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Semantic information is important in eye movement
control. An important semantic influence on gaze
guidance relates to object-scene relationships: objects
that are semantically inconsistent with the scene attract
more fixations than consistent objects. One
interpretation of this effect is that fixations are driven
toward inconsistent objects because they are
semantically more informative. We tested this
explanation using contextualized meaning maps, a
method that is based on crowd-sourced ratings to
quantify the spatial distribution of context-sensitive
“meaning” in images. In Experiment 1, we compared
gaze data and contextualized meaning maps for images,
in which objects-scene consistency was manipulated.
Observers fixated more on inconsistent versus
consistent objects. However, contextualized meaning
maps did not assign higher meaning to image regions
that contained semantic inconsistencies. In Experiment
2, a large number of raters evaluated image-regions,
which were deliberately selected for their content and
expected meaningfulness. The results suggest that the
same scene locations were experienced as slightly less
meaningful when they contained inconsistent compared
to consistent objects. In summary, we demonstrated
that — in the context of our rating task — semantically
inconsistent objects are experienced as less meaningful
than their consistent counterparts and that

contextualized meaning maps do not capture
prototypical influences of image meaning on gaze
guidance.

Introduction

Visual processing varies as a function of the
retinal location at which a stimulus is presented:
with increasing eccentricity, processing is affected by
crowding and a decrease in resolution (see Rosenholtz,
2016 and Stewart, Valsecchi, & Schütz, 2020 for
reviews). Being able to rapidly move the central parts
of the eyes is therefore necessary to extract fine detail
across large parts of the visual field. Consequently, eye
movements are critical for visual processing, and it
is important to understand what processes underpin
gaze guidance. Currently, the most popular framework
for answering this question assumes that the factors
influencing human gaze allocation belong to two
broad categories: image-computable features of the
input processed in a bottom-up fashion, and the
internal states of the individual, such as knowledge
or intentions, exerting their influence in a top-down
manner (Berga & Otazu, 2020; Henderson & Hayes,
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2017; Kollmorgen, Nortmann, Schröder, & König,
2010; Rothkopf, Ballard, & Hayhoe, 2016).

Support for the notion that image-computable
aspects of the input are important for the guidance of
eye movements comes from studies demonstrating that
where humans look in images can often be predicted
by analyzing the visual features of these images (Borji,
Sihite, & Itti, 2013) and how they perform in search
tasks (Adeli, Vitu, & Zelinsky, 2017; Berga & Otazu,
2020; Zhang, Tong, Marks, Shan, Cottrell, Tong,
Shan, & Cottrell, 2008). Algorithms generating such
predictions are called saliency models. Early saliency
models, such as Graph-Based Visual Saliency (GBVS)
(Harel, Koch, & Perona, 2007), Adaptive Whitening
Saliency (AWS) (Garcia-Diaz, Fdez-Vidal, Pardo, &
Dosil, 2012; Garcia-Diaz, Leboran, Fdez-Vidal, &
Pardo, 2012), or the model by Itti and Koch (2000; see
also Krasovskaya & MacInnes, 2019), attempted to
maximize the accuracy of their predictions relying on
simple features such as intensity, color, and orientation
contrasts. Although the predictive power of these
models was moderate (Kümmerer, Wallis, & Bethge,
2015), state-of-the-art saliency models, based on
powerful machine-learning algorithms called deep
neural networks (see Storrs & Kriegeskorte, 2019, for
a review), can predict fixation locations much better
than their predecessors while still relying exclusively
on image features (Kümmerer, Wallis, Gatys, &
Bethge, 2017). One fundamental difference is that
whereas earlier models were based on parameter values
determined by hand, current models such as DeepGaze
II (Kümmerer, Wallis, & Bethge, 2016; Kümmerer et
al., 2017) or MSI-Net (Kroner, Senden, Driessens,
& Goebel, 2020) are based on supervised learning,
which does not require explicitly defined parameter
values.

One limitation of all saliency-based approaches is
their difficulty to account for factors in oculomotor
control that are not image-computable (Bayat, Nand,
Koh, Pereira, & Pomplun, 2018; Bruce, Wloka, Frosst,
Rahman, & Tsotsos, 2015; Henderson & Hayes, 2017;
Pedziwiatr, Kümmerer, Wallis, Bethge, & Teufel, 2021a;
Tatler, Hayhoe, Land, & Ballard, 2011). For example,
the fixation patterns of individuals viewing the same
stimulus can vary as a function of their task and goals
(Hoppe & Rothkopf, 2019; Koehler, Guo, Zhang,
& Eckstein, 2014; Rothkopf et al., 2016; Yarbus,
1967). Importantly, however, oculomotor behavior
is not constantly subjugated to a task; humans (and
many other animals) are intrinsically motivated to
obtain information, and often move their eyes with
no purpose other than to explore the environment
(Gottlieb & Oudeyer, 2018). Both early (Itti & Koch,
2001) and more recent work (Adeli et al., 2017; Veale,
Hafed, & Yoshida, 2017; Zelinsky & Bisley, 2015)
argues that the oculomotor behavior exhibited in such
“free-viewing” conditions can be largely explained by
image-computable features.

This contention has not remained unchallenged.
A number of studies demonstrated that even when
observers view images without a task, the spatial
allocation of fixations can be guided by factors that
are not captured by current saliency models, namely,
the semantic content of the visual scene (Henderson,
Hayes, Peacock, & Rehrig, 2019; Peacock, Hayes,
Peacock, & Rehrig, 2019; Wu Wick, & Pomplun, 2014).
One well-studied semantic effect in eye movement
research relates to object-scene consistency, where eye
movement behavior changes depending on the extent to
which objects are semantically consistent with the scene.
In a seminal study (Loftus & Mackworth, 1978), one
example stimulus showed a farmyard scene with either
a (semantically consistent) tractor or a (semantically
inconsistent) octopus. Inconsistent objects such as
the octopus were looked at earlier, attracted more
fixations, and were inspected for longer in comparison
to consistent objects. Although some mixed results
have since been found with respect to the timing of eye
movements (Wu et al., 2014), there is robust evidence
demonstrating that object-scene inconsistencies lead
to more and longer fixations (Coco, Nuthmann, &
Dimigen, 2020; Friedman, 1979; Henderson, Weeks,
& Hollingworth, 1999; Öhlschläger & Võ, 2017;
Pedziwiatr et al., 2021a).

Two primary mechanisms have been proposed to
explain these effects. First, objects that are viewed in
inconsistent contexts are processed less effectively,
as indicated by the drop in recognition (Munneke,
Brentari, & Peelen, 2013) and detection performance
(Biederman, Mezzanotte, & Rabinowitz, 1982; see also
Kaiser, Quek, Cichy, & Peelen, 2019). Consequently,
more fixations toward and longer inspection times
of inconsistent objects are thought to reflect the
increased resources needed to process these stimuli
(Bonitz & Gordon, 2008; Friedman, 1979). A second,
and not mutually exclusive, explanation for the effects
of object-scene inconsistencies on eye movements
is based on the notion that inconsistent objects
are “more informative” (Loftus & Mackworth,
1978), “semantically informative” (Henderson, 2011;
Henderson et al., 1999), or “contain greater meaning”
(Peacock et al., 2019). According to this idea, people
look at inconsistent objects in an effort to maximize
extraction of meaning from a scene.

This second interpretation has recently gained
increased attention, particularly with the development
of meaning maps (Henderson & Hayes, 2017;
Henderson & Hayes, 2018), a method to quantify
the spatial distribution of meaning (or “density of
local semantic features” or “local semantic density”;
Henderson, Hayes, Peacock, & Rehrig, 2021) across an
image. Meaning maps are created by first partitioning
an image into many circular, partially overlapping
patches. These patches are presented to individuals, who
view them without knowing the scene from which they
were extracted (hence, these maps are called context
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free). Participants are asked to use a Likert scale to
“assess how ‘meaningful’ an image is based on how
informative or recognizable” they think it is. Finally,
these ratings are combined into a smooth distribution
over the image to create a map. Meaning indexed by
this method has been demonstrated to be a better
predictor of fixations than a simple saliency model that
is based on low-level features (such as luminance, color
and orientation). This finding has been interpreted
as evidence that semantic information rather than
image-computable features control eye movements
(Henderson & Hayes, 2017; Henderson & Hayes,
2018). The meaning map approach is rapidly gaining
popularity and has been used to study eye movements
in various contexts (listed in Henderson et al., 2021).

A recent study from our group evaluated meaning
maps by comparing them to a wider range of saliency
models. The results highlight some limitations of the
method (Pedziwiatr et al., 2021a; see Henderson et al.,
2021 and Pedziwiatr, Kümmerer, M., Wallis, Bethge,
& Teufel, 2021b for ongoing debate). One key finding
of this study demonstrates that meaning maps are
outperformed in predicting fixations by DeepGaze
II (Kümmerer et al., 2016; Kümmerer et al., 2017), a
saliency model based on a deep neural network, that
indexes high-level features rather than meaning. We
interpreted this result to suggest that there is so far
no evidence that meaning maps measure semantic
information that is relevant for gaze guidance (however,
see counterpoints in Henderson et al., 2021, and
response in Pedziwiatr et al., 2021b). Rather, they might
index those visual features that are often correlated with
semantics, similar to modern saliency models.

A second key finding of this study was that meaning
maps in their original form do not ascribe more
meaning to scene regions occupied by objects that
are semantically inconsistent with the global scene
context compared to consistent objects presented in
the same region and matched in terms of low-level
features. The original meaning maps were intended to
exclusively capture context-free meaning (Henderson et
al., 2021). It might therefore not be surprising that these
maps fail to index semantic information that relates to
object-scene (in)consistencies (again, see Henderson
et al., 2021 and Pedziwiatr et al., 2021b for ongoing
debate).

To capture meaning linked to global scene context
effects, such as object-scene (in)consistencies, Peacock
et al. (2019) proposed a new version of meaning
maps: contextualized meaning maps. These maps differ
from the original meaning maps in one important
detail: during rating, each patch is presented alongside
the full scene from which it originated. Therefore,
raters have access to the global scene context when
assessing the meaningfulness of the patch. Given
the critical importance of context in scene semantics
(Biederman et al., 1982; Võ, Boettcher, & Draschkow,
2019), contextualized meaning maps might be better

suited to quantify semantic information within visual
scenes. Surprisingly, Peacock et al. (2019) found that
contextualized meaning maps predicted gaze density
in a free-viewing task equally well as context-free
meaning maps (and both predicted gaze density better
than the GBVS saliency model). They suggested,
however, that dissociations in prediction performance
between context-free and contextualized meaning maps
might only occur for scenes containing object-scene
inconsistencies.

In the current study, we therefore assessed the
extent to which contextualized meaning maps are
sensitive to semantic object-scene inconsistencies.
Specifically, if inconsistent objects increase the amount
of (contextualized) meaning within the scene region
they occupy (Henderson, 2011; Henderson et al., 1999;
Loftus & Mackworth, 1978; Peacock et al., 2019), then
contextualized meaning maps should assign higher
meaning to these regions, and this should predict
increased fixations relative to regions containing
consistent objects. Using exactly the same procedure
and instructions as Peacock and colleagues (2019), we
created contextualized meaning maps for two types
of indoor scenes, which were identical except for one
object (Öhlschläger & Võ, 2017). This object was either
semantically consistent with the context, such as a hair
brush on a bathroom sink, or the object was replaced
with an inconsistent object, such as a shoe on the sink.
We conducted a detailed analysis of these maps across
scene types and compared them to fixation patterns of
human observers.

To anticipate our findings, we demonstrate that
contextualized meaning maps are not able to predict
the gaze changes elicited by the manipulation of
semantic object-context consistency. Moreover,
our first experiment provided initial evidence that
contextualized meaning maps might attribute less
meaning to scene regions that contain inconsistent
compared to consistent objects. Given this surprising
result, in a second experiment, we asked a large number
of raters to provide meaningfulness ratings for a
carefully controlled set of image patches, that were
deliberately selected based on their content and their
expected meaningfulness based on Experiment 1.
The results of this second experiment replicated the
surprising result from the first experiment, showing that
semantically inconsistent objects are judged as slightly
less meaningful than consistent objects. Overall, these
results call for the assumptions of the meaning map
approach to be reconsidered.

Methods and results

Experiment 1

The main goal of Experiment 1 was to assess the
extent to which contextualized meaning maps and
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Figure 1. Generating contextualized meaning maps. (A) Sample stimuli from the patch-rating task used for creating contextualized
meaning maps. The patch, which raters were asked to rate for its meaningfulness, was always presented next to the image from
which it originated to provide the relevant context. Each image-and-patch pair was presented on a separate page of a Qualtrics
survey, and raters had to use a laptop or desktop computer, thus ensuring that objects were sufficiently large to be easily recognized.
A green circle on the context image indicated the location of the patch. Both panels show the same scene, photographed in the
Consistent (left part of the panel) and in the Inconsistent (right part) condition. The images on both panels differ only with respect to
the object shown in the patch. The hair brush on the left part is a semantically consistent object for a bathroom scene, the shoe on
the right part is semantically inconsistent. In the task, raters were asked to assess the meaningfulness of the patches based on their
informativeness and recognizability by means of selecting a value on a six-point rating scale. (B) Grid used to segment images into
coarse patches. The gray rectangle represents the image area. (C) Center bias model used in contextualized meaning maps. To
account for the human tendency to allocate fixations predominantly to central image-regions (a so-called center bias), contextualized
meaning maps assign different weights to different pixels of the maps depending on their location. This re-weighting is done by
computing a pixel-wise product between the maps and a model of center bias shown on this panel, in which brighter pixels indicate
higher pixel-weights. See Creating contextualized meaning maps — modeling center bias section for details.

human fixations are sensitive to local changes in
semantic information within a scene, resulting from
the presence of objects that are semantically consistent
vs. inconsistent with the overall scene-context.
This experiment compares contextualized meaning
maps to the data collected in (Pedziwiatr et al.,
2021a); therefore more methodological details on the
stimuli and eye movement data can be found in that
report.

Stimuli
The stimulus set consisted of photographs of

36 indoor scenes, taken from the SCEGRAM
dataset (Öhlschläger & Võ, 2017). Each scene was
photographed in two conditions: consistent and
inconsistent, resulting in two images per scene (72

images in total). Images from the consistent condition
contained only objects that are typical for a given scene
context. In the inconsistent condition, one of these
objects was replaced with an object unusual in the
context provided by the whole scene, thus introducing
a semantic inconsistency. For example, in one of the
scenes, a hair brush on a bathroom sink (consistent
condition) was replaced with a flip-flop (inconsistent
condition) — see Figure 1A. The SCEGRAM dataset is
constructed in such a way that, across scenes, consistent
and inconsistent objects are matched for low-level
properties (Öhlschläger & Võ, 2017). In each scene,
consistent and inconsistent objects occupy the same
image locations, and the superposition of the bounding
boxes of both conditions constituted what we call a
critical region. These critical regions are important
for the data analyses we report further below because
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they contain the only image regions that differ between
conditions.

Eye-movement data
For all 72 images, we collected eye-tracking data from

a group of 20 observers. Each observer free-viewed
the full set of images displayed in a random order
while their eyes were tracked with an EyeLink 1000+
eye-tracker. The images had a width of 688 pixels
and a height of 524, corresponding to, respectively,
19.7° and 15° of a visual angle. Each image was
presented for seven seconds, which is similar to the
presentation duration of eight seconds used in the
original contextualized meaning maps study (Peacock
et al., 2019).

To analyze the eye-movement data, fixation locations
were extracted from raw eye-tracker recordings using
a standard EyeLink algorithm. The discrete fixations
on each image were transformed into continuous
distributions by means of Gaussian smoothing (filter
cutoff frequency: −6 dB; implemented in Matlab — see
Kümmerer, Bylinskii, Judd, Borji, Itti, Durand, Oliva,
& Torrabla, 2020) followed by a normalization to the
[0–1] range.

Creating contextualized meaning maps — overview
The procedure of creating contextualized meaning

maps is identical to that used to generate the original
meaning maps except that raters see the entire original
image alongside the patch that they are asked to
rate. We closely followed the procedure described in
detail in previous publications (Henderson & Hayes,
2017; Henderson & Hayes, 2018; Peacock et al., 2019;
Pedziwiatr et al., 2021a). In summary, a predefined
grid is used to segment the image into circular,
partially overlapping patches (Figure 1B). Next, in
a crowd-sourced online experiment, each patch is
presented next to the image from which it was derived,
and human raters are asked to rate the meaningfulness
of the patch. Presenting the full image next to the patch
ensures that the rater has access to the scene context
when providing their responses (Figure 1A; see this
figure for details of the rating procedure itself). Each
individual patch is rated by three individuals. In our
study, we used the same instructions for raters as the
original contextualized meaning maps study (retrieved
from https://osf.io/654uh). Specifically, human raters
were asked to rate how “meaningful” a patch is on
a six-point Likert scale given how “informative or
recognizable” they find it (see caption for panel A in
Figure 1 for details). To provide raters with anchoring
points for their ratings, they viewed examples of patches
during the instructions that should be rated as low or
high (again, the same as in the study by Peacock et al.,
2019). After data collection, the ratings from individual

patches are combined into a smooth distribution over
the image by means of averaging and interpolation.
For each image, these three steps are conducted twice:
once for bigger (coarse) patches and once for smaller
(fine) patches. The maps resulting from coarse and fine
patches are averaged. Finally, the regions of the average
map close to the edges of the image are down-weighted
(Figure 1C). This manipulation accounts for the center
bias of human eye-movements, that is, the tendency to
look more at the central region of an image (Tatler,
2007).

Creating contextualized meaning maps — parameter
value selection

When creating contextualized meaning maps for our
stimuli, the aim was to match as closely as possible the
procedure used in the original study by Peacock and
colleagues (2019). Our images, however, differed in size
from the stimuli used in that study and were viewed
from a different distance during the eye-movement data
collection. In order to account for these differences,
we matched the two studies with respect to the size of
coarse and fine patches in degrees of visual angle (deg),
and with respect to patch density of coarse and fine
patches expressed in the number of patches per square
degree of visual angle (p/deg2). Under the constraint
that the centers of each two adjacent patches have to
be equidistant horizontally and vertically, these four
values fully specify the grids necessary for creating
contextualized meaning maps. In terms of absolute
values, matching the two studies with respect to these
parameters was perfect for patch diameter and resulted
in 5.26° (coarse patches) and 2.26° (fine patches), which
corresponded to 187 pixels and 79 pixels, respectively
(205 and 87 pixels in the original study). The patch
densities closest to the original we could possibly
achieve were 0.56 p/deg2 and 0.21 p/deg2 (compared to
0.57 p/deg2 and 0.2 p/deg2 in the original study). Given
the size of our stimuli, these values correspond to 63
coarse and 165 fine patches per image. The resulting
grid for creating coarse patches is shown in Figure 1B.

Creating contextualized meaning maps— data collection
The procedure described in the previous sections

resulted in a total of 16,416 patches (4,536 coarse and
11,880 fine patches). As described in more detail above
and in the caption for Figure 1, each patch was rated
for its meaningfulness by three human raters on a
six-point Likert scale. Patches were divided into 54 sets
of 304 patches each, and each set was assigned to three
different raters (see details below).

Recall that each scene was photographed in a
consistent and an inconsistent version, differing only
with respect to the identity of a single object. If the
raters were to view the same scene in both versions,
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Figure 2. Gaze data and outcomes of selected steps of creating a contextualized meaning map for an example scene. (A) A single
scene from the consistent condition of our study, with fixations marked with red dots. (B) Smoothed fixations from panel A. The
histogram of this distribution served as a reference to which the histogram of the contextualized meaning map was matched. This
procedure ensures the comparability of values from both distributions by aligning these values to the same scale. (C) “Raw”
contextualized meaning map for the scene from panel A. Because this map has not been subjected to histogram matching, color
values are not comparable to values on the remaining panels. (D) The map from panel C, after histogram matching but without
including center bias. Interestingly, contextualized meaning maps were better predictors of fixations when they did not include the
center bias (see Soundness check 1: general predictive power of contextualized meaning maps section). (E) The map from panel C,
after application of the center bias model and subsequent subjection to histogram matching. Such maps were used in all our analyses
(unless otherwise stated) because we aimed to follow the original procedure.

there would be a high chance that they might guess
the main focus of the study and, in turn, adjust their
rating strategy (by, for example, conditioning all rating
values on the presence — or absence — of the semantic
inconsistency in the context image). To ensure that
meaning maps in scene pairs were independent, we
assigned patches to sets in such a way that each rater
never saw the same scene in both the consistent and
inconsistent conditions. Specifically, we divided all the
patches into two subsets. The first contained half of
the patches from the consistent condition and half
from the inconsistent, with the patches in both these
halves derived from different scenes. The other subset
contained the remaining patches. Patches in each set
presented for rating were always drawn only from one
of these subsets. Within each subset, patches were
allocated to the consistent and inconsistent condition
randomly. Because of this division, raters were never
exposed to the same scene in both conditions, but
each rater was still exposed to scenes with and without
semantic inconsistencies.

Each set was rated by three unique raters, and
162 raters were recruited in total. The order of patch
presentation was randomized for each rater separately.
Data collection was conducted online. The raters
were recruited using the crowdsourcing platform
Prolific (www.prolific.co) and the patch-rating task was
implemented as a Qualtrics survey (Qualtrics, Provo,
UT, USA). All our raters had to meet the following
eligibility criteria: they had to be of U.S. nationality (as
in the original contextualized meaning maps study),

they had to have submitted at least 100 tasks to Prolific
before, had to have an approval rate of 95% or more,
and had to use a laptop or a personal computer to
complete the task. They were financially reimbursed for
their time and were allowed to participate in our study
only once. Median completion time was 17.08 minutes
(interquartile range: 9.19).

Creating contextualized meaning maps — modeling
center bias

Recall that the final step of creating contextualized
meaning maps involves reweighting the map with a
model of center bias. Such models have the form of
smooths distributions over the image, with higher
values closer to the image center (Clarke & Tatler,
2014). When creating contextualized meaning maps,
we followed the original authors and relied on a model
provided with the saliency model GBVS (Harel et al.,
2007; to be precise, we used the inverse of the center
bias model included in the invCenterBias.mat file;
inversion was achieved by subtracting all values from
one). This model is shown in Figure 1C, and its effects
are illustrated in Figures 2D and 2E.

Creating contextualized meaning maps — histogram
matching

For each image, we matched the histogram of its
contextualized meaning map to the histogram of the
distribution obtained by smoothing human fixations
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registered on this image. This was done using the
imhistmatch Matlab function. Histogram matching
— also used in the original meaning maps studies —
ensures that values from both distributions are directly
comparable because they have been aligned to the same
scale (see Figures 2B, 2D, and 2E). Similarly, as in the
original study by Peacock et al. (2019), this operation
was conducted after including the center bias model in
the maps.

Data analysis software
Data from this study was handled using Matlab

R2020a (Mathworks Inc., Natick, MA, USA) and
R (R Core Team, 2020). In particular, we relied on
the R packages belonging to the tidyverse collection
(Wickham, Averick, Bryan, Chang, McGowan,
François, Grolemund, Hayes, Henry, Hester, Kuhn,
Pedersen, Miller, Bache, Müller, Ooms, Robinson,
Seidel, Spinu, & Yutani, 2019), as well as on packages
jmv (The jamovi project, 2020; for running analyses
of variance [ANOVAs]) and ggExtra (Attali & Baker,
2019; for generating density plots presented in Figures
5 and 6). Other R packages we used are cited in the
relevant places in the text.

Data and code availability
The eye movement data used in this study

are openly accessible via the following link:
https://zenodo.org/record/3490434). SCEGRAM
stimuli are available under the following link:
https://www.scenegrammarlab.com/research/
scegram-database. We also share all patch-rating
data and scripts for reproducing the results
reported in this article, as well as scripts and
instructions for creating contextualized meaning
maps (data: https://zenodo.org/record/5999046; code:
https://zenodo.org/record/5999215).

Experiment 1 — Results

Soundness check 1: General predictive power of
contextualized meaning maps

As a soundness check, we tested how well
contextualized meaning maps predicted human
fixations for our stimuli: we expected them to perform
at least as well as in the original study (Peacock et al.,
2019). To quantify their predictive power, we applied a
standard technique (Bylinskii, Judd, Oliva, Torralba, &
Durand, 2019), used also by Peacock and colleagues
(2019): for each image, we calculated the correlation
between its contextualized meaning map and smoothed
fixations registered on this image. For images from the
consistent condition, the average per-image correlation
was 0.60 (standard deviation [SD] = 0.17). The average
percent of the explained variance in the eye-movement

data amounted to 39%. In the inconsistent condition,
contextualized meaning maps performed slightly worse
(mean [M] = 0.57, SD = 0.20, 37% of the variance
explained). Additionally, we investigated the effects
of removing center bias from contextualized meaning
maps and, interestingly, found that they performed
better without it (consistent: M = 0.71, SD = 0.13, 52%
of the variance explained; inconsistent: M = 0.66, SD
= 0.17, 47% of the variance explained).

Overall, these results are similar to what is reported
in the original study (Peacock et al., 2019), where
the maps explained 40% of the variance in human
data when center bias was included. This finding thus
provides an important soundness check for our study.
A lower quality of predictions in our study than in the
original contextualized meaning maps study (Peacock et
al., 2019) could have indicated that either the procedure
of creating contextualized meaning maps is sensitive to
aspects of the design which were different between our
study and the original study (such as absolute image
size), or that there were some technical problems with
our implementation.

Soundness check 2: Comparing contextualized meaning
maps to context-free meaning maps

In our previous study (Pedziwiatr et al., 2021a),
we generated original, context-free meaning maps
(Henderson & Hayes, 2017) for the scenes use in the
consistent condition in the current study. As a second
soundness check, we compared these original maps
to the contextualized meaning maps (note that this
comparison was conducted on the maps without the
center bias). The average per-scene correlation between
the two types of maps for the consistent condition was
M = 0.76 (SD = 0.12). Regarding the ability to predict
gaze patterns, the average correlation with smoothed
human-fixations was slightly higher for the context-free
maps (M = 0.74, SD = 0.14 versus M = 0.71, SD
= 0.13; mean difference M = 0.03, SD = 0.01). The
study that introduced contextualized meaning maps
(Peacock et al., 2019) also found that contextualized
and context-free meaning maps performed similarly in
predicting fixations. Replicating this finding provides
another soundness check for our study.

Note that the exact parameter values determining
the grids used to segment images into patches differed
slightly between the two types of meaning maps from
our two studies. The reason for this difference is that the
reports introducing the original (Henderson & Hayes,
2017) and contextualized (Peacock et al., 2019) meaning
maps — on which we based our previous (Pedziwiatr
et al., 2021a) and present studies, respectively — differ
with respect to the reported sizes of images viewed by
observers in the eye-tracking experiments (33° × 25°
versus 26.5° × 20° of visual angle), yet use identical
numbers of coarse and fine patches per image.
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Sensitivity of contextualized meaning maps and eye
movements to semantic manipulations

In our first main analysis, we compared
contextualized meaning maps and smoothed human-
fixations with respect to their sensitivity to semantic
manipulations. We focused on critical regions — image
regions that, depending on the condition, contained
a semantically consistent or inconsistent objects (see
Stimuli section for details). For each scene, we first
performed histogram matching (see previous section)
and then calculated the mass of each distribution
(contextualized meaning maps and smoothed fixations)
falling within the critical region and divided that value
by the region’s area for normalization. These values
were then analyzed using a mixed 2 × 2 ANOVA
with the condition (consistent versus inconsistent) as
a within-subjects factor and the distribution source
(contextualized meaning maps versus smoothed
fixations) as a between-subjects factor (see Figure 3).
Please note that here a “subject” indicates a single scene.
Such an approach is typical for studies comparing
fixation-prediction methods and is grounded in the
observation that different observers agree to a large
extent in their selection of fixation targets in images
(Kümmerer et al., 2015; Wilming, Betz, Kietzmann, &
König, 2011).

This analysis revealed that both the distribution
sources and conditions differed from each other
statistically (distribution source: F(1, 70) = 23.05,
P < 0.001, ω2 = 0.22; condition: F(1, 70) = 5.34,
P = 0.024, ω2 = 0.003). Importantly, however, these
main effects were qualified by an interaction (F(1,
70) = 23.83, P < 0.001, ω2 = 0.02). For post-hoc
tests, we relied on nonparametric paired Wilcoxon
tests (because it is robust to the violations of the
assumptions of parametric tests we observed in the
data), Bonferroni-corrected for two comparisons.
These tests showed that human eye-movements
were sensitive to the change in semantic relationship
between object and scene, as indicated by the fact that
more mass of the smoothed-fixations distribution
fell within the critical regions in the inconsistent
condition compared to the consistent condition
(inconsistent - consistent: M = 0.09, SD = 0.12, P <
0.001). The same comparison, however, did not yield
statistically significant differences for the contextualized
meaning maps (M = −0.03, SD = 0.10, P = 0.064). The
hypothesis that semantically-inconsistent regions carry
more meaning as measured by a contextualized meaning
maps was thus not supported by our data. Indeed,
the mean rating difference, although not significant
because of the correction, was in the opposite direction
(consistent with the subsequent analyses and results we
report below).

Further analyses yielded unexpected findings. Recall
that creating contextualized meaning maps involved

Figure 3. Comparison of eye-movement data and
contextualized meaning maps. In each condition and for each
scene, we calculated the amount of distribution-mass falling
within the critical region (the region, in which the manipulated
objects were located) divided by the region’s area. This
calculation was performed separately for smoothed fixations
and contextualized meaning maps. Comparing these values
between conditions revealed that observers tend to fixate the
critical regions more when they contained semantic
inconsistencies (inconsistent condition), as compared to the
situation when they did not (consistent condition).
Contextualized meaning maps (right plot, labeled cMMs) did
not show this effect, as they did not attribute more meaning to
semantic inconsistencies. In fact, they attributed numerically
less meaning on average but this effect was not significant in a
statistical sense (but see Experiment 2). Each gray line indicates
a single scene, black oblique lines connect the means, black
vertical lines indicate 95% confidence intervals (CI). P values
shown on the plot were obtained using paired Wilcoxon tests,
Bonferroni corrected for two comparisons.

averaging the maps derived from coarse and fine
patches. We repeated our mixed ANOVA analysis
separately for each of these maps. In both cases, the
pattern of results was similar to that reported in the
previous section (fine maps: distribution source: F(1,
70) = 32.64, P < 0.001, ω2 = 0.26, condition: F(1, 70)
= 0.08, P = 0.777, interaction: F(1, 70) = 31.56, P
< 0.001, ω2 = 0.04; coarse maps: distribution source:
F(1, 70) = 41.85, P < 0.001, ω2 = 0.30; condition: F(1,
70) = 3.71, P = 0.058; interaction: F(1, 70) = 5.87, P
= 0.018, ω2 = 0.01). In the post-hoc tests, we did not
find a difference between conditions for coarse maps
(inconsistent − consistent: M = −0.01, SD = 0.23, P =
0.625 uncorrected). Importantly, however, we obtained
an unexpected outcome in the post-hoc tests for the fine
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maps: these maps attributed less meaning to critical
regions in the inconsistent condition than the consistent
condition (inconsistent − consistent: M = −0.08, SD
= 0.15, P < 0.001). Therefore the numerical (but not
statistically significant) pattern observed at the level
of full maps was most likely driven by the fine maps
component.

Note that these results were obtained using our
custom-written, openly available implementation of
meaning maps (see Data and code availability section).
To ensure that the patterns we report above are not
contingent on the specifics of our implementation, we
generated contextualized meaning maps using the code
shared by the authors of the original meaning maps
and repeated our analyses with these maps. This code is
available here: https://osf.io/654uh (build_meaning_map
function, version uploaded to the repository on January
18, 2020). The results showed a similar pattern: both
the contextualized meaning maps and their fine/coarse
components attributed less meaning to the inconsistent
objects (mean of the differences for full maps: M =
−0.10, SD = 0.40; coarse maps: M = −0.07, SD =
0.56; fine maps: M = −0.14, SD = 0.46; note that
these values are not comparable to values reported
in previous analyses because here we used raw values
from the build_meaning_map function). None of these
comparisons were statistically significant (full maps: P
= 0.304; coarse maps: P = 0.959; fine maps: P = 0.082),
but for the fine maps this was because of Bonferroni
correction for two comparisons we applied (to remain
consistent with the previous analyses). Together, this
analysis demonstrates that for both implementations,
contextualized meaning maps do not assign more
meaning to semantically-inconsistent than consistent
objects.

To summarize, human eye movements changed in
response to local alterations in semantic information:
inconsistent objects attracted more fixations than
consistent ones, and were fixated earlier. Contextualized
meaning maps and their coarse component did not
show this dependence on semantic information. Finally,

fine maps ascribed less meaning to scene regions when
they contained inconsistent objects, which contradicts
predictions from the meaning map approach.

Sensitivity of patch ratings to semantic manipulations
Transforming patch ratings into contextualized

meaning maps involves a number of steps, including
nonlinear transformations. These steps could potentially
mask real, or introduce spurious between-condition
differences, and for this reason, we conducted two
analyses on the raw rating data. In the first analysis,
we selected all patches that had an overlap of at least
one pixel with the critical regions, and discarded the
remaining patches. The ratings for patches from each
condition were averaged for each scene, separately
for coarse and fine patches. Averaging allowed us to
account for between-scene differences in the number
of patches overlapping with critical regions and
guaranteed that the data from each scene had an equal
contribution to the subsequent analyses. A comparison
of these average ratings between conditions provided no
evidence to suggest that between-condition differences
were present in the raw data but were masked in the
processes of assembling contextualized meaning maps
(see Table 1, rows 1 and 4).

Because the above analysis included patches with
at least one-pixel overlap with the bounding boxes
of objects, many of these patches showed only small
parts of the manipulated objects or none at all. We
therefore repeated this analysis with more stringent
criteria for patch inclusion. In order for a given patch
to be included in this second analysis, the percentage
of its area overlapping with a critical region (dubbed
overlap percentage henceforth) had to be above a
certain threshold (see Table 1). For patches of each
size, we tested two threshold values. These values
were selected as 34th and 67th percentiles of all
above-zero values of the overlap percentage. For the
first threshold, these values corresponded to 7% or
more pixels of a patch overlapping with a critical region

Patch size

Percent of patches having
above-zero overlap
percentage included

Number of included
scenes*

Mean difference in ratings
(inconsistent −

consistent) with 95% CI Paired t-test results†

Coarse
100% 36 −0.04 [−0.18; 0.09] t(35) = −0.63, P = 0.530
66% 35 −0.07 [−0.25; 0.11] t(34) = −0.78, P = 0.440
33% 27 −0.06 [−0.36; 0.25] t(26) = −0.38, P = 0.705

Fine
100% 36 −0.02 [−0.13; 0.10] t(35) = −0.33, P = 0.747
66% 36 −0.05 [−0.21; 0.11] t(35) = −0.63, P = 0.533
33% 30 −0.28 [−0.54; −0.01] t(29) = −2.13, P = 0.042

Table 1. Comparison of patch ratings between conditions − statistical results. Notes: *Because some scenes had small critical regions,
for more conservative thresholds none of the patches derived from them had an overlap percentage high enough to be included in
the analysis. †We did not apply any correction for multiple comparisons here.
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for the coarse patches and 18% for the fine patches.
Similarly, the second threshold corresponded to 21%
and 56% or more overlapping pixels for coarse and
fine patches, respectively. The motivation for using
percentiles to determine the thresholds was to make
sure that the consecutive analyses differ from each
other by approximately the same percentage of retained
patches: while in the first analysis we included 100%
of patches which had above-zero overlap percentage,
the thresholds resulted in including 66% (for 34th
percentile) and 33% (for 67th percentile) of them. For
each threshold and each scene, we averaged ratings of
the retained patches, separately for each combination of
experimental condition and patch size, and compared
these per-scene values between conditions (see Table 1
for full results). Only one of the resulting tests reached
statistical significance: for the most conservative
threshold (that is, with highest overlap percentage),
fine patches from the inconsistent condition were rated
as less meaningful than their equivalents from the
consistent one. The magnitude of this difference was
small: it amounted to 0.28 points on a scale from one to
six. The remaining five comparisons exhibited the same
directionality.

Secondary analysis: Prioritization of semantically
inconsistent objects for fixation

As a secondary point of interest, we examined
the temporal evolution of the influences of semantic
inconsistencies on eye-movements. Other studies on
the role of object-scene consistency in eye movement
control yielded conflicting findings regarding whether
inconsistent objects are fixated earlier or not (see Wu
et al., 2014 for summary). To help in clarifying this
issue, we compared, across experimental conditions, the
number of fixations required before the first fixations
landed within the critical regions. On average, observers
took 5.03 fixations (SD= 4.7) to look at the inconsistent
objects for the first time, and 5.97 (SD = 5.55) for
consistent (data pooled over scenes and observers). A
paired Wilcoxon test indicated that this difference was
statistically significant (P < 0.001). The finding that the
inconsistent objects are not fixated immediately after
image onset but still earlier than consistent replicates
the results of a recent study by Coco, Nuthmann and
Dimigen (2020). These authors supplemented gaze
recordings with electroencephalography and concluded
that object semantics can be at least partially accessed
via peripheral vision.

Summary of Experiment 1
In our first experiment, we evaluated the extent

to which contextualized meaning maps and human
eye movements are sensitive to manipulations of the
semantic relationship between objects and scenes.

Consistent with past literature, human observers looked
more at objects that are semantically inconsistent with
the scene context compared to consistent objects.
Contrary to predictions of the meaning map approach,
however, our results provided no evidence that
contextualized meaning maps assign more meaning to
inconsistent than consistent objects. This insensitivity
to manipulations of semantic object-scene relationships
was already present at the level of the raw rating data,
indicating it is not an artifact of the map generation
procedure.

When we analyzed only the contextualized meaning
maps resulting from ratings on fine patches, the maps
assigned less “meaning” to the critical region for
inconsistent than consistent objects; a similar effect was
observed in the raw patch data. If robust, this result
would contrast with the explanation of the semantic
inconsistency effect on eye movements proposed by the
meaning map approach. Given that the evidence from
our first experiment was based on a post hoc subset
analysis, we conducted a second experiment.

We considered two hypotheses for why we
found statistically lower meaningfulness ratings for
inconsistent regions in only a subset of fine patches.
First, it could simply be a false-positive result. Second,
there might be a general but subtle tendency to rate
semantic inconsistencies as less meaningful, but the
subtlety of this effect might have meant that it could
not be detected in ratings of coarse patches because of
their low number (there were approximately 2.5 times
more fine as coarse patches). The goal of Experiment
2 was to adjudicate between these two hypotheses. We
created a single, well-controlled set of coarse patches
derived from scenes with consistent and inconsistent
objects, and collected ratings from a substantially
larger sample of raters. If the reason we were unable to
uncover the tendency to rate semantic inconsistencies
as less meaningful in the coarse patches was due to the
low number of ratings for these patches in Experiment
1, increasing the number of ratings in Experiment
2 should allow us to find this effect even in coarse
patches.

Experiment 2

Stimuli and design
In this experiment, we used the same 72 photographs

(of 36 scenes) as in Experiment 1. For each scene,
we manually selected two coarse patches that fully
contained the consistent and inconsistent objects
(see Figure 4). The locations of these patches were
the same in both conditions but their content
changed. These patches were dubbed Con and Incon.
Con-patches were derived from scenes in the consistent
condition, Incon in the inconsistent condition. We were
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Figure 4. Stimulus generation for Experiment 2. (A, B) In the second experiment, we tested whether patches depicting semantically
inconsistent objects tend to be rated as less meaningful than their counterparts depicting consistent objects. For each scene, we
selected two patches containing the consistent (Con) or the inconsistent (Incon) object. To mimic the context of the task used to
generate contextualized meaning maps, we additionally included six patches that did not differ between photographs with consistent
and inconsistent objects. These patches were chosen based on ratings they received in Experiment 1: on average, they had been
rated as either low in meaning (labeled L on the figure, two patches), high (H, one patch) or midway between these extremes (M,
three patches). Some of the patches that were selected were close to image edges and were therefore clipped. Similar to Experiment
1, each patch was presented next to either a consistent or inconsistent context scene (see panel B).

primarily interested in the ratings associated with these
two types of patches.

To mimic the variety of patches in the rating
task used for creating contextualized meaning maps
and ensure that raters could use all values from
the meaningfulness scale, we used the ratings from
Experiment 1 to select six additional patches from each
scene (see Figure 4): two patches, which on average
received the lowest meaningfulness ratings (dubbed L),
one that received the highest (dubbed H), and three
patches for which the ratings were midway between
these extremes (dubbed M). This selection was carried
out as follows. For each scene, we considered all the
coarse patches that had no overlap with the critical
region. For each location occupied by these patches, we
averaged ratings across the consistent and inconsistent
conditions. We sorted the patches according to these
average ratings in an increasing order and selected
two from the bottom (L), one from the top (H), and
the three closest to the median (M). Therefore we
selected eight patches for each scene in total: six patches
which were identical between conditions with respect to
content (L, M, and H), and two patches which differed
(Con and Incon). Because we expected Con- and
Incon-patches to be rated as highly meaningful because
they contain objects, we included only one H-patch but
two L-patches to encourage raters to use the different
scale levels with approximately equal frequency.

For stimulus presentation, each L-, M-, and H-patch
was paired with the full images from both conditions.
In contrast, Con- and Incon-patches were paired only

with either the consistent or the inconsistent scenes,
respectively. This resulted in a set of 504 patch-contexts
pairs (36 scenes × 2 conditions × 6 L/M/H-patches +
36 Con-patches + 36 Incon-patches). We split this set
into two equally large subsets, with each containing half
of the patch-context pairs from one condition and half
from the other to avoid the situation that raters would
be exposed to the same scene in both conditions. Each
rater would see one of the two subsets and thus provide
ratings for 252 patches.

Sample-size justification
For Experiment 2, we recruited 140 raters. This

sample size was largely based on the amount of
resources we deemed reasonable for running this
experiment. We planned to compare ratings for
Con- and Incon-patches for each rater as a paired
comparison (after averaging over patches; see below).
After excluding 18 raters (seeRater inclusion criteria and
inter-rater agreement section), the resulting sample-size
of 122 raters allowed detecting effects having the
magnitude of Cohen’s Dz = 0.33 with 95% power, when
using paired, two-tailed t-test and when adopting a
significance level of 0.05 (as indicated by the G-Power
3.1 software; Erdfelder, Faul, Buchner, & Lang, 2009).

Collecting meaningfulness ratings
Data collection was conducted identically to

Experiment 1. We used the same patch-rating task
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(with the order of stimulus presentation randomized
individually for each rater) and the same method
of recruiting raters (Prolific platform). The task
completion times had a median of 16.12 minutes
(interquartile range: 9.6).

Rater inclusion criteria and inter-rater agreement
We assumed that raters who followed the task

instructions would agree in their ratings to a large
degree. For example, we assumed that they would
consistently rate M-patches higher than L-patches.
Following that logic, we excluded raters whose ratings
vastly disagreed with the ratings provided by the
majority of participants. We operationalized this idea
by first measuring the agreement of ratings within
each possible pair of raters who had viewed the same
subset of patches using Krippendorff’s α (Hayes &
Krippendorff, 2007; Krippendorff, 1970). Values of
α span from negative values to 1, where 1 indicates
perfect agreement, 0 indicates the degree of agreement
achievable by chance, and negative values indicate
systematic disagreement. We calculated pairwise α for
our raters using the function kripp.alpha from the R
package irr (Gamer, Lemon, Fellows, & Singh, 2019),
with the option scaleType set to interval (setting it to
ordinal did not influence the pattern of results). Next,
for each rater, we averaged the α values from all pairs
to which this rater belonged. These per-rater average
α values (dubbed Rα henceforth) indicated the degree
to which a given rater agreed with other raters who
rated the same subset of patches. We visually inspected
the histogram of Rα values calculated for all raters
and decided that in our final sample, we would include
only raters having Rα larger than 0.40. This resulted
in excluding 18 raters and retaining 122 (importantly,
our main results do not depend on this step — see
Influence of data exclusions section). The average Rα for
the retained raters was 0.70 (SD = 0.06). Additionally,
we calculated Rα values for the excluded raters only.
These values indicated the agreement being close to
the chance level (mean = −0.06, SD = 0.20), which
means that these raters were most likely responding at
random, rather than using a common rating strategy,
consistently differentiating them from the majority of
our sample.

Experiment 2 — Results

Patches that were manipulated between conditions (Con
and Incon)

The main focus of Experiment 2 was to assess
whether objects that are semantically inconsistent with
the scene context are rated differently with respect
to the amount of meaning they convey compared to

Figure 5. Meaningfulness ratings obtained for Con- and
Incon-patches. For each rater, we averaged ratings provided for
Con-patches (light-green points) and for Incon-patches
(dark-green points). Next, we subtracted the average ratings for
Incon-patches from Con-patches and ordered the raters
according to these difference scores. The ratings for
Incon-patches, but not for Con-patches, increase along this axis.
Correlation analyses conducted for both types patches
separately confirmed this impression: the relationship between
Con/Incon differences and ratings was significant for the
Incon-patches, but not for Con. Please note that this figure was
generated after excluding outliers based on their Cook’s
distance (for details see main text).

consistent objects. Recall that each rater saw both
Con- and Incon- patches, but not the same scene in
both conditions. We averaged ratings over patches
in each condition to yield a Con- and Incon-average
rating for each rater, then compared them with a
paired-samples t-test. In line with the preliminary
findings of Experiment 1, the results demonstrate
that semantically inconsistent objects were rated as
less meaningful compared to consistent objects. This
effect was small in magnitude (mean of the differences:
M = −0.21, 95% [CI] [−0.28, −0.14]; median:
−0.17) but statistically significant (t(121) = 5.80,
P < 0.001).

To assess the contribution of the consistent
versus the inconsistent condition to this effect in a
subject-by-subject approach, we ordered the raters
by the difference between their average rating for
Con- and Incon-patches. As shown in Figure 5,
this difference seems to be largely due to changes in
ratings of inconsistent patches: although there was no
clear subject-by-subject difference in the ratings for
Con-patches, raters who contributed to the group-level
effect showed decreased ratings for Incon-patches.
This impression was corroborated by a statistical
analyses that showed a significant correlation between
Con/Incon differences and the Incon ratings (r(111)
= 0.52, 95% CI [0.37; 0.64], P < 0.001), but no such
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relationship for Con ratings (r(111) = −0.01, 95%
CI [−0.19; 0.18], P = 0.928). Note that — for each
analysis separately — we excluded points that had
a Cook’s distance higher than three times the mean
Cook distance for all points. For Con ratings, this
exclusion threshold amounted to 0.02 (0.03 for Incon)
and resulted in nine exclusions (also nine for Incon).
We applied these exclusion criteria because the initial
inspection of the data suggested that, in each case, the
effects might be driven by a small number of points,
which would have a disproportionately large influence
on regression. However, repeating the analyses with
all the data included resulted in the same pattern of
outcomes (Incon: r(120) = 0.50, 95% CI [0.36; 0.62], P
< 0.001; Con: r(120) = −0.08, 95% CI [−0.25; 0.10], P
= 0.398).

These findings suggest that there is high consistency
across raters regarding their evaluation of the
meaningfulness of objects that are semantically
consistent with their scene context. Ratings for
inconsistent objects, in contrast, revealed considerable
variability in rater behavior. Different individuals
tended to rate these objects as either lower, similar,
or higher in meaning than the consistent objects.
Ultimately, this difference not only offers interesting
insights into individual differences but also suggests
that the group-level effect is mainly driven by changes
in the ratings of inconsistent objects.

Our final analysis focused on individual scenes, rather
than individual raters, comparing ratings for Con-
and Incon-patches derived from the same scenes. For
each scene, we conducted a separate between-subjects
Welsh test comparing ratings received by Con- and
Incon- patches, similar to the analysis conducted
for L/M/H-patches. Without correction for multiple
comparisons, 13 out of 36 of these tests yielded
statistically significant results (this number was reduced
to three after applying the correction). Of these 13
cases, in 12 (33% of all scenes) the Incon-patch was
rated as less meaningful than the Con-patch. These
findings suggest that the tendency of Incon-patches
to be rated as less meaningful than Con-patches was
observable at the level of scenes too, which corroborates
the finding from the rater-level analysis.

In summary, our main analyses demonstrate two key
findings: first, we show that semantically inconsistent
objects are rated as less meaningful compared to
consistent objects. Second, the size of this effect shows
marked individual differences between raters.

Influence of data exclusions
Recall that at the initial stage of our analyses, we

excluded 18 raters (see Rater inclusion criteria and
inter-rater agreement section). To make sure that our
conclusions do not critically depend on this step, we
repeated all the analyses from the previous section with

the data from all raters recruited for Experiment 2. This
operation did not change the pattern of our results
(comparison of ratings for Con- and Incon-patches:
t(139) = 5.99, P < 0.001, mean of the differences
M = −0.20, 95% CI [−0.13; −0.27]; correlation for
Con-patches: r(138) = −0.10, 95% CI [−0.26; 0.07], P
= 0.242; correlation for Incon-patches: r(138) = 0.37,
95% CI [0.21; 0.50], P < 0.001).

Soundness check: Patches that were identical between
condition (L, M, and H)

As a soundness check, we tested whether L, M,
and H-patches were rated as low, medium and high
in meaning, respectively. We used Page’s test, a
non-parametric, rank-based statistical test assessing the
ordering of values obtained in repeated measurements
(Page, 1963), and compared the null hypothesis that
there were no differences between ratings for all three
types of patches against the alternative stating that
L-patches (mean rating M = 1.36, SD = 0.28) were
rated lower than M-patches (M = 2.44, SD = 0.55)
which, in turn, were rated lower than H-patches (M
= 4.69, SD = 0.65). We implemented the test with
the R package crank (Lemon, 2019) and conducted
it separately for patches from the consistent and the
inconsistent conditions. In both cases the results were
statistically significant (and identical numerically: L =
1708, P < 0.001), which indicated that the pattern of
obtained results matched our expectations.

To evaluate whether the presence of consistent
or inconsistent objects in a scene affect the ratings
for all patches in that scene, we analyzed whether
ratings for L-, M-, and H-patches differed between
consistent and inconsistent conditions. For each rater,
we averaged ratings provided for each of these patch
types per condition (see Figure 6), and analyzed the
averages with a 2 × 3 repeated-measures ANOVA
(with a Greenhouse-Geisser correction) with the two
within-subjects factors condition (consistent and
inconsistent) and patch type (L-, M-, and H-patches).
As expected based on the preceding findings, this
analysis also showed that ratings differed according to
patch type, as indicated by a main effect for this factor
(F(1.57, 190.25) = 2530.65, P < 0.001). The other
main effect and the interaction showed no significant
differences (condition: F(1, 121) = 0.02, P = 0.883;
interaction: F(1.35, 163.16) = 0.77, P = 0.418), showing
that average ratings for L-, M-, and H- patches did not
differ depending on whether the full scene contained a
consistent or inconsistent object.

In a final analysis of the L-, M-, and H-patches, we
focused on potential differences between individual
scenes. The previous analyses reported in this section
averaged patch ratings per rater over scenes. In our final
analysis, we took a different approach and compared
ratings provided for individual L-, M-, and H-patches
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Figure 6. Meaningfulness ratings obtained for L-, M-, and
H-patches, averaged per rater over scenes and segregated by
condition. Brighter colors indicate mean ratings from the
consistent condition, darker from the inconsistent. On the
right-hand side, density plots are shown. Our analyses revealed
a statistically significant main effect of patch type (L, M, and H)
but no effect of condition or an interaction between condition
and patch type.

across conditions. Individual patches were rated by a
separate set of raters in the consistent and inconsistent
conditions (see Stimuli and design section). We therefore
used a between-subjects Welch test to compare the
ratings for each patch individually across conditions
and found statistically significant differences only for
two patches (out of 216), derived from two different
scenes. Therefore, in the vast majority of cases, the
condition from which the context image was derived
did not influence the ratings for individual patches.

Overall, these control analyses have two implications.
First, they indicate that the raters adopted the expected
rating strategy, as suggested by the expected ordering of
values for L-, M-, and H-patches. Second, exchanging
a single object that is semantically consistent with the
scene for an inconsistent object did not have a general
effect on the rating of patches that did not contain
the manipulated object, neither on average nor on a
scene-by-scene level.

Discussion

Human fixations are attracted to objects that
are semantically inconsistent with the scene within
which they appear. One possible explanation of
these effects is that these objects carry increased
meaning, which causes people to look at them more.
This hypothesis has gained increasing attention with
the development of meaning maps, a novel tool to
index the distribution of meaning across an image
(Henderson & Hayes, 2017; Henderson & Hayes,
2018; Peacock et al., 2019). In two experiments, we
tested whether semantically inconsistent objects indeed

carry more meaning as measured by contextualized
meaning maps (Peacock et al., 2019), which have been
designed to capture such contextual effects. First, we
created contextualized meaning maps for images of
scenes containing objects that were either semantically
consistent or inconsistent and compared these maps
to eye-movement data. Although observers looked
more at inconsistent compared to consistent objects,
contextualized meaning maps did not attribute higher
amounts of meaning to the former than to the latter.
In fact, we found preliminary evidence to suggest that
the same scene location might be indexed as less rich in
meaning when it contains semantic inconsistency. In a
second experiment, we therefore asked a substantially
larger number of raters to provide meaningfulness
ratings for a carefully controlled set of image patches,
including patches that showed semantically consistent
or inconsistent objects. The results of this second
experiment provide evidence suggesting that human
observers have a tendency to judge objects that are
semantically inconsistent with the scene as slightly less
meaningful than their consistent counterparts.

The tendency of human observers to look more
at semantically inconsistent objects is considered to
be a prototypical example of semantic influences on
eye movements. Several previous explanations of this
effect implicitly or explicitly assume that semantic
inconsistency increases the amount of (semantic)
information, or meaning that is conveyed (Henderson,
2011; Henderson et al., 1999; Loftus & Mackworth,
1978). This interpretation has been strongly expressed
within the recently developed meaning map approach
(Henderson & Hayes, 2017; Henderson & Hayes, 2018;
Peacock et al., 2019; see also Henderson et al., 2019
for a review). In contrast to this notion, our direct
evaluation of contextualized meaning maps suggests
that, although they show a good overall ability to
predict human gaze patterns, they are unable to predict
influences of semantic inconsistencies, showing no
statistically significant difference between our consistent
and inconsistent conditions. Therefore contextualized
meaning maps fail to capture at least one context-based
semantic influence on eye movement control.

It is important to keep in mind that these maps
were constructed to capture context-sensitive aspects
of meaning, such as the changes in meaning induced
by the manipulations of object-scene consistency we
used here. The explicit prediction was that inconsistent
objects are more meaningful (Henderson et al. 2018;
Peacock et al. 2019), thus leading to increased fixations.
Contextualized and other types of meaning maps
are intended to be used as tools to measure specific
semantic properties, providing a means to evaluate their
role in gaze guidance (Henderson et al., 2021). However,
for a measuring device to be valuable as a tool in theory
building, it is vital that the experimenter knows what
the device is measuring. Our results are surprising
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exactly because, at first glance, contextualized meaning
maps seem well constructed to serve their purpose (that
is, to measure context-sensitive semantic information in
images that is relevant for gaze guidance). The finding
that they do not — and that the underlying rating task
results in effects opposite to those predicted (Henderson
et al. 2018; Peacock et al. 2019) — suggests that raters
can interpret task instructions in unintended ways, and
therefore the maps created from their ratings might
not index the intended scene property. Alternatively,
one may — somewhat counterintuitively — conclude
that object-context (in)consistency and contextualized
meaning measured by the maps are different constructs.
This would then raise the question of what exactly
contextualized meaning is. Indeed, generating tasks and
task instructions that measure the intended property
or process is one of the key challenges of experimental
psychology and neuroscience (Cronbach & Meehl,
1955). Our findings are important in highlighting
potential difficulties and pitfalls with rating data,
and emphasize the need for both direct evaluations
of meaning maps as a measuring tool and precise
specification of what they are supposed to measure.

Conceptualization of meaning in terms of object-
context relationships is by no means exhaustive. Other
conceptualizations have been proposed (Hayes &
Henderson, 2021; Hwang, Wang, & Pomplun, 2011;
Rose & Bex, 2020) and the idea that there might be
several subtypes of meaning that are important for
eye movements has been suggested by other authors
(Henderson et al., 2018; Henderson & Hayes, 2018).
Our findings indicate that contextualized meaning
maps and patch ratings do not capture the effect of
semantic object-scene relationships on eye movements,
but they might measure other types of meaning (see
also Henderson et al., 2021). The critical question
therefore is what type of gaze-relevant meaning they
might measure.

Answering this question is impeded by the fact
that it is far from clear what raters are doing when
asked to provide meaningfulness judgments for image
patches. Consequently, it is impossible to say with
certainty which semantic (or nonsemantic) properties
of images meaning maps measure. Several different
interpretations of our findings are therefore possible,
and further studies with additional manipulations will
be required to clarify this issue. In our view, one of
the most important points will be to more carefully
consider the role of the instructions given to raters. In
both experiments, we used the instructions from the
original contextualized meaning maps study by Peacock
et al. (2019). These instructions define meaningfulness
in rather vague terms by linking it to informativeness
and recognizability. Raters are instructed as follows:
“We want you to assess how ‘meaningful’ an image is
based on how informative or recognizable you think
it is.” Our study shows that, at the group level, such

instructions lead to lower meaningfulness ratings
for objects that are semantically inconsistent with
the scene context. One possible explanation for this
result is that raters find it more difficult to recognize
inconsistent objects (“What is that on the sink there?
A shoe?”) and might therefore rate the meaningfulness
of the patch lower (emphasizing the “recognizable”
component of the definition of meaningfulness used
by the meaning maps approach). Indeed, previous
studies demonstrated that semantically inconsistent
objects are harder to recognise and process (Oliva &
Torralba, 2007). Other raters might emphasize the
“informative” component of the instructions. Note that
informativeness and recognizability do not necessarily
concur: a highly informative object can be difficult to
recognize, and vice versa. This potential dissociation,
together with the ambiguity of the instruction, makes
it difficult to pinpoint exactly what type of meaning
contextualized meaning maps might measure. Also
note that the ambiguity of the instruction may cause
higher intersubject variability in the inconsistent
condition because raters might be unsure about how to
interpret the image manipulations in the context of the
instructions.

Other instructions would likely lead to qualitatively
different findings. For instance, imagine observers
were given identical instructions to those used in
our study except that they were also told that the
images in the study show crime scenes. It seems
plausible that raters would pick out the semantically
inconsistent objects as being particularly meaningful
in this context (emphasizing the “informative” aspect
of the instruction). More generally, adjusting task
instructions (and, potentially, the parameters of
grids used for segmenting scenes into patches) can
potentially serve two different goals. First, it may
change the theoretical purpose of the resulting meaning
maps by changing the kind of semantic information
they measure, a direction that is already pursued by
the original authors of the meaning maps approach
(Rehrig, Peacock, Hayes, Henderson, & Ferreira,
2020). As we discuss above, our results are relevant
to this endeavor, because they highlight the potential
for unforeseen pitfalls when using meaning maps as
a measuring device. The second purpose of adjusting
task instructions — without corresponding assessment
of what exactly the resulting maps measure — could be
to find those instructions that maximize the predictive
power of the resulting maps. While being an interesting
direction for exploratory research, such an approach
would entail treating meaning maps not as a tool
to measure the distribution of semantic features in
scenes, but as another method of predicting human
fixations: a crowd-sourced saliency model (Koehler
et al., 2014). That is, a method that prioritizes the
quality of predictions over both the interpretability
of mechanisms generating these predictions (that is,
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the ability to identify factors determining the accuracy
of predictions) and the explanatory power (that is,
the amount of gained insight into human oculomotor
control).

Alternatively, the variability in responses in the
patch-ratings task in its current form makes this task
a potentially interesting tool for indexing individual
differences (Hedge, Powell, & Sumner, 2018). Although
we currently lack clarity regarding the processes
underpinning the selection of rating values, further
research, combining the patch-rating task with
other measures, might shed more light on this issue,
and thereby on individual differences in how the
content of natural scenes is processed. This topic is
still understudied in the context of eye movements,
despite the evidence showing that such individual
differences exist (De Haas, Iakovidis, Schwarzkopf, &
Gegenfurtner, 2019; see also Kröger, Lutz, & Müller,
2020).

Our experimental design ensured that raters never
saw the same scene both with the semantically consistent
and the inconsistent object. However, all raters saw
(different) scenes with both types of objects. Given
the large number of scenes viewed by each individual,
it is therefore possible that participants inferred the
experiment’s focus on object-scene relationships, which
might have biased their meaningfulness ratings. This
consideration illustrates a more general issue with
the procedure of asking raters to view and rate many
images in a row but, in the analysis, to implicitly assume
that ratings are independent. To limit the problems
caused by potential nonindependence of individual
ratings, future studies might need to drastically decrease
the number of patches rated by a single rater.

Given the limitations of human rating data, current
developments in computational approaches might
provide alternative methods that could contribute
to a better understanding of the role of high-level
factors in eye movement control, including semantic
information and meaning. A number of authors have
attempted to develop indices of these high-level aspects
of visual input by applying techniques to images that
have originally been developed in natural-language
processing (Hayes & Henderson, 2021; Hwang et
al., 2011; Lüddecke, Agostini, Fauth, Tamosiunaite,
& Wörgötter, 2019; Rose & Bex, 2020; Treder,
Mayor-Torres, & Teufel, 2020), particularly in the field
of distributional semantics (Harris, 1954). Although
these computational methods come with their own
limitations, they have a number of advantages over
human rating data: they are comparably inexpensive,
fast, easy to use and can comfortably be applied to
large image data sets because of their automation.
Moreover, computational tools have the potential to be
less opaque compared to human rating data and might
be more amenable to detailed analyses of which aspects
of high-level scene content contributes to eye movement

control. For instance, the finding that humans look
more and longer at semantically inconsistent objects
might be based purely on a statistical analysis of object
co-occurrences in visual scenes (see Wang, Hwang, &
Pomplun, 2010). Not surprisingly, recent analyses of
image datasets with more than 20 000 images indicate
that different scene categories indeed show a highly
consistent clustering of object types (Treder et al.,
2020), and the oculomotor system might exploit these
regularities for outlier detection. This interpretation
of the influence of object-scene inconsistencies on eye
movements is similar in spirit to earlier notions of
saliency (Bruce & Tsotsos, 2009), but transfers this
idea from a low-level (feature-based) to a high-level
(object- and scene-based) analysis of the visual input.
While — most likely — being an important contributor,
co-occurrence per se does not necessarily amount to
a semantic relationship between objects, or meaning.
And some computational approaches, such as the one
developed by Treder and colleagues (2020), might have
the potential to determine whether oculomotor control
relies purely on basic co-occurrence or transforms these
raw data further into a type of information that is closer
to what we might label “meaning.”

To summarize, introducing semantic inconsistencies
to a scene region by replacing a semantically consistent
object with one that is semantically inconsistent did
not increase the amount of meaning attributed to
this region by contextualized meaning maps, despite
increasing the number of human fixations landing
on this region. Therefore, even though the maps
predicted human fixations well for scenes containing
only consistent objects, they are not able to account
for semantic influences on human gaze-allocation
linked to semantic object-context inconsistencies.
In fact, data from both of our experiments provide
evidence suggesting that human observers might
have the tendency to rate semantically inconsistent
objects as slightly less meaningful than their consistent
counterparts. Our results further highlight the need for
improved conceptualization and methods to investigate
the role of semantic information in human oculomotor
control.

Keywords: eye movements, scene perception, meaning
maps, semantic inconsistency
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