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Reference-Based Deep Line Art
Video Colorization

Min Shi†, Jia-Qi Zhang†, Shu-Yu Chen, Lin Gao∗, Yu-Kun Lai and Fang-Lue Zhang

Abstract—Coloring line art images based on the colors of reference images is a crucial stage in animation production, which is

time-consuming and tedious. This paper proposes a deep architecture to automatically color line art videos with the same color style

as the given reference images. Our framework consists of a color transform network and a temporal refinement network based on

3U-net. The color transform network takes the target line art images as well as the line art and color images of the reference images as

input and generates corresponding target color images. To cope with the large differences between each target line art image and the

reference color images, we propose a distance attention layer that utilizes non-local similarity matching to determine the region

correspondences between the target image and the reference images and transforms the local color information from the references to

the target. To ensure global color style consistency, we further incorporate Adaptive Instance Normalization (AdaIN) with the

transformation parameters obtained from a multiple-layer AdaIN that describes the global color style of the references extracted by an

embedder network. The temporal refinement network learns spatiotemporal features through 3D convolutions to ensure the temporal

color consistency of the results. Our model can achieve even better coloring results by fine-tuning the parameters with only a small

number of samples when dealing with an animation of a new style. To evaluate our method, we build a line art coloring dataset.

Experiments show that our method achieves the best performance on line art video coloring compared to the current state-of-the-art

methods.

Index Terms—Line Art Colorization, Color Transform, Temporal Coherence, Few Shot Learning

✦

1 INTRODUCTION

T HE process of animation production requires high labor input.

Coloring is one of the critical stages after the line art images

are created, which is a time-consuming and tedious task. Usually,

“inbetweeners” colorize a series of line art images according to

several reference color images drawn by artists. Some commercial

devices and software can be used to speed up the workflow

of line art image coloring. Nevertheless, it still needs much

repetitive work in each frame. Therefore, automatic methods for

coloring line art images based on reference color images are highly

demanded, significantly reducing animation production costs.

Early research on line art image coloring mostly relies on

manually specifying colors, which are then spread out to similar

regions [1], [2], [3]. However, the efficiency of the coloring

stage in animation production cannot be significantly improved

using the above methods. Inspired by the success of generative

models on image synthesis tasks in recent years, researchers have

used deep convolutional neural networks (CNNs) to automatically

color line art images [4], [5], [6]. However, user interactions are

required to achieve final satisfactory coloring results. To encourage
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temporal consistency in the colored animation, Thasarathan et

al. [7] input the previous frame together with the current frame

to a discriminator to improve the colorization of neighboring

frames. However, the model cannot fully guarantee the consistency

between the color styles of their results and the reference image,

which is important for the color quality of the animation.

Coloring the whole sequence of line art videos based on a

few reference colored sample frames is challenging. Unlike real-

life videos, animation videos do not hold pixel-wise continuity

between successive frames. For example, lines corresponding to

limbs of an animated character may jump from one shape to

another to depict fast motion. As such temporal continuity cannot

be directly used to guide the learning process to maintain the color

consistency between regions in adjacent frames. Furthermore, line

art images only consist of black and white lines, which lack rich

texture and intensity information than grayscale images, making

colorization harder. Moreover, when coloring a new animation

video from line art images, only a few examples are available.

When applied to color animation videos with a new color style,

this requires the model to be trainable with a small number of

samples.

This paper proposes a deep architecture to automatically color

line art videos based on reference colored frames. In order to

avoid possible error accumulation when continuously coloring a

sequence of line art images, we determine the region correspon-

dences between the target image and reference images by using

a distance attention layer, which is able to match similar region

features extracted by the convolutional encoders from the target

and reference images, and use this to transform the local color

information from the references to the target. Then, to ensure

the global color consistency, the Adaptive Instance Normalization

(AdaIN) [8] parameters are learned from the embeddings extracted

for describing the global color style of the reference images. We
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further use a 3U-net based 3D convolutional network to refine the

temporal color consistency between the coloring result and the

reference images. It is the first time to utilize such a global and

local network architecture to color line art images. Moreover, our

model can achieve even better coloring results by fine-tuning the

parameters with only a small number of samples when dealing

with animations of a new color style.

Our technical contributions include:

1) We propose a deep learning-based line art colorization

method which is suitable for practical applications where

artists need to color several sample frames, and the entire

video can be colored with a consistent style.

2) We propose a distance attention layer that can transform

colors from the reference images to the target line art

image based on pixel-level similarity, which learns how

to spatially match the features of reference line art images

with the target image.

3) We introduce a joint solution for sketch colorization,

which applies several effective modules to solve the line

art colorization problem, such as style learning by AdaIN,

attention-based line feature matching and temporal con-

volution.

2 RELATED WORK

2.1 Sketch colorization without references

Early research on line drawing colorization [1], [2], [3] allows the

user to specify color using brushes and then propagates the color

to similar areas. The range of propagation can be determined by

finding the region similarity or specified by the user. Qu et al. [1]

use a level-set method to find similar regions, and propagate users’

scribbles to those regions. Orzan et al. [9] require the users to set

the gradient range of curves to control the range of their scribbles.

Given a set of diffusion curves as constraints, the final image is

generated by solving the Poisson equation. Those methods require

a lot of manual interactions to achieve desired coloring results.

Zhu et al. [10] proposed a toon tracking method, which can

color the animation videos by the region correspondence between

animation frames. However, when line art images have special

effects (such as glare), blurred contour lines, too complicated

line structures and a large number of segmentation regions, the

final results will be significantly affected. With the development

of deep learning, researchers have used it to achieve automatic

or interactive coloring [11], [12]. Yoo et al [13] proposed a

memory network structure, which matches the features of the

input gray-scale image with the features of the training set, and

then the AdaIN [8] was used to transfer color after obtaining

the corresponding color feature vector. However, a lot of manual

interaction is still required to obtain reliable coloring results.

2.2 Sketch colorization with references

To reduce manual workload, colorization methods with reference

images have been proposed to achieve the specified color style

for the target sketch. Sato et al. [18] represent the relationships

between the regions of line art images using a graph structure, and

then solve the matching problem through quadratic programming.

However, it is difficult to accurately segment complex line art

images. Deep learning methods are proposed to avoid the re-

quirement of accurate segmentation. Zhang et al. [5] extract VGG

features from the reference image as their description, but their

Fig. 1: Comparison of different line art image extraction methods.

(a) original color image; (b) Canny [14]; (c) XDoG [15]; (d)

Coherent Line Drawing [16]; (e) SketchKeras [17]; (f) distance

field map from SketchKeras results.

results have blurred object boundaries and mixed colors, probably

due to the different characteristics of line art and normal images.

To further refine the results, Zhang et al. [19] divide the line art

image colorization problem into the drafting stage and refinement

stage, and users can input manual hints or provide a reference

image to control the color style of the results [20]. However,

these methods still require user interactions to achieve satisfactory

coloring results. Hensman et al. [6] use cGANs (conditional

Generative Adversarial Networks) to colorize gray images with

little need for user refinement, but the method is only applicable to

learning relationships between grayscale and color images, rather

than line art images. Chen et al. [21] use active learning [22] to

infer the color of uncolored areas. In addition, Liao et al. [23]

use the PatchMatch [24] algorithm to match the high-dimensional

features extracted from the reference and target images, and realize

style conversion between image pairs. It can be used for the line

art image coloring task, but it does not match images with different

global structures very well.

2.3 Video colorization

In video coloring research, animation coloring is much less ex-

plored than natural video coloring. Normal grayscale video color-

ing work [25], [26], [27], [28] learns temporal color consistency

by calculating optical flow. Using the image analogy method,

Jamriška et al. [29] used image color, foreground object binary

mask, position of SIFT Flow (Scale-invariant feature transform

Flow) [30], and the edge information of foreground objects as

guidance to achieve video stylization [31]. Iizuka et al. [32]

proposed a single end-to-end framework to tackle black-and-white

vintage film remastering. The key idea of their network structure

is introducing source-reference attention to guide the transfer of

the colors from the reference image into the target image.

However, animated video frames do not hold pixel-level con-

tinuity in general, causing optical flow algorithms to fail to get

good results. Sýkora et al. [33] propose a method which uses

path-pasting to colorize black-and-white cartoons for continuous

animation. However, when given sketch images contain lines

which are not continuous, path-pasting is hard to find accurate cor-

respondence. Automatic Temporally Coherent Video Colorization
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Fig. 2: The overall structure of the our network. The color transform network combines the latent features of global color style extracted

from reference color images with latent features extracted from the input line art image to be colored. Finally, the temporal refinement

network ensures the coloring result to be temporally consistent with the reference images.

(TCVC) [7] inputs the previous colored frame into the generator

as a condition for the current line art image, and inputs both

the previous and current colored frames into the discriminator to

enforce temporal coherence. However, this method will cause error

propagation in the generated coloring results, as errors introduced

in one frame affect coloring results of all future frames. Instead,

we use a method based on region matching with reference images

to find the color features of the target image. Our method can

better process long sequences of line art images without color

error accumulation.

3 METHOD

In animation production, coloring in-between line art frames

according to the key frames drawn and colored by the original

artist is a necessary step. For automating this process, we design

a generative network structure. One of our design goals is to

maintain the local color consistency between the corresponding

regions in the target and the reference images. We expect that

our model will estimate accurate dense color transformations

by matching local features between the target and reference

line art images. It involves a distance attention layer after the

convolutional feature encoding stage. However, due to the possible

large deformations of the same object in the line art images, it is

insufficient to obtain accurate coloring results by just matching

local features of line art images. Therefore, we also expect the

network to be capable of controlling the color style globally and

correcting the coloring errors caused by inaccurate local similarity

results. We thus propose to use a sub-module, Embedder, to extract

the embeddings representing the global color style of the input

reference images. The embedding vectors are used to ensure the

global color style consistency between the generated coloring

result and reference images. Finally, we add a 3D convolution

network to improve the coloring quality by enhancing the temporal

color consistency.

3.1 Data Preparation

Since there is no public dataset for evaluating line art animation

coloring, we built such a dataset to train our model and evaluate

it. We collect a set of animation videos and divide them into video

shots using the color difference between the successive frames.

The line art images corresponding to all the color frames of each

video shot are extracted. See more details in Sec. 4.1.

In order to obtain high-quality line art images from color

animation, we tried various line extraction methods. The line

art images extracted by the traditional Canny edge detection

algorithm [14] are pretty different from the line drawing images

drawn by cartoonists. Other extractors, like XDoG edge extraction

operator [15] and the Coherent Line Drawing [16] method, are

too sensitive to user-specified parameters. Sketch-Keras [17] is a

deep line drafting model that uses a neural network trained to

not only adapt to color images with different quality but also to

extract lines for the important details. Therefore, here we use the

sketch-Keras to generate line art images, which have overall best

lines, contain rich details and have the most similar style with

that drawn by cartoonists. Due to the data sparsity of lines in line

art images, inspired by SketchyGAN [34], we also convert line

art images into distance field maps to improve matching between

images when training our model. The comparisons of different

methods are shown in Fig. 1.
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Fig. 3: Distance attention layer. It first extracts the feature maps of the input distance field maps of the target and reference images

through the encoder EnD. Then the similarity map is calculated for transforming the color features of the reference images to those of

the target image fmat. Finally, the matching-based transform feature fmat and the color feature of the reference images fmyi
(i = 0, 1

refers to two reference images) are dynamically combined to obtain the local color feature map of the target image fsim.

3.2 Overall Network Architecture

Our network consists of two sub-networks, color transform net-

work and refinement network. The color transform network con-

sists of a conditional generator G and an adversarial discriminator

D. Inspired by the few-shot unsupervised image-to-image trans-

lation framework (FUNIT) [35], our generator learns global style

information through Embedder, and provides local color features

through the distance attention layer. Thus, our generator G takes a

target line art image x, a target distance field map d and two ref-

erence images (including the line art, distance field map and color

image for each reference image) {xr0 , xr1 ; dr0 , dr1 ; yr0 , yr1} as

input and produces the target color image ŷtrans via

ŷtrans = G(x, d, {xr0 , xr1 ; dr0 , dr1 ; yr0 , yr1}). (1)

Here, r represents the reference object. ŷtrans is the preliminary

coloring result generated by the color transform network, where

subscripts 0 and 1 represent the beginning and end of the video

sequence, respectively.

Figure 2 shows the architecture of the color transform network,

which is composed of six parts: encoders, a distance attention layer

Sim, a group of middle residual blocks Mid, a style information

Embedder Em, a decoder De, and a discriminator D.

First, we use the encoders to extract the feature maps of the

following images: the target line art image EnL(x), the target

distance field map EnD(d), the reference distance field maps

EnD(dr0 , dr1), and the reference color images EnC(yr0 , yr1).
EnL, EnD, and EnC are three identically constructed encoders

that extract the features of line art images, field distance maps,

and color images, respectively. The extracted feature maps of the

above distance field maps and color images are then fed into the

distance attention layer to obtain the local color features fsim of

the target line art image, which provides a local colorization for

the target image.

After concatenating the line art images and the reference

color images, we also feed them separately into an Embedder

module [35] to get intermediate latent vectors for reference

images, and then compute the mean of their intermediate la-

tent vectors to obtain the final style embedding vector (SEV)

Em(xr0 ⊙ yr0 , ..., xr1 ⊙ yr1). The SEV is used to adaptively

compute the affine transformation parameters Pem for the adaptive

instance normalization (AdaIN) residual blocks [8] via a two-layer

fully connected network, which learns the global color information

for the target image. Then, with the SEV controlling the AdaIN pa-

rameter, the output features of the Sim layer (capturing similarity

matching between the target and references) and EnL (capturing

local image information of the target) are added to get the input

to the Mid module, whose output then forms the input to the

decoder De to generate the final target color image ŷtrans. Eq. 1

is factorized to

fsim =Sim(EnD(d), {EnD(dr0), EnD(dr1);

EnC(yr0), EnC(yr1)}),

Pem =Em(xr0 ⊙ yr0 , xr1 ⊙ yr1),

ŷtrans =De(Mid(EnL(x)⊕ fsim, Pem)), (2)

where ⊙ means concatenation, and ⊕ means element-wise sum-

mation. The design of our color transform network ensures that

the coloring process considers both the local similarity with the

reference image regions and the global color style of the reference

images.

The color transform network discriminator D takes as input

an image pair of line art image x and corresponding color image,

either real color image y from the training set or ŷtrans produced

by the generator G. It is trained to solve a binary classification task

to determine whether the color image is real or fake (generated).

The discriminator is trained in an adversarial way to make the
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generated images indistinguishable from real color animation

images.

We apply a 3D convolutional generation adversarial network to

make the coloring result temporally coherent to learn the temporal

relationship between the target coloring image and the reference

images. The generator takes the reference and target line art and

color image pairs as its input and generates the target coloring

results in ŷ as well as the beginning and the end reference frames.

The input and output are both put in chronological order. The

discriminator is trained to perform a binary classification to deter-

mine whether the color image sequence is real or fake. In order to

reduce the training time and parameter amount of 3D convolution,

we use the learnable gated temporal shift module [36] (LGTSM)

based on the temporal shift module (TSM) in both the generator

and discriminator. The LGTSM structure uses 2D convolution to

achieve the effect of 3D convolution with guaranteed performance.

3.3 Distance attention layer

To cope with larger changes between adjacent frames in line

art sketches, existing work [7] learns the matching of adjacent

frames by increasing the number of intermediate residual blocks

in the generator network. However, our method needs to match

references with target line art drawing, which can have even

more significant differences. Therefore, we utilize the global

relationship learned by non-local neural networks [37] used in

the work of video colorization [27].

Compared with matching features from grayscale images [27],

matching features from line art images do not directly obtain

satisfactory results because of the large deformations of lines of

objects. We expect the network to learn the confidence of the

correspondences simultaneously. Therefore, we make the distance

attention layer to additionally learn masks of the features of refer-

ence images, which adaptively select the positions in the reference

color images with the highest matching confidence. In the last

stage of this module, we dynamically combine the matching-based

transform feature from the whole reference images and the color

features, where the color features are selected by the masks based

on the matching confidence, and the matching-based transform

feature provides features learned from the whole reference images.

The overall structure of the distance attention layer is shown in

Fig. 3. We calculate the similarity of the high-dimensional features

extracted from the target line art image and the reference line art

images at a global scale. The module uses two learned internal

masks mi and ni:

mi = σ(Conv(fdi
⊙ fd)) (3)

ni = σ(Conv(fdi
⊙ fd)) (4)

where fd is the features from the target, and fdi
is the i-th

reference image (i = 0, 1). The mask mi is used to select new

features fmyi
= fyi

⊗mi from the reference color image features

fyi
, and ni is used to combine the feature matching information

fmat with the reference color image features fmyi
.

The matching-based transform feature fmat is obtained by

estimating the similarity between the features of the target and

reference line art images. To make matching more effective, all

the input line art images are first turned into distance field maps,

which are used for extracting feature maps using the encoder

EnD. Similarly, the color information of reference images yr0
and yr1 are extracted through encoders EnC . Let W and H
be the width and height of the input images, and W̃ = W/4,

H̃ = H/4, and C are the width, height, and channel number of the

feature maps. The feature map size is reduced to 1/4 of the input

image size to make a reasonable computation resource demand of

similarity calculation. To reduce the complexity of global feature

matching, we apply 1 × 1 convolutions to reduce the number of

channels for feature maps to C̃ = C/8, and reshape them to size

W̃ H̃ × C̃ . The similarity map Mi (W̃ H̃ × W̃ H̃) measures the

similarity between features at different locations of the feature

maps of the target and the i-th reference image. It is obtained

through matrix multiplication: Mi = fd · f
T
di

. We concatenate the

matrices for all the reference images and apply softmax to {Mi}
to form the matching matrix M̃ of size W̃ H̃K × W̃ H̃ , K = 2,

represents the number of reference images. Similarly, we apply

1×1 convolutions to reduce the channels of the color feature map

of the reference images fmyi
, and reshape and concatenate them

to form reference color matrix fC of size C̃×W̃ H̃K . The output

of the module, fmat = fC · M̃ , represents the matching-based

transform feature which transforms the color information from the

reference images to the target based on the local similarity.

Overall, we use the following approach to get the final color

similarity feature fsim:

fsim =
1

2

1∑

i=0

((1− ni)⊗ fmat + fmyi
⊗ ni) (5)

3.4 Loss Function

We define our loss function based on the following loss terms to

enforce the color coherence between similar regions and penalize

the color style difference with the reference images. Meanwhile,

the generation result is divided into multiple images in the refine-

ment network, and the following loss terms are applied. Finally,

the calculated loss values of multiple images are averaged to

obtain the final loss value.

L1 loss. To encourage the generated results to be similar to

the ground truth, we use the pixel level L1 loss measuring the

difference between the network generated result ŷ and the ground

truth color image y:

LL1 = ‖y − ŷ‖1 (6)

Perceptual loss. In order to ensure that the generated results

are perceptually consistent with ground truth images, we use the

perceptual loss introduced in [39]:

Lperc =
5∑

i=1

1

Ni

‖Φi
ŷ − Φi

y‖
2
2 (7)

where Φi (i = 1, . . . , 5) represents the feature map extracted

at the ReLU i 1 layer from the VGG19 network [40]. For our

work, we extract feature maps from the VGG19 network layers

ReLU 1 1; ReLU2 1; ReLU 3 1; ReLU 4 1 and ReLU 5 1. Ni

represents the number of elements in the i-th layer feature map.

Style loss. Similar to image style transfer work [7], [41], [42],

we calculate the similarity of the Gram matrices on the high-

dimensional feature maps of the generated image and the ground

truth to encourage the generated result to have the same style as

the ground truth.

Lstyle =
5∑

i=1

‖G(Φi
ŷ)−G(Φi

y)‖1, (8)
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w/o Embw/o Sim w/o line art w/o distance w/o refine result

w/o the loss perc w/o the loss latent w/o the loss style full groundtruth

Fig. 4: Network model component analysis.

(a) (b) (c) (d) (e) (f) (g)

Fig. 5: Intermediate results. (a) Reference color image 1, (b) Reference color image 2, (c) Latent decoder image ŷSim, (d) Latent

decoder image ŷMid, (e) Color image without the refinement network, (f) Final color image, (g) Ground truth.

(a) (b) (c)

Fig. 6: Sim module reconstruction results. The first row presents

the Sim module reconstruction results, and the second row

shows the network generation results. (a) All convolutional layers

use spectral normalization; (b) None of convolutional layers use

spectral normalization; (c) Only Encoders and Decoder(but not

embedder) use spectral normalization.

where G(·) calculates the Gram matrix for the input feature maps.

We use the VGG19 network to extract image feature maps from

the same layers for calculating the style loss.

Latent constraint loss. In order to improve the stability of the

generated effect, inspired by [5], [43], in addition to constraining

the final generation results, we introduce further constraints on

intermediate results of the network. Specifically, we add multi-

supervised constraints to the distance attention layer output fsim
and Mid module output fmid.

To make perceptual similarity measured more easily, fsim and

fmid first pass through latent decoders (involving a convolution

layer) to output 3-channel color images ŷsim and ŷmid. We then

use L1 loss to measure their similarity with the ground truth as

follows:

Llatent = ‖y − ŷsim‖1 + ‖y − ŷmid‖1 (9)

Adversarial Loss. The adversarial loss promotes correct clas-

sification of real images (y) and generated images (ŷ).

LGAN (G,D) = E(x,y)[logD(x, y)]+

E(x,ŷ)[log(1−D(x, ŷ))] (10)

Overall objective loss function. Combining all of the above

loss terms together, we set the optimization goal for our model:

Lx = λpercLperc + λstyleLstyle+

λlatentLlatent + λGANLGAN + λL1LL1 (11)

where λ controls the importance of terms. We set λperc = 1,

λstyle = 1000, λlatent = 1, λGAN = 1, λL1 = 10. Since the

resulted style loss value is relatively small in our experiments, we

set its weight as 1000, to make its contribution comparable with

the GAN loss.

3.5 Implementation details

Our network consists of two sub-networks, color transform net-

work and refinement network. We first train the color transform

network to ensure the network generates plausible coloring results.

Then we fix the color transform network parameters and the

optimize refinement network parameters to refine the temporal

consistency between the coloring result and the reference images.

The color transform network is composed of a generator

network and a discriminator network. The generator network

consists of encoders, a distance attention layer, middle residual
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 7: Comparison with existing methods. (a) the reference image; (b) results of cGAN-based [6]; (c) results of Deep Image

Analogy [23]; (d) results of Two-Stage method [19]; (e) results of ARDSC [38] (f) results of TCVC [7]; (g) our results; (h) Ground

truth.
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Fig. 8: Video sequence coloring result comparison. We compare

the method with cGAN-based [6], Deep Image Analogy [23],

Two-Stage [19], TCVC [7] on a long sequence of coloring results.

We show several frames from the long sequence at an equal

interval.

convolution blocks, a Decoder, and an Embedder. The encoders

for line art images, distance field maps and color images share the

same network architecture. They are composed of 3 convolution

layers and use instance normalization since colorization should

not affect the samples in the same batch. They utilize the ReLU

activations. We have 8 middle residual blocks [8] with AdaIN [44]

as the normalization layer and ReLU activations. The Decoder

comprises 4 convolutional layers with instance normalization and

ReLU activation. Before the convolution of Decoder, we use the

nearest neighbor upsampling to enlarge the feature map by 2 times

along each spatial dimension. It will eliminate the artifacts of the

checkerboard pattern in the generated results of GAN [45]. The

Embedder consists of 5 convolution layers followed by a mean

operation along the sample axis. Specifically, it maps multiple

reference images to latent vectors and then averages them to get

the final style latent vector. The affine transformation parameters

are adaptively computed using the style latent vector by a two-

layer fully connected network. Meanwhile, encoders and Decoder

apply spectral normalization [46] to their convolutional layers

to increase the stability of training. The discriminator network

structure is similar to Embedder, consisting of 5 layers of con-

volutions. At the same time, in addition to the last layer of

convolution, the discriminator adds spectral normalization [46]

to other convolutional layers. It utilizes the Leaky LeakyReLU

activations.

The temporal refinement network is composed of a generator

and a patch discriminator. The generator comprises an Encoder

with 3 3D gated convolutional layers and a Decoder with 4 dilated

3D gated convolutional layers and 3 3D gated convolutional

layers. In the last 3 convolutional layers of Decoder, we use the

nearest neighbor upsampling to enlarge feature maps by 2 times

along each spatial dimension. The patch discriminator is com-

posed of 5 3D convolutional layers. The spectral normalization is

applied to both the generator and discriminator to enhance training

stability.

4 EXPERIMENTS

We evaluate the line art video coloring results on our line art

colorization dataset. We show that our model outperforms other
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Setting MSE↓ PSNR↑ SSIM↑ FID↓
No Sim 0.0220 17.27 0.77 48.37
No Emb 0.0149 19.92 0.86 26.97
No Line Art 0.0198 18.71 0.77 37.06
No Distance 0.0126 20.46 0.84 30.75
No Perc. Loss 0.0122 20.57 0.83 33.65
No Latent Loss 0.0125 20.51 0.84 30.86
No Style Loss 0.0123 20.56 0.84 34.41
No Temporal 0.0111 21.60 0.86 27.67
Full 0.0101 22.81 0.87 26.92

TABLE 1: Ablation studies for different components on the

coloring results, using mean MSE, PSNR, SSIM and FID.
Method MSE↓ PSNR↑ SSIM↑ FID↓
FUNIT [35] 0.0946 10.54 0.35 83.17
FCMAN [13] 0.0797 11.69 0.57 87.31
FVI [36] 0.0379 15.49 0.62 106.17
cGAN [6] 0.0366 15.07 0.72 63.48
TCVC [7] 0.0426 14.95 0.73 50.75
Two-stage [19] 0.0352 14.91 0.65 42.08
Deep IA [23] 0.0478 15.36 0.67 38.22
ARDSC [38] 0.0356 19.21 0.80 34.47
Ours 0.0101 22.81 0.87 26.92

TABLE 2: Quantitative comparison with [6], [7], [13], [19], [23],

[35], [36], [38] using mean MSE, PSNR, SSIM and FID. Some

examples of visual comparison are shown in Fig. 7.

methods both quantitatively and qualitatively. In the following, we

first introduce the data collection details. Then we analyze the

effectiveness of the various components of the proposed method,

and report the comparison between our method and the current

state-of-the-art methods both qualitatively and quantitatively.

4.1 Data Collection and Training

We extract video frames from selected animations and extract

the line art images to form our dataset. We calculate a 768-

dimensional feature vector of histograms of R, G, B channels

for each frame. The difference between frames is determined by

calculating the mean square error of the feature vectors, which

is used for splitting the source animations into shots. When the

difference between the neighboring frames is greater than 200, it

is considered to belong to different shots. In order to improve

the quality of the data, we remove shots in which the mean

square errors between all frame pairs are less than 10 (as they

are too uniform), and the shot with a length less than eight frames.

Then we filter out video frames that are too dark or too faded

in color. Finally, we get a total of 1096 video sequences from

6 animations, with 29,834 images. Each video sequence has 27

frames on average. These six animation videos include 1) Little

Witch Academia; 2) Dragon Ball; 3) Amanchu; 4) SSSS.Gridman;

5) No.6; 6) Soul Eater. All the images are scaled to 256 × 256
size.

The number of frames in each video sequence can vary from 8
to more frames. Thus we randomly extract eight successive frames

from videos for network training. The first and last frames are

used as reference images, and the intermediate frames are used as

the target images. When testing other methods that only take one

reference image, the first frame of the entire sequence is selected

as the reference image to color the other frames. To evaluate the

versatility, we choose the data of animation 1, a total of 416 video

sequences, 11,241 images for training and testing the network.

Specifically, 50% of the animation 1 is used as the training data,

and the remaining 50% is used as the test data. Other animation

data is mainly used for testing, apart from using a few sequences

for fine-tuning.

We use the Adam optimizer and set the generator learning rate

to 1 × 10−4, the discriminator learning rate to 1 × 10−5, β1 to

0.5, β2 to 0.999, batch size 4. The color transform network trained

40 epochs; temporal refinement network trained 10 epochs. The

experiment is performed on a computer with an Intel i7-6900K

CPU and a GTX 1080Ti GPU, and the training time is about two

days. It takes 71ms to color a line art image.

4.2 Ablation Studies

We perform ablation studies to evaluate the contribution of each

module and loss term. The quantitative results comparing our

full pipeline with one component disabled are reported in Table

1, using standard metrics PSNR, MSE, SSIM, Fréchet Inception

Distance (FID) [47]. This shows that the distance attention layer,

Embedder, usage of distance field maps, perceptual loss, latent

loss, style loss, and refinement network are all essential to the

performance of our method. When testing, we use the first and

last frames of the video sequences as reference images to color

all the intermediate frames. The visual comparison of an example

is shown in Figure 4. Figure 4 shows that the Sim module dra-

matically contributes to the generation result. The Emb module

constrains the generation result to match the color style of the

reference images (see the region of the hair of the character).

The temporal refinement network ensures that the colors of the

resulting images are more chronologically coherent. We conducted

a further experiment to validate the importance of each part of the

network by coloring the target frame using features learned with

only specific sub-modules. As shown in Figure 5, when the target

image and the reference images have large deformation, just using

features from Sim is insufficient to generate accurate results, and

adding Emb preserves the global color style of reference images

very well.

In experiments, we found that adding spectral normalization

to the network can improve the stability of the training, but

adding the spectral normalization to the Emb module of the color

transform network will cause the generation results to be dim and

the colors not bright. Figure 6 shows the results of Sim recon-

struction and network generation in the following three cases. The

color transform network all adds spectral normalization, none adds

spectral normalization, and only the Emb module does not add

it. We can see from Figure 6 that the final result of adding the

spectral normalization network to the Emb module is dim, and

Sim cannot learn specific color information without adding it. In

addition, note that the output size of the Sim module is 1/16 of

the size of the original image. When visualizing the reconstructed

image from Sim in the same size as the original image in Figure 6,

we resize the result by 16 times, which makes the first row of

images look blocky.

4.3 Comparisons on Line Art Colorization Method

We compare our approach to the state-of-the-art line art image col-

oring methods, cGAN-based [6], Deep Image Analogy (IA) [23],

Two-Stage method [19], Augmented-self Reference and Dense

Semantic Correspondence (ARDSC) [38] and TCVC [7]. For fair-

ness, we use the training set described in Sec. 4.1 for all methods

and then evaluate them on the same test set. Only one reference

image is used for each sequence, as other methods cannot take

multiple references. In order to conduct a fair comparison, for the

two reference images needed in our network, we both use the first

frame of a video sequence. Figure 7 shows the coloring results
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Reference FUNIT FCMAN

FVI Ours GT

Fig. 9: Comparison with colorization methods for grayscale im-

ages, including FUNIT [35], FCMAN [13], and FVI [36].

Reference GTNonlocal Predict

Fig. 10: Coloring results of DEVC [27]. We show the intermediate

result of the nonlocal network and the final prediction of the whole

network with reference images.

of all the methods. We further use several standard metrics to

quantitatively evaluate the coloring results, which are presented in

Table 2. The experimental results show that our method not only

gets better coloring results but also keeps the style consistent with

the reference image.

4.4 Comparisons on Grayscale Image Colorization

Method

We compare our method with other colorization methods for

cartoon animation, as shown in Figure 8. For a fair comparison,

we select 32 sequences from animation 2 to fine-tune the models

of all the methods and then test them on the remaining sequences.

When coloring each sequence using cGAN-based [6], Deep Image

Analogy [23], and Two-Stage Generation [19] methods, the first

frame is selected as the reference image to color the remaining

images in the sequence. For TCVC [7], the first frame of a

sequence is used as the input condition for coloring the second

frame, and then the generated result is used as the input condition

of the following frame for all the subsequent frames. We can see

that TCVC keeps propagating color errors to subsequent frames,

leading to error accumulation in frames, while our method can

effectively reduce the errors caused by color propagation. The

cGAN-based and Deep Image Analogy methods have obvious

color matching errors when there are large motions and shape

deformations. Although our method might generate color bleed-

ing in large deformed areas, it can still provide an acceptable

preliminary coloring result. Also, note that the results of the Two-

Stage methods do not well maintain the color consistency with

the reference image, since they are not originally designed for

animation coloring generation.

Our model trained on only one animation also generalizes

well to new animations. When their color styles are different, our

animation Method MSE↓ PSNR↑ SSIM↑ FID↓

3
[7] 0.0345 15.23 0.66 76.34

Ours 0.0105 20.91 0.83 51.99

4
[7] 0.0412 14.52 0.66 99.13

Ours 0.0090 22.16 0.85 56.30

5
[7] 0.0455 14.67 0.59 95.68

Ours 0.0095 21.91 0.82 58.27

6
[7] 0.0585 13.14 0.62 91.38

Ours 0.0113 20.97 0.83 54.52

TABLE 3: Quantitative evaluation of different animation videos,

using 32 video sequences to fine tune network parameters.

Method MSE↓ PSNR↑ SSIM↑ FID↓
Basic [7]- 0.0523 13.32 0.63 78.64
Fine-tuned [7]- 0.0282 16.17 0.71 72.12
Basic ours- 0.0132 19.57 0.85 66.72
Fine-tuned ours- 0.0073 23.03 0.89 33.71

Basic [7]+ 0.0951 10.71 0.56 86.04
Fine-tuned [7]+ 0.0584 12.94 0.59 77.81
Basic ours+ 0.0197 18.06 0.82 68.23
Fine-tuned ours+ 0.0138 20.50 0.86 37.79

TABLE 4: Quantitative evaluation with [7] using mean MSE,

PSNR, SSIM and FID on animation 2. “-” indicates a short

sequence of length 8 is used for testing; “+” indicates the entire

sequence is tested, regardless of the length of the sequence.

method benefits from using a small number of sequences from the

new animation to fine-tune the parameters. To demonstrate it, we

apply the network trained on animation 1 to colorize animation 2

(basic model) with and without fine-tuning using 32 sequences

from animation 2 (fine-tuned model). We compare the results

with TCVC [7] using the same settings. As shown in Table 4,

our method achieves better coloring results after fine-tuning the

network with only a small number of new animation data. Table 3

shows the quantitative testing results of our method and TCVC on

other 4 animation videos where the models are fine-tuned by 32

video sequences. Our method outperforms TCVC [7] by a large

margin in all settings.

We compared our method with existing grayscale image col-

orization methods, including the limited data colorization method

(FCMAN) [13], the deep exemplar-based video colorization

method (DEVC) [27], the reference baseline method FUNIT [35]

and the free-form video inpainting method (FVI) [36]. For fair

comparisons, we use the same dataset to train the models of all the

methods and use the first frame of each sequence as the reference

image when testing. The numerical comparison results are shown

in Table 2, and some colorization results are shown in Fig. 9.

The coloring result of FUNIT [35] lost the curvilinear information

and messed up the positions of color regions, which means that

it fails to match the line art features. The FCMAN [13] method

neither transfers correct colors to the line art image very well

nor preserves the edges of the input line art image. The result of

FVI [36] simply copies the colors of the reference image, rather

than coloring regions considering line movements. We re-trained

the network parameters using the code provided by the authors

of DEVC [27], and Fig. 10 shows their nonlocal network output

and final coloring result. The network does not generate effective

coloring results, which may be because VGG19 trained by normal

images cannot cope well with line art images. In addition, accurate

colorization is difficult for DEVC to achieve since the intermediate

feature matching results are poor.
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Frame 0 Frame 2Sketch 1 DAIN DAVI Ours GT(Frame1)

Fig. 11: Comparison with video interpolation methods DAIN [48] and DAVI [49]. Note: The input line drawings with blue borders are

only inputted to our method.

Fig. 12: Comparison of the coloring results with different numbers

of reference images K .

K MSE↓ PSNR↑ SSIM↑ FID↓
1 0.0170 19.87 0.83 31.09
2 0.0111 21.59 0.86 27.67
3 0.0084 22.76 0.88 24.18
4 0.0069 23.44 0.89 22.20
5 0.0062 23.83 0.89 21.79

TABLE 5: Quantitative comparison of different numbers of refer-

ence images K on the coloration of video sequences.

4.5 Comparisons on Video Frame Interpolation

Although our goal and required input are not the same as the video

intermediate frame generation task, we can make the results of our

method and animation video interpolation methods comparable

with suitable input. It is not feasible to test interpolation methods

using two key frames at the two ends of a given cartoon sequence

as it is likely that changes within the sequence are too much

for interpolation. So we alternatively applied our method to the

cartoon interpolation task to evaluate the capability of our network

to learn to transfer colors. We compared with the methods of

Depth-aware video frame interpolation (DAIN) [48] and Deep

Animation Video Interpolation (DAVI) [49]. We trained and tested

our method and the above two methods using the interpolation

dataset, ATD-12K [49], where we used the extracted sketch images

as our line art input when testing. The final visual comparison

results and quantitative comparison results are shown in Figure 11.

We can see that our results are qualitatively and quantitatively

better than other methods. Despite that the comparison is not fully

fair for the other two methods since their input does not include the

line art images as guidance, it still demonstrates that our solution

is more suitable to colorize the in-between frames when the line

art images are accessible.

4.6 More Discussions

Number of reference images. Our method can be easily general-

ized to use multiple reference images. Here we test the effect of

feeding different numbers of reference images to train the model

for long coloring sequences. We divide a video sequence into

multiple segments according to different numbers of reference

images to achieve this. We use the frames where the sequence is

divided as the reference images to color the in-between frames. We

set the reference image number as K = 1, 2, . . . , 5 respectively.

The coloring results are shown in Figure 12, where the quality is

improved with an increasing number of reference images. The

quantitative evaluation is shown in Table 5. We can see that

more reference images generally lead to better results, but when

K exceeds 3, the improvement of the coloring results starts to

saturate. To balance the reference image numbers and the coloring

quality, we choose K as 3 when applying our method to long

sequence colorization.

Model fine-tuning. For new animations, if the style is similar

to the training dataset, we can get high-quality color results.

Nevertheless, for animation with a different style, a small amount

of data is needed to fine-tune the network to learn new styles

better. To fully evaluate the effects of fine-tuning a trained model

using the data from the target animation, we further conducted the

following experiments: We trained a baseline model with a larger

diversity using the animations of the training set of ATD-12K [49].

Then we tested the models fine-tuned by different numbers of

sequences (Seq-Num) to achieve satisfactory coloring results in

the new animation’s style, where the number of sequences is

set to 8, 16, 24, 32, 40, respectively. The network generally

produces better coloring results with increasing Seq-Num, and

the results stabilize when Seq-Num exceeds 32. Thus, to balance

the coloring results and required training data amount, we set

Seq-Num to 32 by default. In addition, we tested the fine-tuned

model by modifying the color distribution of the reference images.

Specifically, the reference image is converted to the HSV color

space. Then its H-channel is added by 90/180/270 (treated as

a circular quantity) to change the tone of the reference image.

Qualitative and quantitative evaluations are shown in Fig. 13 and

Table 6, respectively. We can see that the color distribution that

has never been seen during training can be accurately transferred

to the target images. It demonstrates that the model successfully

learned the desired color matching information, rather than over-

fitting the spatial relationship between color and local features.

Moreover, we found the model trained on a dataset with a

larger diversity is better than trained using a dataset from the same

animation. Table 7 shows the quantitative comparison results of
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Baseline Seq-Num8 Seq-Num16 Seq-Num24 Seq-Num32 Seq-Num40 GT

Hue+90

Reference

Hue+180

Hue+270

Fig. 13: Comparison of coloring results of the network after using different numbers of images to fine-tune the network with reference

images of different tones. The baseline model is trained using ATD-12K.

Setting
Hue=0 Hue=90 Hue=180 Hue=270

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
Baseline 20.26 0.791 20.01 0.794 20.04 0.793 19.96 0.794

Seq-Num8 20.56 0.823 20.06 0.826 20.25 0.825 20.24 0.828

Seq-Num16 21.39 0.836 20.78 0.837 20.89 0.834 20.76 0.837

Seq-Num24 21.79 0.841 20.90 0.841 21.21 0.843 21.04 0.84

Seq-Num32 21.79 0.848 21.02 0.847 21.31 0.846 21.02 0.847

Seq-Num40 21.90 0.851 21.01 0.847 21.21 0.847 21.09 0.850

TABLE 6: Quantitative evaluation of fine-tuning with different sequence numbers using reference images of different tones. The

baseline model is trained using ATD-12K.

Setting MSE↓ PSNR↑ SSIM↑
Baseline 0.0204 18.19 0.78
Seq-Num8 0.0204 18.19 0.78
Seq-Num16 0.0157 19.44 0.80
Seq-Num24 0.0147 19.91 0.81
Seq-Num32 0.0127 20.21 0.83

Seq-Num40 0.0128 20.55 0.83

TABLE 7: Quantitative evaluation of fine-tuning with different

sequence numbers, where the baseline is trained on animation 1.

fine-tuning the model trained on animation 1 using data from other

animations. The generalizability of the fine-tuned model originally

trained using ATD-12K is better than those initially trained using

only one animation. One reason is that the model trained with

large diversity learns the matching relationship between the target

image and the reference image better, especially in sophisticated

areas. For example, the hair of animation characters has different

styles in different animations, where the model trained on a diverse

range of animations can correctly identify the corresponding area

and make a better matching across animation frames.

4.7 User Study and Hand-drawn Line Art Colorization

To better evaluate our method, we conduct a user study to sub-

jectively assess the visual quality of colorized line art images and

the effectiveness of our method. In our experiment, we randomly

selected 10 animation sequences and only used one reference color

image to color the line art images. We first invite ten men and ten

women with an average age of 24. Then the videos colored by

different methods are randomly shuffled and displayed to the user.

The end user evaluates the results of different colorization methods

in the following dimensions:

1) Content consistency: The consistency between the color

of results and the reference image.

2) Interpolation quality: The smoothness of the transition

between successive frames of colored results.

3) Content quality: The amount of expressed details.

4) Boundary consistency: The consistency between the lines

of the colored results and the input line art images.

5) Overall quality: The overall plausibility of colored re-

sults.

In this survey, users were asked to give each result a score

between 0 and 1 for each dimension. Figure 15 shows the radar

chart of different methods. We can see that the results of our

method can get a higher score than other methods in all the

evaluation dimensions.

We invited professional cartoonists to provide hand-drawn

sketches of colored cartoon images to test our method on real-

world data. We also provide several colorization results on the

line art images created by the manga line extraction method

(MLE) [50]. Since the sizes of the collected line art images are

not uniform, the images to be colored are uniformly reduced to the
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Frame 0 MLE Output(MLE) Cartoonist GT(Frame 1)Frame 2 Output(Cartoonist)

Fig. 14: Comparison using different types of input sketches. We automatically extract sketches by MLE [50], and also invite cartoonists

to draw line art images as our input. Here, the original color images are all from ATD-12K [49] dataset.
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Fig. 15: Visualization of the user study result. (a) Color con-

sistency; (b) Smoothness; (c) Details; (d) Line Consistency; (e)

Plausibility.

network input size before being input to the network. Figure 14

shows the coloring results of our method with two different line

art image inputs. Here, all the original cartoon images are from

the ATD-12K [49] dataset.

We also search for the line art images drawn by professional

cartoonists from the image search engine, and then invited profes-

sional colorization workers to match the color of the key frames of

line art videos. We first use the colored key frames to fine-tune the

pre-trained model and then use the fine-tuned model to color other

line art images. Since the size of the collected line art images is

not uniform, the image to be colored is uniformly reduced to the

network input size before being input to the network. Then colored

images are restored to their original size through the animation

image super-resolution method proposed by Chao et al. [51].

Please see our coloring results in the supplementary materials.

5 LIMITATIONS

Our method performs global matching on image features to

achieve long-distance feature matching. However, if there is a new

character showing up in the frames to be colored, our method

cannot handle it well, as shown in the first row of Fig. 16. In

addition, if the motion of the character is too fast, our method

could generate area matching errors and color overflow, as shown

in the second row of Fig. 16. Further research is needed to

enhance the temporal consistency for fast-moving objects where

discontinuity exists between successive frames. In addition, our

colorization examples could have some artifacts if the model

cannot well learn the correspondences between largely deformed

lines caused by the character’s actions, especially when only

a small number of images are available for model fine-tuning.

Although our method outperforms the state-of-the-art methods, it

may still not reach the production requirement.

6 CONCLUSIONS

In this paper, we propose a new line art video colorization

method with a few reference images. The architecture exploits

both local similarity and global color styles to colorize the line

art images and adopt a 3D convolutional module to refine the

temporal consistency of the final result. Our method does not

use sequential propagation to consecutive color frames, avoiding

error accumulation. We collect a dataset for evaluating our method

of line art colorization. Extensive experiments show that our

method performs well for coloring video sequences from the

same animation as the training data and generalizes well to new

animation videos. Better results can be obtained by fine-tuning

with a small number of reference images of the new animation.
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Fig. 16: Failure cases. The first frame (t=0) and the last frame (t=1) are used as reference images. Here, we show 4 color frames

(t=0.2,...,0.8) from the entire colored video.
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