Surface hydrogenation of oxygen terminated MXenes M_2CO_2 ($M = Ti, V, Nb$)

Tatyana R. Kayumovaa*, Ilay P. Kolganova, Alexander V. Myshlyavtseva, Pavel V. Stishenkoa,b, Anastasiia I. Fadeevaa

a Omsk State Technical University, 11 Mira, Omsk 644050, Russian Federation
b Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, United Kingdom

ARTICLE INFO

Keywords:
- MXenes
- Functional groups
- Hydrogenation
- DFT
- Monte Carlo simulation

ABSTRACT

We have investigated reduction of MXenes M_2CO_2 ($M = Ti, V, Nb$) surface by hydrogen using density functional theory and statistical physics methods. We have approximated lateral interactions between adsorbed hydrogen with simple pairwise potential. We have confirmed model stability via cross-validation. Adsorption isotherms are calculated using Metropolis Monte Carlo method. We have built analytical Langmuir-like approximation of calculated isotherms. Ordered phases with 1/3 and 2/3 ML coverage are visually observed at low temperatures. At temperatures above 300 K no obvious plateau is observed, and intermediate phases does not exist. We compared adsorptive properties of MXenes at the same external conditions.

1. Introduction

Recently, two-dimensional (2D) metal carbides, nitrides and carbonitrides, the so-called MXenes, attracted great interest due to their unique properties namely: universal composition and structure, stability under certain conditions, hydrophilicity, electronic conductivity [1], high surface area [2], surface functionality [3]. Most MXenes are obtained by selective etching of atomic layers from MAX-phases [4,5]. Due to its unique properties MXenes are of prospective use as Mg-ion and Li-ion batteries [6-9], sensors [10], catalysts for hydrogen production [11], water dissociation [12], ammonia synthesis [13], nitrogen reduction reactions [14], etc.

During MXenes synthesis, functional groups $T = (OH, O, F)$ are adsorbed onto the surface. Functional groups contribute greatly to the properties of MXenes. Surface terminations affect thermodynamics, stability in MXenes surface applications [15-19]. Using an electric field in the work [1] changed the conductivity and magnetic properties of the TiC monolayer. This opens broad prospects for the use of nanomagnetic electronic devices. Understanding MXenes surface termination and their stability is critical for adapting these materials to specific applications [20].

Experiments show that fluorine can be removed from MXenes by heating up to temperature of 750 °C [21]. For many applications’ fluorine is not present in working environment, therefore we can assume that once cleared MXenes surface will not have fluorine terminations at operation conditions. Experiments have shown [4] that oxygen terminations are stable at least up to 1400 K. Calculations predict [22] that full oxygen coverage is thermodynamically favourable even at very high temperature 2700 K at partial pressure of 10^{-9} bar. Therefore, it is very difficult to create such conditions that oxygen will not be on the surface. So, for most applications of MXenes we should assume full oxygen coverage.

Hydrogen tend to adsorb on oxygenated MXenes forming OH terminations.Whilst hydrogen binds much weaker than oxygen or even fluorine and can be removed if necessary, it is ubiquitous in nature and prospective application environments. Therefore, it’s presence and concentration on surface is in thermodynamic equilibrium and depends on environment temperature, partial pressure, or generally on chemical potential of hydrogen.

Here we considered three MXenes with general formula M_2CO_2 ($M = Ti, V, Nb$). These MXenes are synthesizable [4] and are extensively researched for a number of applications [23-25]. We have revealed thermodynamic behaviour of hydrogen adlayer on these MXenes. Parameters of lateral interactions between adsorbed hydrogen adatoms were estimated via DFT calculation. Adsorption isotherms were calculated within lattice model framework using parallel replica Metropolis Monte Carlo method. Simulated isotherms were approximated with analytical expressions.

* Corresponding author.

E-mail address: t_kaumova36@mail.ru (T.R. Kayumova).
2. Computation details

The calculations were performed in the Quantum Espresso [26] and SuSMoST [27] software packages. For DFT calculations the PBE functional was used with Grimme-D3 corrections [28]. The cut-off energy was fitted to convergence of total energy with 0.01 eV accuracy. The cutoff energies for Ti2CO2- H, Nb2CO2- H, and V2CO2- H were 707 eV, 775 eV, and 802 eV, respectively. The distance between the MXene layers was 12 Å to avoid interactions of periodic images. Size of simulated structures varied from 1 to 9 unit cells of an empty MXene sheet. Hydrogen coverage varied from 1/9 to full coverage (1 ML), when each oxygen atom on the surface had a hydrogen atom on it. Geometry relaxation of all structures was performed to reach maximal force below 0.0001 eV/Ang (see Supplementary Information: out-file of DFT calculation). Fig. 1 shows images of the geometry-optimized MXenes M2CO2- H (M = Ti, V, Nb) configurations.

Obtained total energies were approximated by pairwise Hamiltonian

\[H_i = uS_i + \mu N_i + \sum_{j} k_{ij} r_{ij} \]

(1)

Here \(H_i \) is the total potential energy of the i-th structure, \(u \) is energy of the empty MXene unit cell, \(S_i \) is size of i-th structure in unit cells, \(\mu \) is energy of the hydrogen adsorption complex in the limit of zero coverage, \(N_i \) is the number of adsorbed hydrogen atoms, \(p \) is the number of coordination spheres of the surface lattice with considered lateral interactions, \(r_{ij} \) is the radius of j-th coordination sphere, \(k_{ij} \) is number of hydrogen pairs at \(r_{ij} \) distance in i-th structure, \(\Phi \) is the function of lateral interactions. \(\Phi \) was tabulated due to discreteness of its argument. Values of \(u, \mu, \) and \(\Phi \) were fitted to DFT computed energies using least squares method (2).

\[(u, \mu, \Phi) = \arg\min_{u, \mu, \Phi} \sum_i (D_i - H_i(u, \mu, \Phi))^2 \]

(2)

Here \(D_i \) is the total energy of i-th structure calculated with DFT, \(n \) is the number of DFT calculated structures (\(n = 29 \) for Ti2CO2, \(n = 31 \) for V2CO2 and Nb2CO2). To ensure stability of this parameterization and check Hamiltonian accuracy we employed cross-validation technique (CV), particularly leave-5-out CV. For each considered MXene we divided its set of DFT computed structures into validation subset of size \(t = 5 \) and training subset of size \(n - t \). All t-combinations of n structures were considered. Total number of combinations for each MXene was equal to binomial coefficient \(C_n^t \) (118,755 for Ti2CO2 and 169,911 for V2CO2 and Nb2CO2). For each CV combination values of \(u, \mu, \) and \(\Phi \) were fitted to energies of a training subset:

\[u_j, \mu_j, \phi_j = \arg\min_{u, \mu, \Phi} \sum_{i \in T_j} (D_i - H_i(u_j, \mu_j, \phi_j))^2 \]

(3)

Here \(j \) is index of CV combination (1 \(\leq j \leq C_n^t \)), \(T_j \) is training subset of j-th combination, \(u_j, \mu_j, \) and \(\phi_j \) are Hamiltonian parameters fitted to subset \(T_j \) of DFT calculated structures. To estimate stability of parameters fitting (2) we calculated mean values and standard deviations of the same parameters over CV fittings (3). See Table 1 for obtained values. To estimate accuracy of the obtained Hamiltonian we calculated maximums of absolute error per unit cell over validation subsets (4), these values are also in Table 1.

\[\text{MaxAE} = \max_{s \in \Omega; j \leq C_n^t} \left| \frac{D_i}{S_i} - H_i(u_j, \mu_j, \phi_j) \right| \]

(4)

Here \(j \) is index of CV combination (1 \(\leq j \leq C_n^t \)), \(\Omega \) is a total set of DFT calculated structures. Adsorption isotherms were simulated using the obtained Hamiltonian by means of Parallel Tempering Monte Carlo simulations. Simulations were carried out in the framework of the lattice model [27] using the SuSMoST software package at temperatures from 25 K to 500 K. Simulations were performed on lattices with a linear size \(L = 60 \). A 100,000 Monte Carlo steps were used to bring the system into equilibrium followed by another 50,000 steps to calculate the averaged characteristics.

3. Results and discussion

3.1. Model Hamiltonian

Hamiltonian fitting results are summarized in Table 1. The following features are common for all considered MXenes:

1. Standard deviations of fitted parameters over cross-validation subsets are of the units of meV scale, that is much smaller than values of parameters itself almost in all cases. Therefore, we consider the Hamiltonian parameterization as stable and rule out overfitting risk.
2. Maximum absolute errors (MaxAE) in all cases are of the order of 10 meV and less than so called chemical accuracy 1 kcal/mol.

Fig. 1. Geometry-optimized MXenes M2CO2- H (M = Ti, V, Nb) configurations.
parameters over CV samples were approximately twice large than for niobium and vanadium. Whilst for niobium and vanadium effects. Similar effect was observed for oxygen adatoms on V and Nb MXenes.

Some peculiarities were observed for specific MXenes. DFT calculations converged much slower for Ti2CO2 than for Nb2CO2 and V2CO2. Therefore, we managed to compute only 29 structures for titanium within available computational budget. Whilst for niobium and vanadium we got 31 ones.

Also, for titanium MaxAE and standard deviations of Hamiltonian parameters over CV samples were approximately twice larger than for other considered metals, but still within chemical accuracy.

It is notable, that for Nb2CO2 parameter \(\mu \) is much smaller than for Ti2CO2 or V2CO2. In Table 1 \(\mu_{ads} \) is an adsorption energy relative to energy of molecular hydrogen, hence these values are essentially adsorption energies at \(T = 0 \text{ K} \), when entropic contributions are absent.

3.2. Statistical adlayer simulations

Surface coverage isotherms are shown in Fig. 2 along with simulated adlayer snapshots (see Supplementary Information: Monte-Carlo simulation models). The isotherms show plateaus at coverages \(\theta = 0, 1/3, 2/3, \) and 1 hydrogen monolayer (ML). Plateaus at \(\theta = 1/3 \) ML and \(\theta = 2/3 \) ML correspond to ordered phases with \(\sqrt{3} \times \sqrt{3} \) R60° unit cell. Corresponding simulated lattice snapshots are in plot insets in Fig. 2. These phases are well known to exist in adsorption models on triangular lattices with finite nearest-neighbour repulsions (for example see Fig. 4 (a) in [29] or Table 1 in [30]). This result was expected due to dominating magnitude of \(\Phi(\mu) \) in lateral interactions of the Hamiltonian. This is consistent with the study by Zhan et al. [31], who also observe hydrogen coverage of 1/3 and 2/3 ML on Ti2CO2 at different values of the electrode potential. In [20] Ibragimova, Puska, and Komsa also observes phase 2/3 ML on Ti2C (see Supporting Information, Fig. S7). They also described the 1/2 ML phase, that we didn’t observe, probably because we considered grand canonical ensemble that do not fix amount of adsorbate species, whilst it was noted [29] that surface with such a coverage is very sensitive to changes in external factors and it is hard to fully predict the composition of this phase. Perhaps it is possible to observe 1/2 ML phase at very low temperature in a narrow range of chemical potential, but it is out of scope of this study. The snapshots of 1/3 and 2/3 ML phases in insets in Fig. 2 are taken from simulations at a temperature of 50 K. Ordered phases with 1/3 and 2/3 ML coverage are visually observed at low temperatures. At temperatures above 300 K no obvious plateau is observed, and intermediate phases does not exist. Ranges of these phases existence are different for considered MXenes. For Nb2CO2 it is considerably smaller than for Ti2CO2 or V2CO2, that can be associated with lower energies of lateral interactions for H adatoms on Nb2CO2.

Fig. 2(d) shows adoption isotherms shifted on the ground-state binding energy \(\mu_{ads} \) for comparison of adsorptive properties of MXenes at the same external conditions. One can see that at room temperature vanadium coverage is always the highest one, and for niobium it is the lowest. From ideal gas approximation it follows that at temperature \(T = 273 \text{ K} \) free energy of hydrogen in molecular form is about 150 meV per atom at pressure \(P = 1 \text{ atm} \) and is about 300 meV at \(P = 0.5 \times 10^8 \text{ atm} \) (partial pressure of molecular hydrogen in atmospheric air [32]). At these conditions hydrogen coverage is almost zero for niobium, 1/3 ML for titanium, and a bit more than 1/3 ML for vanadium.

3.3. Adsorption isotherms

Pairwise Hamiltonian (1) is symmetric with respect to exchange of occupied and unoccupied lattice sites. Consequently, all obtained isotherms are symmetric with respect to \(\theta = 1/2 \) ML point. In particular:

\[
\theta(A + \mu) = 1 + \theta(A - \mu) = 1 \quad \text{for } \theta = 1/2 \text{ ML}
\]

Here \(\lambda \) is the energy of lateral interactions at full coverage. So \(\theta(\lambda) = 1/2 \text{ ML} \) is the symmetry point.

We approximated obtained adsorption isotherms with a sum of shifted and scaled Langmuir isotherms satisfying (5) property.

\[
\theta(\lambda) = \frac{W(\mu)}{1 + W(\mu)} \tag{7}
\]

\[
\theta(\mu) = \frac{\theta(\Lambda(\mu + \lambda - s)) + \theta(\Lambda(\mu + \lambda)) + \theta(\Lambda(\mu + \lambda + s))}{3} \tag{8}
\]

Here \(W \) is a Boltzmann weight function, \(\theta(\mu) \) is a Langmuir isotherm, \(A \) is a scaling coefficient, \(s \) is a shifting coefficient. See Table 2 for obtained isotherm’s parameters.

Parameter \(A \) describes thermal stability of ordered phases, while parameter \(s \) characterizes width of chemical potential range of intermediate coverage phases. Values of \(A \) and \(s \) were fitted to calculated...
Fig. 2. Adsorption isotherms of hydrogen on MXenes M_2CO_2 ($M = Ti, V, Nb$). Circles - Monte Carlo simulated points, lines - approximations with Formula (8). (a)-(c) adsorption isotherms as functions of chemical potential relative to zero-coverage limit adsorption energy. (d) adsorption isotherms as functions of chemical potential including binding energy at $T = 273$ K.

Table 2
Parameters of isotherm approximations (Formula (8)).

<table>
<thead>
<tr>
<th>M_2CO_2</th>
<th>λ, meV</th>
<th>Λ, meV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti$_2CO_2$</td>
<td>691.02</td>
<td>0.40</td>
</tr>
<tr>
<td>V$_2CO_2$</td>
<td>620.04</td>
<td>0.77</td>
</tr>
<tr>
<td>Nb$_2CO_2$</td>
<td>387.93</td>
<td>0.49</td>
</tr>
</tbody>
</table>

isotherms using least squares approach.

Value of λ was calculated as a sum of lateral interactions $\Phi(r)$ weighted by coordination numbers of corresponding distances. It worth noting, that significant part of λ magnitude comes from further than nearest lateral interactions (up to 75% for Nb). That confirms importance of long-range interactions for quantitative modelling of even such a simple system.

From Figs. 2(a), 1(c) one can see that proposed approximations predict more rapid transitions between ordered phases at low temperature, than it is observed from simulations. In other cases, approximation errors are less than 0.03 ML.

4. Conclusion

We have investigated the MXenes M_2CO_2 ($M = Ti, V, Nb$) surfaces reduction by hydrogen. Accurate and stable pairwise potential of lateral interactions between hydrogen adatoms was constructed and parameterized for each considered MXene. This potential is always repulsive. Nearest-neighbour repulsions negatively correlate with the lattice parameter. Repulsions between second-nearest neighbours is weaker than between third-nearest. Due to lateral interactions hydrogen adlayer on considered MXenes features ordered phases with $1/3$ and $2/3$ ML coverage and varying thermal stability. Long-range lateral interactions significantly influence on adsorptive properties of MXenes, shifting intermediate coverage region by about 0.3 eV. Generally, the Nb$_2CO_2$ MXene turned to be the weakest hydrogen adsorbent, and the V$_2CO_2$ is the strongest one. In atmospheric air at normal conditions it is expected that Nb$_2CO_2$ has near-zero hydrogen coverage, while on V$_2CO_2$ and Ti$_2CO_2$ hydrogen adlayer should form ordered phase with $1/3$ ML coverage.

CRediT authorship contribution statement

Tatyana R. Kayumova: Methodology, Investigation, Visualization, Writing - review & editing. Ilay P. Kolganov: Validation, Visualization, Writing - review & editing. Alexander V. Myshlyavtsev: Software. Pavel V. Stishenko: Conceptualization, Methodology, Software, Writing - original draft, Writing - review & editing. Anastasiia I. Fadeeva: Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This study was supported by the Ministry of Science and Higher Education of the Russian Federation on a budget-funded basis for