FIRMS spectra of 2-6Mes divided by reference spectra recorded at 4 T larger field. The data have been offset by the magnetic field of each recorded spectrum. The grey shading around each spectrum is the standard deviation of the 4 recorded spectra at each field. The bottom surface is a 2D false color plot showing the evolution of the spectral features with applied field. The pair of features centered at \(\sim 612 \text{ cm}^{-1} \) are field independent while the feature originating at \(\sim 643 \text{ cm}^{-1} \) displays pronounced field dependence.

Such extraordinary magnetic anisotropy of \(3d^9 \) systems is the reason behind the previously observed slow relaxation of the magnetization in 2-6Mes.22 Even slower magnetic relaxation is recorded for 2-6Xyl and 2-7Mes, while 2-7Xyl shows a marginally faster relaxation rate (Figures 5-6 and S13).

![Figure 5](image)

\textbf{Figure 5.} In-phase (\(\chi' \); top) and out-of-phase (\(\chi'' \); bottom) powder magnetic susceptibility under 600 Oe applied magnetic field of 2-6Xyl (circles) and generalized Debye model fits (lines) obtained with CC-FIT2.38

The fit of the temperature dependence of the relaxation data was done assuming Raman and direct processes (eq. (3))

\[
\frac{1}{\tau} = CT^n + AT
\]

where \(A \) is the parameter for the direct process and \(C \) for the Raman process. Inclusion of the Orbach relaxation mechanism, which relies on a presence of a thermally accessible excited state, does not lead to an improvement of the fit in the measured low-T range (<10 K). It is expected for 2-NHC, where the first excited state is well above 200 cm\(^{-1}\) according to FIRMS and \textit{ab initio} results.

![Figure 6](image)

\textbf{Figure 6.} Temperature dependence of the relaxation times obtained under a 600 Oe applied DC field extracted from AC susceptibility measurements (symbols) and fit curves (solid lines) with Raman and direct processes (see text for details).
The best-fit parameters are listed in Table 2. The constants A and C of the respective direct and Raman processes increase from 2-6Xyl to 2-7Xyl. Meanwhile, the power in the Raman process, n, is smaller for 2-7Xyl than for the rest of the series.

Table 2. Best-fit parameters of the temperature dependence of the relaxation time.

<table>
<thead>
<tr>
<th>Compound</th>
<th>C, s$^{-1}$Kn</th>
<th>n</th>
<th>A, s$^{-1}$K$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-6Xyl</td>
<td>0.04</td>
<td>5.6</td>
<td>3</td>
</tr>
<tr>
<td>2-7Mes</td>
<td>0.12</td>
<td>6.4</td>
<td>25</td>
</tr>
<tr>
<td>2-6Mes</td>
<td>2.1</td>
<td>5.2</td>
<td>50</td>
</tr>
<tr>
<td>2-7Xyl</td>
<td>28</td>
<td>3.2</td>
<td>206</td>
</tr>
</tbody>
</table>

Despite large uncertainties in the relaxation time, there is a noticeable difference at the low-temperature limit reflected in the large variation of best-fit parameters for both direct and Raman processes (Table 2). Relaxation data was acquired without any magnetic dilution, hence variations in dipolar couplings could be one of the reasons behind the low temperature differences. However, 2-6Xyl and 2-7Xyl have very similar crystal packing and g-tensors, hence, dipolar coupling is expected to be essentially the same for these two compounds. Nevertheless, the low-temperature relaxation time differs the most between 2-6Xyl and 2-7Xyl. Available ab initio studies of the magnetic relaxation in transition metal complexes$^{29-42}$ point out the importance of the molecular rigidity that can control the admixture of intramolecular vibrational modes that modulate the spin-Hamiltonian parameters via acoustic phonons, thus driving low temperature relaxation. The more rigid structure of the smaller carbene in 2-6Xyl might therefore also contribute to its slower relaxation compared to the larger, less rigid NHC in 2-7Xyl. Moreover, the difference in electrostatic polarisation of the donor atom may also affect Raman relaxation, as highlighted in the recent work by Lunghi et al.35 Further studies of our Ni systems are needed to rationalize fully the magnetic relaxation behaviour of these compounds. Given the very similar electronic structures, g-tensor anisotropy and crystal packing, but different carbene-Ni-carbene torsion angles, 2-6Xyl and 2-7Xyl are excellent candidates for further ab initio analysis of the role of phonons in the low-temperature limit of Raman relaxation.

CONCLUSIONS

In summary, we have reported the synthesis and characterization of three new linear two-coordinate Ni(1) bis-NHC complexes with highly anisotropic g-tensor. We have characterized these compounds via a combination of advanced EPR spectroscopy, magnetometry and paramagnetic NMR analysis. Ab initio studies show that 2-NHC has an orbitally degenerate ground state Δ due to carbene π-back bonding and $3d$-$4s$ mixing that completely changes the d-orbital splitting from that in a simple crystal field picture to $(d_{xz}, d_{yz}) < d_{xy}, (d_{x^2-y^2})$. This leads to a very large magnetic anisotropy $g_\parallel ~ (5.6-5.9)$ and $g_\perp ~ 0.6$ as confirmed by EPR.

Contrary to expectations, the ligand rotation in the series was found to have little effect on the static magnetic properties as it mostly affects the splitting of the doubly occupied orbitals (d_{xz}, d_{yz}). There is a noticeable variation in the low temperature magnetic relaxation profile within the series 2-6Xyl, 2-7Mes, 2-6Mes and 2-7Xyl, however there is no correlation with the torsion angle. The electronic structure and crystal packing of 2-6Xyl and 2-7Xyl is very similar, hence an order of magnitude difference in the low-T magnetic relaxation time could be attributed to differences in vibrational modes and spin-phonon coupling.

AUTHOR INFORMATION

Corresponding Authors

Emma Richards - School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K.

Email: RichardsE10@cardiff.ac.uk

https://orcid.org/0000-0001-6691-2377

Elizaveta Suturina - Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.

Email: e.suturina@bath.ac.uk

https://orcid.org/0000-0003-4407-1882

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

ACKNOWLEDGMENTS

Work performed at the US National High Magnetic Field Laboratory is supported by the NSF (DMR-1644779) and the State of Florida. Additional support from the NSF (DMR-2004732 to S. H.) is also gratefully acknowledged. S. M. G acknowledges support from the National Science Foundation (NSF) Graduate Research Fellowship Program (DGE-1449440). Work performed at the University of Ottawa is graciously supported by the University of Ottawa, the Natural Sciences and Engineering Research Council of Canada, and the Canadian Foundation for Innovation. EAS and MKW thank the University of Bath for HPC facilities for computational time and for a PhD studentship (WJMB) respectively.

SUPPORTING INFORMATION

The Supporting Information is available free of charge at https://pubs.acs.org/doi/

Supporting information includes the details for X-Ray diffraction data, NMR spectra, SQUID magnetometry results, EPR and FIRMS spectra, and AI LFT molecular orbitals.

REFERENCES

A series of new Ni(I) bis-N-heterocyclic carbene complexes with extremely anisotropic g-tensors show no correlation between magnetic properties and the torsion angle between the two ligands despite significant changes in the d-orbitals splitting.