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Abstract: The rank 1 bosonic ghost vertex algebra, also known as the βγ ghosts,
symplectic bosons or Weyl vertex algebra, is a simple example of a conformal field
theory which is neither rational, norC2-cofinite. We identify a module category, denoted
category F , which satisfies three necessary conditions coming from conformal field
theory considerations: closure under restricted duals, closure under fusion and closure
under the action of the modular group on characters. We prove the second of these
conditions, with the other two already being known. Further, we show that category
F has sufficiently many projective and injective modules, give a classification of all
indecomposable modules, show that fusion is rigid and compute all fusion products.
The fusion product formulae turn out to perfectly match a previously proposed Verlinde
formula, which was computed using a conjectured generalisation of the usual rational
Verlinde formula, called the standard module formalism. The bosonic ghosts therefore
exhibit essentially all of the rich structure of rational theories despite satisfying none of
the standard rationality assumptions such as C2-cofiniteness, the vertex algebra being
isomorphic to its restricted dual or having a one-dimensional conformal weight 0 space.
In particular, to the best of the authors’ knowledge this is the first example of a proof of
rigidity for a logarithmic non-C2-cofinite vertex algebra.

1. Introduction

A vertex algebra is called logarithmic if it admits reducible yet indecomposable modules
on which the Virasoro L0 operator acts non-semisimply, giving rise to logarithmic sin-
gularities in the correlation functions of the associated conformal field theory. There is
a general consensus within the research community that many of the structures familiar
from rational vertex algebras such as modular tensor categories [1] and, in particular,
the Verlinde formula should generalise in some form to the logarithmic case, at least for
sufficiently nice logarithmic vertex algebras. To this end, considerable work has been
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done on developing non-semisimple or non-finite generalisations ofmodular tensor cate-
gories [2–4]. However, progress has been hindered by a severe lack of examples, making
it hard to come up with the right set of assumptions.

Ghost systems have been used extensively in theoretical physics and quantumalgebra.
Their applications include gauge fixing in string theory [5], Wakimoto free field real-
isations [6], quantum Hamiltonian reduction [7] and constructing the chiral de Rham
complex on smooth manifolds [8]. Fermionic ghosts at central charge c = −2 in the
form of symplectic fermions have received a lot of attention in the past [9–11], due to
their even subalgebra being one of the first known examples of a logarithmic vertex
algebra. In particular, they are one of the few known examples of C2-cofinite yet loga-
rithmic vertex algebras [12–14]. This family also provides the only known examples of
logarithmic C2-cofinite vertex algebras with a rigid fusion product [12,15].

Here we study the rank 1 bosonic ghosts at central charge c = 2. One of the motiva-
tions for studying this algebra is that it is simple enough to allow many quantities to be
computed explicitly, while simultaneously being distinguished from better understood
algebras in a number of interesting ways. For example, the bosonic ghosts are not C2-
cofinite and they were shown to be logarithmic by D. Ridout and the second author in
[16], in which the module category to be studied here, denoted category F , was intro-
duced. The main goals of [16] were determining the modular properties of characters in
categoryF and computing the Verlinde formula, using the standard module formalism
pioneered by D. Ridout and T. Creutzig [17–19], to predict fusion product formulae.
Later, D. Adamović and V. Pedić computed the dimensions of spaces of intertwining
operators among the simple modules of category F in [20], which turned out to match
the predictions made by the Verlinde formula in [16]. Here we show that fusion (in
the sense of the P(w)-tensor products of [21]) equips category F with the structure of
a braided tensor category. This, in particular, implies that category F is closed under
fusion, that is, the fusion product of any two objects in F has no contributions from
outsideF and is hence again an object inF . We derive explicit formulae for the decom-
position of any fusion product into indecomposable direct summands, and we show that
fusion is rigid and matches the Verlinde formula of [16].

A further source of interest for the bosonic ghosts is an exciting recent correspondence
between four-dimensional super conformal field theory and two-dimensional conformal
field theory [22], where the bosonic ghosts appear as one of the smaller examples on the
two-dimensional side. Within this context the bosonic ghosts are the first member of a
family of vertex algebras called theBp algebras [23,24]. TheBp-module categories are
conjectured to satisfy interesting tensor categorical equivalences to the module category
of the unrolled restricted quantum groups of sl2. It will be an interesting future problem
to explore these categorical relations in more detail using the results of this paper.

The paper is organised as follows. In Section 2, we fix notation by giving an introduc-
tion to the bosonic ghost algebra and certain important automorphisms called conjugation
and spectral flow; construct categoryF , the module category to be studied; and give two
free field realisations of the bosonic ghost algebra. In Section 3 we begin the analysis
of category F as an abelian category by using the free field realisations of the bosonic
ghost algebra to construct a logarithmic module, denoted P, on which the operator L0
has rank 2 Jordan blocks.We further show thatP is both an injective hull and a projective
cover of the vacuum module (the bosonic ghost vertex algebra as a module over itself),
and classify all projective modules in categoryF , thereby showing that categoryF has
sufficientlymany projectives and injectives. In Section 4we complete the analysis of cat-
egory F as an abelian category by classifying all indecomposable modules. In Section
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5 we show that fusion equips categoryF with the structure of a vertex tensor category,
the main obstruction being showing that certain conditions, sufficient for the existence
of associativity isomorphisms, hold. We further show that the simple projective modules
ofF are rigid. In Section 6 we show that categoryF is rigid and determine direct sum
decompositions for all fusion products of modules in category F . In Appendix A we
review an argument by Yang [25], which provides sufficient conditions for a technical
property, called convergence and extension, required for the existence of associativity
isomorphisms. We adjust the argument of Yang slightly to remove certain assumptions
on module categories. This adjusted argument proves Theorem 5.7, which should also
prove useful for the generalisations of categoryF to other vertex algebras such as those
constructed from affine Lie algebras at admissible levels.

2. Bosonic Ghost Vertex Algebra

In this section we introduce the bosonic ghost vertex algebra, along with its gradings
and automorphisms. We define the module category which will be the focus of this
paper. We also introduce useful tools for the classification of modules and calculation
of fusion products, including two free field realisations. Note that we will make specific
choices of conformal structure for all vertex algebras considered in this paper and so will
not distinguish between vertex algebras, vertex operator algebras and conformal vertex
algebras or other similar naming conventions.

2.1. The algebra and its automorphisms. The bosonic ghost vertex algebra (also called
βγ ghosts) is closely related to the Weyl algebra. Their defining relations resemble each
other and the Zhu algebra of the bosonic ghosts is isomorphic to the Weyl algebra. The
bosonic ghosts are therefore also often referred to as the Weyl vertex algebra. Due to
these connections, we first introduce the Weyl algebra and its modules before going on
to consider the bosonic ghosts.

Definition 2.1. The (rank 1)Weyl algebraA is the unique unital associative algebra with
two generators p, q, subject to the relations

[p, q] = 1, (2.1)

and no additional relations beyond those required by the axioms of an associative algebra.
The grading operator is the element N = qp.

Definition 2.2. We define the following indecomposable A-modules:

(1) C[x], where p acts as ∂/∂x and q acts as x . Denote this module by V.
(2) C[x], where p acts as x and q acts as −∂/∂x . Denote this module by cV.
(3) C[x, x−1]xλ,λ ∈ C\Z,where p acts as ∂/∂x andq acts as x .Note that shiftingλby an

integer yields an isomorphic module. Denote the mutually inequivalent isomorphism
classes of these modules by Wμ, where μ ∈ C/Z, μ �= Z and λ ∈ μ.

(4) C[x, x−1], where p acts as ∂/∂x and q acts as x . Denote this module by W+
0 . This

module is uniquely characterised by the non-split exact sequence

0 −→ V −→ W+
0 −→ cV −→ 0. (2.2)
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(5) C[x, x−1], where p acts as x and q acts as −∂/∂x . Denote this module byW−
0 . This

module is uniquely characterised by the non-split exact sequence

0 −→ cV −→ W−
0 −→ V −→ 0. (2.3)

A module on which N = qp acts semisimply is called a weight module. Note that N
acts semisimply on all modules above.

Proposition 2.3 (Block [26]). Any simple A-module on which N acts semisimply is
isomorphic to one of those listed in Definition 2.2, Parts (1) – (3).

Definition 2.4. The bosonic ghost vertex algebraG is the unique vertex algebra strongly
generated by two fields β, γ , subject to the defining operator product expansions

γ (z)β(w) ∼ 1

z − w
, β(z)β(w) ∼ γ (z)γ (w) ∼ 0, (2.4)

and no additional relations beyond those required by vertex algebra axioms.

The bosonic ghost vertex algebra admits a one-parameter family of conformal structures.
Here we choose the Virasoro field (or energy momentum tensor) to be

T (z) = −:β(z)∂γ (z):, (2.5)

thus determining the central charge to be c = 2 and the conformal weights of β and γ to
be 1 and 0, respectively. The bosonic ghost fields can thus be expanded as formal power
series with the mode indexing chosen to reflect the conformal weights.

β(z) =
∑

n∈Z
βnz

−n−1, γ (z) =
∑

n∈Z
γnz

−n . (2.6)

The operator product expansions of β and γ fields imply that their modes generate the
bosonic ghost Lie algebra G satisfying the Lie brackets

[γm, βn] = δm+n,01, [βm, βn] = [γm, γn] = 0, m, n ∈ Z, (2.7)

where 1 is central and acts as the identity on any G-module, since it corresponds to the
identity (or vacuum) field.

Within G there is a rank 1 Heisenberg vertex algebra generated by the field

J (z) = :β(z)γ (z):. (2.8)

A quick calculation reveals that J is a free boson of Lorentzian signature, not a conformal
primary, and that J defines a grading on β and γ called ghost weight (or ghost number),
that is,

J (z)J (w) ∼ −1

(z − w)2
, T (z)J (w) ∼ −1

(z − w)3
+

J (w)

(z − w)2
+

∂ J (w)

z − w
,

J (z)β(w) ∼ β(w)

z − w
, J (z)γ (w) ∼ −γ (w)

z − w
. (2.9)

Note that for the distinguished elements β, γ, J, and T we suppress the field map
symbol Y : G → G[[z, z−1]]. For generic elements A ∈ Gwe will use both Y (A, z) and
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A(z) to denote the field corresponding to A, depending on what is easier to read in the
given context.

We make frequent use of two automorphisms of G. The first is spectral flow, which
acts on the G modes as

σ�βn = βn−�, σ �γn = γn+�, σ �1 = 1. (2.10)

The second is conjugation which is given by

cβn = γn, cγn = −βn, c1 = 1. (2.11)

These automorphisms satisfy the relation

cσ� = σ−�c. (2.12)

At the level of fields, these automorphisms act as

σ�β(z) = β(z)z−�, σ �γ (z) = γ (z)z�,

σ � J (z) = J (z) + �1z−1, σ �T (z) = T (z) − �J (z)z−1 − 1
2�(� − 1)1z−2,

cβ(z) = γ (z), cγ (z) = −β(z),

cJ (z) = −J (z) + 1z−1, cT (z) = T (z) + ∂ J (z) + J (z)z−1. (2.13)

The primary utility of the conjugation and spectral flow automorphisms lies in construct-
ing new modules from known ones through twisting.

Definition 2.5. Let M be a G-module and α an automorphism. The α-twisted module
αM is defined to be M as a vector space, but with the action of G redefined to be

A(z) ·α m = α−1(A(z))m, A ∈ G, m ∈ M, (2.14)

where the action ofG on the right-hand side is the original untwisted action ofG onM.

Remark. Due to being algebra automorphisms, spectral flow and conjugation twists both
define exact covariant functors. Further, the respective ghost and conformal weights
[ j, h] of a vector m in a G-Module M transform as follows under conjugation and
spectral flow.

σ� : [ j, h] �→ [ j − �, h + �j − 1
2� (� + 1)],

c : [ j, h] �→ [1 − j, h]. (2.15)

Since c2βn = −βn and c2γn = −γn , we have c2M ∼= M, for any G-module M. We
shall later see that spectral flow has infinite order and thus the relations (2.12) imply that
at the level of the module category spectral flow and conjugation generate the infinite
dihedral group.

Theorem 2.6. For anyG-modulesM andN, conjugation and spectral flow are compat-
ible with fusion products in the following sense.

σ�M � σmN ∼= σ�+m (M � N) ,

cM � cN ∼= cσ (M � N). (2.16)
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The behaviour of spectral flow under fusion was proven for vertex algebras with finite
dimensional conformal weight spaces in [27, Proposition 2.4]. However, the proof does
not rely on this fact, and so we can apply the result toG-modules, as in [20, Proposition
3.1]. The behaviour of conjugation under fusion was proven in [20, Proposition 2.1],
where conjugation was denoted by σ and spectral flow by ρ�. There the automorphism g
corresponds toσ−1c = cσ here. These formulaemean that the fusion ofmodules twisted
by spectral flow is determined by the fusion of untwisted modules, a simplification we
shall make frequent use of.

2.2. Module category. Every G-module is a G-module, however, the converse is not
true (consider for example the adjoint G-module). The category of smooth G-modules
consists of precisely those modules which are also G-modules. Such modules are also
commonly called weakG-modules and we shall use these terms interchangeably. Unfor-
tunately the category of all smooth modules is at present too unwieldy to analyse and so
we must invariably consider some subcategory.

In this section we define the module category, which we believe to be the natural
one from the perspective of conformal field theory, because it is compatible with the
following two necessary conformal field theoretic conditions.

(1) Non-degeneracy of n-point conformal blocks (chiral correlation functions) on the
sphere.

(2) Well-definedness of conformal blocks at higher genera.

Condition (1) can be reduced to the non-degeneracy of two and three-point conformal
blocks. The non-degeneracy of two-point conformal blocks requires the module cat-
egory to be closed under taking restricted duals, while non-degeneracy of three-point
conformal blocks requires the module category to be closed under fusion (as, for exam-
ple, constructed by the P(w)-tensor product of Huang-Lepowsky-Zhang). Conformal
blocks at higher genera can be constructed from those on the sphere provided there is
a well-defined action of the modular group on characters. Thus Condition (2) requires
characters to be well-defined, that is, for all modules to decompose into direct sums of
finite dimensional simultaneous generalised J0 and L0 eigenspaces. On any simple such
module both L0 and J0 will act semisimply. Further, the action of J0 is semisimple on
a fusion product if J0 acts semisimply on both factors of the product. We can therefore
restrict ourselves to a category of J0-semisimple modules without endangering closure
under fusion. We cannot, however, assume that L0 will act semisimply in general.

Themain tool for identifying and classifying vertex operator algebramodules is Zhu’s
algebra. Sadly Zhu’s algebra is only sensitive to modules containing vectors annihilated
by all positive modes. Any simple such module is a simple module in the category called
R below. We will see thatR is closed under taking restricted duals, however, as can be
seen later in Section 6, category R is not closed under fusion. Further, it was shown in
[16] that the action of the modular group does not close on its characters. Thus a larger
category is needed, which will be denotedF below. It was shown in [16] that the action
of the modular group closes on the characters of F and strong evidence was presented
that fusion does as well. We will see in Section 6 that categoryF is indeed closed under
fusion and that it satisfies numerous other nice properties.

The definition of the module categories mentioned above requires the following
choice of parabolic triangular decomposition of G.

G± = span{β±n, γ±n : n ≥ 1}, G0 = span{1, β0, γ0}. (2.17)
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This decomposition is parabolic, becauseG0 is not abelian and thus not a choice ofCartan
subalgebra. The role of the Cartan subalgebra will instead be played by span{1, J0},
which is technically a subalgebra of the completion of U (G) rather than G.

Definition 2.7.

(1) Let G-WMod be the category of smooth weight G-modules, that is the category
whose objects are all smooth (or weak) G-modules M (we follow the conventions
of [28] regarding smooth modules) which in addition satisfy that J0 acts semisimply
and whose arrows are all G-module homomorphisms.

(2) Let R be the full subcategory of G-WMod consisting of those modules M ∈ G-
WMod satisfying
• M is finitely generated,
• G+ acts locally nilpotently, that is, for allm ∈ M,U

(
G+

)
m is finite dimensional.

(3) Let F be the full subcategory of G-WMod consisting all finite length extensions of
arbitrary spectral flows of modules inR with real J0 weights.

The A-modules of Definition 2.2 induce to modules in category R.

Definition 2.8. Let M be a A-module, then we induce M to a G-module IndM in R
by having G+ act trivially on M, β0 and γ0 act as −p and q, respectively, and G− act
freely. We denote

(1) V ∼= Ind V, the vacuum module or bosonic ghost vertex algebra as a module over
itself.

(2) cV ∼= σ−1V ∼= Ind cV, the conjugation twist of the vacuum module.
(3) Wλ

∼= IndWλ with λ ∈ C/Z, λ �= Z.

(4) W±
0

∼= IndW±
0 .

Note that due to the simple nature of theG commutation relations (2.7) IndM is simple
whenever M is, that is, the modules listed in parts (1) – (3) are simple.

Proposition 2.9.

(1) Any simple module in R is isomorphic to one of those listed in Parts (1) – (3) of
Definition 2.8.

(2) Any simple module inF is isomorphic to one of the following mutually inequivalent
modules.

σ�V, σ �Wλ, � ∈ Z, λ ∈ R/Z, λ �= Z. (2.18)

(3) The conjugation twists of simple modules in F satisfy

cσ�V ∼= σ−1−�V, cσ�Wλ
∼= σ−�W−λ, � ∈ Z, λ ∈ R/Z, λ �= Z. (2.19)

(4) The indecomposable modules W±
0 satisfy the non-split exact sequences

0 −→ V −→ W+
0 −→ σ−1V −→ 0, (2.20a)

0 −→ σ−1V −→ W−
0 −→ V −→ 0. (2.20b)

This propositionwas originally given in [16, Proposition 1], however, we give it again
here for completeness.
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Proof. To show Part (1), we use that R is precisely the category of weight modules
visible to Zhu’s algebra [29]. That is, the simple modules in R are in bijection with
simple weight modules over the Zhu algebra. Further the Zhu algebra ofG is isomorphic
to the Weyl algebra A. Therefore the simple modules of R are classified by the simple
modules given in Proposition 2.3. Specifically, every simple module inR is isomorphic
to the simple quotient of an induction of on of the simple modules listed in 2.2, that is,
the module listed in Parts (1) – (3) of Definition 2.8.

Part (2) now immediately follows from Part (1), because, by definition, the simple
modules of F are just spectral flows of those inR.

To show Part (3), consider first the case when � = 0, where the identification can be
easily verified by direct computation. The identities for general � then follow from the
dihedral group relation (2.12).

Finally Part (4) follows from the exact sequences in Definition 2.2 and the fact
that induction preserves exactness. Restricting to the conformal weight 0 spaces of
these induced sequences recovers the initial exact sequences for modules over the Weyl
algebra. So since theWeyl algebra sequences were non-split the induced sequences must
be too. �	

We shall show in Proposition 3.2 that, up to spectral flow twists, the indecomposable
modules W±

0 are the only indecomposable length 2 extensions of spectral flows of the
vacuum module. In Section 4 we extend the indecomposable modules W±

0 to infinite
families of indecomposable modules.

2.3. Restricted duals. Asmentioned above, conformal field theories require their repre-
sentation categories to be closed under taking restricted duals. They are also an essential
tool for the computation of fusion products using the Huang-Lepowsky-Zhang (HLZ)
double dual construction [21, Part IV], also called the P(w)-tensor product, and so we
record the necessary definitions here.

Definition 2.10. Let M be a weight G-module. The restricted dual (or contragredient)
module is defined to be

M′ =
⊕

h, j∈C
Hom

(
M

( j)
[h],C

)
,

Hom
(
M

( j)
[h],C

)
= {m ∈ M : (J0 − j)m = 0, (L0 − h)nm = 0, n � 0}, (2.21)

where the action of G is characterised by

〈Y (A, z)ψ,m〉 = 〈ψ,Y (A, z)oppm〉, A ∈ G, ψ ∈ M′, m ∈ M, (2.22)

and where Y (A, z)opp is given by the formula

Y (A, z)opp = Y

(
ezL1

(
−z−2

)L0
A, z−1

)
. (2.23)

Proposition 2.11. The vertex algebra G and its modules have the following properties.

(1) The modes of the generating fields and the Heisenberg field satisfy

β
opp
n = −β−n, γ

opp
n = γ−n, J oppn = δn,0 − J−n . (2.24)
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(2) The restricted duals of spectral flows of the indecomposable modules in Definition
2.8 can be identified as

(
σ�V

)′ ∼= σ−1−�V,
(
σ�Wλ

)′ ∼= σ−�W−λ,
(
σ�W±

0

)′ ∼= σ−�W±
0 . (2.25)

(3) Denote by ∗ the composition of twisting by c and taking the restricted dual, then
(
σ�V

)∗ ∼= σ�V,
(
σ�Wλ

)∗ ∼= σ�Wλ,
(
σ�W±

0

)∗ ∼= σ�W∓
0 . (2.26)

(4) Let A,B ∈ F and � ∈ Z, then the homomorphism and first extension groups satisfy

Hom (A,B) = Hom (cA, cB) = Hom
(
σ�A, σ �B

)
= Hom

(
B′,A′) = Hom

(
B∗,A∗) ,

Ext (A,B) = Ext (cA, cB) = Ext
(
σ�A, σ �B

)
= Ext

(
B′,A′) = Ext

(
B∗,A∗) . (2.27)

Proof. Part (1) follows immediately from Definition 2.10.
Part (2): Since σ�V is simple,

(
σ�V

)′
is too, due to taking duals being an invertible

exact contravariant functor. Further, by the action given in Definition 2.10 it is easy to
see that βn, n ≥ � + 1 and γm, m ≥ −� act locally nilpotently and therefore

(
σ�V

)′
is

an object of both σ−�R and σ−1−�R. Thus,
(
σ�V

)′ ∼= σ−1−�V.

Similarly, since σ�Wλ is simple,
(
σ�Wλ

)′
is too. The modes βn, n ≥ � + 1 and

γm, m ≥ 1 − � act locally nilpotently and therefore
(
σ�Wλ

)′
is an object of σ−�R.

Further, for J0 homogeneous m ∈ σ�Wλ and ψ ∈ (
σ�Wλ

)′
, consider

〈J0ψ,m〉 = 〈ψ, (1 − J0)m〉. (2.28)

Thus,
(
σ�Wλ

)′ ∼= σ−�W−λ.

Finally, the duals of σ�W±
0 follow from that fact that the duality functor is exact and

contravariant, and by applying it to the exact sequences (2.20).
Part (3) follows from composing the formulae of Part (2) with the conjugation twist

formulae of Proposition 2.9.
Part (4) follows from c, σ and ′ being exact invertible functors, the first two covariant

and the last contravariant. �	

2.4. Free field realisation. We present two embeddings ofG into a rank 1 lattice algebra
constructed froma rank2Heisenbergvertex algebra.We refer to [30] for a comprehensive
discussion of Heisenberg and lattice vertex algebras.

Let H be the rank 2 Heisenberg vertex algebra with choice of generating fields ψ, θ

normalised such that they satisfy the defining operator product expansions

ψ(z)ψ(w) ∼ 1

(z − w)2
, θ(z)θ(w) ∼ −1

(z − w)2
, ψ(z)θ(w) ∼ 0. (2.29)

By a slight abuse of notation we also use ψ and θ to denote a basis of a rank 2 lattice
LZ = spanZ{ψ, θ} with symmetric bilinear lattice form corresponding to the above
operator product expansions, that is (ψ,ψ) = − (θ, θ) = 1 and (ψ, θ) = 0. Let
L = spanR{ψ, θ} be the extension of scalars of LZ by R, K = spanZ{ψ + θ} the
indefinite rank 1 lattice generated by ψ + θ and K ∗ = {λ ∈ L : (λ, κ) ∈ Z, ∀κ ∈ K }.
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We denote the Fock spaces of H by Fλ, λ ∈ L , where the zero mode of a Heisenberg
vertex algebra field a(z), a ∈ L acts as scalar multiplication by (a, λ). To any vector
p|λ〉 ofFλ, where p is any product of negative index modes ofψ, θ , we assign the vertex
operators V (p|λ〉, z) : Fμ → Fμ+λ[[z, z−1]]z(λ,μ) given by the expansion

V (p|λ〉, z) = eλzλ0
∏

m≥1

exp

(
λ−m

m
zm

)
Y (p|0〉, z)

∏

n≥1

exp

(
−λn

n
z−n

)
, (2.30)

where Y (p|0〉, z) is the field associated to p|0〉 ∈ H, and where eλ ∈ C[L] is the basis
element in the group algebra of L corresponding to λ ∈ L and satisfies the relations

[bn,eλ] = δn,0 (b, λ) eλ, eλ|μ〉 = |λ + μ〉. (2.31)

We abbreviate V (|λ〉, z) as Vλ (z). It is well known that, after specialising the formal
variables to complex numbers satisfying |z1| > |z2| and |z2| > |z1 − z2|, the product
and iterate of vertex operators are equal when evaluated on Fock spaces, that is,

V (p|λ〉, z1)V (q|μ〉, z2) = V (V (p|λ〉, z1 − z2) q|μ〉, z2) . (2.32)

Finally, let VK be the lattice vertex algebra extension ofH along K . The lattice modules

F� =
⊕

λ∈�

Fλ, � ∈ K ∗/K , (2.33)

are simplemodules forVK . It will occasionally be convenient to label the latticemodules
by a representative λ ∈ � rather than the coset itself, that is Fλ = F�. Note also that
our notation differs from conventions common in theoretical physics literature. There,
for a ∈ L , Va (z) would be denoted by :ea(z): and a(z) by ∂a(z).

Proposition 2.12.

(1) The assignment

β(z) �→ Vθ+ψ (z) , γ (z) �→ :ψ(z)V−θ−ψ (z): (2.34)

induces an embedding φ1 : G → VK . Restricting to the image of this embedding,
VK -modules can be identified with G-modules as

F�ψ
∼= σ�+1W−

0 , F�
∼= σ (�,ψ+θ)+1W(�,ψ), � ∈ L/K , (�,ψ + θ) ∈ Z and (�,ψ) �= Z,

(2.35)
where (�,ψ) is the coset in R/Z formed by pairing all representatives of � with ψ .

(2) The assignment

β(z) �→ :ψ(z)Vθ+ψ (z):, γ (z) �→ V−θ−ψ (z) (2.36)

induces an embedding φ2 : G → VK . Restricting to the image of this embedding,
VK -modules can be identified with G-modules as

F�ψ
∼= σ�W+

0, F�
∼= σ (�,ψ+θ)W(�,ψ),

� ∈ L/K , (�,ψ + θ) ∈ Z and (�,ψ) �= Z, (2.37)

where (�,ψ) is the coset in R/Z formed by pairing all representatives of � with ψ .
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The embeddings are well known and the identifications ofVK -modules withG-modules
follow by comparing characters and was shown in [31, Proposition 4.7] and [20, Propo-
sition 4.1].

Remark. It iswell known that there is a natural choice of semisimplemodule category for
the vertex algebra VK for which the lattice modules F�, � ∈ K ∗/K give an exhaustive
list of representatives for simple isomorphism classes of simple objects. Fusion products
furnish this module category with the structures of a braided monoidal category which is
isomorphic to the category of finite dimensional K ∗/K graded vector spaces. The braid-
ing and associativity isomorphisms �, F form abelian 3-cocycles whose cohomology
classes classify the inequivalent braiding and associativity structures. In the notation of
[30, Chapter 12], �, F can be expressed in terms of the pairing ( , ) on L and a choice
of section s : K ∗/K → K ∗, that is, a right inverse to the canonical projection map
π : K ∗ → K ∗/K such that π ◦ s = idK ∗/K (different choices of s yield cohomologous
results)

�(α, β) = eiπ(s(α),s(β)), F(α, β, γ ) = eiπ(s(α),s(β+γ )−s(β)−s(γ )), α, β, γ ∈ K ∗/K .

(2.38)
Note that in [30] it is assumed that K is full rank in L and hence K ∗/K is a finite group,
however this assumption is not needed for the cohomological arguments regarding the
braiding and associativity structures. For a general lattice, F includes an additional factor
dependent on a choice of lattice two-cocycle (unique up to cohomology). Fortunately as
K is rank one and even this 2-cocycle can be chosen to be trivial. Here K ∗ ∼= Z × R,
where Z corresponds to the integer span of ψ − θ and R to the real span of K . Hence
K ∗/K ∼= Z×R/Z. If we denote by x ∈ [0, 1) the unique representative of x ∈ R/Z in
the half open unit interval, then a choice of section s is given by the formula

s(α1, α2) = (α1, α2), (α1, α2) ∈ Z × R/Z. (2.39)

Resulting in

�(α, β) = eiπ
(
α1β2+β1α2

)
, F(α, β, γ ) = eiπα1

(
β2+γ2−β2−γ2

)
,

α = (α1, α2), β = (β1, β2), γ = (γ1, γ2) ∈ Z × R/Z. (2.40)

Redefining (�, F) by rescaling by the coboundary dk(α, β, γ ) = (eiπβ1α2−iπα1β2 ,

e−iπα1
(
β2+γ2−β2−γ2

)
) of the 2-cochain k(α, β) = e−iπα1β2 (see [30, Chapter 12] for

details regarding coboundary conditions) yields

�(α, β) = e2iπβ1α2 , F(α, β, γ ) = 1, (2.41)

and we see that the intertwining operators of VK lattice modules can be normalised in
such a way as to have trivial associators.

Theorem 2.13.

(1) Let S1 = ResVψ (z), then ker
(
S1 : VK → Fψ

) = im φ1, where φ1 : G → VK is
the embedding of Proposition 2.12.(1), that is, S1 is a screening operator for the free
field realisation φ1 of G. Further the sequence

· · · S1−→ F−ψ
S1−→ F0

S1−→ Fψ
S1−→ · · · (2.42)

is exact and is therefore a Felder complex.
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(2) Let S2 = ResV−ψ (z), then ker
(
S2 : VK → F−ψ

) = im φ2, where φ2 : G → VK
is the embedding of Proposition 2.12.(2), that is, S2 is a screening operator for the
free field realisation φ2 of G. Further the sequence

· · · S2−→ Fψ
S2−→ F0

S2−→ F−ψ
S2−→ · · · (2.43)

is exact and is therefore a Felder complex.

Proof. We prove part (1) only, as part (2) follows analogously. The operator product
expansion of Vψ (z) with the images of β and γ in VK are

Vψ (z) β(w) ∼ 0, Vψ (z) γ (w) ∼ −V−θ (w)

(z − w)2
, (2.44)

which are total derivatives in z implying that S1 = ResVψ (z) is a screening operator
and that im φ1 ⊂ ker S1. Therefore, S1 commutes withG and hence defines aG-module
map F0 → Fψ . The identification (2.35) implies F0 ∼= σW−

0 and Fψ
∼= σ 2W−

0 . By
comparing composition factors we see that the kernel must be either im φ1 ∼= V or all
of F0, so it is sufficient to show that the map S1 : F0 → Fψ is non-trivial. A quick
calculation reveals that

S1 |−ψ − θ〉 = |−θ〉, (2.45)

and thus S1 is not trivial. By comparing the composition factors of the sequence (2.42)
we also see that the sequence is an exact complex if each arrow is non-zero. Finally, the
arrows are non-zero because

S1|−ψ + mθ〉 = |mθ〉, ∀m ∈ Z. (2.46)

�	
Remark. The existence of Felder complexes will not specifically be needed for any of
the results that follow, however, it is interesting to note that the bosonic ghosts admit such
complexes. These complexes were crucial in [16] for computing the character formulae
needed for the standard module formalism via resolutions of simple modules.

3. Projective Modules

In this section we construct reducible yet indecomposable modules P on which the L0
operator has rank 2 Jordan blocks. We further prove that the modules σ�P and σ�Wλ

are both projective and injective, and that in particular the σ�P are projective covers
and injective hulls of σ�V for any � ∈ Z. We refer readers unfamiliar with homological
algebra concepts such as injective and projective modules or extension groups to the
book [32] and recall the following result for later use.

Proposition 3.1. For a module R which is both projective and injective, the Hom-Ext
sequences terminate. That is, if we have the short exact sequence

0 −→ A −→ R −→ B −→ 0, (3.1)

for modules A, B. then this implies that the following two sequences are exact, for any
module M.

0 −→ Hom (M,A) −→ Hom (M,R) −→ Hom (M,B) −→ Ext (M,A) −→ 0,
(3.2)
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0 −→ Hom (B,M) −→ Hom (R,M) −→ Hom (A,M) −→ Ext (B,M) −→ 0.
(3.3)

Furthermore,Hom (R,−) andHom (−,R) are exact covariant and exact contravariant
functors respectively.

This proposition assists with the calculation of Hom and Ext groups, when all but one
of the dimensions in the sequence are known. Using the fact that the Euler characteristic
(the alternating sum of the dimensions of the coefficients) of an exact sequence vanishes,
there is only one possibility for the remaining group.

Proposition 3.2. The first extension groups of simple modules in F satisfy

dim Ext
(
σ kV, σ �V

)
=

{
1, |k − �| = 1
0, otherwise

,

dim Ext
(
σ kWλ,M

)
= dim Ext

(
M, σ kWλ

)
= 0, (3.4)

where λ ∈ R/Z, λ �= Z, k, � ∈ Z and M is any module inF . In particular the simple
modules σ kWλ are both projective and injective inF .

Proof. To conclude that σ kWλ is projective in F it is sufficient to show that
dim Ext (Wλ,M) = 0 for all simple objects M ∈ F . Injectivity in F then follows
by applying the ∗ functor and noting that Wλ

∗ ∼= Wλ. Let M ∈ F be simple, then a
necessary condition for the short exact sequence

0 −→ M −→ N −→ Wλ −→ 0, M ∈ F (3.5)

being non-split is that the respective ghost and conformal weights of Wλ and M differ
only by integers. For simple M this rules out M = σ�V or M = σ�Wμ, μ �= λ. So we
consider M = σ�Wλ. Assume � = 0, let j ∈ λ and let v be a non-zero vector in the
ghost and conformal weight [ j, 0] space of the submoduleM = Wλ ⊂ N and letw ∈ N
be a representative of a non-zero coset in the [ j, 0] weight space of the quotient N/Wλ.
Without loss of generality, we can assume that w is a J0-eigenvector and a generalised
L0-eigenvector. A necessary condition for the indecomposability of N, is the existence
of an element U in the universal enveloping algebra U (G) such that Uv = w. Since v

has minimal generalised conformal weight all positive modes annihilate v, thusUv can
be expanded as a sum of products of β0 and γ0 with each summand containing as many
β0 as γ0 factors, that is, Uv = f (J0)v can be expanded as a polynomial in J0 acting on
v. SinceN ∈ F , J0 acts semisimply, hence f (J0)v ∝ v. Since v is not a scalar multiple
of w, this contradicts the indecomposability of N. Thus the exact sequence splits or,
equivalently, the corresponding extension group vanishes.

Assume M = σ�Wλ with � �= 0, then by applying the ∗ and σ functors, we have
Ext

(
Wλ, σ

�Wλ

) = Ext
(
σ�Wλ,Wλ

) = Ext
(
Wλ, σ

−�Wλ

)
. Thus the sign of � can be

chosen at will and we can assume without loss of generality that � ≥ 1. Further, from
the formulae for the conformal weights of spectral flow twisted modules (2.15), the
conformal weights ofWλ and σ�Wλ differ by integers if and only if � ·λ = Z. Let j ∈ λ

be the minimal representative satisfying that the space of ghost weight j in σ�Wλ has
positive least conformal weight. The least conformal weight of the ghost weight j − 1
space is a negative integer, which we denote by −k. See Figure 1 for an illustration of
how the weight spaces are arranged. Let v ∈ N be a non-zero vector of ghost weight
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j and generalised L0 eigenvalue 0, and hence a representative of a non-trivial coset of
ghost and conformal weight [ j, 0] in Wλ

∼= N/σ �Wλ. Further let w ∈ σ�Wλ ⊂ N
be a non-zero vector of ghost and conformal weight [ j − 1,−k]. Both v and w lie
in one-dimensional weight spaces and hence span them. If N is indecomposable, then
there must exist an element U of ghost and conformal weight [−1,−k] in U (G), such
that Uv = w. We pick a Poincaré-Birkhoff-Witt ordering such that generators with
larger mode index are placed to the right of those with lesser index and γn is placed to
the right of βn for any n ∈ Z. Thus Uv = ∑k

i=1U
(i)γiv, where U (i) is an element of

U (G) of ghost and conformal weight [0, i−k]. InWλ, γ0 acts bijectively on the space of
conformal weight 0 vectors, hence there exists a ṽ ∈ N such that γ0ṽ = v. Since at ghost
weight j the conformal weights ofN are non-negative, we have γn ṽ = 0, n ≥ 1 and thus
Uv = ∑k

i=1U
(i)γiγ0ṽ = ∑k

i=1U
(i)γ0γi ṽ = 0, contradicting the indecomposability of

N.
Next we consider the extensions of spectral flows of the vacuum module. By

judicious application of the ∗ and σ functors, we can identify Ext
(
σ kV, σ �V

) =
Ext

(
V, σ k−�V

) = Ext
(
V, σ �−kV

)
. So without loss of generality, it is sufficient to

consider the extension groups Ext
(
V, σ �V

)
or equivalently short exact sequences of the

form
0 −→ σ�V −→ M −→ V −→ 0, � ∈ Z≥0, M ∈ F . (3.6)

Let σ�� ∈ σ�V ⊂ M denote the the spectral flow image of the highest weight vector
of V and let ω ∈ M be a J0-eigenvector and a choice of representative of the highest
weight vector in V ∼= M/σ �V. We first show that these sequences necessarily split if
� �= 1. Assume � = 0, then the exact sequence can only be non-split if there exists a
ghost and conformal weight [0, 0] element U in U (G) such that Uω = aσ�� − bω,
a, b ∈ C, a �= 0. Without loss of generality we can replace U by Ũ = U − b1 to obtain
Ũω = aσ��. Since the conformal weights of V are bounded below by 0, they satisfy
the same bound in M and βnω = γnω = 0, n ≥ 1, so Ũω can be expanded as a sum of
products of β0 and γ0 acting on ω, with each summand containing the same number of
β0 and γ0 factors. Equivalently, Ũω can be expanded as a polynomial in J0 acting on ω.
Since ω is a J0-eigenvector Ũω ∝ ω. Since ω is not a scalar multiple of σ��, Ũω = 0
contradicting indecomposability, and the exact sequence splits.

Assume � ≥ 2. The ghost and conformal weights of σ�� are [−�,− �(�+1)
2 ]. Fur-

ther, from the spectral flow formulae (2.15), one can see that the weight spaces of
ghost and conformal weight [−1, h] of σ�V vanish for h <

(�+1)(�−2)
2 and similarly

the [1, h] weight spaces of σ�V vanish for h <
(�+1)(�+2)

2 . Since we are assuming

� ≥ 2, (�+1)(�±2)
2 ≥ 0. Thus γnω = βnω = 0, n ≥ 1. If M is indecomposable, there

must exist a ghost and conformal weight [−�,− �(�+1)
2 ] element U in U (G) such that

Uω = σ��. Since the conformal weight of U is −�, every summand of the expansion
of Uω into β and γ modes must contain factors of γn or βn with n ≥ 1 and we can
choose a Poincaré-Birkhoff-Witt ordering where these modes are placed to the right.
Thus Uω = 0, contradicting indecomposability and the exact sequence splits.

Assume � = 1, then σW+
0 provides an example for which the exact sequence does

not split and the dimension of the corresponding extension group is at least 1. We show
that it is also at most 1. Let ω and σ � be defined as for � ≥ 2. By arguments analogous
to those for � ≥ 2, it follows that the [1, h] weight space vanishes for h < 0 and the
[−1, h] weight space vanishes for h < −1. Thus βnω = γn+1ω = 0, n ≥ 1. The
[−1,−1] weight space of σV is one-dimensional and is hence spanned by σ �. IfM is
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Fig. 1. This diagram is a visual aid for the proof of the inextensibility of the simple module Wλ ∈ F ,
λ ∈ R/Z, λ �= Z. Here � ≥ 1, � · λ = Z. The nodes represent the (spectral flows of) relaxed highest weight
vectors of each module. Weight spaces are filled in grey. Conformal weight increases from top to bottom and
ghost weight increases from right to left.

indecomposable, there must exist a ghost and conformal weight [−1,−1] elementU in
U (G) such thatUω = σ �. Thus,Uω can be expanded as f (J0)γ1ω = f (0)γ1ω = a�,
where f (J0) is a polynomial. Hence the isomorphism class of M is determined by the
value of γ1ω in the one-dimensional [−1,−1] weight space and dim Ext (V, σV) = 1.

�	
Armed with the above results on extension groups, we can construct indecomposable

modules σ�P ∈ F , which will turn out to be projective covers and injective hulls of
σ�V.

Proposition 3.3. Recall that by the first free field realisation φ1 of Proposition 2.12,
we can identify F�ψ

∼= σ�+1W−
0 . Define the S1-twisted action of G on F−ψ ⊕ F0 by

assigning

β(z) �→ φ1(β(z)) = Vψ+θ (z) ,

γ (z) �→ φ1(γ (z)) − V−θ (z)

z
= :ψ(z)V−ψ−θ (z) : − V−θ (z)

z
, (3.7)

and determining the action of all other fields in G through normal ordering and taking
derivatives, where any vertex operatorVλ (z) whose Heisenberg weight λ is in the coset
[ψ] = [−θ ] is defined to act as 0 on F0 and as usual on F−ψ .

(1) The assignment is well-defined, that is, it represents the operator product expansions
of G, and hence defines an action of G on F−ψ ⊕ F0, where ⊕ is meant as a direct
sum of vector spaces without considering the module structure. Denote the module
with this S1-twisted action by P.

(2) The composite fields J (z) = :β(z)γ (z): T (z) = −:β(z)∂γ (z): act as
J (z) �→ φ1(J (z)) = −θ(z),

T (z) �→ φ1(T (z)) +
Vψ (z)

z
= :ψ(z)2: − :θ(z)2:

2
− ∂

ψ(z) − θ(z)

2
+
Vψ (z)

z
.

(3.8)
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Fig. 2. The composition factors of P with the nodes representing the spectral flows of the highest weight
vectors of σ�V for −1 ≤ � ≤ 1. The arrows give the action ofGmodes on the highest-weight vectors of each
factor. In this diagram, ghost weight increases to the left and conformal weight increases downwards. Note
that there are two copies of V, illustrated by a small vertical shift in their weights.

The zero mode J0 therefore acts semisimply and L0 has rank 2 Jordan blocks. The
vectors |−ψ〉, |−ψ − θ〉, |θ〉, |0〉 ∈ P satisfy the relations

β0|−ψ〉 = |θ〉, γ1|−ψ〉 = −|−ψ − θ〉, γ0|θ〉 = −|0〉,
β−1|−ψ − θ〉 = |0〉, L0|−ψ〉 = |0〉. (3.9)

(3) The module P is indecomposable and satisfies the non-split exact sequences

0 −→ σW−
0 −→ P −→ W−

0 −→ 0, (3.10a)

0 −→ W+
0 −→ P −→ σW+

0 −→ 0, (3.10b)

which implies that its composition factors are σ±1V and V with multiplicities 1 and
2, respectively.

(4) P is an object inF .

See Figure 2 for an illustration of how the composition factors of P are linked by the
action of G.

Proof. Part (1) follows from [33], where a general procedure was given for twisting
actions by screening operators. The field identifications (3.8) of Part (2) follow by eval-
uating definitions introduced there, while the relations (3.9) follow by applying the field
identifications.

To conclude the first exact sequence of Part (3) note that the action of β and γ

closes on F0 ∼= σW−
0 , because V−θ (z) acts trivially and quotienting by F0 leaves only

F−ψ
∼= W−

0 .
To conclude the second exact sequence, let� be the highest weight vector ofV and let

σ�� be the spectral flow images of �. Then |0〉 ∈ F0 ∼= σ−1W−
0 can be identified with

� in the V composition factor of σ−1W−
0 and |−ψ −θ〉 can be identified with σ � in the

σV composition factor. Further, |−ψ〉 ∈ F−ψ
∼= W−

0 can be identified with � in the V
composition factor and |θ〉 can be identified with σ−1� in the σ−1V composition factor.
See Figure 2 for a diagram of the action of β and γ modes onP and how they connect the
different composition factors. It therefore follows that |0〉 generates an indecomposable
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module whose composition factors are σ−1V and V, with V as a submodule and σ−1V
as a quotient. The module therefore satisfies the same non-split exact sequence (2.20) as
W+

0 does and since the extension groups in (3.4) are one-dimensional, this submodule is
isomorphic to W+

0 . After quotienting by the submodule generated by |θ〉, the formulae
above imply that the quotient is isomorphic to σW+

0 and the second exact sequence of
Part (3) follows.

Part (4) follows because J0 acts diagonalisably on P and because P has only finitely
many composition factors all of which lie inR or σR. �	
Theorem 3.4. For every � ∈ Z the indecomposable module σ�P is projective and injec-
tive in F , and hence is a projective cover and an injective hull of the simple module
σ�V.

Proof. Since spectral flow is an exact invertible functor, it is sufficient to prove projec-
tivity and injectivity of P, rather than all spectral flow twists of P. We first show that
P is injective by showing that dim Ext (W,P) = 0 for any simple module W ∈ F .
Following that we will show P∗ = P, which, since ∗ is an exact invertible contravariant
functor, implies P is also projective.

A necessary condition for the non-triviality of such an extension is ghost weights
differing only by integers. We therefore need not consider extensions by σ�Wλ, λ �= Z,
so we restrict our attention to short exact sequences of the form

0 −→ P −→ M −→ σ�V −→ 0. (3.11)

If the above extension is non-split, then there must exist a subquotient of M which is a
non-trivial extension of σ�V by one of the composition factors of P. By Proposition 3.2
the above sequence must split if |�| ≥ 3 and we therefore only consider |�| ≤ 2.

If � = 2, then the composition factor ofP non-trivially extending σ 2Vmust be σV. If
the extension is non-trivial, then this subquotient must be isomorphic to σ 2W−

0 . Further,
if σ 2� is the spectrally flowed highest weight vector of σ 2V and |−ψ − θ〉 ∈ P (see
Figure 2) is the spectrally flowed highest weight vector of the σV composition factor of
P, then β−2σ

2� = a|−ψ − θ〉, a ∈ C \ {0}. The relations (3.9) thus imply

a|0〉 = aβ−1| − ψ − θ〉 = aβ−1β−2σ
2� = aβ−2β−1σ

2�. (3.12)

However, β−1σ
2� has conformal and ghost weight [−1,−2] and this weight space

vanishes for both P and σ 2V. Thus β−1σ
2� and hence a = 0, which is a contradiction.

If � = 1, then the composition factor of P non-trivially extending σV must be V.
There are two such composition factors in P. Any such non-trivial extension must be
isomorphic to σW−

0 . If the non-trivial extension involves the composition factor whose
spectrally flowed highest weight vector is represented by |−ψ〉, then β−1σ � = a|−ψ〉,
a ∈ C \ {0}. The relations (3.9) thus imply

a|θ〉 = aβ0| −ψ〉 = aβ0β−1σ � = aβ−1β0σ �. (3.13)

However, β0σ � = 0, so a = 0, which is a contradiction. If the non-trivial extension
involves the composition factor whose spectrally flowed highest weight vector is repre-
sented by |0〉, then there would exist a ∈ C \ {0} such that β−1σ � = a|0〉. But then, by
the relations (3.9), β−1 (σ � − a) |−ψ − θ〉 = 0. Hence (σ � − a) |−ψ − θ〉 generates
a direct summand isomorphic to σV, making the extension trivial.

If � = 0, then the composition factor of P non-trivially extending V must be σV
or σ−1V. If there is a subquotient isomorphic to a non-trivial extension of V by σ−1V,
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that is, isomorphic to W−
0 , then there exists a ∈ C \ {0} such that β0� = a|θ〉. But

then, by the relations (3.9), β0 (� − a) |θ〉 = 0. Hence (� − a) |θ〉 generates a direct
summand isomorphic to V, making the extension trivial. An analogous argument rules
out the existence of subquotient isomorphic a non-trivial extension of V by σ−1V.

The cases � = −2 and � = −1 follow the same reasoning as � = 2 and � = 1,
respectively.

Now that we have established that P is injective, we can apply the functors
Hom

(
W−

0 ,−)
and Hom

(
σW+

0,−
)
to the short exact sequences (3.10a) and (3.10b),

respectively, to deduce dim Ext
(
W−

0 , σW−
0

) = 1 = dim Ext
(
σW+

0,W
+
0

)
. The inde-

composable module P is therefore the unique module making the short exact sequences
(3.10a) and (3.10b) non-split. By applying the functor ∗ to these exact sequences, we
see that P∗ also satisfies these same sequences and hence P ∼= P∗. This in turn implies
Ext (P,−) = 0 and hence that σ�P is projective for all � ∈ Z. �	

4. Classification of Indecomposables

In this section, we give a classification of all indecomposable modules in category F .
We already know any simple module is isomorphic to either σmWλ or σmV, and we
also know that the σmWλ are inextensible due to being injective and projective in F .
We now complete the classification by finding all the reducible indecomposables which
can be built as finite length extensions with composition factors isomorphic to spectral
flows of V. To unclutter formulae, we use the notation Mn = σ nM for any module M.
The classification of indecomposable modules inF closely resembles the classification
of indecomposable modules over the Temperley-Lieb algebra with parameter at roots
of unity given in [34] and also the classification of indecomposable modules over the
(1, p) triplet model given in [35].

The reducible yet indecomposable modules constituting the classification are the
spectral flows of the projective module P, and two infinite families. These two families,
denoted Bm

n and Tm
n , m, n ∈ Z, n ≥ 1, are dual to each other with respect to ∗, meaning(

Bm
n

)∗ = Tm
n , and further satisfy the identifications B1 = T1 = V, B2 = σW−

0
and T2 = σW+

0 . The superscript m is the number of composition factors or length of
the module. As a visual aid, we represent these indecomposable modules using Loewy
diagrams.

V

V−1 V1

V

P

V

V1T2
V

V1B2

Here the edges indicate the action of G and the vertices represent the composition
factors. Recall the generating vectors u = |−ψ〉, l = |θ〉, r = |−ψ − θ〉, d = |0〉 for
the composition factors of P in Figure 2 constructed from the first free field realisation
Proposition 2.12.(1).Wedenote their spectral flow images by un = σ nu, ln = σ nl, rn =
σ nr, dn = σ nd. The letters labelling these vectors have been chosen according to the
position of their corresponding composition factor in the Loewy diagram below.
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Vn

Vn−1 Vn+1

Vn

Pn

un

ln rn

dn

Pn

Since F has sufficiently many projectives and injectives, every indecomposable
module is isomorphic to some quotient of a finite sum of indecomposable projective
modules and to a submodule of a finite sum of indecomposable injective modules. We
therefore define the two families of reducible yet indecomposable modules, Bn

m and Tn
m

as certain images or coimages of homomorphisms from projective to injective modules.
We prepare the necessary notation, For m ∈ Z and k ∈ Z>0, let

P[T2k
m ] =

k−1⊕

i=0

Pm+2i , J[T2k
m ] =

k−1⊕

i=0

Pm+2i+1, P[T2k+1
m ] =

k⊕

i=0

Pm+2i ,

J[T2k+1
m ] =

k−1⊕

i=0

Pm+2i+1,

P[B2k
m ] =

k−1⊕

i=0

Pm+2i+1, J[B2k
m ] =

k−1⊕

i=0

Pm+2i , P[B2k+1
m ] =

k−1⊕

i=0

Pm+2i+1,

J[B2k+1
m ] =

k⊕

i=0

Pm+2i . (4.1)

As theP[], J[] notation suggests, the abovemoduleswill be shown to be projective covers
and injective hulls of theT andBmodules. Further, for n ∈ Z letψ±

n : Pn → Pn±1 be the
module homomorphisms uniquely characterised byψ+

n (un) = ln+1 andψ−
n (un) = rn−1.

Note that these homomorphisms satisfy the relations

ψ±
m±1 ◦ ψ±

m = 0, ψ−
m+1 ◦ ψ+

m = ψ+
m−1 ◦ ψ−

m , (4.2)

in fact kerψ±
m±1 = imψ±

m . Finally, consider the module homomorphisms ψ[M] :
P[M] → J[M], which, for M being any of the indecomposables above, are given by
the formulae

ψ[T2k
m ] = ψ+

m +
k−1∑

i=1

ψ−
m+2i + ψ+

m+2i , ψ[T2k+1
m ] = ψ+

m + ψ−
m+2k +

k−1∑

i=1

ψ−
m+2i + ψ+

m+2i ,

ψ[B2k
m ] = ψ−

m+1 +
k−1∑

i=1

ψ+
m+2i−1 + ψ−

m+2i+1, ψ[B2k+1
m ] =

k−1∑

i=0

ψ−
m+2i+1 + ψ+

m+2i+1. (4.3)

Definition 4.1. For m ∈ Z and k ∈ Z>0, we define the following indecomposable
modules

Tk
m = imψ[Tk

m] ∼= coimψ[Tk
m], Bk

m = imψ[Bk
m] ∼= coimψ[Bk

m]. (4.4)
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Example. Consider the example of T4
0.

V−1

V

V1 ⊕ V1

V2

V3

V V2

P P2
ψ[∗]T4

0−−−−→ V

V1

V2 ⊕ V2

V3

V4

V1 V3

P1 P3

The thick arrows above indicate the edges of the Loewy diagram of the coimage
and image. The repeated composition factors V1 and V2 in the domain and codomain,
respectively, each contribute one factor to the image and coimage and one to the kernel
and cokernel as can be seen in the diagrams below.

u0

coimage
u2

r0 + l2 r2

ψ[T4
0 ]−−−→

l1

image

r1 + l3

d1 d3

l0

kernel
r0 − l2

d0 d2

u1

cokernel
u3

r1 − l3 r3

In the cases of the coimage and the cokernel above, the indicated vectors are to be
thought of as representatives of their equivalences classes in their respective quotients.

Theorem 4.2. Any reducible indecomposable module in F is isomorphic to one of the
following.

Pm, Bn
m, Tn

m, m, n ∈ Z, n ≥ 2. (4.5)

The remainder of this section will be dedicated to proving the above theorem. For
any module M, we recall the following two well known substructures. The first is the
maximal semisimple submodule of M, called the socle and which we denote socM.
The second, called the head, is the maximal semisimple quotient of M, defined to be
the quotient of M by its radical (the intersection of its maximal proper submodules),
which we denote hdM. We also let J[M] and P[M] denote the injective hull and the
projective cover of M respectively. We then have the following standard homological
algebra result.

Proposition 4.3. For any module M ∈ F , we have

Hom (Vn,M) ∼= Hom (Vn, socM) , Hom (M,Vn) ∼= Hom (hdM,Vn) , (4.6)

and
J[M] ∼= J[socM], P[M] ∼= P[hdM]. (4.7)
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Corollary 4.4. The heads and socles of the Tk
m and Bk

m are given by

hd T2k
m

∼=
k−1⊕

i=0

Vm+2i , socT2k
m

∼=
k−1⊕

i=0

Vm+2i+1, hd T2k+1
m

∼=
k⊕

i=0

Vm+2i ,

socT2k+1
m

∼=
k−1⊕

i=0

Vm+2i+1,

hdB2k
m

∼=
k−1⊕

i=0

Vm+2i+1, socB2k
m

∼=
k−1⊕

i=0

Vm+2i , hdB2k+1
m

∼=
k−1⊕

i=0

Vm+2i+1,

socB2k+1
m

∼=
k⊕

i=0

Vm+2i , (4.8)

and the dimensions of Hom groups involving Vn by the following table.

B2k+1
m B2k

m T2k+1m T2km

dimHom (Vn , −)
∑k

i=0 δn,m+2i
∑k−1

i=0 δn,m+2i
∑k−1

i=0 δn,m+2i+1
∑k−1

i=0 δn,m+2i+1

dimHom (−,Vn)
∑k−1

i=0 δn,m+2i+1
∑k−1

i=0 δn,m+2i+1
∑k

i=0 δn,m+2i
∑k−1

i=0 δn,m+2i

Thus, for M being any of the Tk
m and Bk

m in Definition 4.1, P[M] and J[M] are the
projective cover and injective hull of the indecomposable module M, respectively.

Proof. The Loewy diagrams for the Tk
m and Bk

m immediately suggest the heads and
socles. For example for T5

0 and B5
0 we have the following.

V

V1

V2

V3

V4

hd T5

V

V1

V2

V3

V4

socB5

They can, of course, also be easily determined from the calculations similar to those
in the example above Theorem 4.2. The dimensions of the Hom groups in the table
above, and the projective cover and injective hull formulae then immediately follow by
Proposition 4.3. �	
Lemma 4.5. For M being any of the Tk

m and Bk
m in Definition 4.1, the projective and

injective presentations of M are characterised by the following.

M B2k+1
m B2k

m T2k+1m T2km

ker (P[M] → M) B2k−1
m+1 B2k

m+1 T2k+3m−1 T2km−1

coker (M → J[M]) B2k+3
m−1 B2k

m−1 T2k−1
m+1 T2km+1

Proof. Observe that we can precompose any of the homomorphisms ψ[M] by any
automorphism A of the domain P[M] that consists of a non-zero rescaling chosen inde-
pendently on each direct summand. Since this is a precomposition by an automorphism,
the kernels of ψ[M] and ψ[M] ◦ A are isomorphic. Similarly we can postcompose by
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any automorphism B of the codomain J[M] that consists of a non-zero rescaling, cho-
sen independently on each direct summand. In summary, the homomorphisms ψ[M]
and B ◦ ψ[M] ◦ A have isomorphic images and isomorphic kernels. Appropriately cho-
sen pre- and postcompositions hence allow us to freely rescale each summand in the
formulae (4.3). Hence we can define the morphisms

ψ[T2k
m ] = ψ+

m +
k−1∑

i=1

−ψ−
m+2i + ψ+

m+2i , ψ[T2k+1
m ] = ψ+

m − ψ−
m+2k +

k−1∑

m+i=1

−ψ−
m+2i + ψ+

2i ,

ψ[B2k
m ] = −ψ−

m+1 +
k−1∑

i=1

ψ+
m+2i−1 − ψ−

m+2i+1, ψ[B2k+1
m ] =

k−1∑

i=0

−ψ−
m+2i+1 + ψ+

m+2i+1. (4.9)

We prove the T2k
m column of the lemma above, the remaining columns follow by analo-

gous arguments. First the kernel of ψ[T2k
m ]. Note that P[T2k

m ] = J[T2k
m−1] and hence the

domain of ψ[T2k
m ] is equal to the codomain of ψ[T2k

m−1] and hence these two homomor-
phisms can be composed. A direct computation using the composition relations (4.2)
then shows that ψ[T2k

m ] ◦ ψ[T2k
m−1] = 0 and hence kerψ[T2k

m ] ⊃ imψ[T2k
m−1]. Finally,

imψ[T2k
m−1] ∼= imψ[T2k

m−1] = T2k
m−1. By inspectionwe also see that both kerψ[T2k

m ] and
imψ[T2k

m−1] have 2k composition factors and hence kerψ[T2k
m ] = imψ[T2k

m−1] ∼= T2k
m−1.

To compute the cokernel ofψ[T2k
m ], note that J[T2k

m ] = P[T2k
m+1]. An analogous argument

to the above then proves cokerψ[T2k
m ] ∼= T2k

m+1. �	
Combining all of the results above we can now prove Theorem 4.2.

Proof of Theorem 4.2. The idea is to show that any extension of the Tk
m andBk

m decom-
poses into a direct sum of the modules listed in (4.5). In particular it is sufficient to only
consider extensions by Vn (as either a submodule or a quotient). We classify the Tk

m
modules and the classification of the Bk

m follows from an analogous argument.
We first consider T3

m as this module constitutes a special case that need to be con-
sidered separately form the other Tk

m . Recall that we have the respective injective and
projective presentations

0 −→ T3
m −→ Pm+1 −→ Vm+1 −→ 0, 0 −→ T5

m−1 −→ Pm⊕Pm+2 −→ T3
m −→ 0. (4.10)

Applying theHom (Vn,−) functor to the injective presentation yields (recall Proposition
3.1) the long exact sequence

0 −→ Hom
(
Vn,T

3
m

) −→ Hom (Vn,Pm+1) −→ Hom (Vm ,Vm+1) −→ Ext
(
Vn,T

3
m

) −→ 0,
(4.11)

which implies dim Ext
(
Vn,T

3
m

) = dimHom (Vm,Vm+1) − dimHom (Vn,Pm+1) +
dimHom

(
Vn,T

3
m

) = δn,m+1. Up to isomorphism there therefore exists exactly one
indecomposable module with Vm+1 as a quotient and T3

m as a submodule. The projective
module Pm+1 an example of this extension and hence no new indecomposable has been
constructed. Similarly, applying the Hom (−,Vn) functor to the projective presentation
above and computing dimensions yields dim Ext

(
T3
m,Vn

) = δn,m−1 + δn,m+1 + δn,m+3.
The cases n = m − 1 and n = m + 3 respectively correspond to B4

m−1 and T4
m , how-

ever, n = m + 1 requires closer inspection. This final case corresponds to the extension
constructed from the non-split exact sequence

0 −→ Vm+1 −→ T2
m ⊕ B3

m+1 −→ T3
m −→ 0, (4.12)
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where the second arrow is characterised by the generating vector (them +1-fold spectral
flow of the highest weight vector of V) to any linear combination with non-zero coef-
ficients of the two corresponding generating vectors of the two Vm+1 summands of the
socles of T3

m and B3
m+1. A brief calculation reveals that the quotient of T2

m ⊕ B3
m+1 by

the image of Vm+1 is isomorphic to T3
m and it is the projection to this quotient that makes

up the third arrow in the exact sequence above. Hence no new indecomposables have
been constructed.

Next we consider T2k+1
m , k ≥ 2. The injective and projective presentations are given

by

0 −→ T2k+1
m −→

k−1⊕

i=0

Pm+2i+1 −→ T2k−1
m+1 −→ 0,

0 −→ T2k+3
m−1 −→

k⊕

i=0

P2i −→ T2k+1
m −→ 0. (4.13)

Again we can compute the dimensions of Ext groups by applying the Hom (Vn,−) and
Hom (−,Vn) and obtain

dim Ext
(
Vn,T

2k+1
m

)
=

k−1∑

i=0

δn,m+2i , dim Ext
(
T2k+1
m ,Vn

)
=

k+1∑

i=0

δn,m+2i−1.

(4.14)
The non-vanishing Ext groups correspond to the respective non-split exact sequences

0 −→ T2k+1
m −→ T2i+1

m ⊕ T
2(k−i)+1
m+2i −→ Vm+2i −→ 0, i = 0, . . . , k − 1,

0 −→ Vm+2i−1 −→ T2i
m ⊕ B

2(k−i)+2
m+2i−1 −→ T2k+1

m −→ 0, i = 0, . . . , k + 1, (4.15)

where T0 and B0 are to be interpreted as the 0 module.
Similar computations for T2k

m , k ≥ 1 yield the Ext group dimensions

dim Ext
(
Vn,T

2k
m

)
=

k∑

i=1

δn,m+2i , dim Ext
(
T2k
m ,Vn

)
=

k−1∑

i=0

δn,m+2i−1, (4.16)

which correspond to the non-split exact sequences

0 −→ T2k
m −→ T2i+1

m ⊕ T
2(k−i)
m+2i −→ Vm+2i −→ 0, i = 1, . . . , k,

0 −→ Vm+2i−1 −→ T2i
m ⊕ B

2(k−i)+1
m+2i−1 −→ T2k

m −→ 0, i = 0, . . . , k + 1. (4.17)

Extensions of the Tk
m modules therefore only yield indecomposable already accounted

for in the list (4.5). The extensions of the B modules are computed analogously �	
We end this section with some characterisations of the classified indecomposable

modules which will prove helpful in later sections.

Corollary 4.6. TheB, T and P indecomposable modules are uniquely characterised by
the following non-split exact sequences.

0 −→ V −→ Bn −→ Tn−1
1 −→ 0, 0 −→ Bn−1

1 −→ Tn −→ V −→ 0, (4.18a)
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0 −→ V2n −→ B2n+1 −→ B2n −→ 0, 0 −→ T2n −→ T2n+1 −→ V2n −→ 0,
(4.18b)

0 −→ B2n−1 −→ B2n −→ V2n−1 −→ 0, 0 −→ V2n−1 −→ T2n −→ T2n−1 −→ 0.
(4.18c)

0 −→ Bn−2
2 −→ Bn −→ B2 −→ 0, 0 −→ T2 −→ Tn −→ Tn−2

2 −→ 0,
(4.18d)

0 −→ B2n−1 −→ B2n+1 −→ T22n−1 −→ 0, 0 −→ B2
2n−1 −→ T2n+1 −→ T2n−1 −→ 0,

(4.18e)

0 −→ B2
2n−2 −→ B2n −→ B2n−2 −→ 0, 0 −→ T2n−2 −→ T2n −→ T22n−2 −→ 0,

(4.18f)

0 −→ B2 −→ P −→ B2−1 −→ 0, 0 −→ T2−1 −→ P −→ T2 −→ 0. (4.18g)

Proof. Sequences (4.18a), (4.18b) and (4.18c) follow from the one-dimensionality of
the Ext groups in the proof of Theorem 4.2. We illustrate the procedure by which the
remainder of the exact sequences can be seen to be non-split, by focussing on the first
sequence of (4.18d), starting with the projective presentation of B2.

0 −→ B2
1 −→ P1 −→ B2 −→ 0 (4.19)

We apply the contravariant functor Hom
(
−,Bn−2

2

)
to obtain the following long exact

sequence.

0 → Hom
(
B2,Bn−2

2

)
→ Hom

(
P1,B

n−2
2

)
→ Hom

(
B2−1,B

n−2
2

)
→ Ext

(
B2,Bn−2

2

)
→ 0,

(4.20)
which evaluates to

0 → 0 → 0 → C → Ext
(
B2,Bn−2

2

)
→ 0. (4.21)

Therefore dim Ext
(
B2,Bn−2

2

)
= 1, with the nontrivial extension given by (4.18d). The

uniqueness of the remaining non-split exact sequences follows analogously, where we
determineExt (M,N) by applying the functorHom (−,N) to the projective presentation
for themoduleM or by applyingHom (M,−) to the injective presentation of themodule
N. �	
Proposition 4.7. The evaluation of the ∗ functor of Proposition 2.11 on reducible inde-
composable modules is given by

(Pn)
∗ ∼= Pn,

(
Bm

n

)∗ ∼= Tm
n ,

(
Tm
n

)∗ ∼= Bm
n . (4.22)

Proof. The evaluation of the ∗ functor on theB and T modules follows inductively from
the characterising sequences (4.18a), with the base step given by V∗

m
∼= Vm . The self

duality of P is a consequence of Proposition 3.3.(3) and the fact that
(
W±

0

)∗ = W∓
0 , as

argued above. �	
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5. Rigid Tensor Category

In this section we prove that fusion furnishes category F with the structure of a rigid
tensor category and define evaluation and coevaluation maps for the simple projective
modules to verify that thesemodules andmaps satisfy the conditions required for rigidity.
We refer readers unfamiliar with tensor categories or related notions such as rigidity to
[36].

Theorem 5.1. Category F with the tensor structures defined by fusion is a braided
tensor category.

This theorem follows by verifying certain conditions which were proved to be suffi-
cient in [21], and [37]. To this end, we recall some necessary definitions and results.

Definition 5.2. Let V be a vertex algebra and let M be a module over V. Let A ≤ B be
abelian groups.

(1) The module M is called doubly-graded if both M and V are equipped with second
gradations, in addition to conformal weight h ∈ C, which take values in B and A,
respectively. We will use the notations M( j) and M[h] to denote the homogeneous
spaceswith respect to the additional grading or generalised conformalweight, respec-
tively, and denote the simultaneous homogeneous space by M

( j)
[h] = M( j) ∩ M[h].

The action of V on M is required to be compatible with the A and B gradation, that
is,

vnV(i) ⊂ V(i+ j), vnM
(k) ⊂ M( j+k), v ∈ V( j), n ∈ Z, i, j ∈ A, k ∈ B, (5.1)

and
1 ∈ V(0)

[0] , ω ∈ V(0)
[2] , (5.2)

where 1 is the vacuum vector and ω is the conformal vector.
(2) The moduleM is called lower bounded if it is doubly graded and if for each j ∈ B,

M
( j)
[h] = 0 for Re h sufficiently negative.

(3) The moduleM is called strongly graded with respect to B if it is doubly graded; it is
the direct sum of its homogeneous spaces, that is,

M =
⊕

h∈C
j∈B

M
( j)
[h], (5.3)

where the homogeneous spacesM( j)
[h] are all finite dimensional; and for fixed h and j ,

M
( j)
[h+k] = 0, whenever k ∈ Z is sufficiently negative. The vertex algebra V is called

strongly graded with respect to A if it is strongly graded as a module over itself.
(4) The moduleM is called discretely strongly graded with respect to B if all conformal

weights are real and for any j ∈ B, h ∈ R the space

⊕

h̃∈R
h̃≤h

M
( j)

[h̃] (5.4)

is finite dimensional.
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(5) For j ∈ B, let C1(M)( j) = spanC{u−hw ∈ M( j) : u ∈ V[h], h > 0, w ∈ M}.
A strongly graded moduleM is called graded C1-cofinite if (M/C1(M))( j) is finite
dimensional for all j ∈ B.

Definition 5.3. Let A ≤ B be abelian groups. Let V be a vertex algebra graded by A and
letM1,M2 andM3 be modules over V, graded by B. Denote byM3{x}[log x] the space
of formal power series in x and log x with coefficients inM3, where the exponents of x
can be arbitrary complex numbers and with only finitely many log x terms. A grading
compatible logarithmic intertwining operator of type

( M3
M1, M2

)
is a linear map

Y : M1 → Hom(M2,M3){x}[log x]
m1 �→ Y (m1, x) =

∑

s≥0
t∈C

(m1)t,s x
−t−1 (log x)s (5.5)

satisfying the following properties.

(1) Truncation: For any mi ∈ Mi , i = 1, 2, and s ≥ 0

(m1)t+k,s m2 = 0 (5.6)

for sufficiently large k ∈ Z.
(2) L−1-derivation: For any m1 ∈ M1,

Y(L−1m1, x) = d

dx
Y(m1, x). (5.7)

(3) Jacobi identity:

x−1
0 δ

(
x1 − x2

x0

)
Y (v, x1)Y (m1, x2)m2 = x−1

0 δ

(−x2 + x1
x0

)
Y (m1, x2) Y (v, x1)m2

+ x−1
2 δ

(
x1 − x0

x2

)
Y (Y (v, x0)m1, x2)m2,

(5.8)

where Y denotes field map encoding the action of V on either M1,M2 or M3 and δ

denotes the algebraic delta distribution, that is the formal power series

δ

(
y − x

z

)
=

∑

r∈Z
s≥0

(
r

s

)
(−1)s xs yr−s z−r . (5.9)

(4) Grading compatibility: For any mi ∈ M
( ji )
i , ji ∈ B, i = 1, 2, t ∈ C and s ≥ 0

(m1)t,s m2 ∈ M
( j1+ j2)
3 . (5.10)

Definition 5.4. Let A ≤ B be abelian groups. Let V be a vertex algebra graded by A
and letM1 andM2 be modules over V, graded by B. We define the following properties
for functionals ψ ∈ Hom(M1 ⊗ M2,C).

(1) P(w)-compatibility:
(1) Lower truncation: For any v ∈ V, vnψ = 0, for any sufficiently large n ∈ Z.
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(2) For any v ∈ V and f ∈ C[t, t−1, (t−1 − w)−1] the identity
v f (t)ψ = vι+ ( f (t)) ψ (5.11)

holds. Here ι+ means expanding about t = 0 such that the exponents of t are
bounded below and the action of V⊗C[t, t−1, (t−1 − w)−1] or V⊗C((t)) on ψ

is characterised by

〈vg(t)ψ,m1 ⊗ m2〉 = 〈ψ, ι+ ◦ Tw

(
voppg(t−1)

)
m1 ⊗ m2〉 + 〈ψ,m1 ⊗ ι+

(
voppg(t−1)

)
m2〉,

(5.12)
where mi ∈ Mi , v ∈ V, g ∈ C[t, t−1, (t−1 − w)−1], Tw replaces t by t + w,
vopp = et

−1L1(−t2)L0vt−2, and (assuming v has conformal weight h) vtnmi =
vn−h+1mi .

Denote by COMP (M1,M2) the vector space of all P(w)-compatible functionals.
(2) P(w)-local grading restriction:

(1) The functional ψ is a finite sum of vectors that are both B-homogeneous and L0
generalised eigenvectors.

(2) Denote the smallest subspace of Hom(M1 ⊗ M2,C) containing ψ and stable
under V ⊗ C[t, t−1] byMψ . Then Mψ must satisfy for any r ∈ C, b ∈ B

dim
(
Mψ

(b)
[r ]

)
< ∞, and dim

(
Mψ

(b)
[r+k]

)
= 0, (5.13)

for sufficiently large k ∈ Z.
Denote by LGR (M1,M2) the vector space of all P(w)-local grading restricted func-
tionals.

Define M1 �M2 = COMP (M1,M2) ∩ LGR (M1,M2).

Remark. The variable w in P(w) denotes the insertion point of the tensor product
constructed in [21], where it is usually denoted z and hence the tensor product is referred
to as the P(z)-tensor product.

Theorem 5.5 (Huang-Lepowsky-Zhang [21, Part IV, Theorem 5.44, 5.45, 5.50]). Let
A ≤ B be abelian groups. Let V be a vertex algebra graded by A with a choice of
module category C which is closed under restricted duals and let M1,M2 ∈ C be
graded by B. Then COMP (M1,M2) and M1 �M2 are modules over V. Further, if
M1 �M2 ∈ C , then M1 � M2 ∼= (M1 �M2)

′ .

In [21]M1 �M2 is originally defined as the image of all intertwining operators with
M1 andM2 as factors, but it is then shown that this is equivalent to the definition given
above. The construction of fusion products through Definition 5.4 is sometimes called
the HLZ double dual construction. In addition to the primary reference [21], the authors
also recommend the survey [38], which relates this construction of fusion to others in
the literature.

Theorem 5.6 (Huang-Lepowsky-Zhang [21, Part VIII, Theorem 12.15], Huang [37,
Theorem 3.1]). For any vertex algebra and module category C satisfying the condi-
tions below, fusion equips category C with the structures of an additive braided tensor
category.

(1) The vertex algebra and all its modules in C are strongly graded and all logarithmic
intertwining operators are grading compatible. [21, Part III, Assumption 4.1].
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(2) C is a full subcategory of the category of strongly graded modules and is closed
under the contragredient functor and under taking finite direct sums [21, Part IV,
Assumption 5.30].

(3) All objects in C have real weights and the non-semisimple part of L0 acts on them
nilpotently [21, Part V, Assumption 7.11].

(4) C is closed under images of module homomorphisms [21, Part VI, Assumption
10.1.7].

(5) The convergence and extension properties for either products or iterates holds [21,
Part VII, Theorem 11.4].

(6) For any objects M1,M2 ∈ C , let Mv be the doubly graded V-module generated by
a B-homogeneous generalised L0 eigenvector v ∈ COMP (M1,M2). IfMv is lower
bounded thenMv is strongly graded and an object in C [37, Theorem 3.1]. Here the
action of L0 is defined by (5.12), given in Definition 5.4.

Conditions (1) – (4) of Theorem 5.6 hold by construction for categoryF , so all that
remains is verifying Conditions (5) and (6).

Theorem 5.7. Let A ≤ B be abelian groups, letV be a doubly A-graded vertex operator
algebra and let V be a vertex subalgebra of V(0). Further, let Wi , i = 0, 1, 2, 3, 4 be
doubly B-graded V-modules. Finally let Y1, Y2, Y3 and Y4 be logarithmic grading com-
patible intertwining operators of types

( W0
W1, W4

)
,
( W4
W2, W3

)
,
( W0
W4, W3

)
and

( W4
W1, W2

)

respectively. If the modules Wi , i = 0, 1, 2, 3 (note i = 4 is excluded) are discretely
strongly graded, and graded C1-cofinite as V-modules, then Y1, Y2 satisfy the con-
vergence and extension property for products and Y3, Y4 satisfy the convergence and
extension property for iterates.

The above theorem follows from the proof of [25, Theorem 7.2], however, in [25]
some assumptions are made on the category of strongly graded modules (see [25,
Assumption 7.1, Part 3]) which do not hold for G. Fortunately, the proof of Theo-
rem 5.7 does not depend at all on any categorical considerations or even on the details of
the intertwining operators Yi beyond their types. It merely depends on certain finiteness
properties of the modules Wi . We reproduce the proof of Yang in Appendix A, with
some minor tweaks to the arguments, to show that the conclusion of Theorem 5.7 holds,
without making any assumptions on the category of all strongly graded modules.

Lemma 5.8. The convergence and extension properties for products and iterates holds
forF .

Proof. If, in the assumptions of Theorem 5.7, we set V = G and grade by ghost weight,
so that A = Z, then the modules of F are graded by B = R. We further choose
V = G(0), that is, the vertex subalgebra given by the ghost weight 0 subspace ofG. The
lemma then follows by verifying that all modules in F are discretely strongly graded
and graded C1-cofinite as modules over V.

All modules in F are discretely strongly graded by ghost weight j ∈ R. To prove
this, we need to check that the simultaneous ghost and conformal weight spaces are
finite dimensional and that every ghost weight homogeneous space has lower bounded
conformal weights. The simultaneous ghost and conformal weight spaces of objects in
R and therefore also those of σ�R are finite dimensional by construction. Thus, since
the objects of F are finite length extensions of those in σ�R, the objects of F also
have finite dimensional simultaneous ghost and conformal weight spaces. Similarly we
have that the objects in F are graded lower bounded and therefore discretely strongly
graded.
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Next we need to decompose objects of F as V-modules,. It is known that V is
generated by {:β(z) (∂nγ (z)) :, n ≥ 0} and is isomorphic to W1+∞ ∼= W3,−2 ⊗ H
where W3,−2 is the singlet algebra at c = −2 and H is a rank 1 Heisenberg algebra
[39,40]. Note that the conformal vector ofW1+∞ is usually chosen so as to have a central
charge of 1. Since we require V to embed conformally into G, that is, to have the same
conformal vector as G and the central charge of G is 2, we choose conformal vector
of our Heisenberg algebra H so that its central charge is 4 (the conformal structure of
W3,−2 is unique). Fortunately, this does not complicate matters, as the simple modules
over H are just Fock spaces regardless of the central charge or conformal vector. The
tensor factors of W1+∞ decompose nicely with respect to the free field realisation of
Proposition 2.12.(2). The Heisenberg algebra H is generated by θ(z) and the singlet
algebra W3,−2 is a vertex subalgebra of the Heisenberg algebra generated by ψ(z).

We denote Fock spaces over the rank 1 Heisenberg algebras generated by ψ and
θ , respectively, by the same symbol Fμ, where, the index μ ∈ C indicates the respec-
tive eigenvalues of the zero modes ψ0 and θ0. All simple V ∼= W1+∞ modules can be
constructed via its free field realisation as V(λ,ψ) ⊗ F(λ,θ) [41, Corollary 6.1], where
V(λ,ψ), as a W3,−2-module, is the simple quotient of the submodule of F(λ,ψ) gener-

ated by the highest weight vector. The homogeneous space
(
σ�V

)( j)
is simple, as a

V-module [39, Lemma 4.1], see also [42,43]. Recall from Proposition 2.12.(2) that with
K = spanZ{ψ, θ} and � ∈ L/K , we can construct the simple projective G-modules as

σ (�,ψ+θ)W(�,ψ)
∼= F�. To identify the homogeneous space

(
σ (�,ψ+θ)W(�,ψ)

)( j)
as a

V-module, we use the fact that J (z) = −θ(z), thus the R-grading on F� is given by the
eigenvalue of −θ0. Therefore, for j ∈ R,

(
σ (�,ψ+θ)W(�,ψ)

)( j) ∼= F
( j)
�

∼=
(

⊕

λ∈�

F(λ,ψ) ⊗ F(λ,θ)

)( j)

=
{
F(�,ψ+θ)+ j ⊗ F− j , j ∈ (�,ψ) ,

0, j /∈ (�,ψ) .
(5.14)

For (�,ψ + θ) + j /∈ Z, F(�,ψ+θ)+ j is irreducible as a W3,−2 module, by [44, Section

3.2], see also [45, Section 5]. Thus,
(
σ (�,ψ+θ)W(�,ψ)

)( j) ∼= F(�,ψ+θ)+ j ⊗ F− j =
V(�,ψ+θ)+ j ⊗F− j . The finite length modules ofW3,−2 are all C1-cofinite [46, Corollary
14], as are H-modules, since Fock spaces have C1-codimension 1. Therefore all V-
modules appearing as the homogeneous spaces of modules inF are C1-cofinite and the
lemma follows. �	
Lemma 5.9. Let M1,M2 be modules in F , let W be an indecomposable smooth (or
weak) G module and let Y be a surjective logarithmic intertwining operator of type( W
M1, M2

)
.

(1) The logarithmic intertwining operator Y is grading compatible and the moduleW is
doubly graded.

(2) If M1 ∈ σ kR,M2 ∈ σ�R, then W ∈ F and W has composition factors only in
σ k+�R and σ k+�−1R.

(3) If M1 has composition factors only in σ kR and σ k−1R, and has composition fac-
tors only in σ�R and σ�−1R, W ∈ F and W has composition factors only in
σ k+�+iR,−3 ≤ i ≤ 0.
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Proof. Due to the compatibility of fusion with spectral flow, see Theorem 2.6, it is
sufficient to only consider k = � = 0. We prove Part (1) first. Let M1,M2, be modules
inF . Let v ∈ G be the vector corresponding to the field J (z) and take the residue with
respect to x0 and x1 in the Jacobi identity (5.8). This yields

J0Y (m1, x2)m2 = Y (m1, x2) J0m2 + Y (J0m1, x2)m2. (5.15)

Hence, since the fusion factors Mi are graded by ghost weight, the fusion product will
be too. This means that the intertwining operator will be grading compatible andWmust
be doubly graded.

Next we prove Part (3). Assume that M1,M2 have composition factors only in R
and σ−1R. Note that Jn, n ≥ 1 acts locally nilpotently on any object in F and that
βn−�, γn+�, n ≥ 1 act locally nilpotently on any object in σ�R (recall that local
nilpotence is one of the defining properties ofσ�R).Wefirst show that Jn, βn+1, γn, n ≥
1 acting locally nilpotently on M1,M2 implies that Jn, βn+3, γn, n ≥ 1 act locally
nilpotently on W. Let h be the conformal weight of v = β, γ or J , multiply both sides
of the Jacobi identity (5.8) by xk0 x

n+h−1
1 , n, k ∈ Z and take residues with respect to x0

and x1. This yields

∑

s≥0

(
k

s

)
(−1)s xs2vn−sY (m1, x2)m2 =

∑

s≥0

(
k

s

)
(−1)s xk−s

2 Y (m1, x2) vn−k+sm2

+
∑

s≥0

(
s − n + k − h

s

)
(−1)s xn−k+h−s−1

2

Y (vs−h+k+1m1, x2)m2. (5.16)

Set v = γ (and thus h = 0) and k = 0 in (5.16) to obtain

γnY (m1, x2)m2 = Y (m1, x2) γnm2 +
n∑

s=0

(
s − n

s

)
(−1)s xn−s−1

2 Y (γs+1m1, x2)m2.

(5.17)

This implies the local nilpotence of γn, n ≥ 1 on Y (m1, x2)m2 from its local nilpotence
on m1 and m2. Next consider v = J (and thus h = 1) and k = 1 in (5.16) to obtain

(Jn − x2 Jn−1)Y (m1, x2)m2 = Y (m1, x2) (Jn − x2 Jn−1)m2

+
n∑

s=0

(
s − n

s

)
(−1)s xn−s−1

2 Y (Js+1m1, x2)m2.

(5.18)

Since Jk, k ≥ 1 is nilpotent on both m1 and m2, we see that Jn − x2 Jn−1 is nilpotent
for n ≥ 2. Recall that the series expansion of the intertwining operator

Y (m1, x2)m2 =
∑

t∈C
s≥0

(m1)(t,s)m2x
−t−1
2 (log x2)

s (5.19)

satisfies a lower truncation condition, that is, for fixed s, if there exists a u ∈ C satisfying
m(u,s) �= 0, then there exists a minimal representative t ∈ u + Z such that m(t,s) �= 0
and m(t ′,s) = 0 for all t ′ < t . Since Jn − x2 Jn−1 is nilpotent on Y (m1, x2)m2 it is also
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nilpotent on the leading term m(t,s). By comparing coefficients of x2 and log x2 it then
follows that Jn, n ≥ 2 acts nilpotently onm(t,s) and by induction also on all coefficients
of higher powers of x2. To show that J1 acts locally nilpotently, assume that m1 has
J0-eigenvalue j and set n = 1, k = 0 in (5.16) to obtain

J1Y (m1, x2)m2 = Y (m1, x2) J1m2 + x2 jY (m1, x2)m2

+
∑

s≥1

(−1)s
(
s − 2

s

)
x1−s
2 Y (Jsm1, x2)m2. (5.20)

Thus J1 − x2 j is nilpotent, which by the previous leading term argument implies that
J1 is too. Finally, consider v = β (and thus h = 1) and k = 2 in (5.16) to obtain

(
βn − 2x2βn−1 + x22βn−2

)
Y (m1, x2)m2 = Y (m1, x2)

(
βn − 2x2βn−1 + x22βn−2

)
m2

+
∑

s≥0

(
s − n + 1

s

)
(−1)s xn−s−2

2 Y (βs+2m1, x2)m2.

(5.21)

By leading term arguments analogous to those used for Jn , this implies that βn acts
locally nilpotently for n ≥ 4.

Consider the subspace V ⊂ W annihilated by βn+3, γn , n ≥ 1. Then V is a module
over four commuting copies of the Weyl algebra respectively generated by the pairs
(β0, γ0), (β1, γ−1), (β2, γ−2), (β3, γ−3). Further, V is closed under the action of
Jn, n ≥ 1 and restricted to acting on V , the first few Jn modes expand as

J3 = β3γ0, J2 = β2γ0 + β3γ−1, J1 = β1γ0 + β2γ−1 + β3γ−2. (5.22)

We show that on any composition factor of V at least three of the fourWeyl algebras have
a generator acting nilpotently and that thus the induction of such a composition factor is
an object in one of the categoriesσ iR, −3 ≤ i ≤ 0. LetC0⊗C1⊗C2⊗C3 be isomorphic
to a composition factor of V , where Ci is a simple module over the Heisenberg algebra
generated by the pair (βi , γ−i ). Since J1, J2, J3 act locally nilpotently on V they must
also do so on C0 ⊗C1 ⊗C2 ⊗C3 using the expansions (5.22). If we assume that neither
β3 nor γ0 act locally nilpotently on C3 and C0, respectively, that is there exist c3 ∈ C3
and c0 ∈ C0 such that U (β3) c3 and U (γ0) c0 are both infinite dimensional, and choose
c1, c2, to be non-zero vectors inC1 andC2, respectively. ThenU (J3) (c0⊗c1⊗c2⊗c3)
will be infinite dimensional contradicting the local nilpotence of J3. So assume β3 acts
locally nilpotently but γ0 does not, and let c3 ∈ C3 be annihilated by β3 and c0, c1, c2
be non-zero vectors in C0,C2,C3, respectively. On this vector J2 evaluates to

J2(c0 ⊗ c1 ⊗ c2 ⊗ c3) = γ0c0 ⊗ c1 ⊗ β2c2 ⊗ c3. (5.23)

By the same reasoning as before, unless either β2 or γ0 act nilpotently, we have a
contradiction to the nilpotence of J2, so β2 must act nilpotently on c2. Repeating this
argument for J1 and assuming β2c2 = 0 we have a contradiction to the nilpotence of J1
unless β1 acts nilpotently. The composition factor isomorphic to C0 ⊗ C1 ⊗ C2 ⊗ C3
thus induces to an object inR. Repeating the previous arguments, assuming that γ0 acts
locally nilpotently but β3 does not, implies that γ−1 and γ−2 must act locally nilpotently
to avoid contradictions to the local nilpotence of J1, J2, J3. Such a composition factor
would induce to amodule inσ−3R. Finally assume bothβ3 and γ0 act locally nilpotently,
then analogous arguments to those used above applied to the action of J1 imply that at
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least one of β2 or γ−1 act locally nilpotently. Such a composition factor would induce
to an object in σ−2R or σ−1R, respectively.

The final potential obstruction toW lying inF is that such a submodule might not be
finite length. However, ifW had infinite length, it would have to admit indecomposable
subquotients of arbitrary finite length, yet by the classification of indecomposable mod-
ules in Theorem 4.2, a finite length indecomposable module with composition factors
only in σ iR, −3 ≤ i ≤ 0 has length at most 5. Therefore W ∈ F .

Part (2) follows by a similar but simplified version of the above arguments. Jn and
γn continue to satisfy the same nilpotence conditions as above, however for β one needs
to reconsider (5.16) with k = 1 to conclude that βn, n ≥ 2 is nilpotent. The remainder
of the argument follows analogously. �	
Proof of Theorem 5.1. Weverify that the assumptions of Theorem5.6 hold, in numerical
order. Theorem 5.6 thus implies that categoryF is an additive braided tensor category.
Additionally, since category F is abelian, it is a braided tensor category.

(1) All modules in category F are strongly graded by ghost weight j ∈ R. Further, by
Lemma 5.9.(1), all logarithmic intertwining operators are grading compatible.

(2) By Proposition 2.11, category F is closed under taking restricted duals. Closure
under finite direct sums holds by construction, since category F is abelian.

(3) The modules in F have real conformal weights by definition. The only modules
on which the non semi-simple part of L0 acts non-trivially are σmPn , for which it
squares to zero.

(4) Closure under images of module homomorphisms holds by construction, since cat-
egory F is abelian.

(5) The convergence and extension properties hold by Lemma 5.8.
(6) Since the P(w)-tensor product is right exact, by [21, Part IV, Proposition 4.26], and

since category F has sufficiently many projectives, that is, every module can be
realised as a quotient of a direct sum of indecomposable projectives, we can with-
out loss of generality assume M1 and M2 are indecomposable projective modules,
as Condition (6) holding for projective modules implies that it also holds for their
quotients. Further, due to the compatibility of fusion with spectral flow, we can pick
M1 and M2 to be isomorphic to Wλ or P. Let ν ∈ COMP (M1,M2) be doubly
homogenous and assume that the module Mν generated by ν is lower bounded.
By assumption, the functional ν therefore satisfies all the properties of P(w)-local
grading restriction except for the finite dimensionality of the doubly homogeneous
spaces of Mν . We need to show the finite dimensionality of these doubly homoge-
neous spaces and that Mν is an object in F . Since Mν is finitely generated (cyclic
even) it is at most a finite direct sum. To see this, assume themodule admits an infinite
direct sum. Then the partial sums define an ascending filtration whose union is the
entire module. Hence after some finite number of steps all generators must appear
within this filtration, but if this finite sum contains all generators, it must be equal
to the entire module and hence all later direct summands must be zero. Denote the
direct summands by Mν,i , i ∈ I , where I is some finite index set. By [21, Part IV,
Proposition 5.24] there exists a smoothGmoduleWν,i such thatW′

ν,i
∼= Mν,i and a

surjective intertwiner of type
( Wν,i
M1, M2

)
. Hence, by Lemma 5.9,Wν,i ∈ F . In partic-

ular, since categoryF is closed under taking restricted duals and all its objects have
finite dimensional doubly homogeneous spaces, we haveMν,i ∈ F and Mν ∈ F .

�	
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Remark. Note that the above proof did not make any use ofMν being lower bounded to
conclude thatMν ∈ F and that membership of categoryF implies lower boundedness.

Lemma 5.10. For λ ∈ R/Z, λ �= Z, the fusion product σ�Wλ � σ kW−λ has exactly
one direct summand isomorphic to σ�+k−1P.

We will prove the above lemma by showing that Wλ �W−λ has exactly one sub-
module isomorphic to P. This requires finding linear functionals which satisfy P(w)

compatibility. This is very difficult to do in practice, since (5.11) needs to be checked
for every vector v ∈ V . Fortunately there is a result by Zhang which cuts this down to
generators. Zhang originally formulated the theorem below for a related type of fusion
product called the Q(z)-tensor product, so we have translated his result to the P(w)-
tensor product, which we use here.

Theorem 5.11 (Zhang [47, Theorem 4.7]). Let A ≤ B be abelian groups. Let V be a
vertex algebra graded by A with a set of strong generators S and let M1 and M2 be
modules over V, graded by B. A functional ψ ∈ Hom(M1 ⊗ M2,C) is said to satisfy
the strong lower truncation condition for a vector v ∈ V, if there exists an N ∈ N such
that for all n,m ∈ Z, with m ≥ N, we have

vtm+n(t−1 − w)nψ = 0. (5.24)

Then ψ ∈ Hom(M1 ⊗ M2,C) satisfies the P(w)-compatibility condition if and only if
it satisfies the strong lower truncation condition for all elements of S.

We further prepare some helpful identities.

Lemma 5.12. Let M1,M2 ∈ F , mi ∈ Mi , i = 1, 2, and ψ ∈ COMP (M1,M2), then
we have the identities.

〈Jnψ,m1 ⊗ m2〉 = δn,0〈ψ,m1 ⊗ m2〉 −
∑

i≥0

(−n

i

)
w−n−i 〈ψ, Jim1 ⊗ m2〉

− 〈ψ,m1 ⊗ J−nm2〉, n ∈ Z, (5.25)
〈L0ψ,m1 ⊗ m2〉 = 〈ψ, L0m1 ⊗ m2〉 + w〈ψ, L−1m1 ⊗ m2〉 + 〈ψ,m1 ⊗ L0m2〉,

(5.26)

〈βtk+n(t−1 − w)nψ,m1 ⊗ m2〉 = −
∑

i≥0

(−k − n

i

)
w−k−n−i 〈ψ, βn+im1 ⊗ m2〉

−
∑

i≥0

(
n

i

)
(−w)n−i 〈ψ,m1 ⊗ βi−k−nm2〉, k, n ∈ Z, (5.27)

〈γ tk+n(t−1 − w)nψ,m1 ⊗ m2〉 =
∑

i≥0

(−k − n − 2

i

)
w−k−n−2−i 〈ψ, γn+i+1m1 ⊗ m2〉

+
∑

i≥0

(
n

i

)
(−w)n−i 〈ψ,m1 ⊗ γi−k−n−1m2〉, k, n ∈ Z. (5.28)

Proof. These identities follow by evaluating (5.12) for the fields β, γ, J and T . �	
Proof of Lemma 5.10. We shall use the HLZ double dual construction of Definition 5.4.
By the compatibility of fusion with spectral flow, Theorem Theorem 2.6, it is sufficient
to consider the case � = k = 0. Note since σ−1P is both projective and injective, it
must be a direct summand if it appears as either a quotient or a subspace. Further, by
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Lemma 5.9, all composition factors must lie in categories σ iR, i = −1, 0. This implies
that the composition factors of Wλ �W−λ must all lie in σ iR, i = 0, 1. Note further,
that (σ−1P)′ ∼= P and so we seek to find a copy of P within Wλ �W−λ. We do so by
considering a certain characterising two dimensional subspace of P. For aG-moduleM
consider the subspace

K (M) = {m ∈ M : βnm = γn+1m = J1m = J0m = 0, n ≥ 1}. (5.29)

From the expansions of T (z) and J (z) in terms of the fields β and γ , it follows that
for any m ∈ K (M), L2

0m = Lnm = Jnm = 0, n ≥ 1. In particular, in the notation
of Figure 2, K (P) = spanC{|0〉, |−ψ〉} and thus K (P) is two dimensional and L0 has
a rank 2 Jordan block of generalised eigenvalue 0 on this space. Further, P is the only
indecomposable module with composition factors in categories σ iR, i = 0, 1 admitting
L0 Jordan blocks. The remaining indecomposable modules with composition factors in
categories σ iR, i = 0, 1 all have K (M) subspaces of dimension zero or one.

Letψ ∈ Hom (Wλ ⊗ W−λ,C) satisfy βtk+n(t−1−w)nψ = γ tk+n(t−1−w)nψ = 0
for all m ≥ 1. Thus by Theorem 5.11, ψ satisfies the P(w)-compatibility property and
βmψ = γm+1ψ = 0, m ≥ 1. If in addition ψ is doubly homogeneous, then ψ lies in
Wλ �W−λ. By assumption the left-hand sides of (5.27) and (5.28) vanish for k ≥ 1.
These relations imply that the value of ψ on any vector inWλ ⊗W−λ is determined by
its value on tensor products of relaxed highest weight vectors, because negative modes
on one factor can be traded for less negative modes on the other factor. For example, for
k = 1, n = 0 in (5.27), we have the relation

〈ψ,m1 ⊗ β−1m2〉 = −
∑

i≥0

(−1

i

)
w−1−i 〈ψ, βim1 ⊗ m2〉. (5.30)

Let u± j ∈ W±λ, j ∈ ±λ be a choice of normalisation of relaxed highest weight vectors
satisfying u± j−1 = γ0u± j . This implies β0u± j = ± ju1± j . Since the negative β and γ

modes act freely on the simple projective modules Wλ and W−λ, there are no relations
in addition to those coming from βtk+n(t−1 − w)nψ = γ tk+n(t−1 − w)nψ = 0 for all
m ≥ 1 . Thus there is a linear isomorphism

{ψ ∈ Wλ �W−λ : βnψ = γn+1ψ = 0, n ≥ 1} ∼=−→ Hom
(
spanC{u j ⊗ u−i },C

)
.

(5.31)
Clearly, K (Wλ �W−λ) is a subspace of {ψ ∈ Wλ �W−λ : βnψ = γn+1ψ = 0, n ≥ 1}
and so we impose the remaining two relations, the vanishing of J0 and J1, via (5.25).
The vanishing of J0ψ implies

0 = 〈J0ψ, u j ⊗ u−i 〉 = 〈ψ, u j ⊗ u−i 〉 − 〈ψ, J0u j ⊗ u−i 〉 − 〈ψ, u j ⊗ J0u−i 〉
= (1 − j + i)〈ψ, u j ⊗ u−i 〉. (5.32)

Thus ψ vanishes on u j ⊗ u−i unless i = j − 1. The vanishing of J1ψ implies

(2 j − 1)〈ψ, u j ⊗ u1− j 〉 − j〈ψ, u j+1 ⊗ u− j 〉 + (1− j)〈ψ, u j−1 ⊗ u2− j 〉 = 0, (5.33)

where we have used J−1u1− j = (γ−1β0 + β−1γ0) u1− j . Thus ψ is completely char-
acterised by its value on a two pairs of relaxed highest weight vectors, say u j ⊗ u1− j
and u j+1 ⊗ u− j . Therefore, the subspace K (Wλ �W−λ) is two dimensional. Next we
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show that that L0 has a rank two Jordan block on it when acting on this space. Let
ψ ∈ K (Wλ �W−λ). If ψ �= 0, then there exist a, b ∈ C, not both zero, such that

〈ψ, u j ⊗ u1− j 〉 = a, 〈ψ, u j+1 ⊗ u− j 〉 = b. (5.34)

The evaluation of L0ψ on u j ⊗ u1− j and u j+1 ⊗ u− j is then

〈L0ψ, u j ⊗ u1− j 〉 = j (a − b), 〈L0ψ, u j+1 ⊗ u− j 〉 = − j (a − b). (5.35)

Therefore if a �= b (a choice which we can make as K (Wλ �W−λ) is two dimensional),
the vectors ψ and L0ψ are linearly independent and span K (Wλ �W−λ), which also
shows that L0 has a rank two Jordan block. �	
Remark. In [16, Section 7] the above fusion product was computed using the NGK
algorithm up to certain conjectured additional conditions. In light of the survey [38]
explaining the equivalence of the HLZ double dual construction and the NGK algorithm,
the authors thought it appropriate to supplement the NGK calculation of [16] with an
HLZ double dual calculation here.

Proposition 5.13. For all � ∈ Z and λ ∈ R/Z, λ �= Z, the simple module σ�Wλ is rigid
in category F , with tensor dual given by

(
σ�Wλ

)∨ = σ 1−�W−λ.

Proof. Recall that an objectM in a tensor category is rigid if there exists an objectM∨
(called a tensor dual of M) and two morphisms eM : M∨ � M → V and iM : V →
M � M∨, respectively, called evaluation and coevaluation, such that the compositions

M ∼= V � M
iM⊗1−→ (

M �w2 M
∨)

�w1 M
A−1−→ M �w2

(
M∨ �w1 M

) 1⊗eM−→ M � V ∼= M, (5.36a)

M∨ ∼= M∨ � V
1⊗iM−→ M∨ �w2

(
M �w1 M

∨) A−→ (
M∨ �w2 M

)
�w1 M

∨ eM⊗1−→ V � M∨ ∼= M∨,

(5.36b)

yield the identity maps 1M and 1M∨ , respectively. Here w1, w2 are distinct non-zero
complex numbers satisfying |w2| > |w1| and |w2| > |w2 − w1|; �w indicates the
relative positioning of insertion points of fusion factors, that is, the right most factor will
be inserted at 0, the middle factor at w1 and the left most at w2; Technically there exist
distinct notions of left and right duals and the above properties are those for left duals.
We prove below that M = σ�Wλ is left rigid. Right rigidity follows from left rigidity
due to category F being braided.

ForM = σ�Wλ we take the tensor dual to beM∨ = σ 1−�W−λ and we will construct
the evaluation and coevaluation morphisms using the first free field realisation (2.34)
given in Proposition 2.12.(1). In particular, we have

σ�Wλ
∼= Fλ(θ+ψ)+(�−1)ψ , σ 1−�W−λ

∼= F−λ(θ+ψ)−�ψ , � ∈ Z, λ ∈ R/Z, λ �= Z.

(5.37)

We denote fusion over the lattice vertex algebra VK of the free field realisation by �ff

to distinguish it from fusion over G. Recall that the fusion product of Fock spaces over
the lattice vertex algebra VK of the free field realisation just adds Fock space weights.
Thus the fusion product over VK of the modules corresponding to σ�Wλ and σ 1−�W−λ

is given by
F−λ(θ+ψ)−�ψ �ff

Fλ(θ+ψ)+(�−1)ψ ∼= F−ψ
∼= W−

0 . (5.38)

Therefore we have the VK -module map Y : F−λ(θ+ψ)−�ψ �ff
Fλ(θ+ψ)+(�−1)ψ → F−ψ

given by the intertwining operator that maps the kets in the Fock space Fλ(θ+ψ)+(�−1)ψ
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to vertex operators, that is, operators of the form (2.30). Since VK -module maps are
also G-module maps by restriction and since the fusion product of two modules over a
vertex subalgebra is a quotient of the fusion product over the larger vertex algebra, Y also
defines a G-module map F−λ(θ+ψ)−�ψ � Fλ(θ+ψ)+(�−1)ψ → F−ψ

∼= W−
0 . Furthermore,

the screening operator S1 = ∮
Vψ (z) dz defines aG-module map S1 : F−ψ → F0 with

the image being the bosonic ghost vertex algebra G. Up to a normalisation factor, to be
determined later, we define the evaluation map for M = σ�Wλ to be the composition
of Y and the screening operator S1.

eM = S1 ◦ Y : M∨ � M → V. (5.39)

To define the coevaluation we need to identify a submodule of M � M∨ isomorphic
to V. By Lemma 5.10, we know that M � M∨ has a direct summand isomorphic to P,
which by Proposition 3.3 we know has a submodule isomorphic to V. It is this copy of
Vwhich the coevaluation shall map to. Since V is the vector space underlying the vertex
algebra G and any vertex algebra is generated from its vacuum vector, we characterise
the coevaluation map by the image of the vacuum vector.

iM : � −→ |0〉 S−1
1−→ | − ψ〉 −→ V( j−1)ψ+( j−�)θ (w) | − jψ − ( j − �)θ〉

S1−→ ∮
w
S1 (z)V( j−1)ψ+( j−�)θ (w) | − jψ − ( j − �)θ〉dz, (5.40)

where the first arrow is the inclusion of V into F0 ∼= W−
0 ⊂ P, S−1

1 denotes picking
preimages of S1 and j the unique representative of the coset λ satisfying 0 < j < 1.
Note that the ambiguity of picking preimages of S1 in the second arrow is undone by
reapplying S1 in the fourth arrow and hence the map is well-defined. This map maps to
F0, which is a submodule of P as shown in Proposition 3.3.

Note that since the modulesM andM∨ considered here are simple, the compositions
of coevaluations and evaluations (5.36) are proportional to the identity by Schur’s lemma.
Rigidity therefore follows, if we can show that the proportionality factors for (5.36a)
and (5.36b) are equal and non-zero.

We determine the proportionality factor for (5.36a) by applying the map to the ket
|( j − 1)ψ + ( j − �)θ〉 ∈ Fλ(ψ+θ)+(�−1)θ ∼= σ�Wλ. Following the sequence of maps in
(5.36a) we get

|( j − 1)ψ + ( j − �)θ〉 → |0〉 � |( j − 1)ψ + ( j − �)θ〉
→

∮

w1,w2

S1 (z)V( j−1)ψ−( j−�)θ (w2)V− jψ−( j−�)θ (w1) |( j − 1)ψ − ( j − �)θ〉dz

→
∮

0,w1

∮

w1,w2

S1 (z2) S1 (z1)V( j−1)ψ+( j−�)θ (w2)V− jψ−( j−�)θ (w1)

|( j − 1)ψ + ( j − �)θ〉dz1dz2, (5.41)

where
∮
0,w2

denotes a contour about 0 and w2 but not w1,
∮
w1,w2

denotes a contour
aboutw1 andw2 but not 0, and where we have used the fact that the integration contours
lie in domains in which the product and iterate of the vertex operators are equal. The
proportionality factor is obtained by pairing the above with the dual of the Fock space
highest weight vector, which we denote by an empty bra 〈|. Evaluating these matrix
elements requires the associativity isomorphisms for replacing products of intertwining
operators with their iterates. This is a characterising property of associativity isomor-
phisms for vertex operator algebra module categories, see [21, Part VII, Theorem 10.6].
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The intertwining operators we are considering here are all lattice intertwining operators
with lattice modules as codomains. Further, all lattice module endomorphisms are scalar
multiples of the identity, therefore the associativity isomorphisms are also scalars. By
the remark after Proposition 2.12, these intertwining operators can be normalised such
that the associativity scalars are 1. Note that this does not imply that the associativity
isomorphisms are trivial on all of category F , just that they can be scaled away when
only considering lattice modules that are isomorphic to simple G modules in the free
field realisation. The proportionality factor from (5.36a) is therefore given by the matrix
element
I (w1, w2) =

∮

0,w1

∮

w1,w2

〈|S1 (z2) S1 (z1)V( j−1)ψ+( j−�)θ (w2)

V− jψ−( j−�)θ (w1) |( j − 1)ψ + ( j − �)θ〉dz1dz2
= f (w1, w2)

∮

0,w1

∮

w1,w2

(z2 − z1)z
j−1
2 (z2 − w2)

j−1(z2 − w1)
− j

z j−1
1 (z1 − w2)

j−1(z1 − w1)
− jdz1dz2

= f (w1, w2)

( ∮

0,w1

z j (z − w2)
j−1(z − w1)

− jdz

∮

w1,w2

z j−1(z − w2)
j−1(z − w1)

− jdz

−
∮

0,w1

z j−1(z − w2)
j−1(z − w1)

− jdz
∮

w1,w2

z j (z − w2)
j−1(z − w1)

− jdz

)
, (5.42)

where
f (w1, w2) = (w2 − w1)

�2+ j (1−2�)w
( j−1)(2 j−�−1)
2 w

�2+ j (1−2�)
1 . (5.43)

Note that the second equality of (5.42) is where the associativity isomorphisms are used
to pass from compositions (or products) of vertex operators to their operator product
expansions (also called iterates). For intertwining operators, associativity amounts to
the analytic continuation of their series expansions and then reexpanding in a different
domain. On the left-hand side of the second equality the intertwining operators (or here
specifically vertex operators) are in radial ordering, while on the right-hand side they
have been analytically continued and then reexpanded as operator product expansions.
By an analogous argument the proportionality factor produced by the sequence of maps
(5.36b) is the matrix element

Ĩ (w1, w2) =
∮

0,w1

∮

w1,w2

〈|S1 (z2) S1 (z1)V− jψ−( j−�)θ (w2)V( j−1)ψ+( j−�)θ (w1)

|− jψ − ( j − �)θ〉dz1dz2
= f (w1, w2)

( ∮

0,w1

z j (z − w2)
j−1(z − w1)

− jdz

∮

w1,w2

z j−1(z − w2)
j−1(z − w1)

− jdz

−
∮

0,w1

z j−1(z − w2)
j−1(z − w1)

− jdz

∮

w1,w2

z j (z − w2)
j−1(z − w1)

− jdz

)
. (5.44)

Since both matrix elements are equal, I (w1, w2) = Ĩ (w1, w2), rigidity follows by
showing that they are non-zero.
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We evaluate the four integrals appearing in I (w1, w2). We simplify the first integral
using the substitution z = w1x .

∮

0,w1

z j (z − w2)
j−1(z − w1)

− jdz

= −w
j−1
2 w1

∮

0,1
x j (1 − x)− j

(
1 − w1

w2
x

) j−1

dx

= −
(
e2π i j − 1

)
w

j−1
2 w1

∫ 1

0
x j (1 − x)− j

(
1 − w1

w2
x

) j−1

dx

= −
(
e2π i j − 1

)
w

j−1
2 w1 B (1 + j, 1 − j) 2F1

(
1 − j, 1 + j; 2; w1

w2

)
, (5.45)

where the second equality follows by deforming the contour about 0 and 1 to a dumbbell
or dog bone contour, whose end points vanish because the contributions from the end
points are O(ε1+ j ) and O(ε1− j ) respectively, and 0 < j < 1; and the third equality is
the integral representation of the hypergeometric function and B is the beta function.
Similarly,

∮

0,w1

z j−1(z − w2)
j−1(z − w1)

− jdz

= −
(
e2π i j − 1

)
w

j−1
2 B( j, 1 − j) 2F1

(
1 − j, j; 1; w1

w2

)
. (5.46)

For the integrals with contours aboutw1 andw2 we use the substitution z = w2 − (w2 −
w1)x and then again obtain integral representations of the hypergeometric function.

∮

w1,w2

z j−1(z − w2)
j−1(z − w1)

− jdz

= (−1) j
(
e2π i j − 1

)
w

j−1
2 B ( j, 1 − j)2 F1

(
1 − j, j; 1; w2 − w1

w2

)
,

∮

w1,w2

z j (z − w2)
j−1(z − w1)

− jdz

= (−1) j
(
e2π i j − 1

)
w

j
2 B ( j, 1 − j)2 F1

(
− j, j; 1; w2 − w1

w2

)
. (5.47)

Note that for the three integrals above, the end point contributions of the contour also
vanish due to being O(ε j ) and O(ε1− j ) for 0 and 1 respectively.

Making use of the hypergeometric and beta function identities

2F1

(
1 − μ, 1 + μ; 2; w2

w1

)
= w1

w2
2F1

(
−μ,μ; 1; 1 − w2

w1

)
,

2F1

(
1 − μ,μ; 1; 1 − w2

w1

)
=2 F1

(
1 − μ,μ; 1; w2

w1

)
,

B(1 + μ, 1 − μ) = μ B(μ, 1 − μ) = πμ

sin(πμ)
, (5.48)
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the proportionality factor I (w1, w2) simplifies to

I (w1, w2) = (−1) j f (w1, w2)
(
e2π i j − 1

)2
w

2 j−1
2

π2( j − 1)

sin(π j)2

2F1

(
− j, j; 1; w2 − w1

w2

)
2F1

(
1 − j, j; 1; w2

w1

)
. (5.49)

Since j /∈ Z, I (w1, w2) can only vanish, if one of the hypergeometric factors does. We
specialise the complex numbers w1, w2, such that w2 = 2w1. Then,

2F1

(
1 − j, j; 1; w1

w2

)
=2 F1

(
1 − j, j; 1; 1

2

) = �
( 1
2

)
� (1)

�
(
1 − j

2

)
�

(
1
2 + j

2

) �= 0, (5.50)

and the relationship between contiguous functions implies

2F1

(
− j, j; 1; w2 − w1

w2

)
= 1

2

(
2F1

(
1 − j, j; 1; 1

2

)
+2 F1

(− j, 1 + μ; 1; 1
2

))

(5.51)

= �
( 1
2

)
� (1)

�
(
1 − j

2

)
�

(
1
2 + j

2

) �= 0. (5.52)

Thus I (w1, w2) �= 0 and we can rescale the evaluation map by I (w1, w2)
−1 so that the

sequences of maps (5.36) are equal to the identity maps on M and M∨. Thus σ�Wλ is
rigid. �	

6. Fusion Product Formulae

In this section we determine the decomposition of all fusion products in category F .
A complete list of fusion products among representatives of each spectral flow orbit is
collected in Theorem 6.1, while the proofs of these decomposition formulae have been
split into the dedicated Subsections 6.1 and 6.2. To simplify some of the decomposi-
tion formulae we introduce dedicated notation for certain sums of spectral flows of the
projective module P. Consider the polynomial of spectral flows

fn(σ ) =
n∑

k=1

σ 2k−1, n ∈ Z, (6.1)

and let

Qn = fn(σ )P =
n⊕

k=1

P2k−1, n ∈ Z. (6.2)

Further, let

Qn
k = σ kQn, Q

m,n
k = σ k−1 fm(σ )Qn =

m+n−1⊕

r=1

Nr Pk+2r−1,

Nr = min{r,m, n,m + n − r}, m, n, k ∈ Z. (6.3)
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Theorem 6.1.

(1) Category F under fusion is a rigid braided tensor category.
(2) The following is a list of all non-trivial fusion products, those not involving the fusion

unit (the vacuum module V), in categoryF among representatives for each spectral
flow orbit. All other fusion products are determined from these through spectral flow
and the compatibility of spectral flow with fusion as given in Theorem 2.6.

SinceF is rigid, the fusion product of a projective module R with any indecomposable
module M is given by

R � M ∼=
⊕

S

[M : S] R � S, (6.4)

where the summation index runs over all isomorphism classes of composition factors of
M and [M : S] is the multiplicity of the composition factor S inM.
For all λ,μ ∈ R/Z, λ,μ, λ + μ �= Z,

Wλ � Wμ
∼= Wλ+μ ⊕ σ−1Wλ+μ,

Wλ � W−λ
∼= σ−1P.

(6.5)

For m ≥ n ≥ 1, we have the following fusion product formulae.

B2m+1 � B2n+1 ∼= B2m+2n+1 ⊕ Q
m,n
1 T2m+1 � T2n+1 ∼= T2m+2n+1 ⊕ Q

m,n
1

B2m+1 � B2n ∼= B2n ⊕ Q
m,n
1 T2m+1 � T2n ∼= T2n ⊕ Q

m,n
1

B2m � B2n ∼= B2n
2m−1 ⊕ B2n ⊕ Q

m−1,n
1 T2m � T2n ∼= T2n

2m−1 ⊕ T2n ⊕ Q
m−1,n
1

(6.6a)

T2m+1 � B2n+1 ∼= T2m−2n+1
2n ⊕ Qm+1,n B2m+1 � T2n+1 ∼= B2m−2n+1

2n ⊕ Qm+1,n

T2m � B2n+1 ∼= T2m
2n ⊕ Qm,n B2m � T2n+1 ∼= B2m

2n ⊕ Qm,n

T2m � B2n ∼= Qm,n B2m � T2n ∼= Qm,n (6.6b)

We split the proof of Theorem 6.1 into multiple parts. Theorem 6.1.(1) is shown in
Proposition 6.4. The fusion formulae (6.5), (6.6a), (6.6b) are determined in Propositions
6.2, 6.9 and 6.10 and Lemma 5.10 respectively.

Remark. The fusion product formulae of Theorem 6.1 projected onto the Grothendieck
group match the conjectured Verlinde formula of [16, Corollaries 7 and 10], thereby
proving that categoryF satisfies the standard module formalism version of the Verlinde
formula. It will be an interesting future problem to find a more conceptual and direct
proof for the validity of the Verlinde formula, rather than a proof by inspection.

6.1. Fusion products of simple projective modules. In this section we determine the
fusion products of the simple projective modules.

Proposition 6.2. For λ,μ ∈ R/Z, λ,μ, λ + μ /∈ Z, we have

Wλ � Wμ
∼= Wλ+μ ⊕ σ−1Wλ+μ. (6.7)
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Proof. Since Wλ and Wμ both lie in category R, we know, by Lemma 5.9, that the
composition factors of the fusion product lie in categories R or σ−1R. Further, since
J (z) is a conformal weight 1 field, its corresponding weight, the ghost weight, adds
under fusion. Therefore the only possible composition factors areWλ+μ and σ−1Wλ+μ.
Since these composition factors are both projective and injective, they can only appear as
direct summands and all that remains is to determine their multiplicity. In [20] Adamović
and Pedić computed dimensions of spaces of intertwining operators for fusion products
of the simple projective modules. In particular, [20, Corollary 6.1] states that

dim

(
M

Wλ, Wμ

)
= 1, (6.8)

ifM is isomorphic to σ�Wλ+μ, � = 0,−1. Thus the proposition follows. �	
Remark. To prove the above proposition directly without citing the literature, we could
have used the two free field realisations in Section 2.4 to construct intertwining operators
of the type appearing in equation (6.8), thereby showing that the dimension of the
corresponding space of intertwining operators is at least 1. This was also done in [20].
An upper bound of 1 can then easily be determined by calculations involving either the
HLZ double dual construction (similar to the calculations done in Lemma 5.10) or the
NGK algorithm.

Proposition 6.3. For λ ∈ R/Z, λ �= Z, we have

Wλ � W−λ
∼= σ−1P. (6.9)

Proof. By Proposition 5.13, Wλ is rigid and hence its fusion product with a projective
module must again be projective. Further, by Lemma 5.9, all composition factors must
lie in categories σ�R, � = −1, 0. Finally, since ghost weights add under fusion, the
ghost weights of the fusion product must lie in Z. Thus the fusion product must be
isomorphic to a direct sum of some number of copies of σ−1P. By Lemma 5.10, we
know there is exactly one such summand. �	
Proposition 6.4. Category F is rigid.

Proof. Category F has sufficiently many injective and projective modules, that is, all
simplemodules have projective covers and injective hulls, and all projectives are injective
and vice-versa. Further, the simple projective modules σ�Wλ are rigid and generate the
non-simple projectivemodules under fusion, so all projectivemodules are rigid. Catefory
F is therefore a Frobenius category and hence any for short exact sequence with two
rigid terms (whose duals are also rigid) the third term is also rigid. This implies that all
modules are rigid and hence so is category F . �	
Corollary 6.5. Let M,N ∈ F , then

M∗ � N∗ ∼= (M � N)∗ . (6.10)

Proof. Due to rigidity, the tensor duality functor ∨ defines an equivalence of categories
and is therefore exact. Further, the tensor duality functor satisfies

M∨ � N∨ ∼= (M � N)∨ . (6.11)

This also implies that V∨
k = V−k . We see that the tensor dual M∨ agrees with σ

(
M′)

on all simple modules inF . As both (−)∨ and σ (−)′ are exact contravariant invertible
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functors and all reducible indecomposable objects are uniquely characterised by the
non-split exact sequences (4.18) with 1-dimensional corresponding extension groups,
it follows by induction in module length that M∨ ∼= σ

(
M′) for any module in F .

Recalling (−)∗ = c (−)′, we further have M∗ ∼= σcM∨. Theorem 2.6 then implies

M∗ � N∗ ∼= (
σcM∨)

�
(
σcN∨) ∼= σc(M � N)∨ ∼= (M � N)∗ . (6.12)

�	

6.2. Fusion products of reducible indecomposable modules. In this section we calculate
the remaining fusion product formulae involving indecomposable modules in F . The
main tool for determining these fusion products is the fact that category F is rigid by
Proposition 6.4. Hence fusion is biexact and projective modules form a tensor ideal.
We begin by calculating certain basic fusion products from which the remainder can be
determined inductively.

Lemma 6.6.

T2 � B2 ∼= P1,

B2 � B2 ∼= B2 ⊕ B2
1,

T2 � T2 ∼= T2 ⊕ T2
1 . (6.13)

Proof. Taking the short exact sequence (2.20a) forW+
0 = T2−1 and fusing it withW

−
0 =

B2−1 yields the short exact sequence

0 −→ W−
0 −→ W+

0 � W−
0 −→ σ−1W−

0 −→ 0. (6.14)

Similarly, fusing the short exact sequence (2.20b) forW−
0 withW+

0 yields

0 −→ σ−1W+
0 −→ W−

0 � W+
0 −→ W+

0 −→ 0. (6.15)

If either of the above exact sequences splits there is a contradiction, because if σ−1W+
0

and W+
0 are direct summands of W+

0 � W−
0 , (6.14) is not exact, and if W−

0 and
σ−1W−

0 are direct summands, (6.15) is not exact. Hence both sequences must be
non-split. From (4.18g) in Corollary 4.6, we know that dim Ext

(
σ−1W−

0 ,W−
0

) =
dim Ext

(
W+

0, σ
−1W+

0

) = 1. There is only one candidate for the middle coefficient
of these exact sequences, namely σ−1P. Thus the first fusion rule follows. The other
two fusion products by are determined by fusing W±

0 with the short exact sequences
for W±

0 . The extension groups corresponding to these fused exact sequences are zero-
dimensional and hence the sequences split and the lemma follows. �	

We further prepare the following Ext group dimensions for later use.

Lemma 6.7. The indecomposable modules T2n+1, Bm
2n+1, B

2n and Bm
2n satisfy

dim Ext
(
T2n+1,Bm

2n+1

)
= dim Ext

(
B2n,Bm

2n

)
= 1. (6.16)

The corresponding extensions are given by T2n+m+1 and B2n+m respectively.
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Proof. We start with the following presentation of T2n+1

0 −→ T2n+2 −→ P[T2n+1] −→ T2n+1 −→ 0. (6.17)

Applying the functor Hom
(−,Bm

2n+1

)
yields

0 −→ Hom
(
T2n+1,Bm

2n+1

)
−→ Hom

(
P[T2n+1],Bm

2n+1

)

−→ Hom
(
T2n+2,Bm

2n+1

)
−→ Ext

(
T2n+1,Bm

2n+1

)
−→ 0. (6.18)

The first coefficient vanishes due to T2n+1 and Bm
2n+1 having no common composition

factors. The second coefficient can be shown to vanish using the projective cover for-
mulae in Lemma 4.5 and reading off Hom group dimensions from the Loewy diagrams.
For the third coefficient, the only composition factor common to both T2n+2 and Bm

2n+1
is V2n+1, which occurs as a quotient for T2n+2 and a submodule for Bm

2n+1, so this gives
rise to a one dimensional Hom group. The vanishing Euler characteristic then implies
that dim Ext

(
T2n+1,Bm

2n+1

) = 1 as expected. Furthermore, we can examine T2n+m+1 to
see that it has a Bm

2n submodule which yields T2n+1 when quotiented out, therefore this
is the unique extension characterised by Ext

(
T2n+1,Bm

2n+1

)
.

We can follow the same procedure starting with the projective presentation ofB2n to
obtain the following exact sequence

0 −→ Hom
(
B2n,Bm

2n

)
−→ Hom

(
P[B2n],Bm

2n

)

−→ Hom
(
B2n

1 ,Bm
2n

)
−→ Ext

(
B2n+1,Bm

2n

)
−→ 0. (6.19)

The dimensions of the Hom groups follow by the same arguments as above, and then
dim Ext

(
B2n,Bm

2n

) = 1 follows from the vanishing of the Euler characteristic. Simi-
larly, we see that B2n+m provides an extension of B2n by Bm

2n and must therefore be the
unique one. �	

We can now determine fusion products when one factor has length 2 and the other
has arbitrary length.

Lemma 6.8. The fusion products of length 2 indecomposables with any indecomposable
of types B or T satisfy the following decomposition formulae. For n ≥ 1,

B2n+1 � B2 ∼= B2 ⊕ Qn
1 T2n+1 � T2 ∼= T2 ⊕ Qn

1

B2n+2 � B2 ∼= B2
2n+1 ⊕ B2 ⊕ Qn

1 T2n+2 � T2 ∼= T2
2n+1 ⊕ T2 ⊕ Qn

1

B2n+1 � T2 ∼= T2
2n ⊕ Qn T2n+1 � B2 ∼= B2

2n ⊕ Qn

B2n � T2 ∼= Qn T2n � B2 ∼= Qn (6.20)

Proof. We prove the left column of identities. The right column then follows from
Corollary 6.5 and applying the ∗ functor. We start with the short exact sequence from
(4.18e) satisfied by B2n+1,

0 −→ B2n−1 −→ B2n+1 −→ T2
2n−1 −→ 0. (6.21)
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We then take the fusion product with B2,

0 −→ B2n−1 � B2 −→ B2n+1 � B2 −→ P2n −→ 0. (6.22)

Because P2n is projective, the sequence splits and we have the recurrence relation

B2n+1 � B2 ∼=
(
B2n−1 � B2

)
⊕ P2n . (6.23)

Then, the first fusion product formula of the lemma follows by induction with B1 = V
as the base case.

We next consider the short exact sequence (4.18c) satisfied byB2n+2 and fuse it with
B2 to obtain

0 −→ B2n+1 � B2 −→ B2n+2 � B2 −→ B2
2n+1 −→ 0, (6.24)

which evaluates to

0 −→ B2 ⊕ Qn
1 −→ B2n+2 � B2 −→ B2

2n+1 −→ 0. (6.25)

SinceQn
1 is injective, it is a direct summand ofB2n+2�B2. Further, Ext

(
B2

2n+1,B
2
) = 0,

as the composition factors are seperated by at least two units of spectral flow, and
dim Ext (Vn,Vm) for |n −m| > 1. Hence the sequence splits and we obtain the second
fusion product of the lemma.

For the final two fusion products, we perform the same exercises with different exact
sequences. For the third and fourth fusion products we use (4.18d), with odd and even
length respectively. Fusing with T2 gives the short exact sequences

0 −→ B2n−1
2 � T2 −→ B2n+1 � T2 −→ P1 −→ 0,

0 −→ B2n
2 � T2 −→ B2n+2 � T2 −→ P1 −→ 0. (6.26)

In both cases, the sequences split because P1 is projective. �	
We now use Lemma 6.8 to prove the fusion product formulae (6.6a) of Theorem 6.1.

Proposition 6.9. The fusion products of indecomposable modules of typesB and T with
themselves satisfy the decomposition formulae below, for m ≥ n ≥ 1.

B2m+1 � B2n+1 ∼= B2m+2n+1 ⊕ Q
m,n
1 T2m+1 � T2n+1 ∼= T2m+2n+1 ⊕ Q

m,n
1

B2m+1 � B2n ∼= B2n ⊕ Q
m,n
1 T2m+1 � T2n ∼= T2n ⊕ Q

m,n
1

B2m � B2n ∼= B2n
2m−1 ⊕ B2n ⊕ Q

m−1,n
1 T2m � T2n ∼= T2n

2m−1 ⊕ T2n ⊕ Q
m−1,n
1

(6.27)

Proof. We prove the left column of identities. The right column then follows from
Corollary 6.5 and applying the ∗ functor. First, for both superscripts odd, we take two
short exact sequences from (4.18d) and (4.18e) for B2n+1 and fuse with B2m+1 to find

0 −→ B2n−1
2 � B2m+1 −→ B2n+1 � B2m+1 −→ B2 ⊕ Qm

1 −→ 0,

0 −→ B2n−1 � B2m+1 −→ B2n+1 � B2m+1 −→ T2
2n+2m−1 ⊕ Qm

2n−1 −→ 0. (6.28)

Now comparing these exact sequences, and using the fact that P is projective, we find
that the sequences cannot both split, as they would give different direct sums. For the



Bosonic Ghostbusting: The Bosonic Ghost Vertex Algebra Admits 1003

first short exact sequence, we use Lemma 6.7, to find dim Ext
(
B2,B2m+2n−1

2

)
= 1,

with the extension being given by B2m+2n+1 so we can determine the fusion product
formulae inductively to get

B2m+1 � B3 ∼= B2m+3 ⊕ Qm
1 ,

B2m+1 � B5 ∼= B2m+5 ⊕
(
1 + σ 2

)
Qm
1 ,

B2m+1 � B2n+1 ∼= B2m+2n+1 ⊕
m⊕

k=1

Qn
2k−1 = B2m+2n+1 ⊕ Q

m,n
1 . (6.29)

We can deduce the remaining rules from short exact sequences that relate even and odd
Bs. Firstly, we take the two short exact sequences (4.18d) and (4.18f), and fuse them
with B2m+1 to get

0 −→ B2m+1
2 � B2n −→ B2m+1 � B2n+2 −→ B2 ⊕ Qm

1 −→ 0,

0 −→ B2
2n ⊕ Qm

2n+1 −→ B2m+1 � B2n+2 −→ B2m+1 � B2n −→ 0. (6.30)

Either of these exact sequences splittingwould lead to a contradiction, hence bothmust be
non-split. Further, by Lemma 6.7 we find dim Ext

(
B2,B2n

2

) = dim Ext
(
B2n,B2

2n

) =
1, with the corresponding non-split extension given by B2n+2. Therefore

B2m+1 � B2n ∼= B2n ⊕ Q
m,n
1 . (6.31)

Finally we fuse (4.18c) with B2n to find

0 −→ B2m+1 � B2n −→ B2m+2 � B2n −→ B2n
2m+1 −→ 0. (6.32)

For m ≥ n, dim Ext
(
B2n

2m+1,B
2n

) = 0, which follows because the composition fac-
tors are separated by at least two units of spectral flow and Ext (Vn,Vm) = 0 for
|n − m| > 1, the above sequence splits. In the case when m = n − 1, we have that
Ext

(
B2n

2n−1,Vk
) = 0 for all the composition factors of B2n , that is, (0 ≤ k ≤ 2n − 1).

Hence dim Ext
(
B2n

2n−1,B
2n

) = 0 and the above sequence again splits. Thus,

B2m+2 � B2n ∼= B2n
2m+1 ⊕ B2n ⊕ Q

m,n
1 , m ≥ n − 1. (6.33)

�	
Proposition 6.10. The fusion products of indecomposable modules of types B and T
with each other satisfy the decomposition formulae below, for m ≥ n ≥ 1.

T2m+1 � B2n+1 ∼= T2m−2n+1
2n ⊕ Qm+1,n B2m+1 � T2n+1 ∼= B2m−2n+1

2n ⊕ Qm+1,n

T2m � B2n+1 ∼= T2m
2n ⊕ Qm,n B2m � T2n+1 ∼= B2m

2n ⊕ Qm,n

T2m � B2n ∼= Qm,n B2m � T2n ∼= Qm,n (6.34)

Proof. We prove the left column of identities. The right column then follows from
Corollary 6.5 and applying the ∗ functor to eachmodule.We start with sequences (4.18e)
and (4.18d) for odd length B, and fuse them with T2m+1 to find

0 −→ T2m+1 � B2n−1 −→ T2m+1 � B2n+1 −→ T2
2n−1 ⊕ Qm

2n −→ 0, (6.35)
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0 −→ T2m+1 � B2n−1
2 −→ T2m+1 � B2n+1 −→ B2

2m ⊕ Qm −→ 0. (6.36)

Specialising to n=1 we have

0 −→ T2m+1 −→ T2m+1 � B3 −→ T2
1 ⊕

m⊕

k=1

σ 2k+1P −→ 0, (6.37)

0 −→ T2m+1
2 −→ T2m+1 � B3 −→ B2

2m ⊕
m⊕

k=1

σ 2k−1P −→ 0. (6.38)

Since P is projective, its spectral flows must appear as direct summands in the middle
coefficient of the above exact sequences. Thus,

T2m+1 � B3 ∼= A ⊕
m+1⊕

k=1

σ 2k−1P = A ⊕ Qm+1. (6.39)

Therefore the module A satisfies the exact sequences

0 −→ T2m+1 −→ A ⊕ P1 −→ T2
1 −→ 0,

0 −→ T2m+1
2 −→ A ⊕ P2m+1 −→ B2

2m −→ 0. (6.40)

Because either of these sequences splitting would lead to a contradiction and the cor-
responding extension groups are one-dimensional, the sequences uniquely characterise
the fusion product. Proceeding by induction, we obtain

T2m+1 � B3 ∼= T2m−1
2 ⊕ Qm+1,

T2m+1 � B5 ∼= T2m−3
4 ⊕

(
1 + σ 2

)
Qm+1,

T2m+1 � B2n+1 ∼= T2m−2n+1
2n ⊕ Qm+1,n . (6.41)

Next we take two short exact sequences from (4.18c) and (4.18a), for T2m and fuse them
with B2n+1 to get

0 −→ B2n+1
2m−1 −→ T2m � B2n+1 −→ T2m−2n−1

2n ⊕ Qm,n −→ 0,

0 −→ B2m+2n−1
1 ⊕ Q

m−1,n
2 −→ T2m � B2n+1 −→ B2n+1 −→ 0. (6.42)

Again either of these sequences splitting would lead to a contradiction, and by Lemma

6.7, dim Ext
(
T2m−2n−1
2n ,B2n+1

2m−1

)
= 1, with the extension being given by T2m

2n , so the

second fusion rule follows. Finally, fusing (4.18f) with B2n , we have

0 −→ T2m−2 � B2n −→ T2m � B2n −→ Qn
2m−2 −→ 0, (6.43)

T2m � B2n ∼=
m⊕

k=1

Qn
2k−2 = Qm,n . (6.44)

�	
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Appendix A. Sufficient Conditions for Convergence and Extension—Proof of The-
orem 5.7

In this section we give a proof of Theorem 5.7 by reviewing reasoning presented byYang
in [25] and showing that certain assumptions on the category of strongly gradedmodules
(see [25, Assumption 7.1, Part 3]) are not required, if one only wishes to conclude that
convergence and extension properties hold. Instead all that is required is that themodules
considered satisfy suitable finiteness conditions. This appendix closely follows the logic
of [25, Sections 5 & 6] and also [48, Section 2].

Throughout this section let A ≤ B be abelian groups. Further, let V be an A-
graded vertex algebra with a vertex subalgebra V ⊂ V(0). In this section only, all
mode expansions of fields from a vertex operator algebra V will be of the form
Y (v, z) = ∑

n∈Z vnz−n−1 regardless of the conformal weight of v ∈ V, that is, vn

refers to the coefficient of z−n−1 rather than the one which shifts conformal weight by
−n.

Definition A.1. Let W0,W1,W2,W3,W4 be B-graded V-modules.

(1) We say that two B-graded logarithmic intertwining operators Y1, Y2 of respec-
tive types

( W0
W1, W4

)
,
( W4
W2, W3

)
satisfy the convergence and extension property for

products if for any a1, a2,∈ B and any doubly homogeneous elements w′
0 ∈ W′

0,

w3 ∈ W3, wi ∈ W
(ai )
i , i = 1, 2, there exist M ∈ Z≥0, r1, . . . , rM , s1, . . . sM ∈ R,

u1, . . . uM , v1, . . . vM ∈ Z≥0 and analytic functions f1(z), . . . , fM (z) on the disc
|z| < 1 satisfying

wtw1 + wtw2 + sk > N , for each k = 1, . . . , M, (A.1)

where N ∈ Z depends only on the intertwining operators Y1, Y2 and a1 + a2, such
that as a formal power series the matrix element

〈w′
0,Y1(w1, z1)Y2(w2, z2)w3〉 (A.2)

converges absolutely in the region |z1| > |z2| > 0 and may be analytically continued
to the multivalued analytic function

M∑

k=1

zrk2 (z1 − z2)
sk (log z2)

uk (log(z1 − z2))
vk fk

(
z1 − z2

z2

)
(A.3)

http://creativecommons.org/licenses/by/4.0/
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in the region |z2| > |z1 − z2| > 0.
(2) We say that two B-graded logarithmic intertwining operators Y1, Y2 of respective

types
( W0
W4, W3

)
,
( W4
W1, W2

)
satisfy the convergence and extension property for iterates

if for any a2, a3,∈ B and any doubly homogeneous elements w′
0 ∈ W′

0, w1 ∈
W3, wi ∈ W

(ai )
i , i = 2, 3, there exist M ∈ Z≥0, r1, . . . , rM , s1, . . . sM ∈ R,

u1, . . . uM , v1, . . . vM ∈ Z≥0 and analytic functions f1(z), . . . fM (z) on the disc
|z| < 1 satisfying

wtw2 + wtw3 + sk > N , for each k = 1, . . . , M, (A.4)

where N ∈ Z depends only on the intertwining operators Y1, Y2 and a2 + a3, such
that as a formal power series the matrix element

〈w′
0,Y1(Y2(w1, z1 − z2)w2, z2)w3〉 (A.5)

converges absolutely in the region |z2| > |z1 − z2| > 0 and may be analytically
continued to the multivalued analytic function

M∑

k=1

zrk1 zsk2 (log z1)
uk (log z2)

vk fk

(
z2
z1

)
(A.6)

in the region |z1| > |z2| > 0.

Consider the Noetherian ring R = C[z±1
1 , z±1

2 , (z1 − z2)−1]. Then for any quadruple
of B-graded V-modules W0,W1,W2,W3, and any triple (a1, a2, a3) ∈ B3, we define
the R-module

T (a1,a2,a3) = R ⊗ (
W′

0

)(a1+a2+a3) ⊗ W
(a1)
1 ⊗ W

(a2)
2 ⊗ W

(a3)
3 , (A.7)

where all the tensor product symbols denote complex tensor products. We will gen-
erally omit the tensor product symbol separating R from the V-modules. The moti-
vation for considering this module is that for any B-graded module W4 and any pair
of grading compatible logarithmic intertwining operators Y1,Y2 of respective types( W0
W1, W4

)
and

( W4
W2, W3

)
it produces matrix elements via the map φY1,Y2 : T (a1,a2,a3) →

zh1C ({z2/z1}) [z±1
1 , z±1

2 ], where h is the combined conformalweight ofw′
0, w1, w2, w3

and C ({x}) is the space of all power series in x with bounded below real exponents (the
modulesWi , i = 0, 1, 2, 3 will always have real conformal weights below), defined by

φY1,Y2( f (z1, z2)w
′
0 ⊗ w1 ⊗ w2 ⊗ w3)

= ι( f (z1, z2))〈w′
0,Y1(w1, z1)Y2(w2, z2)w3〉, (A.8)

where ι : R → C[[z2/z1]][z±1
1 , z±1

2 ] is the map expanding elements of R such that the
powers of z2 are bounded below. This in turn justifies considering the submodule

J (a1,a2,a3) = spanR
{
A

(
v,w′

0, w1, w2, w3
)
,B

(
v,w′

0, w1, w2, w3
)
,

C
(
v,w′

0, w1, w2, w3
)
,D

(
v,w′

0, w1, w2, w3
) ∈ T (a1,a2,a3) :

v ∈ V, w′
0 ∈ (

W′
0

)(a1+a2+a3) , wi ∈ W (ai ), i = 1, 2, 3
}

, (A.9)
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where the generators

A
(
v,w′

0, w1, w2, w3
) = −w′

0 ⊗ v−1w1 ⊗ w2 ⊗ w3

+
∑

k≥0

(−1

k

)
(−z1)

kv∗−1−kw
′
0 ⊗ w1 ⊗ w2 ⊗ w3

−
∑

k≥0

(−1

k

)
(−(z1 − z2))

−1−kw′
0 ⊗ w1 ⊗ vkw2 ⊗ w3

−
∑

k≥0

(−1

k

)
(−z1)

−1−kw′
0 ⊗ w1 ⊗ w2 ⊗ vkw3,

B
(
v,w′

0, w1, w2, w3
) = −w′

0 ⊗ w1 ⊗ v−1w2 ⊗ w3

+
∑

k≥0

(−1

k

)
(−z2)

kv∗−1−kw
′
0 ⊗ w1 ⊗ w2 ⊗ w3

−
∑

k≥0

(−1

k

)
(−(z1 − z2))

−1−kw′
0 ⊗ vkw1 ⊗ w2 ⊗ w3

−
∑

k≥0

(−1

k

)
(−z2)

−1−kw′
0 ⊗ w1 ⊗ w2 ⊗ vkw3,

C
(
v,w′

0, w1, w2, w3
) = v∗−1w

′
0 ⊗ w1 ⊗ v−1w2 ⊗ w3

−
∑

k≥0

(−1

k

)
z−1−k
1 w′

0 ⊗ vkw1 ⊗ w2 ⊗ w3

−
∑

k≥0

(−1

k

)
z−1−k
2 w′

0 ⊗ w1 ⊗ vkw2 ⊗ w3 − w′
0 ⊗ w1 ⊗ w2 ⊗ v−1w3,

D
(
v,w′

0, w1, w2, w3
) = v−1w

′
0 ⊗ w1 ⊗ v−1w2 ⊗ w3

−
∑

k≥0

(−1

k

)
zk+11 w′

0 ⊗ ez
−1
1 L1

(
−z21

)L0
vk

(
−z−2

1

)L0
e−z−1

1 L1w1 ⊗ w2 ⊗ w3

−
∑

k≥0

(−1

k

)
z−1−k
2 w′

0 ⊗ w1

⊗ ez
−1
2 L1

(
−z22

)L0
vk

(
−z−2

2

)L0
e−z−1

2 L1w2 ⊗ w3

− w′
0 ⊗ w1 ⊗ w2 ⊗ v∗−1w3, (A.10)

are preimages of the relations coming from residues of the Jacobi identity for intertwining
operators and where v∗

k : W′
i → W′

i denotes the adjoint of vk : Wi → Wi . Hence
J (a1,a2,a3) lies in the kernel of φY1,Y2 for any choice of intertwining operators Y1,Y2 of
the correct types.

Next consider the doubly homogeneous space

T (a1,a2,a3)
[r ] =

∏

r0,r1,r2,r3∈R
r0+r1+r2+r3=r

R ⊗ (
W′

0

)(a1+a2+a3)
[r0] ⊗ (W1)

(a1)
[r1] ⊗ (W2)

(a2)
[r2] ⊗ (W3)

(a3)
[r3]

(A.11)
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to construct the subspaces

Fr (T
(a1,a2,a3)) =

∏

s≤r

T (a1,a2,a3)
[s] ,

Fr (J
(a1,a2,a3)) = J (a1,a2,a3) ∩ Fr (T

(a1,a2,a3)). (A.12)

These define filtrations on T (a1,a2,a3) and J (a1,a2,a3), respectively, since Fs(T (a1,a2,a3)) ⊂
Fr (T (a1,a2,a3)) and Fs(J (a1,a2,a3)) ⊂ Fr (J (a1,a2,a3)), if s ≤ r , and

⋃
r∈R Fr (T (a1,a2,a3)) =

T (a1,a2,a3) and
⋃

r∈R Fr (J (a1,a2,a3)) = J (a1,a2,a3). Note that if theWi , i = 0, 1, 2, 3 are

discretely strongly graded, then T (a1,a2,a3)
[r ] is a finite sum of finite dimensional doubly

homogeneous spaces tensored with R. Hence T (a1,a2,a3)
[r ] is a finitely generated free R-

module. Further, Fr (T (a1,a2,a3)) is also a finite sum and hence also a finitely generated
free R-module. Finally, the ring R is Noetherian and so the submodule Fr (J (a1,a2,a3))

is also finitely generated.

Proposition A.2. Let the V-modulesWi , i = 0, 1, 2, 3 be discretely strongly B-graded
and B-graded C1-cofinite as V-modules, then for any a1, a2, a3 ∈ B there exists M ∈ Z

such that for any r ∈ R

Fr (T
(a1,a2,a3)) ⊂ Fr (J

(a1,a2,a3)) + FM (T (a1,a2,a3)) and T (a1,a2,a3) ⊂ J (a1,a2,a3) + FM (T (a1,a2,a3)).

(A.13)

Proof. By assumption the modules Wi , i = 0, 1, 2, 3 are B-graded C1-cofinite as
V -modules, that is, the spaces

C1(M)(a) = spanC{v−hw ∈ M (a) : v ∈ V[h]h > 0, w ∈ M} (A.14)

have finite codimension in M(a) for M = Wi , i = 0, 1, 2, 3. Thus M(a)
[h] ⊂ C1(M)(a)

for sufficiently large conformal weight h ∈ R and hence there exists M ∈ Z such that
⊕

n>M

T (a1,a2,a3)
[n] ⊂ C1

(
W′

0

)(a1+a2+a3) ⊗ W
(a1)
1 ⊗ W

(a2)
2 ⊗ W

(a3)
3

+
(
W′

0

)(a1+a2+a3) ⊗ C1 (W1)
(a1) ⊗ W

(a2)
2 ⊗ W

(a3)
3

+
(
W′

0

)(a1+a2+a3) ⊗ W
(a1)
1 ⊗ C1 (W2)

(a2) ⊗ W
(a3)
3

+
(
W′

0

)(a1+a2+a3) ⊗ W
(a1)
1 ⊗ W

(a2)
2 ⊗ C1 (W3)

(a3) . (A.15)

We prove the first inclusion of the proposition by induction on r ∈ R. If r ≤ M ,
then the inclusion is true by Fr (T (a1,a2,a3)) defining a filtration. Next assume that
Fr (T (a1,a2,a3)) ⊂ Fr (J (a1,a2,a3)) + FM (T (a1,a2,a3)) is true for all r < s ∈ R for
some s > M . We will show that any element of the homogeneous space T (a1,a2,a3)

[s]
can be written as a sum of elements in Fs(J (a1,a2,a3)) and FM (T (a1,a2,a3)). Since
s > M , this homogeneous element is an element of the right-hand side of (A.15).
We shall only consider the case of this element lying in the second summand of the
right-hand side, as the other cases follow analogously. Without loss of generality we
can assume the element has the form w′

0 ⊗ v−1w1 ⊗ w2 ⊗ w3 ∈ T (a1,a2,a3)
[s] , where

w′
0 ∈ (

W′
0

)(a1+a2+a3), wi ∈ W
(ai )
i , i = 1, 2, 3, v ∈ V [h], h > 0. By computing the

degrees of the summands making up A(v,w′
0, w1, w2, w3) in (A.10) we see that the
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three sums over k all lie in Fs−1(T (a1,a2,a3)) ⊂ Fs−1(J (a1,a2,a3)) + FM (T (a1,a2,a3)) and
that A(v,w′

0, w1, w2, w3) ∈ Fs(J (a1,a2,a3)). Further,

w′
0 ⊗ v−1w1 ⊗ w2 ⊗ w3 = −A(v,w′

0, w1, w2, w3)

+
∑

k≥0

(−1

k

)
(−z1)

kv∗
kw

′
0 ⊗ w1 ⊗ w2 ⊗ w3

−
∑

k≥0

(−1

k

)
(−(z1 − z2))

−1−kw′
0 ⊗ w1 ⊗ vkw2 ⊗ w3

−
∑

k≥0

(−1

k

)
(−z1)

−1−kw′
0 ⊗ w1 ⊗ w2 ⊗ vkw3. (A.16)

Thusw′
0⊗v−1w1⊗w2⊗w3 lies in the sum Fs(J (a1,a2,a3))+FM (T (a1,a2,a3)) and the first

inclusion of the proposition follows. The second inclusion follows from Fr (T (a1,a2,a3))

and Fr (J (a1,a2,a3)) defining filtrations.

T (a1,a2,a3) =
⋃

r∈R
Fr (T

(a1,a2,a3)) ⊂
⋃

r∈R

(
Fr (J

(a1,a2,a3)) + FM (T (a1,a2,a3))
)

=
(

⋃

r∈R
Fr (J

(a1,a2,a3))

)
+ FM (T (a1,a2,a3)) = J (a1,a2,a3) + FM (T (a1,a2,a3)).

(A.17)

�	
Corollary A.3. Let the V-modules Wi , i = 0, 1, 2, 3 be discretely strongly B-graded
and B-graded C1-cofinite as V-modules.

(1) The quotient R-module T (a1,a2,a3)/J (a1,a2,a3) is finitely generated.
(2) For any representative w ∈ T (a1,a2,a3), we denote its coset in T (a1,a2,a3)/J (a1,a2,a3)

by [w]. Let w′
0 ∈ (

W′
0

)(a1+a2+a3) and wi ∈ W
(ai )
i i = 1, 2, 3, and consider the

submodules of T (a1,a2,a3)/J (a1,a2,a3) given by

M1 = spanR{[w0 ⊗ L j
−1w1 ⊗ w2 ⊗ w3] : j ∈ Z≥0},

M2 = spanR{[w0 ⊗ w1 ⊗ L j
−1w2 ⊗ w3] : j ∈ Z≥0}. (A.18)

Then M1 and M2 are finitely generated, in particular, there exist m, n ∈ Z≥0 and
ak(z1, z2), b�(z1, z2) ∈ R, 1 ≤ k ≤ m, 1 ≤ � ≤ n such that

[w0 ⊗ Lm−1w1 ⊗ w2 ⊗ w3] + a1(z1, z2)[w0 ⊗ Lm−1
−1 w1 ⊗ w2 ⊗ w3]

+ · · · + am(z1, z2)[w0 ⊗ w1 ⊗ w2 ⊗ w3] = 0,

[w0 ⊗ w1 ⊗ Ln−1w2 ⊗ w3] + b1(z1, z2)[w0 ⊗ w1 ⊗ Ln−1
−1 w2 ⊗ w3]

+ · · · + bn(z1, z2)[w0 ⊗ w1 ⊗ w2 ⊗ w3] = 0. (A.19)

Proof. Since R is a Noetherian ring, Part (1) holds if T (a1,a2,a3)/J (a1,a2,a3) is isomorphic
to a subquotient of a finitely generated module over R. By Proposition A.2 we have the
inclusion and identification
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T (a1,a2,a3)/J (a1,a2,a3) ⊂
(
J (a1,a2,a3) + FM (T (a1,a2,a3))

)
/J (a1,a2,a3)

∼= FM (T (a1,a2,a3))/
(
FM (T (a1,a2,a3)) ∩ J (a1,a2,a3)

)
. (A.20)

Thus T (a1,a2,a3)/J (a1,a2,a3) is isomorphic to a subquotient of the finitely generated mod-
ule FM (T (a1,a2,a3)) and Part (1) follows. Part (2) is an immediate consequence of Part
(1) and the fact that a submodule of a finitely generated module over a Noetherian ring
is again finitely generated. �	
Theorem A.4. Let the V-modules Wi , i = 0, 1, 2, 3 be discretely strongly B-graded
and B-graded C1-cofinite as V-modules, letW4 be a B-graded V-module and let Y1, Y2
be logarithmic grading compatible intertwining operators of types

( W0
W1, W4

)
,
( W4
W2, W3

)
,

respectively. Then for any homogeneous elements w′
0 ∈ W′

0,wi ∈ Wi , i = 1, 2, 3, there
exist m, n ∈ Z≥0 and ak(z1, z2), b�(z1, z2) ∈ R, 1 ≤ k ≤ m, 1 ≤ � ≤ n such that the
power series expansion of the matrix element

〈w′
0,Y1(w1, z1)Y2(w2, z2)w3〉 (A.21)

is a solution to the power series expansion of the system of differential equations

∂mφ

∂zm1
+ a1(z1, z2)

∂m−1φ

∂zm−1
1

+ · · · + am(z1, z2)φ = 0,

∂nφ

∂zn2
+ b1(z1, z2)

∂n−1φ

∂zn−1
1

+ · · · + bn(z1, z2)φ = 0, (A.22)

in the region |z1| > |z2| > 0.

Proof. Let a1, a2, a3 be the respective B-grades of w1, w2, w3, then we can assume
that the B-grade of w′

0 is a1 + a2 + a3, because otherwise the matrix element van-
ishes and the theorem follows trivially. Recall the map φY1,Y2 : T (a1,a2,a3) →
zh1C ({z2/z1}) [z±1

1 , z±2
2 ], defined by the formula (A.8). Since J (a1,a2,a3) lies in the kernel

of φY1,Y2 , we have an induced map

φY1,Y2
: T (a1,a2,a3)/J (a1,a2,a3) → zh1C ({z2/z1}) [z±1

1 , z±2
2 ]. (A.23)

The theorem then follows by applyingφY1,Y2
to the relations (A.19) ofCorollaryA.3.(2),

using the L−1 derivative property of intertwining operators and expanding in the region
|z1| > |z2| > 0. �	

Systems of differential equations of the form (A.22) have solutions very close to the
expansion required if their singular points are regular, see for example [49, Appendix
B]. A sufficient condition, whose validity we shall verify shortly, for regularity at a given
singular point is that the coefficients ai , b j in the system (A.22) have poles of degree
at most m − i and n − j respectively. Such singular points are called simple (see [49,
Appendix B] for the general definition). The singular points relevant for the convergence
and extension property for products are z1 = z2 and (z1 − z2)/z2 = 0.

We need to consider new filtrations in addition to those considered previously. Let
R = C[z±1

1 , z±2
2 ], then Rn = (z1 − z2)−n R, n ∈ Z equips R with the structure of a
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filtered ring in the sense that Rn ⊂ Rm , if n ≤ m, R = ⋃
n∈Z Rn and Rn · Rm ⊂ Rm+n .

The R-module T (a1,a2,a3) can then also be equipped with a compatible filtration

Rr (T
(a1,a2,a3)) =

∏

n+h0+h1+h2+h3≤r
hi∈R

Rn ⊗ (
W′

0

)(a1+a2+a3)
[h0] ⊗ (W1)

(a1)
[h1] ⊗ (W2)

(a2)
[h2] ⊗ (W3)

(a3)
[h3] , r ∈ R,

(A.24)
in the sense that Rr (T (a1,a2,a3)) ⊂ Rs(T (a1,a2,a3)), if r ≤ s, T (a1,a2,a3) =⋃

r∈R Rr (T (a1,a2,a3)) and Rn · Rr (T (a1,a2,a3)) ⊂ Rn+r (T (a1,a2,a3)). Further, let Rr

(J (a1,a2,a3)) = Rr (T (a1,a2,a3)) ∩ J (a1,a2,a3).

Proposition A.5. Let the V-modulesWi , i = 0, 1, 2, 3 be discretely strongly B-graded
and B-graded C1-cofinite asV-modules. Then for any a1, a2, a3 ∈ B there exists M ∈ Z

such that for any r ∈ R

Rr (T
(a1,a2,a3)) ⊂ Rr (J

(a1,a2,a3)) + FM (T (a1,a2,a3))

and T (a1,a2,a3) = J (a1,a2,a3) + FM (T (a1,a2,a3)). (A.25)

Further, T (a1,a2,a3)/J (a1,a2,a3) is finitely generated.

Proof. The proof of this proposition mimics the proof of Proposition A.2 once one has
verified that the elementsA(u, w′

0, w1, w2, w3),B(u, w′
0, w1, w2, w3),C(u, w′

0, w1, w2,

w3) andD(u, w′
0, w1, w2, w3) lie in Rh(J ), where h is the sum of the conformal weights

of u, w′
0, w1, w2, w3. �	

We also need to consider the R-moduleU (a1,a2,a3) = R⊗ (
W′

0

)(a1+a2+a3) ⊗W
(a1)
1 ⊗

W
(a2)
2 ⊗W

(a3)
3 and denote byU (a1,a2,a3)

[r ] the subspace of conformal weight r ∈ R. Thus

U (a1,a2,a3) = ∏
r∈RU (a1,a2,a3)

[r ] .

Lemma A.6. Let the V-modules Wi , i = 0, 1, 2, 3 be discretely strongly B-graded
and B-graded C1-cofinite as V-modules. For any a1, a2, a3 ∈ B and any doubly homo-

geneous vectors w′
0 ∈ (

W′
0

)(a1+a2+a3)
[h0] , wi ∈ (Wi )

(ai )[hi ], let h = ∑
i hi , let h be the

smallest non-negative representative of the coset h + Z and let mJ ∈ Rh(J (a1,a2,a3)),
mT ∈ FM (T (a1,a2,a3)) be vectors satisfying

w′
0 ⊗ w1 ⊗ w2 ⊗ w3 = mJ + mT . (A.26)

Then there exists S ∈ R such that h + S ∈ Z≥0 and (z1 − z2)h+SmT ∈ U (a1,a2,a3).

Proof. Note that the existence of the vectors mJ , mT is guaranteed by Proposition A.5.
Choose S ∈ R such that h + S ∈ Z≥0 and such that for any r ≤ −S, T (a1,a2,a3)

[r ] = 0.

Such an S must exist, since the conformal weights of T (a1,a2,a3) are bounded below
by assumption. By definition, Rr (T (a1,a2,a3)) is spanned by elements of the form (z1 −
z2)−n f (z1, z2)w̃0 ⊗ w̃1 ⊗ w̃2 ⊗ w̃3, where f ∈ R and n +

∑
i wt w̃i ≤ r . The number

S was therefore chosen such that (z1 − z2)r+S Rr (T (a1,a2,a3)) ⊂ U (a1,a2,a3) whenever
r + S ∈ Z. Now, by assumption,

mT = w′
0 ⊗ w1 ⊗ w2 ⊗ w3 − mJ . (A.27)

The right-hand side of this equality lies in Rh(T (a1,a2,a3)) by construction and therefore
so does the left-hand side. Hence (z1 − z2)h+SmT ∈ U (a1,a2,a3). �	
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Theorem A.7. Let the V-modules Wi , i = 0, 1, 2, 3 be discretely strongly B-graded
and B-graded C1-cofinite as V-modules, let W4 be a B-graded V-module and let
Y1, Y2 be logarithmic grading compatible intertwining operators of types

( W0
W1, W4

)
,

( W4
W2, W3

)
, respectively and consider the system of differential equations of Theorem

A.4. For the singular points z1 = z2 and (z1 − z2)/z2 = 0 there exist coefficients
ak(z1, z2), bl(z1, z2) ∈ R such that these singular points of the system of differential
equations (A.22) satisfied by the matrix elements (A.21) are regular.

Proof. We consider first the singular point z1 = z2. By Proposition A.5 and Lemma
A.6, for any k ∈ Z≥0 together with a vector w′

0 ⊗ Lk−1w1 ⊗ w2 ⊗ w3 ∈ T (a1,a2,a3),
where the wi are doubly homogeneous vectors of total conformal weight h ∈ R, there
exist m(k)

J ∈ Rh+k(J (a1,a2,a3)) and m(k)
T ∈ FM (T (a1,a2,a3)) such that

w′
0 ⊗ Lk−1w1 ⊗ w2 ⊗ w3 = m(k)

J + m(k)
T . (A.28)

Let h be the smallest non-negative representative of the coset h + Z. Then, by Lemma
A.6, there exists S ∈ R such that h + S ∈ Z≥0 and (z1 − z2)h+k+Sm

(k)
T ∈ U (a1,a2,a3) and

thus (z1 − z2)h+k+Sm
(k)
T ∈ ⋃

r≤M U (a1,a2,a3)
[r ] . Since the V -modules Wi are discretely

strongly B-graded and B-gradedC1-cofinite,
∏

r≤M U (a1,a2,a3)
[r ] is a finite sum of finitely

generated R-modules and hence also finitely generated. Thus, since R is Noetherian,
the submodule generated by the (z1 − z2)h+k+Sm

(k)
T , k ∈ Z≥0 is also finitely generated.

Hence there exists an m ∈ Z≥0 such that {(z1 − z2)h+k+Sm
(k)
T : 0 ≤ k ≤ m − 1} is

a finite generating set for this submodule and subsequently there exist ck(z1, z2) ∈ R
such that

(z1 − z2)
h+m+Sm(m)

T +
m−1∑

k=0

ck(z1, z2)(z1 − z2)
h+k+Sm(k)

T = 0. (A.29)

Therefore,

w′
0 ⊗ Lm−1w1 ⊗ w2 ⊗ w3 +

m−1∑

k=0

ck(z1, z2)(z1 − z2)
k−mw′

0 ⊗ Lk−1w1 ⊗ w2 ⊗ w3

= m(m)
J +

m−1∑

k=0

ck(z1, z2)m
(k)
J . (A.30)

Thus in the quotientmodule T (a1,a2,a3)/J (a1,a2,a3), we obtain (wherewe again use square
brackets to denote cosets)

[w′
0 ⊗ Lm−1w1 ⊗w2 ⊗w3]+

m−1∑

k=0

ck(z1, z2)(z1 − z2)
k−m[w′

0 ⊗ Lk−1w1 ⊗w2 ⊗w3] = 0,

(A.31)
since m(k)

J ∈ J (a1,a2,a3). By a similar line of reasoning there exists an n ∈ Z≥0 and
d�(z1, z2) ∈ R such that

[w′
0 ⊗ w1 ⊗ Ln−1w2 ⊗ w3] +

m−1∑

�=0

d�(z1, z2)(z1 − z2)
�−n[w′

0 ⊗ w1 ⊗ Lk−1w2 ⊗ w3] = 0.

(A.32)
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Applying the map φY1,Y2 defined by (A.8) and using the L−1 property for intertwining
operators will then result in a system of differential equations for which z1 = z2 is a
simple, and hence regular, singular point.

To show the regularity of the singular point (z1 − z2)/z2 = 0, we introduce new
gradings on R and T (a1,a2,a3). We assign degree−1 to the variables z1, z2, thus giving R
aZ grading and then grade T (a1,a2,a3) by adding R-degrees and conformal weights. This
implies that the elementsA(v,w′

0, w1, w2, w3), B(v,w′
0, w1, w2, w3), C(v,w′

0, w1, w2,

w3) and D(v,w′
0, w1, w2, w3) are homogeneous with respect to this new grading

if their arguments are doubly homogeneous. The new grading therefore descends to
T (a1,a2,a3)/J (a1,a2,a3). Further, for doubly homogeneous elements w′

0, w1, w2, w3, the
elements

[w′
0⊗Lk−1w1⊗w2⊗w3], [w′

0⊗w1⊗L�−1w2⊗w3] ∈ T (a1,a2,a3)/J (a1,a2,a3), (A.33)

are also homogeneous. Thus the coefficients ck(z1, z2), d�(z1, z2) of equations (A.31)
and (A.32) are elements of degree 0 in R and can therefore be written as Laurent
polynomials in (z1 − z2)/z2. It then follows that the singular point (z1 − z2)/z2 = 0 is
regular. �	

The fact that thematrix element (A.2) satisfies an expansion of the form (A.3) now
follows by the reasoning of [48, Theorem 3.5]. A little care is needed when following
the reasoning of [48], since there only modules with a diagonalisable action of L0 are
considered. However, as noted in [21, Part VII, Proof of Theorem 11.8 and Remark 11.9]
the argument extends easily to modules where L0 has Jordan blocks. The basic idea is
that one can use the L0 conjugation property of intertwining operators (recall that L0
is the generator of dilations) to rescale the variables in the matrix element (A.2) by z2
so that it becomes a function in z3 = (z1 − z2)/z2 only and the system of differential
equations (A.31) and (A.32) then becomes an ordinary differential equation for z3 with
a regular singularity at z3 = 0. Similar reasoning for the matrix element (A.5) leads one
to conclude that it satisfies the expansion (A.6). Hence Theorem 5.7 follows.
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