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Orbital selectivity in the normal state of KFe2Se2 superconductor
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PACS 31.15.A – Ab initio calculations
PACS 71.10.Fd – Lattice fermion models (Hubbard model, etc.)
PACS 71.30.+h – Metal-insulator transitions and other electronic transitions

Abstract. - Using density functional dynamical mean-field theory, we show how correlation
effects lead to pseudogap and Kondo-quasiparticle features in the electronic structure of pure and
doped KFe2Se2 superconductor. Therein, correlation- and doping-induced orbital differentiation
are linked to the emergence of an incoherent-coherent crossover in the normal state of KFe2Se2
superconductor. This crossover explains the puzzling temperature and doping dependent evolution
of resistivity and Hall coefficient, seen in experiments of alkali-metal intercalated iron-selenide
superconductors. Our microscopic description emphasises the role of incoherent and coherent
electronic excitations towards unconventional transport responses of strange, bad-metals.

Introduction. – The finding of high-temperature
(high-Tc) superconductivity on the border of striped an-
tiferromagnet in Fe-pnictides and chalcogenides led to re-
newed activity in the field of unconventional superconduc-
tivity [1]. Due to telling similarities with cuprate-oxide
superconducting (SC) materials [2], Fe-based supercon-
ductors are being considered within different interpreta-
tion frameworks. Central to this debate are the ques-
tions, whether Fe-pnictides and chalcogenides are weakly
correlated Fermi-liquid (FL) metals, or whether they lie
in close proximity to a correlation-driven Mott insulator.
Despite its fundamental importance, the resolution of this
issue and the consequent description of the normal elec-
tronic state properties have proved difficult for both c
uprates and Fe-based superconductors. This can be as-
cribed to the multi-band (cuprates) and multi-orbital (Fe-
superconductors) character of both SC compound classes.
Of particular interest for the Mottness [3] scenario are
alkali-metal iron-selenide superconductors [4], due to their
proximity to Mott metal-insulator instabilities [5–7].

The discovery of superconductivity in tetragonal
KFe2Se2 [8] is of particular interest since it appears in the
parent compound [9], without any need for Fe/chalcogen
composition tuning [10] or intercalation chemistry [11]. A
natural question concerns therefore the orbital-selective
nature [6] of the low-energy electronic states in this and
its derivative compounds, which also host a metal-to-SC
phase instability and a normal state with insulating-like

behavior above a characteristic temperature [12]. Here,
we provide insights to this fundamental problem showing
that the KFe2Se2 parent compound is an incoherent metal
in close proximity to an orbital-selective insulating state.

AxFe2−ySe2 (A = K, Rb) superconductors also offer
an alternative platform for the study of orbital-selective
Mott physics [6,7] and the linear-in-T resistivity [13,14] of
strange-metals [15]. We recall here that the normal state
of a large class of correlated materials, including high-Tc

superconductors, often falls into the strange-metal cate-
gory, where the resistivity varies linearly with tempera-
ture as T → 0. This together with strongly T -dependent
Hall effect (see our discussion below) represent significant
deviations from the conventional FL picture of metals. Al-
though the fundamental origin for this anomalous, non-FL
behavior [16] is still under debate [17], it seems that the
underlying key mechanism is Mottness [3], i.e. the prox-
imity of strongly correlated materials to a Mott transition.
On more general grounds the strange-metal phase exhibits
a nonsaturating, T -linear electrical resistivity, due to van-
ishing quasiparticle weight in the normal state: Exam-
ples of systems showing pseudogap features and absence
of electron quasiparticles include Cu-oxide and Fe-based
superconductors as well as heavy fermion materials near
a quantum critical point. In this work we partially con-
firm the linear-in-T behavior seen on different experimen-
tal conditions [13, 14], showing that it can be tuned via
hole doping the KFe2Se2 parent compound.
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L. Craco et al.

Magnetotransport measurements provide important in-
formation concerning the temperature dependence of
charge-carrier densities and electron mobilities in differ-
ent bands in the normal and SC phases [18, 19]. Extant
magnetotransport measurements reveal that the Hall coef-
ficient of KxFe2−ySe2 is negative over the whole tempera-
ture range [12,19], indicating that these systems are domi-
nated by electron-like charge carriers [20]. (This behavior
is in accordance with the observation of electron Fermi
pockets in ARPES measurements [7]). Motivated thereby
we undertake a local density approximation plus dynami-
cal mean-field theory (LDA+DMFT) [21] study of the Hall
coefficient in pure and doped KFe2Se2. Consistent with
experimental data [19], our results reveal a non-monotonic
T -dependence of the Hall response. Thus, we confirm pre-
vious experimental evidences suggesting that the exotic
T -dependent behavior of the Hall response cannot be de-
scribed by a single-band model [19], and the need of in-
cluding multiband electronic correlations in alkali-metal
iron-selenide superconductors.

It should be noted that the KxFe2−ySe2 system sepa-
rates into two phases [8], particularly upon thermal treat-
ment during single crystal growth [13, 22]. This results
into a minor SC phase and a major non-SC phase [9,23],
referred to as 245 [24]. Because of such a microscopic
phase separation [25], it has been difficult to elucidate in-
trinsic physical properties of the SC phase and its pair-
ing mechanism. A perusal of extant literature suggests
that both mesoscopic phase separation and SC properties
can be tuned by an appropriate control of the quench-
ing process. While slow cooling leads to a 12% SC phase
with Tc ≈ 44 K, faster quenching rate seems to lead to a
suppression of formation of the non-SC 245 phase up to
50%, inducing a monotonic reduction in the SC Tc from
30.7 to 26.0 K [22]. It has been also suggested that the
stoichiometric SC phase with I4/mmm symmetry per-
sists below a disorder-to-order transition at TS ≈ 580 K
concomitantly with the emergence of a nonstoichiomet-
ric phase with a lower I4/m lattice symmetry in which
the Fe vacancies undergo long-range order [23]. More-
over, in the 245 Mott insulating phase [5] an antiferro-
magnetic transition occurs following the structural one at
TN ≈ 560 K [26]. Thus an important issue in this material
class has been to understand whether competing interac-
tions lead to phase separation of SC from non-SC Mott lo-
calized domains. In this work we shed light to this problem
showing that the stoichiometric KFe2Se2 superconductor
is in close proximity to orbital-selective Mott localization
and that the coherent-incoherent crossover seen in trans-
port [12,13,22,23] is an intrinsic property of the SC phase
and the two-particle fingerprint of selective Mottness of
strongly correlated Fe-chalcogenide superconductors.

Theory and discussion. – We focus on the parent
KFe2Se2 system without mesocopic phase separation [13,
22, 23], since the issue related to additional increase in
electronic localization associated with Fe-vacancy order in
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Fig. 1: Orbital-resolved LDA+DMFT density-of-states (DOS)
for the Fe 3d orbitals of KFe2Se2 near the Mott metal-insulator
transition. The LDA DOS is shown for comparison.

KFe1.6Se2 was already studied within MO LDA+DMFT
in Ref. [5]. However, if we aim to understand material
specific properties of stoichiometric KFe2Se2 supercon-
ductor it is important to identify the character of dom-
inant bands near the Fermi level and their energy dis-
tribution. To this purpose ab initio density-functional
theories (DFT) are the best tools available. Our local
density approximation (LDA) result [27] in Fig. 1 con-
firms previous calculations on Fe-chalcogenide [28] and
arsenide systems [29] showing that the dominant states
near the Fermi level come from Fe-3d atomic states ex-
tending roughly between −2 eV to 1 eV for KFe2Se2.
Hence, from LDA the one-electron part the MO Hamilto-
nian for KFe2Se2 is H0 =

∑
k,a,σ ǫa(k)c

†
k,a,σck,a,σ, where

a = 3z2 − r2, xz, yz, x2 − y2, xy label the diagonalized
five 3d bands and ǫa(k) is the one-electron band disper-
sion, which encodes details of the bare band structure of
KFe2Se2. However, in order to provide the appropriate
microscopic framework for the metallic state in the Fe-
based superconductors a consistent description of electron
correlation effects and the role played by electron/hole
doping is required. This fundamental issue becomes es-
pecially relevant to disorder-free MO systems, where the
bad-metallic regime arises from the scattering between
Mott localized and itinerant electronic states hidden in
the correlated MO problem. We use LDA+DMFT to
study the emergence of a reconstructed electronic struc-
ture in KFe2Se2, showing that its normal state is in-
trinsically a pseudogap-metal, which is induced by dy-
namical MO correlations encoded in the many-particle
Hamiltonian Hint = U

∑
i,a nia↑nia↓ + U ′

∑
i,a6=b nianib −

JH
∑

i,a,b Sia.Sib. Here, U and U ′ = U−2JH are the intra-
and inter-orbital Coulomb repulsion and JH is the Hund’s
rule coupling [21]. It is worth noting here that earlier stud-
ies on alkali metal iron-selenides undertake LDA+DMFT
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Orbital selectivity in the normal state of KFe2Se2 superconductor

calculations using U = 3.5 eV and 0.56 ≤ JH ≤ 0.7 eV as
model parameters for K1−xFe2−ySe2 [30]. An U = 3.75 eV
has also been introduced by M. Yi et al. [7] in their study of
temperature-induced crossover in AxFe2−ySe2 (A=K,Rb)
SC systems. This on-site Coulomb interaction parameter
was also used by Nekrasov et al. in their quantum Monte
Carlo (QMC), LDA’+DMFT study on electron correla-
tion effects in K1−xFe2−ySe2 superconductors [31]. How-
ever, consistent with our early study on unconventional
Mott transition in KFe1.6Se2 [5] where good qualitative
agreement with transport (dc and ac) data were obtained
using U = 4.0 eV and JH=0.7 eV, we use these as repre-
sentative model parameters for pure and doped KFe2Se2
superconductor. While the absolute value of the on-site
intra- and inter-orbital Coulomb interactions are sensitive
to bare LDA input, like the number of bands considered
in the LDA Hamiltonian [31] or the effect of various pos-
sible screening channels on the value of the effective on-
site Hubbard interaction [32], our choice here is consistent
with earlier studies mentioned above. Finally, we use the
MO iterated perturbation theory (MO-IPT) as an impu-
rity solver for DMFT [33].
To gain realistic insights into the correlated 3d electronic

structure of KFe2Se2 parent compound in Fig. 1 we com-
pare the orbital-resolved spectral function obtained within
LDA and LDA+DMFT calculations. At commensurate
electron filling n = 6.0 per Fe (corresponding to Fe2+

valance state of the parent compound) a substantial elec-
tronic reconstruction is obtained for the Fe-3d states at the
border of the orbital-selective Mott phase [7] for KFe2Se2.
Dynamical MO correlations originating from U = 4.0 eV
(U ′ = 2.6 eV) and JH = 0.7 eV lead to spectral weight
redistribution over large energy scales and the formation
of a reconstructed (compared to LDA) electronic struc-
ture. This feature is characteristic of MO Mott-Hubbard
systems, with concomitant emergence of upper and lower
Hubbard bands at high-energies: These latter features are
related to coupled local moments [34] defining a system
close to a Mott insulator without long-range vacancy or
magnetic ordering [23]. Furthermore, with increasing U
from 4.0 to 4.5 eV the electronic states close to EF are
transferred to higher energies, i.e., towards to the Hubbard
bands. As a result the Mott-Hubbard insulating gap sets
in at EF . Important as well are the shoulder structures
above the leading edges at binding energies between 0.4
and 0.8 eV which are fingerprints of MO electron-electron
interactions already probed in ARPES for K0.8Fe2Se2 [35].
We turn now to a comparison between our LDA+DMFT

result for U = 4.0 eV and JH = 0.7 eV with another ap-
proach which uses quantum Monte Carlo (QMC) to solve
the impurity problem of DMFT [31]. First, we see in Fig. 4
that the QMC calculation resolve a peak near EF in the
3z2 − r2, xy orbitals. Though V -shaped pseudogaps can
be discerned in the xz, yz and x2−y2 orbitals in Ref. [31],
a direct comparison between LDA’+DMF(QMC) [31] and
LDA+DMFT(MO-IPT) results show that the many-body
renormalized QMC DOS is metallic and close to the
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Fig. 2: Orbital-resolved DOS for the Fe 3d-orbitals of stoi-
chiometric KFe2Se2 superconductor, computed using quantum
Monte Carlo (QMC, for U = 3.75 eV and JH = 0.6 eV) [31]
and multi-orbital iterated perturbation theory (MO-IPT, for
U = 4.0 eV and JH = 0.7 eV). In spite of similar model pa-
rameters and bare DOS, strong electron localization is found
within MO-IPT as compared to the QMC result. As visible
the orbital-resolved LDA’ DOS [31] is close to bare LDA one.

bare LDA and LDA’ DOS. Our result however is near
to orbital-selective Mott localization in good quantita-
tive accord with coherent-incoherent crossover behavior
in transport for electron doped KFe2Se2 as discussed be-
low. What are the sources of the discrepancy between our
result and the LDA’+DMFT(QMC) one? There are sev-
eral important differences between our approach compared
to the LDA’+DMFT(QMC). The LDA’+DMFT(QMC)
study derive the many-body DOS of the Fe 3d orbitals
using the full LDA Hamiltonian, which includes all Fe-3d,
Se-4p, K-4s states. While using slightly different U values
and bare one-particle inputs to DMFT, our comparison in
Fig. 4 suggests that incorporation of Se-4p and K-4s states
in the multiband and MO problem of tetragonal KFe2Se2
superconductor leads to a d-band model with an effective
bandwidth that is enhanced relative the starting bare 3d
bandwidth (W ) of the Fe-3d shell. Correlation-induced
spectral weight transfer from low to high energies is ex-
pected to enhance the pd and sd hybridizations, leading
to an effective screened Coulomb interaction in the corre-
lated subspace. Future all-electron DFT+DMFT calcula-
tions should consider intrinsic screening effects [32] as well
as the importance of incorporating within the same the-
oretical framework stronger electronic correlations in all
active band states.

In view of large spectral weight transfer manifested in
strongly correlated electron systems, one should ask what
happens upon (electron/hole) doping a bad-metal at the
verge of a MO Mott instability? Even though data exists
for KxFe2−ySe2 systems [4, 7, 35], the generic appearance
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Fig. 3: Orbital-resolved LDA+DMFT DOS for the Fe d or-
bitals of pure (n = 6.0) and doped (n = 6.0 ± δ) KFe2Se2
superconductor. Large spectral weight transfer upon changes
of electron concentration (n) along with coexistence selective
pseudogap features and narrow Kondo-quasiparticles is visible.

of novel metallic states and the instabilities of such states
to unconventional order in a variety of other correlated
materials makes this a very important question to inquire
about. With this in mind, in Fig. 3 we show the changes
in the correlated electronic structure upon electron/hole
doping (n ≡ 6± δ) the parent compound KFe2Se2, δ = 0.
An intriguing observation in Fig. 3 is that the localization-
delocalization transition does not occur simultaneously in
all orbitals at small doping. However, as δ increases to
negative values, an emergent orbital differentiation starts
to develop, in which the xz, yz, 3z2− r2 spectral functions
show pseudogap-like behavior with vanishing DOS at EF

while the x2 − y2, xy orbitals show (selective) metallic be-
havior, characterized by the many-body stabilization of
narrow Kondo quasiparticles near EF . Interestingly, this
behavior is in good accord with the observation of spec-
tral weight transfer from the high- to low-energy region
and the formation of a coherent peak in the dxy orbital
of KFe2As2 [36]. Thus, consistent with earlier correlated
band structure calculations for KFe2As2 [36] as well as
with photoemission spectroscopy studies of LiFeAs [37],
our results for hole doped KFe2Se2 suggest a common
underlying scenario where the dxy DOS sharpens at low
temperatures and dominates the low-energy one-particle
spectra, signaling an emergent orbital differentiation in
this and related Fe-based SC systems [38].

Since there is no particle-hole symmetry in the d6 elec-
tronic configuration of Fe-based superconductors, it is in-
teresting to inquire as to the effects of electron doping
KFe2Se2 superconductor. In particular, does the incoher-
ent non-FL behavior for n = 6.0 survives in the infrared
region? Fig. 3 exhibits the answer to this question. As
seen, increasing electron concentration (δ > 0) drives sto-
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Fig. 4: Comparison between the LDA+DMFT results for pure
and doped KFe2Se2 and ARPES of K0.8Fe1.7Se2 superconduc-
tor (Tc = 30 K) recorded at high symmetry points in Ref. [41].
Good semi-quantitative agreement is seen for n = 6.25. In
particular, the low-energy energy spectrum and the peak at
−0.87 eV in ARPES at M and Γ poits are resolved in the total
LDA+DMFT spectrum with U = 4.0 eV and JH = 0.7 eV.

ichiometric KFe2Se2 to a phase where the x2 − y2, xy or-
bitals lose their spectral weight near EF while the other
orbitals remain incoherent. This is a demonstration of
an orbital-selective bad-metal reconstruction in electron
doped KFe2Se2 with overdamped collective modes at low
energies. In accord with earlier studies [5,39], the increase
of the effective U/W ratio (W is the LDA bandwidth)
in the present case relative to tetragonal FeSe [38], due
to intercalation of potassium ions into the interstitial site
between the FeSe layers, leads to increased low-energy in-
coherence with pronounced pseudogap features at low en-
ergies. Microscopically, incoherent scattering arising from
orbital-selective bad-metallic states leads to a suppression
of the infrared FL behavior (narrow Kondo-quasiparticles
in DMFT) and the emergence of a pseudogaped spectra,
reminiscent of what is seen in the paramagnetic normal
state of tetragonal Fe-chalcogenide systems [4, 40].

To investigate further the electronic structure recon-
struction of KFe2Se2 upon electron doping, in Fig. 3 we
compare our U = 4 eV (and, U ′ = 2.6 eV) results
with angle-resolved photoemission spectroscopy (ARPES)
for K0.8Fe1.7Se2 recorded at high symmetry points in
Ref. [41]. As seen, good semi-quantitative agreement with
experiment is obtained for n = 6.25. In particular, the
broad peak close to -0.87 eV as well as the detailed form
of the lineshape in ARPES is well reproduced by the
LDA+DMFT result for the electron doped case. This
may suggest that the experiment could have been done
on a tetragonal sample with similar incoherent electronic
structure as we derive here for n = 6.25. For comparison,
the computed total LDA+DMFT spectra for the undoped
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Orbital selectivity in the normal state of KFe2Se2 superconductor

(n = 6.0) and electron doped (n = 6.2) cases show pro-
gressively more disagreement with ARPES at the energy
window relevent to Ref. [41]. However, it is worth noting
that the shoulder feature close to 0.45 eV binding energy
and the low-energy pseudogap we obtain for n = 6.0 are
robust features seen in ARPES for K0.8Fe2Se2 [35], pro-
viding additional support to our LDA+DMFT study.

In an earlier study [5] it was shown that the unconven-
tional transport properties of electron doped KFe1.6Se2
can be understood using LDA+DMFT with sizable d
band correlations. Here, we extend this to charac-
terize the electronic and magnetotransport behavior of
pure and doped KFe2Se2. Specifically, in addition to
dc resistivity [ρdc(T )], we show how the Hall constant
[RH(T )] is also described, and correlate with the evolu-
tion of the DMFT spectral functions, Aa(ω). Within the
DMFT formalism the dc-conductivity can be expressed as

σxx(T ) = πe2v2
∑

a

∫
dǫρ

(0)
a (ǫ)

∫
dωA2

a(ǫ, ω)[−f ′(ω)] [42],

where ρ
(0)
a (ǫ) is the LDA DOS of the five 3d-bands, v is the

electron’s velocity and f(ω) is the Fermi function. Note-
worthy, as in Ref. [43] the only approximation made here
is to ignore the k and orbital dependence of the electron’s
velocities va(k), i.e, va(k) → va = v. In an incoherent
metal close to Mottness, such as we have here, this is jus-
tified, since, between successive hops, a carrier in an inco-
herent state does not exist long enough in a given (band)
k eigenstate. Another compelling reason for justifying this
approximation is that different sources of scattering, ne-
glected in our LDA+DMFT formulation but present in
reality, like phonons, microscopic phase separation, and
lattice defects, will partially degrade the quasiparticle mo-
mentum. In this situation, following Saso et al. [44], we
approximate the va(k) by a single average carrier velocity
v for all orbitals. In fact, Saso et al. [44] and Baldassare
et al. [45] have shown that this assumption works well for
Kondo insulators (FeSi and YbB12) as well as for V2O3,
supporting our approximation for the fermions’s veloci-
ties. Moreover, for the computation of Hall conductivity
[σxy(T )] we have generalized the DMFT formalism [42]
to the five-orbital case relevant for KFe2Se2, which reads

σxy(T ) = π2|e|3v2

3 H
∑

a

∫
ǫdǫρ

(0)
a (ǫ)

∫
dωA3

a(ǫ, ω)[−f ′(ω)],
with H being the magnetic field. The observed features
in resistivity ρdc(T ) = 1/σxx(T ) and Hall coefficient [46]

RH(T ) =
σxy(T )

Hσ2
xx

(T ) originate from doping induced spectral

changes, showing how this provides a qualitative descrip-
tion of extant experimental data is our focus below.

With this in place, let us now discuss our resistivity
results for pure and electron/hole doped KFe2Se2. The
T -dependence of ρdc(T ) upon smal changes in the total
band filling n of the Fe 3d-shell is shown in Fig. 5. In
the hole doped regime with n = 5.6 the resistivity shows
the S-like shape characteristic of pseudogap metals [47],
and it is similar to the in-plane resistivity behavior of Sr-
doped cuprates [48]. Interestingly, our result for n = 5.6
shows almost linear-in-T behavior above 80 K conisitent
with that seen in quenched [14] and in a particular normal

0 50 100 150 200 250 300
T (K)

0.0

0.5

1.0

1.5

ρ dc
(T

)/
ρ dc

(1
15

K
)

n=5.6
n=5.8
n=6.0
n=6.2
n=6.25

0 100 200 300
T (K)

0.0

0.5

1.0

ρ dc
(T

)/
ρ dc

(1
15

K
)

K0.8Fe2Se2 (Exp.)

Fig. 5: Resistivities of pure and doped KFe2Se2 as a function of
temperature for U = 4.0 eV and JH = 0.7 eV. Inset display the
transport data taken from Ref. [12]. Particularly interesting is
the broad hump (around 115 K) indicating a semiconducting-
to-metal crossover. Although at different temperatures this
coherence-incoherence crossover behavior observed in experi-
ment is well reproduced by LDA+DMFT for n = 6.25.

state regime of granular [13] KFe2−ySe2 superconductor.
In going from n = 5.6 to n = 5.8 the system becomes more
conductive as a result of strong orbital reconstruction of
the electronic states at low energies, indicating a smooth
deviation from power law form outside the strange-metal
regime. However, as shown in Fig. 5 at low T the FL-
like T 2 form is never observed in our resistivity curves.
Moreover, for n ≥ 6.0 a T -dependent crossover from an
insulator to a low-T bad metal is obtained. Clearly, this
crossover scale is marked by the maximum of ρdc(T ); for
n = 6.2 it yields an insulating-like behavior above 15 K.
Additionally, our theory-experiment comparison in the in-
set of Fig. 5 demonstrates that the T -dependence of the
LDA+DMFT result for n = 6.25 (a total band filling also
discussed in Ref. [49]) is in qualitative good accord with
experimental data for K0.8Fe2Se2 [12] albeit at lower T .
As in experiment, our resistivity curve for n = 6.25 shows
no sign of saturation at high temperature, although satu-
rating metal physics similar to that found for n between
5.6 and 6.0 has been found in transport experiments of
KxFe2−ySe2 under different quenching conditions [13].

Finally, we turn our attention to the effect of elec-
tron/hole doping on the T -dependence of the Hall coef-
ficient, RH(T ). We recall here that Hall measurements
provide valuable informations regarding the T -dependence
of the charge-carrier density and mobilities of electrons on
different bands in the normal and SC states [19]. For
good metals with FL coherence RH(T ) is constant [50],
but it can have anomalous behavior in cuprates [51] and
in Fe-based superconductors [12, 18, 19, 52]. While for
NdFeAsO1−xFx (x = 0.0, 0.18) RH(T ) decay continuously
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Fig. 6: The temperature dependence of the Hall coefficient for
pure and doped KFe2Se2 calculated using the LDA+DMFT
orbital resolved spectral functions. The inset shows the ex-
perimental result for K0.8Fe2Se2 [12] in the normal state. (The
theory curve was rescaled to coincide with experiment at 67 K.)

with increasing temperature [18], in K0.8Fe2Se2 RH(T ) is
almost constant above 100 K and decays linearly with de-
creasing T in the normal state. It is also worth noting
that the linear-in-T behavior reported by Guo et al. [12]
for K0.8Fe2Se2 is in contrast to that of KxFe2−ySe2 sin-
gle crystals [19], where the Hall coefficient show nonlin-
ear behavior below 60 K and decreases almost linearly
above 80 K. Interestingly, as shown in the main panel of
Fig. 6, RH(T ) shows clear nonmonotonic T -dependence
and it is negative over the whole temperature region up
to 300 K, confirming as in experiments that the conduc-
tion of K-intercalated iron-selenide is mostly dominated by
electron-like charge carriers. Additionally, in the inset of
this figure we provide a direct theory-experiment compari-
son, showing that the relative magnitude between low- and
high-T data of K0.8Fe2Se2 [12] is well reproduced within
LDA+DMFT for n = 6.25. However, the most remark-
able feature of our results in Fig. 6 is the T -dependence
of RH for n = 6.0, which resembles that seen in the nor-
mal state of Tl0.64K0.36Fe1.83Se2 system [20] as well as
of RbxFe2Se2 below 100 K [53]. Taken theory and experi-
ment together, our LDA+DMFT results of pure and (elec-
tron/hole) doped KFe2Se2 seem to suggest that the differ-
ent behaviors in magnetotransport data discussed above
might be related to intrinsic orbital-selective Mott physics
which can be probed differently as a consequence of sam-
ple preparation [19] or electronic phase separation [54].

Fermi Surface Topology. – Correlation is believed
to cause a complicated structuring of the Fermi surface
(FS) in proximity of Γ-point, as indicated by experiment
and further supported by DMFT approaches [30]. The
departure from a spherical shape and correlation-driven
reshaping of the innermost FS sheet are creating a so-

Fig. 7: Fermi isosurfaces interpolated at the corresponding
Fermi level values for U = 0 (LDA), 6 and 7 eV. More opaque
surfaces correspond to higher U values. For U = 6 eV, the
pristine LDA spherical region is distorted into connected lobes
(propeller), followed by a topolgical change on further increas-
ing U = 7 eV, with the formation of four disconnected lobes,
aligned at 45 ◦ with respect to the Γ to X direction.

called hidden hole-like surface near Γ-point [30]. There-
fore, to further probe the role of electronic correlations,
we have determined the on-site Hubbard U in stoichio-
metric KFe2Se2 [55], using an approach based on density-
functional perturbation theory (DFPT) [56]. The result-
ing U = 7.0 eV indicates sizeable correlation in KFe2Se2.
Fermi surfaces calculated at different U values (U = 0.0 eV
(LDA), 6.0 eV and 7.0 eV) shows the onset of distortion of
the pristine spherical pocket (LDA) into connected lobes,
which become fully disconnected at U = 7.0 eV, as shown
in Fig. 7. This topological change is therefore purely a
consequence of correlation, which is driving the FS re-
shaping away from the LDA scenario of a fully connected
Fermi pocket at Γ-point. This pinpoints the important
role of sizeable correlation on transport properties in this
compound class, further modulated by multiorbital con-
tributions, as shown in the detailed LDA+DMFT study
above.

Conclusion. – To conclude, based on a LDA+DMFT
study, we have shown that orbital-selective incoherence
characterizes the paramagnetic normal phase of KFe2Se2
superconductor. Good qualitative agreement with exper-
imental data and rationalization of a variety of unusual
observations in electrical- and magneto-transport within
a single theoretical picture lend support to our proposal.
The emergence of a semiconducting-to-metal crossover at
finite temperatures seen in experiments of KxFe2−ySe2
superconductor [12, 13, 23, 26] should be considered as a
multi-orbital manifestation of slightly increasing the band
filling via electron doping an orbital-selective bad-metal
in close proximity to Mott localization. Increasing Mot-
tness upon electron-doping the KFe2Se2 parent compound
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Orbital selectivity in the normal state of KFe2Se2 superconductor

suggests a promising and practical route to access quan-
tum critical physics [57] in 122 Fe-chalcogenide systems.
On the other hand, at small hole doping we predict an
orbital differentiation phenomena, where dxy density-of-
state sharpens at low temperature and dominates the low-
energy spectral function of KFe2Se2. This behavior is con-
sistent with the appearance of a coherent dxy peak in the
DFT+DMFT density-of-states at the Fermi level in the
hole-overdoped KFe2As2 [36] as well as with observations
in angle-resolved photoemission spectroscopy of quasipar-
ticles with dxy orbital character in LiFeAs [37] and strong
renormalization in the dxy bands of FeTe0.56Se0.44, mono-
layer FeSe/SrTiO3 and K0.76Fe1.72Se2 [58], placing our
findings for KFe2Se2 superconductor in a broader context.
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