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Abstract. 4 

The production of breccias and cataclasites is commonly proposed to result in power-5 

law or log-normal probability distributions for fragment (grain) size. We show that in both 6 

natural and experimental examples, the common best fit probability distributions for the 7 

complete distributions are members of the Generalised Gamma (GG), Extreme Value (GEV) 8 

and Pareto (GP) families; power-law and log-normal distributions are commonly, but not 9 

always, poor fits to the data. An hierarchical sequence, GG → GEV → GP, emerges as the 10 

sample mean of the fragment size decreases. The physical foundations (self-similar 11 

fragmentation, collisional fragmentation, shattering) for these distributions are discussed. 12 

Particularly important is the shattering continuous phase transition that results in the 13 

simultaneous development of both coarse fragments and ultra-fine particles (dust). This phase 14 

transition leads to Generalised Pareto fragment size distributions for the coarse fragments. 15 

Also included is a discussion of the relations between fragment size distribution, processes 16 

and deformation history in the context of monomineralic rocks. The overall reported size 17 

distributions are compatible with theoretical developments but the topic would benefit from 18 

observations and experiments conducted with the theories in mind. 19 

 20 

Keywords 21 

Fragment size distributions; breccias, cataclasites; Power-law, log-normal distributions; 22 

Generalised Gamma, Extreme Value, Pareto family distributions; linear and/or collisional 23 

fragmentation models. 24 

 25 

1. Introduction. 26 

Fragmentation is the breakage of a coherent structure into many pieces. In turn, each 27 

piece undergoes further fragmentation as the deformation continues; the mechanism of 28 

breakage may or may not involve collisions with other particles. The interest in fragmentation 29 

in the geosciences lies in understanding the mechanisms for formation of breccias, cataclastic 30 

shear zones, ejecta from impact sites and grain sizes in rocks in general. We are interested in 31 

this paper in the first two which are dynamic phenomena in the sense that the size distribution 32 

evolves with time (strain). The formation of breccias and cataclasites also involves processes 33 

other than breakage such as chemical reaction and dissolution at fragment contacts, further 34 

grinding, milling or wear, fragment rotation and perhaps removal of finer size fractions by 35 

dissolution, transport by shearing and melting. From a thermodynamic point of view, 36 

dissipation results from fragmentation, wear, chemical reaction/dissolution and frictional 37 

sliding whereas energy is absorbed by increases in surface area (finer grain-size). Thus we 38 

expect that the competition between dissipation and absorption of energy may become 39 

important as the grain size decreases. 40 

The situation is made more complicated in that, especially at high temperatures and 41 

slow loading rates, the processes involved may not be entirely brittle but involve viscous 42 
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effects. Thus the geological fragmentation process is multi-scaled with multiple, scale-43 

dependent mechanisms operating. We are interested in the answers to the following 44 

questions: (1) What is (are) the mechanism(s) for fragmentation in deforming rocks? (2) How 45 

are these mechanisms expressed in the observed probability distributions for fragment size? 46 

(3) Can we use such probability distributions to distinguish between pure shearing, simple 47 

shearing or more general deformation histories?  48 

There has been considerable discussion in the geological literature as to the forms of 49 

the fragment-size probability distribution that exists in these rocks. Some (Turcotte, 1986 a, 50 

b; Sammis et al., 1987; Ashby and Sammis, 1990) argue for a fractal (power-law) 51 

distribution; others (Phillips and Williams, 2021) argue for a log-normal distribution. In the 52 

physics literature other distributions are favoured including the Mott distribution and the 53 

Weibull (the Rosin-Rammler) distribution. In fact the Weibull distribution is one of the 54 

earliest empirical probability distributions put forward to represent fragment sizes; the Mott 55 

equation is a special form of the Weibull distribution. Phillips and Williams (2021) explored 56 

the stretched exponential distribution, which is the complementary cumulative Weibull 57 

distribution, but favoured the log-normal distribution. In Section 2 of this paper we show that 58 

the geometrical way in which an otherwise continuous body is divided into smaller pieces 59 

exerts a sensitive control on the resulting size probability function. Some fragmentation 60 

methods reproduce observed distributions and others do not. In this paper, instead of 61 

attempting to fit data to a preferred probability distribution we ask the question: From a 62 

library of probability distributions, which one fits the observed data best? The answer turns 63 

out to be Generalised Gamma, Generalised Extreme Value and Generalised Pareto 64 

distributions with power-law and log-normal distributions as relatively poor fits. However we 65 

emphasise that the approach is not simply a “best-fit curve fitting exercise”. We require 66 

ideally that the best-fit distribution should also be compatible with theoretical models of the 67 

breakage process. 68 

In Section 2 we review previous work on fragmentation; and place this work in the 69 

context of the relation between deformation processes and probability distributions in Section 70 

3. Section 4 examines probability distributions for a number of published studies. The paper 71 

continues with a discussion of results in Section 5 and conclusions are drawn in Section 6. 72 

2. Previous work. 73 

Many models of fragmentation have been proposed in the literature. For detailed 74 

discussions see Grady (2006), Levy (2010) and Dadoun (2019). The discussion below is 75 

meant to emphasise that the precise mode of fragmentation exerts a sensitive control on the 76 

resulting probability distribution for particle size. 77 

One of the first modern studies of fragmentation was by Rosin and Rammler (1933) 78 

who proposed, empirically, a probability distribution that was soon after described by 79 

Weibull (1939) and is now known as the Rosin-Rammler or Weibull distribution. The 80 

cumulative fraction greater than size, s, proposed by Rosin and Rammler (1933) is 81 

                                          
0

1 exp
s

F s
s

  
    
   

                                     (1) 82 
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Here, s is the cumulative size of all particles of size greater than s, s0 is a characteristic size, 83 

and the exponent  is a shape parameter. (1) has been used extensively, but pragmatically, 84 

since 1933. There are many attempts to base (1) on geometrical and physical principles, one 85 

of which is Lienau (1936) who developed a one-dimensional model consisting of a line 86 

divided randomly into segments of variable length, l (Figure 1a). He developed the 87 

cumulative distribution for an infinite line:  88 

                                                      
0

1 exp
l

F l
l

 
   

 
                                          (2) 89 

If the line is finite of length, L, with the number of fragments, Nf, then the cumulative 90 

distribution is:                           
1

1 1
fN

l
F l

L



 
   

 
                                              (3)                                       91 

Kolmogorov (1941) showed that if a structure is progressively fragmented such that 92 

each new fragment size, d, is independent of the immediately preceding fragment size (that 93 

is, the process is random), then a log-normal distribution results: 94 

                                               1 2exp (log )F s s s                                   (4) 95 

where  is a constant. 96 

Schuhmann (1941) pointed out that for small fragments, (4) reduces to 97 

                                                    𝐹(𝑠) ∼ (
𝑠

𝑠0
)
𝛽

                                                          (5) 98 

which is a power law distribution interpreted by many to reflect a scale free or fractal 99 

geometry. Such a relation has been used by many authors including in particular Turcotte 100 

(1986 a, b) and Sammis et al. (1987). The relation between expressions (4) and (5) is 101 

important: if one truncates a distribution so that it approximates a power-law, then increasing 102 

the upper threshold, so that the contribution from coarser grains increases, can result in a log-103 

normal distribution. 104 

  Mott and Linfoot (1943) developed 2D models (Figure 1 b, c) based on the Lienau, 105 

(2), distribution. In one of the simplest of these (Figure 1b), the spacing between fractures in 106 

the x- and y-directions follows Lienau distributions with different values for the parameter, 107 

Nf. More complicated models were developed (Grady, 2006), one of which, shown in Figure 108 

1(c), consists of fractures in both the x- and y- directions with different Lienau distributions 109 

for both spacing and orientation. 110 

Mott and Linfoot (1943) proposed a cumulative fragment distribution for the fragment 111 

mass, m, of the form 112 

                                                 
1/2

0

1 exp
m

F m
m

  
    
   

                                       (6) 113 

which is again in the form of a Weibull distribution. 114 

            These geometrical approaches to fragmentation were extended by Grady and 115 

Kipp (1985) with the conclusion that although Weibull-type statistics may be common, the 116 

ultimate fragment size distribution depends on the rules that are proposed to describe the 117 

fragmentation process. 118 
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As indicated above, Kolmogorov (1941) examined the situation where the particle 119 

size at any instant is independent of the previous particle size in the instant before and 120 

showed that the resulting grain size distribution is log-normal. He pointed out that if the 121 

particle size were to be a power-law function of the previous particle size then other 122 

distributions would result. The point is that the grain size distribution that ensues during the 123 

breakage process is a direct result of the way in which the fragment size is related to the 124 

immediately previous fragment size. Clearly, many such ways are possible. The law that 125 

describes the way in which grain sizes are related from one increment of breakage to the next 126 

is called a fragmentation kernel (Pitman, 1999). The Kolmogorov result was generalised by 127 

Filippov (1961) who examined fragmentation processes where the fragmentation kernel is a 128 

power-law function of the fragment size and showed that a generalised gamma distribution 129 

results. The probability density function has the form:                             130 

                         
 

1

( ) exp

k
t t

F x
k

 


  

     
     
      

                            (7) 131 

where 0   is a scale factor, and 0  , 0k   are shape parameters. (k)  is the gamma 132 

function,   ( 1)!k k    , for any positive integer, k. The addition of erosion (by wear) does 133 

not change this distribution (Dadoun, 2019). In other words, according to this approach, 134 

processes that continuously decrease the fragment size in a power-law manner seem to 135 

preserve a generalised gamma distribution. 136 

The generalised gamma distribution, (7), takes many forms. If we write 
1

k
  and 137 

1



 , then  = 0 gives a log-normal distribution,  = 1 gives a Weibull distribution,  =  138 

= 1 gives an exponential distribution,  gives a gamma distribution, and = -1 gives a 139 

Fréchet distribution. The generalised gamma distribution is also known as the Amoroso 140 

distribution (Crooks, 2010) which includes at least 50 distributions as special cases.         141 

Bertoin (2001, 2002, 2006) and Bertoin and Gnedin (2004) embellish the Filippov 142 

model by proposing that the fragmentation process is characterised in terms of (i) an erosion 143 

coefficient that accounts for the reduction of particle size by processes (wear and dissolution 144 

of individual fragments) other than breakage, (ii) a dislocation rate that describes the rate 145 

(taken to be self-similar) at which fragmentation occurs and (iii) an index of self-similarity 146 

which describes the self-similar nature of the fragmentation process (Figure 1e). Again a 147 

generalised gamma distribution ensues and these three parameters characterise the details and 148 

type of the resulting distribution. Other mechanisms that continue to reduce the particle size 149 

other than fragmentation are chemical reactions and pseudotachylite formation (Magloughlin, 150 

1992). Blenkinsop (1991) describes the corrosion of feldspars at fragment boundaries by the 151 

production of laumontite. Kaneko et al. (2017) describe chemical reactions in cataclasites and 152 

mass removal by fluid transport. Montheil et al. (2020) give examples of melting of fine 153 

grains in a pseudotachylite. It is useful to make the distinction between the processes of wear 154 

and breakage. Wear means removal of parts of the surface of a fragment by erosion, 155 

dissolution and chemical reactions; breakage means the separation of a fragment into two or 156 
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more new fragments. The literature on fragmentation is well developed; that on wear (Bertoin 157 

(2001, 2002, 2006), Bertoin and Gnedin (2004)) needs considerable development. 158 

Other models of fragmentation, which are special forms of the geometrical approach 159 

of Mott, include Turcotte (1986 a, b) and Sammis et al. (1987)  who propose that each new 160 

fragment size is some proportion of the previous grain size with and without retention of 161 

some of the previous grain sizes. This means that the grain size decreases in an exponential 162 

manner with time and the result is a power-law (interpreted as a fractal) distribution of grain 163 

sizes. Other similar models are by Steacy and Sammis (1991) and Palmer and Sanderson 164 

(1991). A different model is by Brown and Wohletz (1995) who propose a self-similar model 165 

of breakage (Figure 1e) and arrive at a Weibull distribution; this approach is a sub-set of the 166 

Filippov approach. 167 

However, other factors have been documented in cataclasites that preserve the grain 168 

size or decrease the probability that fracturing continues. Two of these processes (Einav, 169 

2007a, b) are (i) cushioning of large particles by smaller particles so that the larger particles 170 

do not fragment further but smaller ones do and (ii) larger grains store more elastic energy 171 

than smaller particles so that once a small grain size forms it is less likely to fracture.  172 

A particularly successful approach has been to follow Filippov (1941) and extend his 173 

kinetic approach. Recent approaches to fragmentation can be understood in terms of various 174 

versions of Filippov’s fragmentation equation. The simplest version of this can be expressed 175 

as 176 

                                                      (8) 177 

This version of the fragmentation equation (called a linear fragmentation model by Redner, 178 

1989) can be elaborated to say that the rate at which the concentration, c(x), of fragments of 179 

size, x, changes is equal to a depletion term:  180 

                                                   ( ) ( )R x c x  181 

and an augmentation term: 182 

                                                 ( ) ( | ) ( )
y

R y B x y c y


  183 

where R(x), R(y) are the rates of fragmentation of fragments of sizes, x and y with y > x, and 184 

( | )B x y  is the average number of fragments of size x produced by fragmentation of larger 185 

fragments with sizes, y. ( | )B x y  is normalised so that mass is conserved. The fragmentation 186 

equation (8) was solved by Filippov (1961) with the self-similar assumptions, ( )R x x187 

( )R y y and ( | )B x y y , where  is a power law exponent commonly called the 188 

homogeneity index. Filippov (1961) showed that the solution to (8) is a generalised gamma 189 

distribution. He also showed that if < 1 then the fragment size rapidly approaches zero 190 

leaving no large particles and only “dust”. A geologist might interpret this as a form of 191 

pseudotachylite (with no melting). 192 

Equation (8) applies to situations where the boundary conditions for the material are 193 

purely compressive so that the deformation history is a pure shearing. The fragmentation 194 

process can be expanded to include fragmentation by collision processes as may be the 195 
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situation in simple shearing deformations. Now instead of (8) the collisional fragmentation 196 

process is written as (9) (Redner, 1989; Cheng and Redner, 1990). In order to solve this 197 

equation it is necessary to adopt simple, specific models of fragmentation, and solutions for 198 

three collisional models are given in Table 1. Note that gamma distributions are predicted for 199 

coarse grain sizes. 200 

      (9) 201 

An important part of these analyses is the recognition of a continuous phase transition 202 

for  0 (Krapivsky et al., 2017; Krapivsky and Ben-Naim, 2003). Here, the energy of the 203 

system is minimised by the simultaneous formation of two phases: coarse grains and a fine 204 

grained “dust” (Figure 2). Some of the various processes envisaged in theories of 205 

fragmentation developed to date are illustrated in Figures 2 and 3 and in Table 1. 206 

                207 

In summary, a geometrical approach to fragmentation shows that the resultant 208 

fragment size distribution is sensitive to the geometrical fragmentation law proposed. If the 209 

process is random then a log-normal distribution results (Kolmogorov, 1941). If a 210 

geometrical series model is proposed a power-law distribution results (Turcotte, 1986, a, b; 211 

Sammis et al. 1987). Instead of a geometrical approach, a deeper insight into fragmentation is 212 

obtained from kinetic equations for the fragmentation process. If the kinetics are linear 213 

(controlled solely by boundary conditions, as may be the case for pure shearing deformations) 214 

then, for self-similar law breakage (where the breakage rate is proportional to the fragment 215 

size raised to an exponent, ), a generalised gamma distribution results (Filippov, 1961). If  216 

> 0 (the largest fragments break faster than small ones) the distribution for larger fragments 217 

remains a generalised gamma whereas that for smaller fragments is log-normal if no wear 218 

occurs and power law if wear is present. If  < 0 (smaller fragments break faster than large 219 

ones) then shattering occurs and the complete mass is rapidly converted to dust with no 220 

remaining large fragments. 221 

For processes controlled solely by collision of particles (as may be the case for simple 222 

shearing) then the resulting grain size distribution depends on the details of the breakage 223 

model. For situations where ≥ 1 and both large and small grains break, the large grains have 224 

a gamma distribution whereas the small grains are log-normal. If only the large grains 225 

fragment then the large grains have a gamma distribution and the small an exponential 226 

distribution. If only the small grains break then the large grains have a power-law distribution 227 

and the small a log-normal distribution. On the other hand, if < 1 (small grains break more 228 

readily than large), a continuous (“second order”) phase transition occurs where the energy of 229 

the system is minimised by the simultaneous formation of large grains and small “dust”. This 230 

is known as a shattering transition (Krapivsky and Ben-Naim, 2003; Krapivsky et al., 2017). 231 

Hence, the fragment size distribution that ultimately arises in a given situation is sensitive to 232 
the details of the breakage mechanisms and the history of such mechanisms. Deformation 233 

mechanisms may evolve over time, and cataclasites may preserve evidence of different 234 
stages. Any analysis of fragment size distributions in natural or experimental cataclasites 235 

Jo
urn

al 
Pre-

pro
of



7 
 

needs to take this into account rather than simply postulate that the distribution is power-law, 236 

log-normal or some other preferred distribution.  237 

It is also important to note that the type of distribution depends on the levels of 238 

truncation of the distribution or thresholding of the data. In practice there is always a lower 239 

cut-off, or threshold, in measuring the size distribution for fragments arising from the 240 

resolution of the measuring process. The question arises as to the influence of such a 241 

threshold? Clearly the threshold value changes the mean and variance of the sample and in 242 

particular changes the location and shape parameters where these quantities are relevant. In 243 

addition the value of the threshold can change the type of distribution. Thus for large 244 

thresholds, gamma and Gumbel distributions become light tailed exponential distributions 245 

and a Fréchet distribution becomes a heavy tailed Generalised Pareto distribution. A Weibull 246 

distribution can become a localised beta distribution. Thus the influence of the threshold 247 

depends on the type of un-thresholded distribution and on the level of the threshold. For some 248 

thresholds only the parameters of the distribution are affected, for others the type of 249 

distribution is affected. We note that the terms truncation of data and thresholding are used 250 

differently in the statistics literature. Truncation means that one retains the data but restricts 251 

the domain of the distribution. Thus the progressive restriction of the extent of a distribution 252 

so that the distribution changes from log-normal to power-law as described by Phillips and 253 

Williams (2021 Figure 2) is a process of truncation. The consideration of values only above a 254 

cut-off value as is the case if particle sizes below a certain value cannot be resolved is 255 

thresholding. The truncation process emphasises that different parts of a probability 256 

distribution can have their own distribution. There is a large literature on truncation and 257 

thresholding (Coles, 2001; Beirlant et al., 2005; Embrechts et al,. 1997; Gumbel, 1985). 258 

3. Some comments on statistical distributions and processes operating during 259 

fragmentation.    260 

We will see in Section 4 that more than one distribution can appear as a good fit to a 261 

given data set. An example is presented in advance in Figure 4 for data from Phillips and 262 

Williams (2021). The best fit here is Pareto Type II (Table 2) but Pareto Types I and IV are 263 

also close. Log-normal does not fit the data well. One can always quibble about which 264 

distribution is best and pragmatically (if one is not concerned with the physical processes that 265 

formed the distribution) one may prefer one distribution over another. However here we are 266 

interested in what an observed distribution or set of distributions might reveal about the 267 

underlying processes of fragmentation and so this section offers some comments about the 268 

processes that operate in breccia and cataclasite formation and the controls that a particular 269 

process can exert on the development of a particular probability distribution. We also 270 

comment on what is to be expected of a probability distribution as one moves further into the 271 

tail of a distribution.                          272 

The link between processes and probability distributions was made clear by Savageau 273 

(1979, 1980) who observed that: Any system that grows into a stable mature form has a 274 

growth curve that is a legitimate cumulative probability distribution. Savageau (1979, 1980) 275 

showed that, for interacting nonlinear systems, a general equation can be derived that 276 

describes the generation of a quantity of interest, X, combined with competition with other 277 

processes, to produce a generalised growth law for X. This equation includes many of the 278 
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common growth laws (logarithmic, power-law, Weibull, stochastic, Gompertz and Lotka-279 

Volterra) as special cases. His analysis emphasises that although a large number of processes 280 

may operate to produce the growth of a system, an overall simple pattern of growth may 281 

result. This concept is amplified by Frank (2009, 2011, 2014). 282 

Rocha and Aleixo (2013) explore the interacting processes of growth and competition 283 

using a generalised growth model that describes the progressive evolution of a system where 284 

growth nucleates, and subsequent growth follows a symmetrical or asymmetrical sigmoidal 285 

curve to ultimate extinction. This is the Gompertz law:  286 

                                                 1 1

, , (1 )p q

r q pf x rx x    287 

which is a generalisation of the simple logistic equation, widely used in population dynamics, 288 

for which q = p = 2. The Gompertz law describes the competition between an accelerating 289 

growing process and processes that tend to inhibit growth; it is attractive from a process point 290 

of view since it is used in various forms in material science (in the form of Kolmogorov–291 

Avrami kinetics for recrystallisation; Martyushev and Axelrod, 2003) and as a form of 292 

kinetics for non-equilibrium chemical systems with coupling to both heat and fluid supply 293 

(Ord et al., 2012; Hobbs and Ord, 2018). As indicated above it is also one member of the 294 

more general growth laws discussed by Savageau (1979, 1980). Rocha and Aleixo (2013) 295 

show that the Generalised Extreme Value distributions: Weibull, Gumbel and Fréchet, are 296 

special cases of the Gompertz growth law. 297 

The analyses by Savageau (1979, 1980) and Rocha and Aleixo (2013) involve 298 

systems where growth and one or more antagonistic processes operate. Other analyses 299 

involve only growth processes. Foremost here are Kolmogorov (1941) who showed that 300 

random fragmentation leads to a log-normal distribution, Filippov (1961) who showed that 301 

self-similar fragmentation leads to a Generalised Gamma distribution and Turcotte (1986 a, 302 

b)/Sammis et al. (1987) who showed that a geometrical series as a fragmentation law leads to 303 

a fractal (Pareto Type I) distribution. 304 

Two principles govern the development of a specific probability distribution in 305 

physical, biological and chemical systems (Frank, 2011). First, a given distribution 306 

maximises entropy (or randomness) subject to the constraints imposed by the processes 307 

operating in the system. Frank (2014) shows that this constraint of maximum entropy means 308 

that all common probability distribution have the form 309 

                                                   expy y fp m T   310 

where py is the probability density, my is a scale factor that expresses the way in which the 311 

probability distribution changes with measurement scale,   is a constant related to the way 312 

in which entropy is maximised to produce py and Tf is a measurement scale (for instance, 313 

logarithmic or linear). See Frank (2014) for details. 314 

The concept is that the multitude of random perturbations that affect the pattern 315 

development tend to cancel each other in the aggregate, leaving the system completely 316 

random except for any constraints that restrict the pattern. As an example, if the variance is 317 

constrained by the chemical/physical/genetic processes operating in the system then the 318 

distribution that maximises entropy is the Gaussian (Frank, 2009). Thus many environmental 319 

factors influence the growth of a human and perturb the growth rate but most cancel out and 320 
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the growth is ultimately the result of genetic factors that severely restrict the variance of the 321 

height distribution. If the geometric mean is constrained then power-laws develop.  322 

Second, different processes produce different relations between the magnitude of a 323 

quantity (grain-size, metal endowment) and the evolution of the magnitude with time. Two 324 

common evolutionary paths in natural systems are log-linear and linear-log paths. In log-325 

linear paths, the system begins with logarithmic relations between magnitude and time and 326 

blends into a linear relation. The linear-log paths are the opposite (Figure 5). It is this kind of 327 

relation that defines each probability family within the various maximum entropy families. 328 

For example, since the gamma distribution, 1( ) exp( )p y ky y   , is the product of a power 329 

law, y -1, and an exponential, exp(- y); when the magnitude of y is small, the shape of the 330 

distribution is dominated by the power law component, y-c. As the magnitude of y increases, 331 

the shape of the distribution is dominated by the exponential component, e  y. Thus, the 332 

underlying measurement scale grades from logarithmic at small magnitudes to linear at large 333 

magnitudes. Indeed, the gamma distribution is the archetype expression of an underlying 334 

measurement scale that grades from logarithmic to linear as magnitude increases (Frank, 335 

2014, Section 5). Variations in the transition between the logarithmic and linear regime 336 

describe nearly all of the variation in observed patterns (Frank, 2014).  337 

Thus the log-linear relation defines the gamma, logarithmic and power law families; 338 

the linear-log relation defines the Gaussian and exponential distributions in the small-scale 339 

linear domain, and adds power law tails in the large scale logarithmic domain (Frank, 2011; 340 

2014). Logarithmic scaling is an expression of multiplicative processes whereas linear scaling 341 

is an expression of additive processes (Frank, 2014). It should be noted that the gamma 342 

pattern differs most strongly from the lognormal by allowing a higher probability weighting 343 

of small values; otherwise, the lognormal and gamma distributions are similar. 344 

Many processes may be essentially multiplicative at small scales and approximately 345 

linear at large scales. All such generative processes will also converge to the gamma 346 

probability distribution. In the general case, k is a continuous parameter that influences the 347 

magnitudes at which logarithmic or linear scaling dominates. k is obtained from 348 

 1 expk

yp y y  .   Thus it is not surprising that the generalised gamma distribution can 349 

be approximated by some 50 different distributions (Crooks, 2010); each approximation 350 

corresponds to a different value of k marking the transition from  logarithmic to linear 351 

scaling. It is noteble that the Gompertz distribution is not part of the generalised gamma 352 

family and we return to this in the discussion. The common probability distributions 353 

identified in natural and experimental fragmentation systems are summarised in Table 2. 354 

                        355 

Throughout the following section, we use the following groups of terms interchangeably: 356 

(power-law, Pareto, Pareto Type I, Pareto2), (Pareto Type II and Pareto3), (Pareto Type IV 357 

and Pareto4). See https://reference.wolfram.com/language/ref/ParetoDistribution.html for 358 

usage. Terms such as Fréchet2(3) mean the two (three) parameter Fréchet distribution. 359 

4. Observations on natural and experimentally deformed samples. 360 

In this section we present best fit probability distributions for eight published studies of 361 

fragment sizes in naturally and experimentally deformed breccias, cataclasites and a 362 
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pseudotachylite. Only brief results are given; the closest fits are given in the Appendix and an 363 

array of distributions is given in the Supplementary Material. In all, at least 800 fragment size 364 

probability distributions were calculated. The data for Phillips et al. (2020), Melosh et al. 365 

(2014), Hadizadeh et al. (2010), Fagereng (2011), and Marone and Scholz (1979) were all 366 

obtained from Phillips and Williams (2021; their repository 10 .17605 /OSF.IO /JDW8N ).  367 

The data are analysed using Mathematica 12.3.1 (Wolfram Research 2021). 368 

4.1. Phillips et al. (2020). 369 

Phillips et al. (2020) studied altered shale and basalt samples which were 370 

experimentally sheared at 150oC. For the analyses conducted in this paper all samples 371 

(Phillips and Williams, 2021) are fitted very closely by a Pareto Type II distribution (Figure 372 

6; see also Supplementary Material). Figure 6 (a, b) shows that Pareto Type IV is also 373 

sometimes a close fit whereas log-normal shows strong departures from the data especially at 374 

medium to small grain sizes. Figures 6 (c, d) show the Pareto Type II fit to the N_ABB data 375 

alone for clarity. An example is presented in Figure 6 (e, f) for the data set N_ABB where 376 

Mathematica indicates the distribution of best fit is given by the Pareto Type II distribution: 377 

Figure 6(e) shows the raw data on a linear-linear plot whereas Figure 6(f) shows the 378 

distribution on a log-log plot. Note that the log-log plot for the raw data is concave 379 

downwards similar to that interpreted as “bi-fractal” by many authors in natural data sets. We 380 

suggest that many “fractal” or “bi-fractal” distributions in the literature may in fact be Pareto 381 

Type II distributions.                         382 

                                                             383 

4.2. Melosh et al. (2014). 384 

Melosh et al. (2014) explored a natural breccia system in which there has been little 385 

relative movement of fragments so that there has been little wear. There is a transition from 386 

intact rock to a crackle breccia to a mosaic breccia and finally what the authors call a chaotic 387 

breccia. This represents a transition from unbroken rock to the early stages of breccia 388 

formation. This progressive development of breccia is represented by a transition from 389 

slightly scattered fragment size distributions for the crackle breccias (PSKB through to 390 

PS194b in Figure 7) to tightly defined distributions in the mosaic/chaotic breccias (PS197 to 391 

PS126 in Figure 7). In all cases however the fragment size distributions are well fitted by 392 

members of the Generalised Pareto or Generalised Extreme Value families. The Generalised 393 

Gamma is also a good fit for some. The Pareto Type I (power-law) and log-normal 394 

distributions are not good fits. 395 

          396 

4.3. Hadizadeh et al. (2010). 397 

The Hadizadeh et al. (2010) data sets come from small displacement natural faults 398 

(minimum shear strain ≈14) and from shear displacement experiments (minimum shear strain 399 

≈22), both comprised of sandstone specimens. The data for the natural examples are well 400 

fitted by any of Gamma4, Pareto4 and Fréchet3. Log-normal is a good fit also for one 401 

distribution. An example is shown in Figure 8. 402 

                        403 

4.4. Fagereng (2011). 404 
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The Fagereng (2011) data sets are from a mélange zone in the Otago Schists and 405 

consist of fragment size distributions from both outcrop and thin section scales. The Fréchet2 406 

and 3 distributions are the best fits. 407 

                            408 

4.5. Blenkinsop (1991). 409 

The Blenkinsop (1991) data sets come from the Cajon Pass drill hole through the San 410 

Andreas Fault in California. Fragments have developed without rotation or shear. 411 

Deformation is coupled with chemical reactions whereby plagioclase is replaced by 412 

laumontite. The fragment size distributions differ from others examined here in that the 413 

Gompertz distribution is strongly represented (Figure 10) along with the Generalised Gamma 414 

and Gumbel2. 415 

                          416 

4.6. Marone and Scholz (1979). 417 

The Marone and Scholz (1979) data sets are from experimentally sheared quartz sands 418 

with shear strains between 0 and 3.3%. Some of the microstructures developed are shown in 419 

Figures 2 and 3. Some fragment size distributions are shown in Figures 11 where Fréchet2 420 

followed by Generalised Gamma are best fits.                          421 

                       422 

4.7. Ferreira and Coop (2020). 423 

The Ferreira and Coop (2020) data sets come from ring shear experiments on initial 424 

sands (see also Coop et al.,2004). Shear strains from 440% to 44500% are reported so that 425 

these are by far the highest experimental strains explored here. At lowest strains (Figure 12 a, 426 

b) a Fréchet2 distribution is the best fit. At intermediate strains (6940%; Figure 12 c, d) this is 427 

replaced by Pareto Type I whilst at the highest strain (Figure 12 d, e) the best fit is Gamma4. 428 

It is interesting that Gamma4 is also a reasonable fit for the lower strains especially for the 429 

largest grain size fraction. 430 

                                                                                431 

4.8. Montheil et al., 2020. 432 

The Montheil et al. (2020) data sets come from experimentally produced 433 

pseudotachylites, the initial rocks being tonalite and granite. Both glass and fine grained 434 

fragments are produced and the latter are analysed here. There is evidence of melting at 435 

fragment boundaries. The best fit distributions for these data sets are Fréchet2, Fréchet4 and 436 

Pareto Type IV. We show these in Figure 13 together with some others that are poor fits 437 

                  438 

5. Discussion. 439 

The data examined in this paper span samples that range from low strain mosaic 440 

breccias through to fine fragments in pseudotachylite and to very high strain breccias. 441 

Although a unique distribution in general cannot be established for many data sets most are 442 

expressed as Generalised Gamma distributions or members of the Generalised Extreme Value 443 

or Generalised Pareto families. 444 

The theoretical discussions of fragmentation considered in Section 2 propose that 445 

Generalised Gamma distributions should be common especially for the coarse grained 446 
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fractions of probability distributions. However others are to be expected and the challenge is 447 

to see how closely observed fragment size distributions in deformed rocks fit the theory. The 448 

issue is that the theoretical analyses are idealised in the sense that only simplified models of 449 

fragmentation are considered and some processes such as chemical reactions and melting are 450 

not considered. It is also noteworthy that no theoretical studies deal with polymineralic 451 

materials. The hope is that observations on deformed rocks will either confirm these models 452 

or suggest modifications that can be incorporated into the theory. 453 

A first observation is that the power-law (Pareto Type I) or the log-normal 454 

distributions hardly appear in the distributions for any data set even though they are 455 

extremely popular in the geological literature. This is partly because many fits to data sets in 456 

the literature truncate the distributions by selecting only the central part of the distributions 457 

for analysis and discard the tails of the distributions. This is somewhat unfortunate because 458 

most of the information on the processes of fragmentation lie in the tails in that the 459 

distributions (Nair et al., 2021) can have exponential (for a power-law distribution), sub-460 

exponential (for a log-normal distribution) or regularly varying decay (for a Gamma or 461 

Extreme Value distributions) in the tails depending on the mechanism of fragmentation. The 462 

remainder of the distribution, after discarding the tails, is an approximately linear distribution 463 

on a log-log plot which is assumed to be a physically meaningful power-law. If the selected 464 

part of the distribution is extended into the coarser fraction it can be close to a log-normal 465 

distribution. When the complete distributions (that is, inclusion of the tails) are taken, Pareto 466 

Type I and log-normal distributions are rare. 467 

As indicated, it is commonly difficult to select a unique best fit distribution for a 468 

given data set. This arises because a given set of parameters for a given probability 469 

distribution can produce a distribution which is identical or very similar to that of a different 470 

family. Thus for the Blenkinsop (1991) data set 6241.3NX20X (Figure 14), a Generalised 471 

Gamma distribution with parameters [a = 0.246529, p = 4.82455, d = 32.3683] and a position 472 

parameter of -2.34208 is almost identical to a Gompertz distribution with parameters [ = 473 

2.76893, b = 0.00509909] even though the Gompertz distribution is not part of the 474 

Generalised Gamma family (Crooks, 2010). For this reason we want to distinguish between 475 

those distributions that arise from known mechanisms of fragmentation (those discussed in 476 

Section 2) and those that arise by chance and have no known mechanism associated with 477 

them. The first of these we call fundamental distributions and the second, incidental 478 

distributions. 479 

 480 

The tables of results given in the Appendix and the results in Supplementary Material 481 

show that the Generalised Gamma distribution is the best fit for most of the data sets 482 

examined. However as the grain size decreases other distributions (in particular, Generalised 483 

Extreme Value distributions such as Fréchet and generalised Pareto such as Pareto Type IV) 484 

appear. There seems to be an overall hierarchy proceeding from Generalised Gamma at 485 

coarse grains to Fréchet as the grain size decreases to Generalised Pareto distributions in 486 

pseudotachylites. This is broadly in agreement with Table 1 but the progression is not as clear 487 

cut as in Table 1. 488 

As to the questions raised in the Introduction: 489 
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(1) What is (are) the mechanism(s) for fragmentation in deforming rocks? The literature so 490 

far has examined three different models of fragmentation: Random breakage 491 

(Kolmogorov, 1941) leading to log-normal distributions, linear breakage (Turcotte, 1986 492 

a, b; Sammis and King, 1997) leading to power-law distributions and non-linear breakage 493 

characterised by self-similar fragmentation laws (Filippov, 1961; Cheng and Redner, 494 

1990) leading to Generalised Gamma distributions for coarse fragments and a range of 495 

other distributions (Table 1) depending on fragment size and details of the breakage 496 

model. The observation that many fragment distributions are Generalised Gamma 497 

distributions is compatible with self-similar fragmentation as indicated in Section 2 and 498 

Table 1. Such a distribution is to be expected for coarse particles from both continuous 499 

fragmentation and fragmentation involving collision. The dominance of Extreme Value 500 

Distributions (Fréchet in particular) for fine particles is not directly compatible with 501 

Table 1. However, Fréchet distributions (and other Extreme Value Distributions) 502 

distributions, together with power-law and log-normal are members of the Generalised 503 

Gamma distribution (Crooks, 2010) so that it is reasonable to infer that self-similar 504 

fragmentation is dominant down to the finest fragment sizes measured to date. The 505 

observation that the probability of fracturing decreases as the fragment size decreases 506 

(Figure 14) is also compatible with a non-linear breakage model and with the observation 507 

of Einav (2007 a, b) that the driving force for breakage (elastic energy) decreases with 508 

decrease in fragment size.  A non-linear breakage mechanism also predicts a shattering 509 

phase transition which seems to be common perhaps in shearing deformations (Figures 2 510 

and 3). The processes that have not yet been incorporated into fragmentation models are 511 

cushioning of coarse fragments by fine particles (Figure 3 and Einav, 2007, a. b) and the 512 

effect of chemical corrosion and melting. 513 

Although the Generalised Gamma distribution is a reasonable fit for some data sets 514 

the correspondence to a self-similar fragmentation model as assumed by the theory is a 515 

little problematic. The best fits are for the Blenkinsop data where values of the 516 

homogeneity index, , are derived to be in the range 3 to 7 with an average of about 4 517 

(Table 3). This seems to be a little high since it implies that a two-fold decrease in 518 

fragment size results in a 16-fold decrease in fracture number per grain. Figure 15 would 519 

suggest a value for  less than 4 (perhaps closer to 2). On the other hand the value of  520 

for the Montheil et al. data for fragmentation of granite is zero, compatible with a 521 

shattering transition. Clearly more carefully designed experiments are needed to confirm 522 

if the theory is applicable. 523 

          524 

(2) How are these mechanisms expressed in the observed probability distributions for 525 

fragment size? As indicated above, the random Kolmogorov breakage model appears not 526 

to be relevant since log-normal distributions are rare except for truncated data. Similarly 527 

the linear Turcotte-Sammis models predict power-law (Pareto Type I) distributions which 528 

are rarely observed except again for truncated data. Non-linear (Filippov-Cheng-Redner) 529 

breakage models based on self-similar breakage kernels are consistent with the 530 

Generalised Gamma distributions observed. There appears to be a hierarchy of 531 

distributions ranging from Generalised Gamma to Generalised Extreme Value to 532 

Generalised Pareto as the sample mean decreases. It may be that this hierarchy is 533 
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expressed as a progressive change in the parameters that describe the Generalised Gamma 534 

but we have not explored this. The existing models do not account for the possibility that 535 

the homogeneity index, , changes with increasing strain so that the number of fragments 536 

produced from a single grain changes as the strain increases but no model so far takes this 537 

into account. There is also the possibility that a simple power law is not sufficient to 538 

explain the fragmentation process and other nonlinear fragmentation kernels are relevant. 539 

 540 

(3) Can we use such probability distributions to distinguish between pure shearing, simple 541 

shearing or more general deformation histories? There is no strong evidence in the 542 

results of this paper that the deformation history produces differences in the fragment 543 

probability distribution. The low strain crackle breccias of Melosh et al. (2014; Figure 7 544 

of this paper) indicate gamma distributions for most specimens with Pareto 4 and Fréchet 545 

dominating in the most chaotic of breccias whereas the very high shear strain specimens 546 

of Ferreira and Coop (2020; Figure 11 of this paper) are best fit by a gamma distribution. 547 

Perhaps future carefully designed experiments will reveal history dependent distributions, 548 

especially in the details of the parameters that define the distributions. 549 

 550 

6. Conclusions. 551 

An assumption in much of the geological literature is that fragment size distributions 552 

should be power law (Pareto Type I) or log-normal distributions. To this end observed 553 

fragment size distributions are truncated so that the tails are neglected and only the central 554 

part of the distribution is analysed. This results in power law or log-normal distributions 555 

depending on how much of the coarse fraction is included. This is the difference between the 556 

Kolmogorov (1941) and Schuhmann (1941) results (see expressions (4) and (5)). In fact 557 

power-law or log-normal distributions are poor fits to observed distributions if all the data are 558 

taken into account. All measured distributions from natural and experimental specimens are 559 

downward concave or sigmoidal shaped in log-log plots and if the complete distribution is 560 

considered the result is invariably a Generalised Gamma distribution if the fragment size is 561 

coarse or Fréchet/Pareto IV distributions if the fragment size is small (as in pseudotachylites). 562 

These results are broadly compatible with the results of theory (Table 1) for self-similar 563 

fragmentation with either or both linear or collisional fragmentation models. In general it is 564 

difficult to define a unique probability distribution for a given data set and other distributions 565 

are just as likely from analysis including members of the Generalised Extreme Value, 566 

Generalised Pareto and Gompertz families. However only the Generalised Gamma family is 567 

consistent with theory and we propose that the other distributions appear only incidentally. 568 

There is much work still necessary to relate fragment probability distributions to process 569 

including whether a continuous phase transition in the form of a shattering transition exists. 570 

Such a transition would explain the initiation of those pseudotachylites comprised largely of 571 

fragments. Melting may yet turn out to be another phase transition. Deformation mechanisms 572 

may evolve over time, and cataclasites may preserve evidence of different stages. 573 

Fundamental distributions still need to be developed to take into account polymineralic 574 

materials. Investigating fragmentation mechanisms in most geological materials will be 575 

hampered until this is achieved. 576 
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 732 

Figure Captions 733 

Figure 1. Models for fragmentation. (a) The Lienau (1936) one dimensional model. From 734 

Grady and Kipp (1985). (b), (c) Two models by Mott and Linfoot (1943) from Grady (2006). 735 

(d) Sammis et al, 1987 model. (e) Self similar fracture tree model, from Austin et al. (1972). 736 
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Figure 2. The shattering phase transition. Modified from Krapivsky and Ben-Naim (2003) 737 

and Phillips and Williams (2021). As the deformation proceeds, the energy of the system is 738 

minimised by the simultaneous formation of two phases: coarse grains and dust.                                739 

Figure 3. Some processes involved in cataclasite formation. Modified after Phillips and 740 

Williams (2021). 741 

Figure 4. Some probability distributions for Phillips et al. (2020, see Phillips and Williams 742 

2021) data. (a) cumulative distribution plot for sample AB2_2. (b) probability plot for sample 743 

AB2_2. Pareto Type II followed by Pareto Type I and IV are the best fits. Log-normal is not 744 

good. In this and similar figures, the vertical axis for the left hand cumulative distribution 745 

plot (a) for each data set is the probability from 0 to 1 and the horizontal axis is the logarithm 746 

of the grain size in the units quoted by the authors of the original papers. The right hand 747 

figure (b) for each data set is the probability plot with calculated values for the prescribed 748 

probability distribution on the vertical axis and measured values on the horizontal axis. The 749 

normal distance of the data from the diagonal line on the probability plot (b) is a direct 750 

measure of the difference in the goodness of fit. 751 

Figure 5.  Log-linear (a) and linear-log  models of growth. Variations in the parameter, k, that 752 

defines the transition from logarithmic to linear growth (or vice versa) define the type of 753 

distribution observed. 754 

Figure 6. Some probability distributions for Phillips et al. (2020) data (Phillips and Williams, 755 

2021) . (a) probability density for sample N_ABB. (b) probability plot for sample N_ABB. 756 

Pareto Type I and Type IV are close fits.  Pareto Type II is the best fit. Log-normal is not 757 

good. (c) and (d) Pareto Type II plotted alone.(e) Raw data, (f) Log-log plot of raw data. 758 

Figure 7. Probability distributions for Melosh et al. (2013) data (Phillips and Williams, 2021). 759 

superimposed on fractal interpretations by Melosh et al. (2014, their figure 7A). Frechet2 and 760 

Frechet3 are consistently the best fits. 761 

Figure 8. Probability distributions for Hadizadeh et al. (2010) data (Phillips and Williams, 762 

2021). (a) probability density for sample VOF04A. (b) probability plot for sample VOF04A. 763 

Gamma4 and Pareto4 are the best fits. 764 

Figure 9. Some probability distributions for Fagereng (2011) data (Phillips and Williams, 765 

2021). (a) probability density for sample GM_CB14. (b) probability plot for sample 766 

GM_CB14. Frechet2 and Frechet3 are the best fits. 767 

Figure 10. Some probability distributions for Blenkinsop (1991) data. (a) Probability density 768 

for sample 6181.3HX20. (b) Probability plot for sample 6181.3HX20. Generalised Gamma, 769 

GompertzM4 and Gumbel2 are good fits. Logistic2 is not as good as the other three. 770 

Figure 11. Some probability distributions for Marone and Scholtz (1979) data (Phillips and 771 

Williams, 2021). (a) probability density for sample 04_c. (b) probability plot for sample 772 

04_c. Fréchet2 and Generalised Gamma are good fits (c) probability density for sample 05_c. 773 

(d) probability plot for sample 05_c. Fréchet2 is best fit followed closely by Generalised 774 

Gamma. 775 

Figure 12. Best fit probability distributions from Ferreira and Coop (2020) data. 776 
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Figure 13. Some fits of various distributions for Montheil et al. (2020) data (Tonalite high 777 

mag x400). Best fits are Fréchet2, Fréchet3 and Pareto Type IV. 778 

Figure 14. Comparison of Generalised Gamma and Gompertz fits for data set 6241.3NX20X 779 

of Blenkinsop (1991). The Generalised Gamma distribution is to be expected from theory and 780 

we label it a fundamental distribution. The Gompertz distribution is not predicted by existing 781 

theory and we label it an incidental distribution. In fact the Gompertz distribution under-782 

estimates the data at the coarsest of grain sizes. 783 

Figure 15. Decrease in fragmentation frequency with decrease in fragment size. This is 784 

consistent with a self similar fragmentation rate where fragmentation decreases with fragment 785 

size. Modified from Marone and Scholtz (1989). It is also consistent with the proposals of 786 

Einav (2007 a, b; Nguyen and Einav, 2009) that the elastic energy responsible for driving 787 

fragmentation decreases as the fragment size decreases. 788 

 789 

 790 

 791 

 792 

Tables 793 

Table 1. Kinetics of fragmentation (Cheng and Redner, 1990; Redner, 1990).   is the 794 

homogeneity index and is a measure of the rate of fragmentation, 𝑟 ∼ 𝑥𝜆. The symbols b1, , c2 are 795 

various parameters defined in  Cheng and Redner, (1990).   796 

Model Description 

of process 

Probability distribution function Probability 

distribution 

Comments 

Linear 

fragmentation, 

  > 0 

Larger grains 

more likely to 

break 

Breakage due 

to externally 

applied loads, 

no collisional 

breakage. 

 

𝜙(𝑥) ∼ 𝑥𝑏1−2 𝑒𝑥𝑝(−𝑎𝑥𝜆); x  

                                                 

𝜙(𝑥) ∼ 𝑒𝑥𝑝 (−
𝜆

2 𝑙𝑛𝑥0
(𝑙𝑛 𝑥)2); 0x  

 
  𝜙(𝑥) ∼ 𝑥𝜐         ; 0x  

 

Generalised 

gamma 

 

Log-normal 

 

 

 

Power law 

True for 

large 

fragments 

 
Fragmentation 

with a lower 

cut-off for 

breakage. 

Fragmentation 

down to small 

sizes 

Linear 

fragmentation, 

  < 0 

Smaller grains 

more likely to 

break 

Shattering 

transition 

Theoretically all grains infinitely small. 
Shattering begins immediately as deformation 

begins. 

𝜙(𝑥) ∼ 𝑥−(1+𝜆). 
 

 

 

 

 

Power law 

All grains 

very small. 

Probability 

distribution 

said to be 

Power law in 

natural 

materials.  

  Collision 

induced 

fragmentation 

Model I 

 ≥1 

Both particles 

split upon 

collision 

𝜙(𝑥) ∼ 𝑥−2 𝑒𝑥𝑝 (−𝑥
𝜆

2); x  

𝜙(𝑥) ∼ 𝑒𝑥𝑝 (−
𝜆

4 𝑙𝑛 2
(𝑙𝑛2 𝑥)); 0x           

 

Gamma 

 

 

Log-normal 

Coarse 

grained 

 

Fine 

grained 

Collision 

induced 

fragmentation 

Larger 

particles split 

upon collision 

𝜙(𝑥) ∼ 𝑥−2 𝑒𝑥𝑝 (−𝑥
𝜆

2); x  

𝜙(𝑥) ∼ 𝑒𝑥𝑝 (−
𝑐2

𝑥
) ; 0x  

 

Gamma 

 

Coarse 

grained 
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Model II 

 ≥ 1 

 

Exponential 

 

Fine 

grained 

Collision 

induced 

fragmentation 

Model III 

 ≥ 1 

Smaller 

particles split 

upon collision 

𝜙(𝑥) ∼ 𝑥−(1+𝜆);   x  

𝜙(𝑥) ∼ 𝑒𝑥𝑝 (−
𝜆

2 𝑙𝑛 2
(𝑙𝑛2 𝑥)); 0x  

Power law 

 

Log-normal 

Coarse 

grained 

 

Fine 

grained 

Collision 

induced 

fragmentation  

 < 1 

Shattering 

transition at  

 = 1 

Shattering transition is a continuous 

(“second order”) phase transition so that 

the energy of the system is minimised by 

the simultaneous development of coarse 

and dust phases (Krapivsky and Ben-Naim, 

2003; Krapivsky et al., 2017). 

No 

information 

available on 

grain size 

distributions 

in natural 

materials. 

No 

information 

available on 

grain size 

distributions 

in natural 

materials. 

 797 

Table 2. Common probability distributions involved in fragmentation.  y is fragment 798 

size. The other symbols express the position, scale, shape, mean, mode and standard 799 

deviation of the distributions and are not necessarily related to other or identical symbols in 800 

this paper. 801 

Distribution Probability density function, F(x) Graphical representation of  cumulative 

distribution 

Scaling 

Relation*  

Fréchet/ 

Weibull 
 

1

exp
y m y m

s s s

 


       
    

     

 

 

 

 

 

 

 
1

exp

k k
k y y

s 

     
    

     

 

 

 

Logarithmic 

Exponential exp( )y   
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Gamma 

 

1

exp
k

k

y y

k  


 
 

  
 

 

Logarithmic 

Linear 

Gauss/ 

Normal 
2

1 1
exp

22

y 

 

  
  

   

 

 

Linear 

Generalised 

gamma 

 

 

Also known 

as gamma4 

 
1/
exp ( / )

/

d
d pp a

y y a
d p

   
 

 

Logarithmic 

Linear 

Gumbel 

  
1

exp expz z


      

where 

 

y
z






  

 

 

Linear 

Log-

normal 
 

2

2

ln1
exp

22

y

y



 

 
 
 
 

 

 

Linear 

Generalised 

Pareto 

family. 

See Arnold 

(1983), 

 ParetoDistribution[k,α] Pareto type I distribution 

 ParetoDistribution[k,α,μ] Pareto type II distribution 

 ParetoDistribution[k,1,γ,μ] Pareto type III distribution 

 Pareto2           Pareto Type I  Pareto type I distribution 

 Pareto3           Pareto Type II Pareto type II distribution 

                        Pareto Type III Pareto type III distribution 
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Pickards 

(1975). 
 ParetoDistribution[k,α,γ,μ] Pareto type IV distribution 

 

 Pareto4           Pareto Type IV Pareto type IV distribution 
 

Pareto 

Type I 

(Power-

law) 

1

my

y








 

 

Logarithmic  

Pareto 

Type II 

(Lomax) 
The Pareto 

II is a Pareto 

I shifted to 

the left 

 1

1
y




 

 

 
 

 
 

 

Logarithmic  

Pareto 

Types III 

and IV 
(Type III 

corresponds 

to  = 1) 

1

1
y









 
      

 

 

 
 

 

Logarithmic 

Gompertz  exp expb by by       

 
The GompertzMakeham distribution is 

a four parameter Gompertz 

distribution. 

 

Linear 

 *Table modified from Frank (2014; Table 1). All graphics for distributions except Generalised Gamma 802 
distributions and Pareto 3 and 4 modified from Wikipedia. Generalised Gamma distributions modified from 803 
https://blogs.sas.com/content/iml/2021/03/15/generalized-gamma-distribution.html. Pareto IV calculated by 804 
present authors. 805 

 806 

Table 3. Calculated values of the homogeneity index, , from some Generalised Gamma 807 

distributions. 808 

Data set Homogeneity index,  
Blenkinsop  
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1582.0H#36X20 2.98 

1582.0H #37 X20 2.78 

1712.1AE1X20 7.27 

1724.1HX20 12.60 

1724.5NX20 4.50 

2298.7HX20#21 2.88 

2298.7HX20#22 35595.9 

2298.7HX20#23 2.84 

2298.7HX20#23R 2.87 

2298.7HX20#24 2.90 

2301EX20 3.05 

Fagereng  

GM_CB14 3.18 

Phillips+Williams  

AB2_2 7.13 

AB2F 3.80 

AB2SB 7.21 

AB3 4.37 

AB3S 6.03 

AB3U 4.77 

N_ABB 4.31 

N_ABF 4.40 

N_SM 4.01 

SM2 3.46 

SM2I 3.27 

SM3A 5.73 

SM3I 5.31 

SM3W 4.25 

Montheil et al.   

graniteHiMag x1600 0 

 809 

 810 

Appendix. Best fit distributions. 811 

In this appendix we present the best fit distributions for each data set. The detailed 812 

distributions are presented in Supplementary Material. The data for Fagereng (2011), 813 
Hadizadeh et al. (2010), Marone and Scholz (1989), Melosh et al. (2014) and Phillips et al. 814 

(2020)  were downloaded from the repository described by Phillips & Williams (2021), 815 
Acknowledgments, Samples, and Data, of 10 .17605 /OSF.IO /JDW8N   816 

 817 

Table A1. Best fit distributions for Phillips and Williams (2021) data. 818 

Phillips and 

Williams 

(2021)  

   

SAMPLE Probability 

Distribution 

#1 

Probability 

Distribution  

#2 

Probability 

Distribution 

#3 

AB2_2 Pareto type II Pareto type IV; Weibull3; 

Gamma4 

Frechet3 

AB2F Pareto type II Pareto type IV; Weibull3; 

Gamma4 

Frechet3 

AB2SB Pareto type II Pareto type IV; Weibull3; 

Gamma4 

Frechet3 
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AB3 Pareto type II Pareto type IV; Weibull3; 

Gamma4 

Frechet3 

AB3S Pareto type II   

AB3U Pareto type II   

N_ABB Pareto type II   

N_ABF Pareto type II   

N_SM Pareto type II   

SM2 Pareto type II   

SM2A Pareto type II   

SM2I Pareto type II   

SM3A Pareto type II   

SM3I Pareto type II   

SM3W Pareto type II   

 819 

Table A2. Best fit distributions for Melosh et al. (2014) data. 820 

Melosh et al 

2014 

    

SAMPLE  Probability 

Distribution 

#1 

Probability 

Distribution 

#2 

Probability 

Distribution 

#3 

PS126 chaotic Pareto type IV Frechet3 Frechet2 

PS194A  Frechet3 Pareto type IV/Gamma4 InverseGaussian 

PS194b crackle 

breccia 

Frechet3/Frechet2 Pareto type 

II/InverseGaussian 

Weibull3 

PS195 chaotic Frechet2 Frechet3 Pareto type IV 

PS197  Frechet3 Frechet2 Gamma4/LogNormal/I 

nverseGaussian 

PS204 crackle 

breccia 

Frechet3 Frechet2  

PSKB crackle 

breccia 

Frechet3 Pareto type II/Gamma4 Weibull3 

PSON crackle 

breccia 

Frechet3 Weibull3/Gamma4 Pareto type II 

 821 

Table A3. Best fit distributions for Hadizadeh. (2010) data. 822 

Hadizadeh. 

(2010) 

   

SAMPLE Probability 
Distribution #1 

Probability 
Distribution #2 

Probability 
Distribution #3 

VOF01 Pareto type IV Gamma4 Frechet3 

VOF01DMZN Gamma4 Weibull3 Pareto type IV 

VOF03A Gamma4 Weibull3 Pareto type IV 

VOF04A Gamma4 Pareto type IV Frechet3 

VOF04DMZN Weibull3/Pareto type 

II 

Pareto type IV/Gamma4 Frechet2 

VOF05AB Pareto type IV Gamma4 Frechet3 

VOF07 Pareto type IV Frechet3 Gamma4/LogNormal 

 823 

Table A4. Best fit distributions for Fagereng  (2011) data. 824 

Fagereng (2011) 

melange 
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SAMPLE Probability 
Distribution 

#1 

Probability 
Distribution #1 

Probability 
Distribution 

#1 

GM_CB1 Pareto type IV Frechet3 Frechet2 

GM_CB11 Pareto type II Frechet3/Pareto type I Frechet2 

GM_CB12_XY Pareto type IV Frechet3 Frechet2 

GM_CB12_XZ Frechet3   

GM_CB12_YZ Frechet3   

GM_CB12_ZX_Thin Frechet3   

GM_CB12_ZY_thin Frechet3   

GM_CB14 Frechet3 Frechet2 Pareto type II 

GM_CB15_Fold Frechet3 Frechet2 Pareto4 

GM_CB15_XZ Frechet3 Pareto4 Frechet2 

  825 

Table A5. Best fit distributions for Blenkinsop (1991) data. 826 

Blenkinsop  

(1991) 

   

SAMPLE Probability 
Distribution 

#1 

Probability 
Distribution 

#2 

Probability 
Distribution 

#3 
1582.0H#36 GompertzMakeham4/Gumbel2 Gamma4  

1582.0H#37 GompertzMakeham4 Gumbel2 Gamma4 

1712.1AE1 GompertzMakeham4/Gumbel2/Gamma4   

1724.1H GompertzMakeham4/Gumbel2/Gamma4   

1724.1H GompertzMakeham4/Gumbel2/Gamma4   

1724.1H GompertzMakeham4 Gumbel2  

1724.5N GompertzMakeham4/Gumbel2/Gamma4   

2298.7H#21 GompertzMakeham4/Gumbel2 Gamma4  

2298.7H#22 Gamma4 Gumbel2  

2298.7H#22R GompertzMakeham4/Gumbel2 Gamma4  

2298.7H#23 GompertzMakeham4/Gumbel2 Gamma4  

2298.7H#23R GompertzMakeham4/Gumbel2 Gamma4  

2298.7H#24 GompertzMakeham4/Gumbel2 Gamma4  

2301E GompertzMakeham4/Gumbel2 Gamma4  

2301EX20RR GompertzMakeham4/Gumbel2 Gamma4  

3359.3H GompertzMakeham4/Gumbel2 Gamma4  

4442.9A#22 No Data   

4442.9A#23 No Data   

4442.9A#23R No Data   

5437.5AE#24 GompertzMakeham4/Gumbel2 Gamma4  

5437.5AE#24R repeat   

6181.3H Gumbel2/Gamma4   

6181.3HXX GompertzMakeham4/Gumbel2/Gamma4   

6241.3E Gumbel2/Gamma4 GompertzMakeham4 Gamma4 

6241.3NX GompertzMakeham4/Gumbel2/Gamma4   

7381.4N Gamma4 GompertzMakeham4/Gumbel2  

9206.0H#30 GompertzMakeham4/Gumbel2 Gamma4  

9206.0H#31 GompertzMakeham4/Gumbel2 Gamma4  

 827 
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Table A6. Best fit distributions for Marone and Scholtz (1979) data 828 

Marone & Scholz 

(1979) 
   

SAMPLE Probability 
distribution 

#1 

Probability 
Distribution 

#2 

Probability 
distribution 

#3 

04_C Pareto type II Pareto type IV/Weibull3/Frechet3 Frechet3/Frechet2 

05C Pareto type II Pareto type IV/Weibull3/Frechet3 Frechet2 

07C Pareto type II   

34100 Pareto type II   

37100 Pareto type II   

A04C Pareto type II   

A00C Pareto type II   

GSA01C Pareto type II   

GS11C Pareto type II   

 829 

Table A7. Best fit distributions for Ferreira and Coop (2020) data. 830 

Ferreira and Coop 

(2020) 

Probability 

distribution #1 

Probability 

distribution #2 

Probability 

distribution #3 

Shear Strain %    

440 Pareto type II Fréchet2 Fréchet3 

6940 Pareto type I Pareto type II Gamma4 

44500 Gamma4 Pareto type I Fréchet3 

 831 

Table A8. Best fit distributions for Montheil et al. (2020) data. 832 

Montheil 
et al., 
2020 

 Magnification Distribution 
#1 

Distribution 
#2 

Distribution 
#3 

Granite High x400 Fréchet3 Pareto type II Pareto type I 

  x800    

  x1600 Fréchet3 Gamma4  

 Low x100 Fréchet3 Fréchet2 Pareto type 

IV 

  x200    

  x400 Pareto type 

IV 

Fréchet3 Fréchet2 

      

Tonalite High x400 Fréchet3 Fréchet2 Pareto type 

IV 

  x800    

  x1600 Fréchet3 Fréchet2 Pareto type 

IV 

 Low x100 Fréchet2 Fréchet3 Pareto type 

IV 

  x200    

  x400 Fréchet3 Pareto type 

IV 

Gamma4 

 833 
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Highlights  

 

 Cataclasite fragment size distributions are analysed. 

 Power-law and log-normal distributions tend to be poor fits to these data. 

 Best-fit Generalised Gamma distributions are consistent with theory.  

 Best fit Extreme Value and Generalised Pareto distributions also are good fits. 

 Linear and/or collisional fragmentation models provide similar results. 
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