
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/146739/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Shackel, Nicholas 2022. Uncertainty phobia and epistemic forbearance in a pandemic. Royal Institute of
Philosophy Supplement 92 , pp. 271-291. 10.1017/S1358246122000248 

Publishers page: https://doi.org/10.1017/S1358246122000248 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



1

Uncertainty Phobia and Epistemic Forbearance in a Pandemic

Nicholas Shackel December 2021

Forthcoming in Values and Virtues for a Challenging World. Eds. Jefferson, A. et al.
Cambridge: Cambridge University Press.

In this chapter1 I show how challenges to our ability to tame the uncertainty of a
pandemic leaves us vulnerable to uncertainty phobia. This is because not all the
uncertainty that matters can be tamed by our knowledge of the relevant probabilities,
contrary to what many believe. We are vulnerable because unrelievable wild uncertainty is
a hard burden to bear, especially so when we must act in the face of it.

The source of unrelievable wild uncertainty is that the nature of probability
distributions matters for whether knowledge of them tames uncertainty. It matters because
a warrant for the taming is provided by two theorems, but this warrant applies only to
some kinds of probability distribution. Essentially, this is because the theorems are about
what happens at a mathematical limit but real life never reaches the limit. Consequently,
the warrant depends on how quickly the random processes producing the uncertainty
converge towards their limit. If they are governed by one class of probability
distributions, they converge quickly enough to possess the warrant. If they are governed
by another class of probability distributions, they converge towards their limit too slowly
and so do not possess that warrant. The random processes of pandemics involve the slow
kind .

Faced with such a burden, as we are in a pandemic, we are tempted to retreat into
uncertainty phobia, leading to fixed definite opinions, precisely when the exercise of
sound judgement to determine our responses requires our opinions to be hedged and
mobile. Coping with a pandemic requires us to bear the burden of unrelievable wild
uncertainty rather than give in to the temptation of uncertainty phobia. Pandemics require
the virtue of epistemic forbearance.

1. Confidence: certainty, uncertainty, evidence and stakes

When we act on the basis of a belief what we do depends on our confidence in the
proposition believed.2 If we are certain, we usually act without hesitation: if we are not,
we take precautions. Our confidence in a proposition should vary with the balance of
evidence. Strong evidence in favour leads to certainty in its truth, strong evidence against
leads to certainty in its falsehood. As evidence weakens, certainty weakens into
uncertainty. Sketching this as a graph, this variation in our confidence would look
something like figure 1.

1 My thanks to Jon Webber for very helpful comments and suggestions. This paper was written
duing my tenure of the 2021-22 Mind Association Major Research Fellowship, for which award I
am very grateful.
2 Here, a proposition is what is believed, or what is asserted by an assertion, rather than a
proposal. For example, if I say or believe the bridge is safe, what I say or believe is the
proposition that the bridge is safe.
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Figure 1 Mundane confidence. x-axis for the balance of the evidence for and against the
proposition, i.e. balance positive is support for its truth, balance negative is support for
its falsehood. y-axis for confidence: positive is confidence in truth, negative is confidence
in falsehood.

Certainty has its own range, from fairly certain to absolutely certain, as does uncertainty.
The boundaries are vague of course, and the box of uncertainty is just a rough indication
of the extent of uncertainty’s relation to evidence. But this is a useful model nonetheless.
(There are no units on the axes here because these graphs are intended only to illustrate
the features of how confidence varies with evidence.)

Bearing in mind that the confidence I am speaking of is the confidence to act on a
belief, it is clear that confidence does not depend only on the evidence. In mundane cases,
where the practical consequences of our belief being mistaken are not severe, it makes
sense for our confidence to increase quite quickly with the evidence. For example, if the
badness of being late is mild then, being fairly certain from memory that the bus departs
at 5.10pm and so we will get it if we leave now is reasonable (even if in fact it departs at
5.05pm and so we miss it). We will call such examples low stakes cases. For high stakes
cases we need stronger evidence to be certain and the relation of our confidence to
evidence looks more like figure 2.
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Figure 2 High stakes confidence.

Note how much greater the area of uncertainty is for high stakes cases. When our reliance
on a belief has bad consequences if we are mistaken, then we should not be certain
without stronger evidence. If missing the bus means missing the train which means
missing the plane, for example, instead of relying on the evidence of my memory of the
timetable, I should get stronger evidence by checking the various timetables. 3

2. Taming uncertainty

The main tool we have developed to tame uncertainty is the mathematical theory of
probability. Our hunger for certainty about how things are can be satiated instead by
certainty in the probabilities of how they might be. We bear the uncertainty by being able
to plan on probabilities. Confidence in probability reassures us and thereby suffices for
acting despite uncertainty whilst giving good guidance for how to act with the precaution
required by uncertainty.

When it comes to sophisticated applications to complex problems, knowing the relevant
probability need not be as simple as knowing a specific numerical value. Probability
functions map entire sets of possibilities onto probabilities and knowing such a
probability function—knowing the probability distribution over those possibilities—
greatly increases our power to tame uncertainty. There are many classes of probability
distribution and each member of a class is picked out by few parameters. For example,
each Normal distribution is distinguished from all the others by its mean and variance.

It is often as important to know the class of probability distribution as to know specific
numerical probabilities. Even when one does not know the parameters that are needed to
derive the numerical probabilities, knowing the class of distribution allows knowing
various qualitative features of the uncertainty faced, features which may be as important

3 These kinds of rational influences of practical stakes are well known from the contextualism
versus invariantism for knowledge debate. They are used to motivate contextualism and challenge
invariantism, although here I am not taking a side in that debate (but see Shackel, 2011, MS-a).
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as knowing the exact probabilities in planning what to do and responding to a developing
situation.

Furthermore, knowing the class of distribution allows us to know how good an estimate
of the relevant parameters the available data give. So we can know how good our estimate
of the probabilities is despite a paucity of available data. For example, if we know that the
distribution of car crashes is a Poisson distribution (Nicholson and Wong, 1993), we may
be able to get good estimates, and know just how good those estimates are, for a particular
road with little traffic and little crash data.

Consequently, the power of probability to tame uncertainty goes well beyond numerical
probabilities. Taming uncertainty is multifaceted, from knowing probabilities through
knowing means and variances, knowing probability distributions, to knowing how well
calibrated the predictions on which we base our actions are likely to be.

3. Tolerable and dangerous risks

In general, the uncertainties that most interest us are unknown facts and events which
may bring benefits and may bring harms. A risk is a possibility of a harm and taking a risk
is doing something that may bring a harm. A tolerable risk is one for which the possible
harm is predictably endurable. A dangerous risk is one for which the possible harm is
unpredictably unendurable. An intolerable risk, of predictably unendurable harm, is
almost always stupid to take (the exceptions, if there are any, being where they are
accompanied by the possibility of enormous benefits), so we won’t bother thinking about
those here. What is endurable, and therefore what is tolerable or dangerous, depends to
some extent on context and feasibility, of course. What is tolerable or dangerous will also
vary with who is doing the choosing. For example, what may be a dangerous risk for an
individual may be a tolerable risk for a government, just because societies can endure
despite the loss of some of their constituent individuals.

How, then, do we know which risks are tolerable and which dangerous? Much of life
confronts us with this question, since much of life consists in taking opportunities for the
sake of their possible benefit and doing so despite their risks. A pandemic confronts us
with this question relentlessly.

The issue turns on predictability. Where we have certainty, predictability follows.
Where we have uncertainty, there we have difficulty. There are usually many different
uncertainties that we need to consider. The harm we risk for each opportunity need not be
singular but may extend over a range of bad things. If we drive to the beach, the possible
harms run from negligible to devastating damage to the car and ourselves, yet together
these form a tolerable risk. So the phrase ‘predictably endurable’ does not mean no
possibility of a harm great enough to be unendurable. It means the range of harms that we
expect are endurable. Driving to the beach is a tolerable risk because devastating damage
to the car and ourselves is sufficiently unlikely to be outwith the range we expect. In
general, what we want to be able to do is predict that range.

Here is where the taming power of probability may enter. If we know the probability of
harms, then we can predict that range. We can replace our uncertainty over the harm with
certainty over probabilities of harms. We can then examine the tolerability of the risk in
various ways: for example, we can consider the ratio of chances of the range of endurable
harms versus unendurable harms; if the harms themselves are quantifiable we can
calculate the mean (the mathematical expectation), variance, skewness etc., and can give
error bounds; and so on. In this way we can predict mathematically whether the harm is
endurable or not.

Or at least, so it appears. The assumption lying behind this appearance is that good

knowledge of probability tames uncertainty, by which I mean allows us to calculate
probabilities that are close to true probabilities and to make reliable predictions.
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Unfortunately, whether this assumption is true varies with the class of probability
distributions involved. Here is not the place to rehearse my formal arguments on this
point.4 Here is the place to simply report their results.

In short, uncertainty is born wild. Good knowledge of what I call tame probabilities
suffices to tame uncertainty and good knowledge of what I call wild probabilities leaves
uncertainty wild. Uncertainty involving wild probabilities can be entirely tameable or may
instead take a very long time and a great deal of data to tame.

The borderline between tame and wild probabilities is usually the borderline between
thin and fat-tailed probability distributions. What this means is illustrated in figure 3.

Figure 3 Probability density curves showing a thin and a fat-tailed distribution.

Here, the probability that an event is within a given range is the area under the curve (see
shading for examples). The solid line distribution is called thin-tailed because its tails on
either side get very close to zero quickly. The dashed line distribution is called fat-tailed

because the tail takes a long time to get similarly close to zero. This means that extreme
events are extremely unlikely for thin-tailed distributions but not for fat-tailed ones..

The distinguishing feature of a random process governed by a fat-tailed distribution is
that events from that tail will dominate the cumulative result of repeated events from that
random process, whereas for thin-tailed distributions it is events from the centre of the
distribution that dominate. For example, if wealth has a fat-tailed distribution and we
select at random a large enough sample of people, it is almost certain that nearly all of the
total wealth is contributed by a single very wealthy person (e.g. a billionaire) than by a lot
of wealthy people (e.g. millionaires). By contrast, height has a thin-tailed distribution and
if we select at random a large sample of people, it is almost certain that nearly all of the
total height is contributed by many people close to the mean rather than by a few
extremely tall people.

If we have a process involving only thin-tailed probabilities, we can presume that good
knowledge of the probability tames uncertainty. If the process involves fat-tailed
probabilities, the uncertainty remains wild. These presumptions are not exceptionless, but

4 I provide these formal arguments in my forthcoming paper, ‘Wild Uncertainty in a Pandemic’
(Shackel, MS-b).
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an exception must be proved, not assumed. The reason for this is to do with the warrant
from a pair of theorems, which is explained in section 5.

4. Taming Uncertainty in the Covid-19 Pandemic

We use epidemic models to attempt to tame the uncertainty of a pandemic. They have
been widely used during the Covid-19 pandemic (e.g. Anastassopoulou et al, 2020;
Calafiore et al, 2020; Cooper et al, 2020; Ferguson et al, 2020; Ferrari et al, 2021;
Martínez, 2021; Shringi et al, 2021). In this section and the next I will give a very much
simplified description of why, at the beginning of a pandemic and for some considerable
time, epidemic models leave uncertainty untamed.5

The fundamental issue is that both in estimating the parameters of epidemic models
and in then using those models to make predictions, we rely on two theorems, the central
limit theorem and the law of large numbers. The power of these theorems is that they
apply to any underlying probability distribution,6 whether thin or fat-tailed, and they even
apply when we don’t know what those underlying probabilities distributions are. It is on
this power that we rely for a warrant that the epidemic models tame the uncertainty.

The central limit theorem assures us that the features of our observed samples are close
to the features of the whole population, and thereby give us good inputs for our model.
The law of large numbers tells us that the future observed outcomes will be close to our
predictions. These theorems are therefore essential to justifying any claim that the
probabilities of future eventualities determined by an epidemic model (such as the
probabilities of numbers of hospitalizations next month) will be close to the truth. Without
these theorems, we have no good reason to believe that these predictions will be reliable.

Consequently, these two theorems are needed for our epidemic models to tame
uncertainty. Let us call their warrant to this effect the warrant from theory.7

Our attempts to tame the uncertainty of a pandemic involve complex concatenations of
models. Estimates of pandemic parameters can themselves rely on models and the use of
those models relies on those estimates, and this mutual feedback may involve a number of
different epidemic models. There are also many other kinds of models involved in coping
with a pandemic, which concern the effect on our myriad normal activities when large
numbers of people are falling sick. For example, health services use models to plan
priorities, beds, staffing and supplies. These other models take as inputs the outputs of the
various epidemic models, thereby adding further concatenations into the mix. The extent
of such concatenations of models makes it very hard to disentangle and trace the routes of
reliance on our two theorems. We have no audits tracing where we rely on the warrant
from theory and where we do not. In the absence of such audits, our use of epidemic
models to attempt to tame the uncertainty of a pandemic depends quite generally on the
warrant from theory.

5. Untameable uncertainty in the Covid-19 Pandemic

Unfortunately the warrant from theory, whilst satisfactory for thin-tailed random
processes, can fail for fat-tailed ones. The source of the problem is that, technically, the
two theorems are about what happens at the limit, i.e. as the number of observations tends

5 For the explanations of what I here can only report, see Shackel, MS-b
6 For the former theorem to apply, a probability distribution must have both mean and variance,
for the latter it must have a mean.
7 There are other warrants on which we rely as well, of course, such as the empirical science
justifying the epidemic models. Their failure would pose a different problem from my concern
here, since absent such warranted models, we would lack good knowledge of the probabilities and
so we would know that we lack the basic tool to attempt to tame the uncertainty. So for our
purposes we can assume all those warrants are in place.
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to infinity. In real life, it can matter how quickly the accumulation of outcomes converges
to the limit, i.e. how many observations you need to be within a specified distance of the
limit. Thin-tailed random processes converge quickly, fat-tailed random processes
converge slowly, sometimes very slowly indeed. This makes a huge difference to the
sample size needed for an estimate of a parameter to be within a specified distance of its
true value. For example, it can take only 30 observations of events governed by a Normal
distribution (which is always thin-tailed) for our estimate to be highly likely to be that
close. To get that close with a Pareto distribution8 (which is always fat-tailed) it takes
100,000,000,000 (one hundred thousand million) observations (seeTaleb, 2020, p.40).

So where a random process involves fat-tailed probabilities, even if we know which
class of fat-tailed probability distributions are involved, the warrant from theory fails
because convergence is too slow. It can be so slow that we simply cannot get a large
enough sample for the central limit theorem or the law of large numbers to apply. Even
where over time we may accumulate large enough samples for them to apply, it may still
take a very long time before we have achieved that accumulation needed for the warrant
to be in place.

Here, then, is why the presumption must be that thin-tailed distributions are tame
probabilities and fat-tailed distributions are wild probabilities. In general, and provably
so, thin-tailed distributions converge quickly enough to have the warrant from theory
whilst fat-tailed distributions do not converge quickly enough and do not have the
warrant. To take an exception, therefore, requires fulfilling a burden of proof. For
example, needing to rely on a specific fat-tailed distribution being an exception to this
general rule requires being able to show that its convergence to the limit is sufficiently
atypical for the class of distributions to which it belongs. Sufficiency here is determined
by the purposes for which one needs to rely on it.9

Pandemic random processes involve a number of crucial fat-tailed distributions. The
number of deaths caused by a pandemic is one good example. An analysis of 72
pandemics from the past 2500 years, with estimated deaths for each one scaled to the
current world population, shows that the cumulative effect of these pandemics is
dominated by a few extreme events: the Plague of Justinian (541–549 AD) and the Black
Death (1346-1353 AD) each claimed the equivalent of more than two billion lives; the
five next largest pandemics each claimed the equivalent of more than 100 million lives
(Cirillo and Taleb, 2020, pp. 608-9). The characteristic of a fat-tailed distribution is
precisely that the cumulative effect is dominated by a few extreme events from the
distribution's fat tail. This analysis shows that deaths from pandemics form an extremely
fat-tailed probability distribution (Cirillo and Taleb, 2020, p. 606).

Another good example is a critical input to epidemic models. The reproduction rate
(also called the reproduction number) is the number of secondary infections per infected
person, i.e. how many people an infectious person infects during the time they are ill. The
reproduction rate is the mean of the random variable, P, which for each infected person
takes the value of the number of people that person infects.

Someone is called a ‘superspreader’ if their value for P is high, although different
authors give different thresholds. Recalling that fat-tails mean single events produce most
of the cumulative effect, the existence of superspreaders is itself an indicator of a fat-
tailed distribution. We have very good evidence that the transmission of Covid-19 has

8 This particular Pareto distribution generates outcomes fitting the Pareto 80/20 principle: see
below.
9 For example, the class of log-normal distributions is at the borderline. Those with low variance
can be thin-tailed but those with high variance are fat-tailed. We might be in the position to prove
which we had, which might then allow us to treat it as an exception.
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been heavily determined by superspreading. According to one study, 60–75% of cases
infect nobody, while 10–20% of cases cause 80% of all secondary infections (Chen et al,
2021; see also Hasan et al, 2020; Lau et al, 2020; Sun et al, 2021).

This estimate fits the Pareto 80/20 principle, named after the economist who first drew
it to our attention (Pareto, 1896). The class of fat-tailed probability distributions called
Pareto are so-called precisely because random processes with such distributions exhibit
this pattern. When we see a random process exhibiting such a pattern, the underlying
random variables are probably fat-tailed. Hence, the underlying random variable P for
Covid-19 probably has a fat-tailed distribution. Recent research supports this conclusion.
Wong and Collins have shown how where there is superspreading, the probability
distribution of P is fat-tailed, and conclude that

combine[d] empirical observations of SARS-CoV and SARS-CoV-2
transmission and extreme value statistics…show that the distribution of
secondary cases is consistent with being fat-tailed, implying that large
superspreading events are extremal, yet probable, occurrences. (2020,
p.29416)

Estimating the reproduction rate is, then, a matter of estimating the mean of a fat-tailed
random variable. This is very hard to do well. We have already seen that it can require an
enormous sample for our estimate to be as accurate a sample size of 30 would give for the
mean of a thin-tailed distribution. The second problem is that we will systematically
underestimate the mean because the overwhelming majority of samples from systematic
random sampling will not include those rare superspreaders at all.10

A third good example of a fat-tailed distribution involved in the spread of Covid-19
concerns the network of human acquaintances. The human world consists of many
clusters of mutually acquainted people, some of whom are acquainted with people in other
clusters. Pandemics can spread easily within a cluster, any member of which can then
spread the infection to another cluster by infecting an acquaintance of theirs in that other
cluster. Someone who is very well connected, which is to say, has many acquaintances,
can therefore spread the infection to many clusters.

The number of acquaintances of a person is a random variable. If that random variable
is fat-tailed the network will be what is called a small-world network, which in this case
would mean that although most humans are not acquaintances, a path from one person to
another consisting entirely of acquaintances has, on average, a fairly small number of
people in it. A small enough mean path length implies that the random variable is fat-
tailed.

We know that the network of human acquaintances is a small-world network (Milgram,
1967; Collins and Chow, 1998) with a remarkably short mean path length. Milgram’s
originating experiment (Milgram, 1967) found 5 or less steps of acquaintance sufficed
within the US. and Watts and Strogatz estimated the global mean path length to be 6
(1998). Consequently this evidence shows human acquaintance is probably governed by a
fat-tailed random variable.

So the paths of pandemic transmission are significantly constituted by the network of
human acquaintances. This is why the more complex stochastic epidemic models attempt
to include the random processes of human acquaintance, movement and meetings that
ground the causal transmission of a pandemic. The network is a small world with a fat-
tailed random variable governing the number of acquaintances. Watts and Strogatz have
shown that

10 For the technical details of this, see Shackel, MS-b.
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infectious diseases are predicted to spread much more easily and quickly in

a small world. (1998, p.442)

Hence there are network features grounding the causal transmission of pandemics that
have fat-tailed distributions and these are parameters for the more complex stochastic
models.

Our epidemic models of Covid-19 thus depend on inputs and parameters that are
derived from random processes governed by fat-tailed probability distributions. The
probabilities are therefore presumptively wild. In the absence of proof that they are
exceptions to the general rule of fat-tailed distributions, we would require huge samples to
overcome their slow convergence to the limit before our estimates attained the needed
accuracy for reliable model outputs. Since we do not have such enormous samples, the
warrant from theory fails. The wild uncertainty of a pandemic remains.

Could we ever, given enough time, accumulate enough data to finally tame this
uncertainty? The answer to this question is unclear. It may depend on the specific fat-
tailed probabilities involved. Some fat-tailed distributions have no variance and even no
mean and for them no warrant from theory is ever directly available.11 Any uncertainty
governed by such distributions may be completely untameable!

Our need for the warrant from theory is strongest at the beginning of a pandemic,
because then our data is most limited. It continues strongly for some considerable time.
First, and unavoidably, because of the slowness of convergence of any fat-tailed random
processes involved and the consequent inaccuracy of estimation. Second, as the pathogen
itself evolves, the parameters of the pandemic random process that we are trying to
estimate may not be stationary phenomena. Similarly, our responses that attempt to
constrain the pandemic change the environment within which it operates and this can
produce a moving target for our estimates. All such non-stationarity weakens the extent to
which the accumulation of data over time strengthens the quality of our estimates.

We need to be aware here of hindsight bias. Eventually, we will be able to fit our
models to many years’ worth of data and at that point our models will seem able to predict
the course of that historical pandemic. But this does not mean that we could have built
these models and tamed our uncertainty when we needed to during that pandemic.12

In conclusion, then, Covid-19, in common with pandemics in general, has exhibited fat-
tailed random processes and we have no audit tracing the routes for the warrant from
theory, so we have no audit of its failure. In the absence of that audit, the failure is quite
general. So initially and for some considerable time, the Covid-19 pandemic faced us with
untamed uncertainty.

6. Taming failures during the Covid-19 pandemic

At first slowly, and then quickly, we became aware of the dangerous risks of Covid-19.
We saw repeated reversals in government policy as governments attempted to ‘follow the
science’. When we looked at the science, we saw persistent wide divergences in estimates
and predictions coming from the models of different teams of experts and persistent
failures of model predictions.

For example, in August 2020 Ioannidis et al pointed out that on 27 March 2020
‘brilliant scientists expected 100,000,000 cases accruing within 4 weeks in the USA’
(Ioannidis et al, 2020, p.1). By contrast, the US Centre for Disease Control reports total

11 I say not directly because there are some technical things we can do when there is an upper
bound on a random variable which may ameliorate (but cannot get around) this problem.
12 An illustration of the difficulty here is from the research on the stock market showing models
well fitted to even many past years quickly fail to predict the future, and when a model is then
built to countenance the new failures, it too fails for its future. (Fama, 1970; Summers, 1986;
Bernstein, 1992; Mandelbrot and Hudson, 2004)
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cumulative positive specimens from 1st March to 25th April 2020 as 702,814 (United
States Centre for Disease Control, 2020, p.3). Of course, there were more infections than
positive specimens, but this fact cannot account for such an enormous disparity.

Similarly, the team at Imperial College London predicted in March 2020 that there
would be roughly 1,500,000 deaths across the UK and the USA by the middle of June
2020 (Ferguson et al, 2020).13 In fact the number of deaths across the whole world by
that date was less than one-third of that number ((Ioannidis et al 2020, p.1). Ioannidis et al
found instances of the same model going wrong in both directions: ‘the model initially
over predicted enormously, and then it under predicted’(2020, p.4). Additionally,

even for short-term forecasting when the epidemic wave waned, models
presented confusingly diverse predictions with huge uncertainty. (2020, p.3)

Ioannidis et al conclude that

despite involving many excellent modellers, best intentions, and highly

sophisticated tools, forecasting efforts have largely failed (Ioannidis et al,
2020, p.1)

Subsequent research has confirmed this impression of unreliability. James et al note ‘A
proliferation of models, often diverging widely in their projections’ (2021, p.379). Poor
calibration has been observed. Poor calibration means (in this case) that predictions
diverge from actuality and do so with frequency lying outside predicted probabilistic error
bounds. For example, predictions of 1000 deaths per day with a 95% confidence interval
of 100 would be poorly calibrated if actual deaths were outside the range 900-1100 more
than 5% of the time. Gnanvi et al (2021) report the poor calibration of the Covid-19
pandemic models they studied. 25% were outside their 95% confidence intervals for
numbers of cases when only 5% should have been. Endo et al conclude that ‘calibration of
the [mortality risk] models were poor’ (Endo et al, 2021, p.1). See also Eker, 2020;
Holmdahl and Buckee, 2020 and for a general overview see Cepelewicz, 2021.

Evidently, such failures of prediction mean that calculations of probabilities and
predictions using these models did not tame the uncertainty of Covid-19, at least initially
and for some considerable time. The epidemic models used were well grounded in current
methodologies and literature and, whilst no one would claim they are flawless, their
warrant is commensurate with scientific warrants in medicine in general. The failure of
those models therefore shows that the conclusion of section 5, that the Covid-19
pandemic faced us with untamed uncertainty, was manifest during the first six months of
the Covid-19 pandemic.14

7. Uncertainty Phobia

Uncertainty is burdensome and it is especially burdensome in high stakes cases, when
distinguishing tolerable and dangerous risks is very important. It is partly its burden that
drives us to eliminate it by seeking better evidence. Yet sometimes no better evidence is
available and still we must act. The burden of such unrelievable uncertainty can drive us
instead to an irrationality I shall call uncertainty phobia. Instead of bearing the uncertainty
we may end up responding like figure 4:

13 It is tricky to extract exactly the cumulative predicted figure from that Imperial College report
(Ferguson et al, 2020), but mid-June is about the peak daily deaths in those predictions that were
for total 500,000 UK deaths and 2,200,000 US deaths in that wave (assuming no mitigation).
Since mid-June is halfway through that wave, this means predicted deaths of roughly 1,500,000
between the UK and the US by that point.
14 For avoidance of doubt, I am not arguing that epidemic models have no use in managing a
pandemic. Rather, when they leave uncertainty wild, we need to think harder about just what help
they can yet provide. For more on this, see Shackel MS.
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Figure 4 Uncertainty phobic confidence.

The dotted diagonal of the S-shape may be steep or shallow. What is critical is that this
fold in our response removes uncertainty by making the range of uncertain confidences
unavailable. If the evidence changes against our belief, we may continue to be certain
even when the evidence turns negative, until it reaches a point at which we suddenly
switch from being certain true to certain false (and vice versa). Consequently, there is no
area of uncertainty because our confidence can never take a place on the dotted diagonal.

If we fall into uncertainty phobia over a question, we will be certain even when we

should not be. Which way we will be certain will be path dependent. Whichever side of a
question we were on as the stakes rose, and however weakly we were on that side, we will
end up certain on that side.

This also means that uncertainty phobia will amplify the effects of even very small
irrationalities already in place. I doubt we have the ability to avoid small irrationalities,
such as neglecting entirely some weak but uncongenial evidence. Were such an
irrationality to place us very slightly on one side of a question when we should have been
slightly on the other, that small irrationality determines where we end up fixed.

The upshot here is that anyone driven into uncertainty phobia on any questions will be
stubbornly certain, unreasonably so, on those questions. How exactly we would sustain
and rationalise our stubborn certainties is an open question. There are various well-known
kinds of cognitive error that would suffice. One well known example is confirmation bias:
our tendency to notice and remember evidence that seems to confirm the belief we already
hold at the expense of evidence that counts against it. But really, the problem is far worse
than that, since in uncertainty phobia, even whilst we may be taking in the balance of the
evidence accurately, we have almost entirely lost our graded sensitivity to it.

What has driven us here is that the height of the stakes makes distinguishing tolerable
and dangerous risks very important and the unrelievable uncertainty has removed our
ability to do that rationally. As a result, we have evaded the zone of uncertainty altogether.
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These practicalities are in the driving seat and cognition is, for the time being, their
passenger.

There may be times when this is perfectly rational. For example, imagine that you must
leap over a yawning chasm to save your life, and we know that you are more likely to
succeed if you act with certainty that you will succeed. In such a case, it may be
practically wise to become (however temporarily) uncertainty phobic so that you can
acquire the certainty you need to succeed, despite this being theoretically irrational. That
we have this ability may even be an evolved tendency.

That being said, a lot of the time uncertainty phobia is badly irrational. When we, both
individually and together, are addressing sustained wavering evidence bearing on
prolonged high stakes activities requiring good judgement to distinguish tolerable and
dangerous risks, uncertainty phobia is going to be unwise just because it is theoretically
irrational. In such cases, I think we can safely say that uncertainty phobia is an epistemic
vice.

8. Polarisation in Response to Covid-19 Untameable Uncertainty

That our response to high-stakes unrelievable uncertainty can be uncertainty phobic
makes an empirical prediction: when stakes are high and when the evidence is wavering
around for a long time whilst action must be taken, we will see a polarisation of opinion
on many of the relevant factual claims and consequent polarisation on what should be
done. Such a polarisation is simply the upshot of widespread uncertainty phobia. Many
people are stubbornly certain on all these questions and the polarisation between their
individual certainties is the amplification of even the slightest original disagreement.

The conclusion of section 5, in short, is that pandemics in general and Covid-19 in
particular face us with sustained, unrelievable, wild uncertainty. Of course, for any
particular one of us, that the uncertainty is unrelieved need not depend on the fact that the
uncertainty is wild. For example, in a case where tame probabilities tame the uncertainty,
we may happen not to know of the taming. We may, however, learn of the taming and
may see its manifestation in the management of a situation, and in that way have our
uncertainty relieved. The problem in a pandemic is that (at least initially and for some
considerable time) the uncertainty is not simply unrelieved but is unrelievable just
because it is wild. In that case, any claim that the models are taming the pandemic
uncertainty is not true. In fact, it is propaganda. The failure to tame will become evident
soon enough and that failure itself may drive many people to uncertainty phobia when
they realise they have been deceived.

So the prediction made by uncertainty phobia applies to the Covid-19 pandemic. It
seems to me that the prediction is satisfied to a significant degree by what we have seen
during the pandemic. We have lived through prolonged unrelievable uncertainty and on
many questions of fact and policy opinions have become polarised. This suggests that a
lot of us, perhaps all of us, have some tendency to uncertainty phobia. To what extent we
might be uncertainty phobic is, of course, a question to be investigated by empirical
scientists rather than by philosophers like myself.

9. The Virtue of Epistemic Forbearance

Thus, at least at the beginning and for some considerable time, a pandemic confronts us
with wild uncertainty. Consequently, we have to give up the belief that our models can
generally tame the uncertainty. We must accept that pandemics face us with unpredictably
unendurable harms. The risks we face are dangerous, not tolerable.

It may be that eventually we accumulate enough data and we know enough about the
specific random processes of a pandemic that our models begin to give us sufficiently
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accurate outputs to tame the uncertainty. And that would be a good thing. But we must be
careful not to jump the gun. We will be tempted to do exactly that.

The harms of a pandemic are very high stakes and their being unpredictably
unendurable is very frightening. In such a situation uncertainty phobia is a standing
temptation. Uncertainty phobia predicts widespread polarization of opinion and we have
seen just such a polarization of opinion on almost all the questions of what we should be
doing about Covid-19. Whether it is on masks, travel restrictions, border closings, or
vaccinations, the prevailing opinions are fixed certainties on either side of each question.
So we certainly can fall into this temptation.

Uncertainty phobia is not always a bad thing. But facing a pandemic is not like leaping
over a yawning chasm. Similarly, polarization of opinion is not always a bad thing. There
are moral questions on which there are quite rightly sharp disagreements (even though the
fact of sharp disagreement should give us some pause). Yet this is not the situation with
Covid-19. There are disagreements about the priorities of the various values bearing on
what we should do, but not such as to justify the polarisation we have seen.

We are instead faced with needing individual and social responses, responses which
must properly countenance the varying untamed uncertainties pandemics pose. Because
the uncertainties cannot be tamed, these responses cannot be calculated. They must rely
on sound, sober and considered judgement. Far from our opinions being fixed certainties,
they should instead be mobile uncertainties.

So, the nature of the uncertainty of pandemics, being wild and unrelievable for a long
time, threatens our ability to sustain what rationality requires, namely, uncertain belief.
Initially, and for a considerable time, we must simply avoid the temptation of uncertainty
phobia and bear the wild uncertainty that faces us. I am not saying that is easy to do.
Nevertheless, it is what we must do.

This requires virtue. We need honesty with ourselves, to keep in mind the balance of
evidence (as best as we can ascertain it). We need discrimination, to distinguish the
temptation of uncertainty phobia from a justified choice. Our hunger for certainty is
justified by the risk being dangerous, but we must distinguish that hunger from the proper
motive for factual opinion and see that it is a temptation to certainty rather than a
justification for certainty. We can identify that certainty would be a vice here by
distinguishing the balance of evidence we have from the balance of evidence needed for
certainty given the stakes we face. This in turn requires epistemic sensitivity to the degree
of confidence warranted by the evidence given the stakes. Finally, so long as the wild
uncertainty is unrelieved, so long must we sustain this honesty, discrimination and
sensitivity. The virtue that avoids uncertainty phobia by combining and sustaining these
virtues is a kind of patience and fortitude that we may call epistemic forbearance.
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