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Abstract—Traditional super-resolution (SR) methods by mini- 
mize the mean square error usually produce images with over- 
smoothed and blurry edges, due to the lack of high-frequency 
details. In this paper, we propose two novel techniques within the 
generative adversarial network framework to encourage genera- 
tion of photo-realistic images for image super-resolution. Firstly, 
instead of producing a single score to discriminate real and 
fake images, we propose a variant, called Fine-grained Attention 
Generative Adversarial Network (FASRGAN), to discriminate 
each pixel of real and fake images. FASRGAN adopts a UNet- 
like network as the discriminator with two outputs: an image 
score and an image score map. The score map has the same 
spatial size as the HR/SR images, serving as the fine-grained 
attention to represent the degree of reconstruction difficulty for 
each pixel. Secondly, instead of using different networks for 
the generator and the discriminator, we introduce a feature- 
sharing variant (denoted as Fs-SRGAN) for both the generator 
and the discriminator. The sharing mechanism can maintain 
model express power while making the model more compact, 
and thus can improve the ability of producing high-quality 
images. Quantitative and visual comparisons with state-of-the- 
art methods on benchmark datasets demonstrate the superi- 
ority of our methods. We further apply our super-resolution 
images for object recognition, which further demonstrates the 
effectiveness of our proposed method. The code is available at  
https://github.com/Rainyfish/FASRGAN-and-Fs-SRGAN. 

Index Terms—Fine-grained attention, feature-sharing, genera- 
tive adversarial network, image super-resolution. 

 

I. INTRODUCTION 

INGLE image super-resolution (SISR), which aims to re- 

cover a high-resolution (HR) image from its low-solution 

(LR) version, has been an active research topic in computer 

graphic and vision for decades. SISR has also attracted in- 

creasing attention in both academia and industry, with appli- 

cations in various fields such as medical imaging, security 
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surveillance, object recognition and so on. However, SISR 

is a typically ill-posed problem due to the irreversible image 

degradation process, i.e., multiple HR images can be generated 

from one single LR image. Learning the mapping between 

HR and LR images plays an important role in addressing this 

problem. 

Recently, deep convolution neural networks (CNNs) have 

been shown great success in many vision tasks, such as image 

classification, object detection, and image restoration. Dong et 

al. [1] first proposed a three-layer CNN for single image super- 

resolution (SRCNN) to directly learn the mapping from LR to 

HR images. Since then the CNN-based methods [2] have been 

dominant for the SR problem because they greatly improved 

the reconstruction performance. Kumar et al. [3] tapped into 

the ability of polynomial neural networks to hierarchically 

learn refinements of a function that maps LR to HR patches. 

VDSR [4] obtained remarkable performance  by  increasing 

the depth of the network to 20, proving the importance of 

the network depth for detecting effective features of images. 

EDSR [5] removed  unnecessary  batch  normalization  layer 

in the ResNet [6] architecture and widened the channels, 

significantly improving the performance. RCAN [7] applied 

residual in residual structure to construct a very deep network 

and used a channel attention mechanism to adaptively rescale 

features. 

The  aforementioned  methods  use  the  optimization  idea 

of minimizing the mean squared error (MSE) between the 

recovered SR image and the corresponding HR image. Such 

methods are designed to maximize the peak signal-to-noise 

ratio (PSNR). However, they typically produce over-smoothed 

edges and lack tiny textures. To produce photo-realistic SR 

images, Ledig et al.[8] first used the generative adversarial 

network  (GAN)  [9]  to  match  the  underlying  distributions 

of HR and SR images. ESRGAN [10] further extended the 

generator network and used the Relativistic Discriminator [11] 

to produce more photo-realistic images. However, as shown 

in Fig.1, the discriminator in these GAN-based methods only 

outputs  a  score  of  the  whole  input  SR/HR  image,  which 

is  a  coarse  way  to  guide  the  generator.  Furthermore,  the 

generator and discriminator of these works are considered to 

be independent, while we believe there should be significant 

information to be shared. For example, the lower-level parts 

of the two networks both aim at extracting tiny features such 

as corners and edges, which we believe should be correlated. 

To address these limitations, we propose two novel tech- 
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niques based on the GAN framework for image super- 

resolution, a fine-grained attention mechanism for the discrim- 

inator and a feature-sharing network component for both the 

generator and the discriminator. Specifically, we use a UNet- 

like [12] discriminator (Fig.2) to introduce a fine-grained at- 

tention in the GAN (FASRGAN). Our discriminator produces 

two outputs, a score of the whole input image and a fine- 

grained score map of every pixel in the image. The score map 

shares the same spatial size as the input image, and measures 

the degree of differences at each pixel between the generated 

and the true distributions. To produce better visual quality 

images, we incorporate the score map into the loss function 

with an attention mechanism to make the generator pay more 

attention on the hard parts of an image, instead of treating 

all parts equally. In addition, we propose a feature-sharing 

mechanism (Fig.3) to align the low-level feature extraction 

of both the generator and the discriminator  (Fs-SRGAN). 

This novel structure can significantly reduce the number of 

parameters and improve the performance. 

Overall, our main contributions are three-fold: 

• We propose a novel UNet-like discriminator to generate 

a single score for the whole image and a pixel-wise score 

map of the input image. We further incorporate the score 

map into the loss function with an attention mechanism to 

define the generator. This attention mechanism makes the 

generator focus on hard parts of an image for generation. 

• We introduce a feature-sharing mechanism to define the 

shared low-level feature extraction for the generator and 

the discriminator. This reduces the number of model 

parameters and helps the generator and the discriminator 

extract more effective features. 

• The proposed two components are general, and can be 

applied to other GAN-based SR models. Extensive ex- 

periments on benchmark datasets illustrate the superiority 

of our proposed methods compared with current state-of- 

the-art methods. 

The remainder of the paper is organized as follows. Section 

II describes related works. The proposed GAN-based methods 

are presented in Section III. Experimental results are discussed 

in Section IV. Finally, the conclusions are drawn in Section V. 

 
II. RELATED WORK 

Traditional SISR methods are exemplar or dictionary based. 

However, these methods are limited by the size of datasets 

or dictionaries, and are usually time-consuming. These short- 

comings can be greatly alleviated by the recent CNN-based 

methods [2]. 

In their pioneer work, Dong et al. [1] applied convolu- 

tional neural networks with three layers for SISR, namely 

SRCNN, to learn a mapping from LR to HR images in an 

end-to-end manner. Kim et al.  [4]  increases  the  depth  of 

the network to 20, achieving great improvement in accuracy 

compared to SRCNN. Instead of using the interpolated LR 

images as the inputs of network, FSRCNN [13] extracted 

features from the origin LR images and upscaled the spatial 

size by upsampling layers at the tail of the network. This 

architecture is widely used in the subsequent SR methods. 

 

Various advanced upsampling structures have been proposed 

recently, for instance, deconvolutional layer [14] , sub-pixel 

convolution [15], and EUSR [16]. LapSRN [17] progres- 

sively reconstructed an HR image with increasing scales of 

an input image by the Laplacian pyramid structure. Lim et 

al. [5] proposed a very large network (EDSR) and its multi- 

scale version (MDSR), which removed the unnecessary batch 

normalization layer in the ResNet [6] and greatly improved 

super-resolution performance. D-DBPN [18] introduced an 

error-correcting feedback mechanism to learn relationships 

between LR features and SR features. ZSSR [19] used a 

unsupervised method to learn the mapping between HR images 

and LR images. DIP [20] showed that the structure of a 

generator network can capture a large amount of low-level 

image statistics before any learning is performed, which can 

be used as a handcrafted prior with excellent results in super- 

resolution and other standard inverse problems. To address the 

real-world LR image problem, Fritsche et al. [21] proposed to 

separate the low and high image frequencies and treat them 

in different ways during training. Adversarial training is used 

to modify only the high, not the low frequencies. RDN [22] 

combined dense and residual connections to make full use of 

information of LR images. Different from RDN, MS-RHDN 

[23] proposed multi-scale residual hierarchical dense networks 

to extract multi-scale and hierarchical feature maps. Yang et 

al. [24] proposed a deep recurrent fusion network (DRFN) for 

SR with large-scale factors, which used transposed convolution 

to jointly extract and upsample raw features from the input 

and used multi-level fusion for reconstruction. SeaNet [25] 

proposed a Soft-edge assisted Network to reconstruct the high- 

quality SR images with the help of image soft-edge. Zhang 

et al. [26] proposed an adaptive importance learning scheme 

to enhance the performance of the lightweight SISR network 

architecture. RCAN [7] applied channel-attention mechanism 

to adaptively rescale channel-wise features. SAN [27] further 

proposed a second-order channel attention (SOCA) module to 

rescale the features instead of global average pooling. 

The aforementioned methods aim to achieve high PSNR and 

SSIM [28] values. However, these criteria usually cause heavy 

over-smoothed edges and artifacts. Images generated by these 

MSE-based SR methods lose various high-frequency details 

and have a bad perceptual quality. To generate more photo- 

realistic images, Ledig et al. [8] firstly introduced generative 

adversarial network into image super-resolution, called SR- 

GAN. SRGAN combined a perceptual loss and an adversarial 

loss to improve the reality of generated images. But some 

visually implausible artifacts still could be found in some 

generated images. To reduce the artifacts, EnhanceNet [29] 

combined a pixel-wise loss in the image space, a perceptual 

loss in the feature space, a texture matching loss and an adver- 

sarial loss. The contextual loss [30] was a kind of perceptual 

loss to make the generated images as similar as possible to 

ground-truth images. Yan et al. [31] firstly trained a novel full- 

reference image quality assessment (FR-IQA) approach for 

SISR, then employed the proposed loss function (SR-IQA) to 

train their SR network which contains their proposed highway 

unit. In addition, they also integrated SR-IQA loss to the GAN- 

based SR method to achieve better results for both accuracy 
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Fig. 1.   The architecture of GAN-based Super-Resolution method. The generator aims to reconstruct photo-realistic SR images, while the discriminator 
distinguishes the SR image from the ground-truth HR image. 

 
 

and  perceptual  quality.  Based  on  SRGAN,  ESRGAN  [10] 

i) substituted the standard residual block with a residual-in- 

residual dense block, ii) removed batch normalization layers, 

iii) utilized VGG feature before activated as perceptual loss, 

and iv) replaced the standard discriminator with Relativistic 

Discriminator proposed in RaGAN [11]. Noteworthily, ES- 

RGAN won the first  place  in  the  2018  PIRM  Challenge 

on Perceptual Image Super-Resolution [32], which pursued 

the high perceptual-quality images. RankSRGAN [33] firstly 

trained a ranker to learn the behavior of perceptual metrics and 

then introduced a rank-content loss to optimize the perceptual 

quality. 

 

 
III. PROPOSED METHODS 

 
A. Overview 

 
Our methods aim to reconstruct a high-resolution image 

ISR  ∈  RW r×Hr×C  from  a  low-resolution  image  ILR  ∈ 

RW ×H×C , where W  and H  are the width and height of the 

LR image, r is the upscaling factor, and C is the number of 

channels of the color space. This section details our two strate- 

gies within the GAN framework for image super-resolution in 

order: FASRGAN and Fs-SRGAN. Specifically, we propose a 

fine-grained attention mechanism in FASRGAN to make the 

generator focus on the difficult parts of image reconstruction 

based on the score map from the UNet-like discriminator, 

 

B. Fine-grained Attention Generator Adversarial Networks 

Our proposed fine-grained attention GAN (FASRGAN) de- 

signs a specific discriminator for SISR. As discussed above 

and shown in Fig.1, the discriminator in a standard GAN- 

based SR model outputs a score of the whole input SR/HR 

image. This can be considered as a coarse way to judge an 

input image and cannot discriminate local features of inputs. 

To tackle this problem, the proposed FASRGAN defines a 

UNet-like discriminator contained two outputs, corresponding 

to a score of the whole image and a fine-grained score map. 

The score map has the same size as the input image and is 

used for pixel-wise discrimination. The proposed discriminator 

is illustrated in Fig. 2. 

1) A UNet-like Discriminator: The UNet-like discrimina- 

tor with two outputs can be divided into two parts: an encoder 

and a decoder. 

Encoder. Similar to the standard discriminator D in ESR- 

GAN, the encoder part of the proposed UNet-like discrim- 

inator uses  a  standard  max-pooling  layer  with  a  stride  of 

2 to reduce the spatial size of a feature map and increase 

receptive fields. At the same time, the number of channels is 

increased for improving representative ability. At the end of 

the encoder, two fully connected layers are added to output 

a score, measuring the overall probability of an input image 

x being real or fake. We further enhance the discriminator 

based on the Relativistic GAN [11], which has also been used 

in ESRGAN [10]. The loss function is defined as: 

instead of treating each part equally. We further propose a LD 
v  =Ex 

r [log(1 − DRa (xr, xf ))] 

feature-sharing mechanism in Fs-SRGAN by sharing the low- + Exf [log(DRa(xf , xr ))] (1) 
level feature extractor of the generator and the discriminator. 
Both networks update the gradient of the shared low-level =Ex r [log(1 − σ(C(xr ) − Exf [C(xf 

feature extractor in the training  phase,  which  could  make 

the model more compact while keeping enough representation 

power. These two strategies contribute to the overall perceptual 

quality for SR, respectively. For simplicity, we use the same 

network architecture as ESRGAN [10] for the generator to 

generate the SR images from the input LR images. 

 

where xr and  xf  stand  for  the  ground-truth  image  and 

the generated SR image, respectively. DRa(·) refers to the 

function of the relativistic discriminator, which tries to predict 

the probability that a real image xr is more realistic than a 

fake one xf ; C(x) is the discriminator output before sigmoid 

real 
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Fig. 2.  The discriminator architecture of FASRGAN, where K, S, G represent the kernel size, the stride, and the filter number of the Conv layer, respectively. 
FC stands for fully connected layer. The mask is a score map among [0, 1], donating the difficulty of reconstruction of each pixel in the image. 

 
 

function and σ is the sigmoid function. 

Decoder. We exploit an upsampling layer to gradually 

extend  the  spatial  size  of  feature  maps,  followed  by  two 

 

to be close to the HR image. The loss is defined in Eq.3. 

 

 (3) 
convolutional layers to extract more information. To make full 

use of features, we concatenate the previous outputs from the 

 

encoder, which have the same spatial size as current ones. As 

shown in Fig. 2, the feature maps at the end of the decoder 

 

where FG
 

, 

have the same spatial size as input images. Finally, we use the 

sigmoid function to produce a score map M ∈ RW r×Hr×C 

that provides pixel-wise discrimination between real and fake 
pixels of an input image. The fine-grained adversarial loss 

θ  (·) represents the function of the generator, θ is the 
parameters of the generator and Ii  means the i-th image. 

function LD
 

LD 

for the discriminator is defined as: 

1 

Perceptual Loss.  The perceptual loss [35] aims to make 

the SR image close to the corresponding HR image based 

on high-level features extracted from a pre-trained network. 
M = 

Wr × Hr C  Similar to [8, 10], we consider both the SR and HR images as 
C   W r  Hr 

× 
X X X

{log(1 − Mr (w, h, c)) + log 
c=1 w=1 h=1 

the input to the pre-trained VGG19 and extract the VGG19-54 

layer features. The perceptual loss is defined as: 
V GG LR V GG    HR 

where Mr  and Mf  represent the score maps of the HR image 

and the generated SR image, respectively. Finally, the loss 
Lpercep =k Fθ (G(Ii    )) − Fθ (Ii ) k1, (4) 

where FV GG
 

function for the discriminator is defined as: LD = LD
 +LD . θ (·) is the function of VGG and Ii  is the i-th 

image, G(·) is the function of the generator. 

2) Generator Objective Function: In the GAN-based SR 

methods, the generator is generally used to generate the SR im- 

ages from the LR images. ESRGAN [10] introduced Residual- 

in-Residual Dense Block (RRDB) without batch normalization 

as the basic network building unit, which is of higher capacity 

and easier to train compared with the ResBlock in SRGAN [8]. 

Adversarial Loss. The discriminator contains two outputs, 

a whole estimation of the entire image and the pixel-wise fine- 

grained estimations of an input image. The total adversarial 

loss function for the generator is defined as: 

In this paper, we also adopt RRDB to construct our generator 
for a fair comparison with ESRGAN. The generator is trained 

G 
adv 

G 
entire 

G 
fine , (5) 

by several losses, defined as following: 

Content Loss.  Following [5, 17, 22, 34], we use an L1 

As shown in Eq.2, the discriminator tries to distinguish the real 

and fake image in a fine-grained way, while the generator aims 

to fool the discriminator. Thus the fine-grained adversarial loss 

loss function to constrain the content of a generated SR image function LG
 for the generator is the symmetrical form of 

 （K3S1G64, K3S1G128) 

 

（K3S1G128, K3S1G256) 

FC1024 

FC1 

SR/HR 
image 

fake 

K3S1G256 K3S1G256 
0 

1 
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Image discriminator 

（K3S1G128, K3S1G128) 

MaxPooling 

（K3S1G64, K3S1G64) 

MASK 

Bilinear 

Upsampling 

K3S1G3 Pixel-wise Discriminator 

L = L + L 
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Fig. 3.   The illustration of our Feature-sharing Generator Adversarial Networks (Fs-SRGAN). The input sizes of the generator and the discriminator are 
different. We use a fully Convolutional Neural Network with invariant size of the feature map so that the different input sizes do not matter. 

 
 

Eq.2: 

LG 1 

Combining the above losses with different weights, the total 

loss of the generator is: 
fine = 

Wr × Hr × C LG = L + λ LG
 

C   W r  Hr 
percep 1    adv + λ2Lattention + λ3L1, (9) 

× 
X X X

{log(Mr (w, h, c)) + log(1 − Mf (w, h, c))}, 
c=1 w=1 h=1 

(6) 

where λ1, λ2, λ3 are the coefficients to balance different loss 

terms. 

entire is also the symmetrical form of Eq.1 and defined as: 

Lentire =E[log(σ(C(xr ) − E[C(xf )]))] 

 
C. Feature-sharing Generator Adversarial Networks 

+ E[log(1 − σ(C(xf ) − E[C(xr )]))]. 
(7) In the standard GANs, the generator and the discriminator 

are usually defined as two independent networks. Based on 

the observation that the low-level parts of the two networks 
Fine-grained Attention Loss Function. The score map 

generated by the UNet-like discriminator is represented as 

pixel-wise discrimination scores of an input image, with 

values M (w, h, c) among [0, 1]. A higher score means the 

corresponding pixel of the input image is closer to that of the 

ground-truth image. In this manner, the score map can indicate 

which parts of an image are more difficult to generate and 

which parts are easier. For instance, the structure background 

part of an image is sometimes simpler, and thus it would 

expect the discriminator reflects this to the generator when up- 

dating the generator. In other words, the part with lower scores 

(more difficult to generate) should receive more attention when 

updating the generator. As a result, we incorporate the score 

map as the fine-grained attention mechanism into a L1 loss 

function, constituting a weighted attention loss function: 

 

1 
W r  Hr   C 

Lattention = 
Wr Hr C 

X X X
(1 − Mf (w, h, c)) 

w=1 h=1 c=1 

× k F G(ILR)(w, h, c) − IHR(w, h, c) k1, 

always extract low-level textures such as edges and corners, 

we propose a new network structure (Fs-SRGAN) to enable 

low-level feature sharing between the generator and the dis- 

criminator. This can reduce the number of parameters and help 

both networks extract more effective features. Consequently, 

our Fs-SRGAN contains three parts: a shared feature extractor, 

a generator, and a discriminator, as shown in Fig. 3. 

1) Shared Feature Extractor: We first use a share feature 

extractor to transform an input image from color space to 

feature space, before extracting low-level feature maps. The 

feature-sharing mechanism allows the generator and the dis- 

criminator to jointly optimize the low-level feature extractor. 

Similar to FASRGAN, we adopt RRDB, the basic block of 

ESRGAN [10], as the basic structure. The shared feature 

extractor contains E RRDBs to extract helpful feature maps 

for both the generator and the discriminator, described as 

following: 

Hshared  = Fshared(x), (10) 

where  Hshared   is  the  low-level  feature  maps  extracted  by 
θ i i 

(8) 
the shared part, Fshared  represents the function of the shared 

feature extractor, and x is the input. For the generator, the input 

where Mf (w, h, c) is the score map of the generated image 

given by the discriminator. Instead of treating every pixel of 

an image equally, Lattention contributes to pay more attention 

in the hard-to-recovered part of an image, such as the textures 

with rich semantic information. 

is an LR image, while for the discriminator it is a SR image or 

a HR image. Considering the input sizes of the generator and 

the discriminator are different, we apply a fully Convolutional 

Neural Network with invariant size of feature maps to extract 

features so that the different input sizes do not matter. 

Generator SR 

image 
LR 

image 

Shared 

fake 

0 

SR/HR 

image 

1 

Shallow Feature extraction 
real 

Discriminator 
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2) The Generator and the Discriminator: The rest parts 

of the generator and the discriminator are the same as those 

in standard GAN-based methods, except that the inputs are 

feature maps instead of images as shown in Fig.3. 

Generator. The generator contains three parts: low-level 

feature extraction, deep feature extraction, and reconstruction, 

which are used for transforming the input image to the feature 

space from the color space and extracting low-level informa- 

tion, extracting high-level semantic features and reconstructing 

SR image, respectively. Note that the generator in our Fs- 

SRGAN only contains the latter two parts. Similar to the 

shared low-level feature extraction, we adopt RRDB as the 

basic part of deep feature extraction, except that more RRDBs 

 

A. Training Details 

In training, we use the training set from DIV2K [36] as the 

training set to train our models. The LR images are obtained 

by bicubic downsampling (BI) from the source high-resolution 

images. Images are augmented by rotating and flipping. We 

also randomly crop 48 × 48 patches from LR images as the 

input of the network. Our networks are optimized with the 

ADAM optimizer [37]. The hyper-parameters β1 and β2 in 

the ADAM optimizer are set to β1 = 0.9 and β2 = 0.999. 

The batch size is set to 16. The generator is pre-trained by the 

L1 loss function, followed by generator and the discriminator 

training with the corresponding loss functions. Following [5, 
−4 

are used to increase the depth of the network with the purpose 15, 17, 22, 38], the initial learning rate is set to 1 × 10 5 , and 

of extracting more high-frequency feature for reconstruction. then decays to half every 2 × 10 iterations. In FASRGAN, 

The reconstruction part utilizes an upsampling layer to upscale 

the high-level feature maps and a Conv layer to reconstruct an 

SR image. The loss function of the generator is same as that 

of ESRGAN [10], which includes perceptual loss, adversarial 

loss, and pixel-based loss: 

LG = Lpercep + λ1LG 
2   1 

adv + λ L , (11) 

where λ1, λ2 are the coefficients to balance different loss 

terms, Lpercep and L1 are defined in Eq.4 and Eq.3, respec- 

the coefficients in Eq.9 are set as λ1 = 5e-3, λ2 = 1e-2 and 

λ3 = 1e-2. Similar to ESRGAN [10], the number of RRDBs 

in the generator is set as 23. In Fs-SRGAN, we set the number 

of RRDBs in the shared feature extractor as E = 1, and in the 

deep feature extractor as 16. The coefficients in Eq.11 are set 

as λ1 = 5e-3 and λ2 = 1e-2. In FA+Fs-SRGAN, the number 

of RRDBs in the share part is set as 2, while in the deep feature 

extraction part is 15. The discriminator and the coefficients of 

the loss function are the same as those of FASRGAN. We 

implement our models with the PyTorch [39] framework on 
tively, LG

 is the adversarial loss with the same definition as two NVIDIA GeForce RTX 2080Ti GPUs. 

entire in Eq.7. 

Discriminator. Because the discriminator is a classification 

network that distinguishes the  input  as  SR  or  HR  image, 

we apply a structure similar to the VGG network as the 

discriminator. To reduce information loss, we substitute the 

pooling layer (used in the encoder of the UNet-discriminator) 

for a Conv layer with a stride of 2 to decrease the size of 

feature map. At the tail of the discriminator, we use a Conv 

layer to transform the feature map into a one-dimensional 

vector, then use two fully connected layers to output the 

classification score s among [0, 1]. The value of s closer to 

1 means more real, otherwise more fake. The loss function of 

 

 
B. Datasets and Evaluation Metrics 

In the testing phase, we use seven standard benchmark 

datasets to evaluate the performance of our proposed meth- 

ods:  Set5  [40],  Set14  [41],  BSD100  [42],  Urban100  [43], 

Manga109 [44], DIV2K validation [36], PIRM validation and 

test dataset[45]. Blau et al. [46] proved mathematically that 

perceptual quality is not always improved with the increase 

of PSNR value and there is a trade-off between average 

distortion  and  perceptual  quality.  Hence,  we  not  only  use 

the discriminator is same as LD
 defined in Eq.1. PSNR and SSIM [28] to measure the reconstruction accuracy, 

but also adopt the learned perceptual image patch similarity 

(LPIPS) [47] and perceptual index (PI) [45] to evaluate the 
IV. EXPERIMENTAL RESULTS 

In this section, we first describe our model training details, 

then provide quantitative and visual comparisons with several 

state-of-the-art methods on benchmark datasets for our two 

proposed novel methods, FASRGAN and Fs-SRGAN. We 

further combine the fine-grained attention and the feature- 

perceptual quality of SR images. LPIPS firstly adopts a pre- 
trained network F to extract patches y, y0 from the reference 

and target images x, x0. The network F computes the activa- 

tions of the image patches, each is scaled by a learned weight 

wl and then sums up the L2 distances across all layers. Finally, 

it computes a perceptual real/fake prediction as follows: 

sharing mechanisms into one single model, termed FA+Fs- d(x, x0) = 
X

 
1 X 

k w ⊙ (yhw
 hw 2 

SRGAN. 

 
 

HlWl 
l
 

l h,w 

l − ŷ0l ) k2, (12) 
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TABLE I 

QUANTITATIVE RESULTS WITH THE BICUBIC DEGRADATION MODEL FOR 4× SR. BEST AND SECOND BEST RESULTS ARE HIGHLIGHTED AND 

U N D E R L I N E D, RESPECTIVELY. 

 

Dataset Metric 
EnhanceNet 

[29] 
SRGAN 

[8] 
ESRGAN 

[10] 
RankSRGAN 

[33] 
FASRGAN 

(ours) 
Fs-SRGAN 

(ours) 
FA+Fs-SRGAN 

(ours) 

 
Set5 

PSNR 28.57 29.91 30.46 29.73 30.15 30.28 30.19 
SSIM 

PI 
0.8102 
2.8466 

0.8510 
3.4322 

0.8515 
3.5463 

0.8398 
2.9867 

0.8450 
3.1685 

0.8588 
3.9143 

0.8571 
3.7455 

LPIPS 0.0488 0.0389 0.0350 0.0348 0.0325 0.0330 0.0344 

 
Urban100 

PSNR 23.54 24.39 24.36 24.49 24.51 24.55 24.67 
SSIM 

PI 
0.6933 
3.4543 

0.7309 
3.4814 

0.7341 
3.7312 

0.7319 
3.3253 

0.7380 
3.5173 

0.7509 
3.5940 

0.7466 
3.5819 

LPIPS 0.0777 0.0693 0.0591 0.0667 0.0588 0.0591 0.0625 

 
BSD100 

PSNR 24.94 25.50 25.32 25.51 25.41 25.61 25.87 
SSIM 

PI 
0.6266 
2.8467 

0.6528 
2.3054 

0.6514 
2.4150 

0.6530 
2.0768 

0.6523 
2.2783 

0.6726 
2.4056 

0.6747 
2.3749 

LPIPS 0.0982 0.0887 0.0798 0.0850 0.0796 0.0801 0.0855 

 
DIV2K val 

PSNR 27.28 28.16 28.17 28.10 28.15 28.15 28.23 
SSIM 

PI 
0.7460 
3.4953 

0.7753 
3.1619 

0.7759 
3.2572 

0.7710 
3.0130 

0.7768 
3.1034 

0.7903 
3.3303 

0.7891 
3.3092 

LPIPS 0.0753 0.0605 0.0550 0.0576 0.0539 0.0542 0.0576 

 
PIRM val 

PSNR 25.47 25.61 25.18 25.65 25.38 25.75 26.00 
SSIM 

PI 
0.6569 
2.6762 

0.6757 
2.2254 

0.6596 
2.5548 

0.6726 
2.0183 

0.6648 
2.2476 

0.6907 
2.3311 

0.6934 
2.2482 

LPIPS 0.0838 0.0718 0.0714 0.0675 0.0685 0.0651 0.0677 

 

where yl, y0l  ∈ RHl×Wl×Cl   represent the reference or target 
 

are regarded as the reference images, the SR images generated 

by our methods or the compared methods as the target images. 

We use the public codes and pre-trained network (AlexNet 

from version 0.0) for evaluation. While PI is based on the 

 

NIQE [49]: PI= 1 ((10-Ma)+NIQE). PSNR and SSIM are calcu- 

lated on the luminance channel in the YCbCr color space. We 

also use LPIPS and root mean square error (RMSE) to measure 

the trade-off between perceptual quality and reconstruction 

accuracy. Using LPIPS/RMSE rather than LPIPS/PSNR to 

evaluate the trade-off is for better observation, where lower 

LPIPS/RMSE means a better result. Higher PSNR/SSIM and 

 

 
0.148 

 

 
0.139 

 

 
0.13 

 

 
0.121 

 
 
 
 
 

0.103 

 

 
0.094 

 

 
0.085 

 
 
 
 
 
 
 
 
 
 
 

 
0.049 

 

 
0.04 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

14 14.5 15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20 

lower RMSE mean better results in reconstruction accuracy, 

while lower scores of LPIPS/PI imply that the images are more 

similar to the HR images. 

As shown in Fig. 4, the SR image of our FASRGAN has less 

artifacts than that of ESRGAN [10] and is clearer than that of 

RankSRGAN [33]. But the PI value of the SR image produced 

by RankSRGAN [33] is lower than that of our FASRGAN, 

and even lower than that of the original HR image. In terms 

of LPIPS, our method attains the lowest value, which is more 

consistent with human observation. Hence, we use LPIPS as 

our first perceptual quality metric and PI as the second one. 

 

C. Quantitative Comparisons 

We present the quantitative comparisons between our meth- 

ods and the state-of-the-art perceptual image SR methods on 

several benchmark datasets. As shown in Table I, in most 

cases, RankSRGAN [33] obtains the lowest PI values among 

these methods, benefiting from using the loss function with the 

newly added ranker to optimize the generator. However, our 

FASRGAN obtains the best LPIPS on most datasets, and both 

the LPIPS and PI values are better than that of ESRGAN [10], 

whose  structure  of  the  generator  is  the  same  as  ours.  It 

   RMSE 

Better Reconstruction Accuracy 
 

 

 

Fig. 5. The trade-off of RMSE and LPIPS on Urban100 of our methods and 
the state-of-the-art methods for 4× super-resolution. 

 

 
demonstrates that the fine-grained attention in our FASRGAN 

can transfer more information to the generator to produce 

better results. With less RRDBs in the generator, our Fs- 

SRGAN obtains best SSIM results and comparable, sometimes 

even better LPIPS results than those of ESRGAN [10] and 

FASRGAN. In other words, our Fs-SRGAN extracts features 

more effectively and efficiently, benefiting from the feature- 

sharing mechanism. The combined model FA+Fs-SRGAN 

obtains the highest PSNR except for Set5, indicating that it 

can recover more contents in the SR images. 

We also compare our methods with the state-of-the-art 

methods on the trade-off between reconstruction accuracy and 

visual quality. The results are shown in Fig. 5. Methods in 

the top-left part are almost MSE-based with low RMSE and 

high LPIPS scores due to the over-smoothed edges and lack of 

high-frequency details. The bottom-right category includes the 
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HR Bicubic SRCNN [1] EDSR [5] RCAN [7] 

PSNR/PI/LPIPS 17.40/6.4557/0.2111 18.93/5.1946/0.1177 24.11/5.0693/0.0247 24.74/5.2368/0.0201 

 

 
 

DIV2K val (4×): SRGAN [8] EnhanceNet [29] ESRGAN [10] RankSRGAN [33] FASRGAN (ours) 

0828 21.24/3.9420/0.0407 19.57/4.0730/0.0562 22.09/3.8555/0.0230 21.35/3.6981/0.0366 22.39/3.9743/0.0214 

 

 
 

HR Bicubic SRCNN [1] EDSR [5] RDN [22] 

PSNR/PI/LPIPS 23.62/7.2850/0.1711 26.17/5.4218/0.0594 29.54/6.0962/0.0262 28.59/5.9340/0.0252 

 

 
 

Urban100 (4×): SRGAN [8] EnhanceNet [29] ESRGAN [10] RankSRGAN [33] FASRGAN (ours) 

img 093 26.56/4.4532/0.0236 24.96/4.2117/0.0464 28.49/4.9535/0.0181 25.93/4.1803/0.0284 28.17/4.8531/0.0188 

Fig. 6.  The visual comparisons between FASRGAN and the state-of-the-art SR methods for 4× super-resolution. 

 
 

GAN-based methods, such as SRGAN [8], EnhanceNet [29], 

ESRGAN [10], RankSRGAN [33], and our methods. These 

methods usually gain high-visual quality images even if their 

RMSE values are larger than those of the MSE-based methods. 

Our FASRGAN gets better visual quality and reconstruction 

accuracy compared with EnhanceNet, SRGAN and ESRGAN, 

and lower LPIPS than RankSRGAN. Our Fs-SRGAN attains 

comparable LPIPS with ESRGAN but lower RMSE, and 

better visual quality and reconstruction accuracy than RankSR- 

GAN. The combined model FA+Fs-SRGAN obtains the lowest 

RMSE among the GAN-based methods. These demonstrate the 

effectiveness of our fine-grained attention and feature-sharing 

mechanism. 

To further demonstrate the effectiveness of our FASRGAN 

and Fs-SRGAN, we conduct a user study to calculate the 

Mean Opinion Score (MOS) [50] against the state-of-the-art 

SR methods, i.e. SRGAN [8], ESRGAN [10] and RankSR- 

GAN [33]. Ten candidates are shown with a side-by-side 

comparison of the generated SR image and the corresponding 

ground-truth. They are then asked to evaluate the difference 

of the two images on a 5-level scale defined as: 0 - ‘almost 

identical’, 1 - ‘mostly similar’, 2 - ‘similar’, 3 - ‘somewhat 

similar’ and 4 - ‘mostly different’. We randomly select 10 

images from PIRM val dataset [45], and invite 10 participants 

to give a score on each image according to the 5-level scale. 

For a better comparison, one small patch from the image is 

zoomed in. The average scores of all images are considered as 

the final results. As suggested in Table II, our FASRGAN and 

Fs-SRGAN achieve better performance than all the compared 

methods, proving the effectiveness of our proposed fine- 

grained attention and feature-sharing mechanism. 

 
 

D. Qualitative Results 

We compare our final models on several public benchmark 

datasets with the state-of-the-art MSE-based methods: SR- 

CNN [1], EDSR [5], RDN [22], RCAN [7], and GAN-based 

 
TABLE II 

THE COMPARISON OF LPIPS AND MOS BETWEEN OUR METHODS AND 

THE STATE-OF-THE-ART METHODS ON PIRM VAL, WHERE THE LOWER 

VALUES MEAN MORE SIMILAR WITH THE HR IMAGE. THE LPIPS IS 

TESTED ON THE WHOLE DATASET, WHILE MOS IS CALCULATED ON 10 
RANDOMLY  SELECTED  IMAGES. 

 

Methods 
PIRM Val 

LPIPS Mos 

SRGAN [8] 0.0718 1.98 

ESRGAN [10] 0.0714 1.88 

RankSRGAN [33] 0.0675 1.84 

FASRGAN (ours) 0.0685 1.46 
Fs-SRGAN (ours) 0.0651 1.46 

 
 
 

approaches: SRGAN [8], EnhanceNet [29], ESRGAN [10], 

RankSRGAN [33]. 

1) Visual Comparisons of FASRGAN: Some representa- 

tive quality results are presented in Fig. 6. PSNR , PI and 

LPIPS are also provided for reference. 

As shown in Fig. 6, our proposed FASRGAN outperforms 

previous methods by a large margin. Images generated by 

FASRGAN contain more fine-grained textures and details. For 

example, the cropped parts of image ‘0828’ are full of textures. 

All the compared MSE-based methods suffer from heavy 

blurry artifacts, failing to recover the structure and the gap of 

the stripes. SRGAN, EnhanceNet, ESRGAN and RankSRGAN 

generate high-frequency noise and wrong textures; while our 

FASRGAN can reduce noise and recover them more correctly, 

producing more faithful results and being closer to the HR 

images. For image ‘img 093’ in Urban100, the cropped parts 

of the images generated by the compared methods contain 

heavily blurry artifacts and lines with wrong directions. Al- 

though the LPIPS of ESRGAN is a little lower than our 

FASRGAN, our FASRGAN can alleviate the artifacts better 

and recover zebra crossing in the right direction. More results 

can be seen in the supplemental material. These comparisons 

demonstrate the strong ability of FASRGAN for producing 

more photo-realistic and high-quality SR images. 
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HR Bicubic SRCNN [1] EDSR [5] RDN [22] 

 

 

 
 

Set14 (4×): SRGAN [8] EnhanceNet [29] ESRGAN [10] RankSRGAN [33] Fs-SRGAN(ours) 

baboon 21.14/1.7589/0.1246 20.88/2.7198/0.1415 20.34/1.7318/0.0971 21.03/1.6523/0.1053 21.05/1.7846/0.1027 

 

 
 

HR Bicubic SRCNN [1] EDSR [5] RCAN [7] 

PSNR/PI/LPIPS 26.85/6.7023/0.2103 27.90/5.6650/0.1507 29.46/4.9867/0.1170 29.24/4.8927/0.1127 

 

 
 

DIV2K val (4×): SRGAN [8] EnhanceNet [29] ESRGAN [10] RankSRGAN [33] Fs-SRGAN (ours) 

0812 26.04/2.4359/0.0645 25.41/2.9509/0.0753 25.85/2.3963/0.0617 26.46/2.3470/0.0610 26.46/2.5413/0.0619 

Fig. 7.  The visual comparisons between Fs-SRGAN and the state-of-the-art SR methods for 4×. 

 
 

2) Visual Comparisons of Fs-SRGAN: We also compare 

our Fs-SRGAN with state-of-the-art methods in Fig. 7. Our 

Fs-SRGAN obtains better performance than other methods in 

producing SR images, in terms of sharpness and details. For 

image ‘baboon’, the cropped parts of the images generated by 

the MSE-based methods are over-smoothed. Previous GAN- 

based methods not only fail to produce clear whiskers but 

also introduce lots of unpleasing noise. Despite having lower 

LPIPS value, ESRGAN generates too many whiskers, which 

have not appeared in the original HR image. While our Fs- 

SRGAN produces more correct whiskers. For image ‘0812’, 

MSE-based methods still suffer from heavy blurry artifacts 

and generate unnatural results. GAN-based methods cannot 

maintain the structures of the stairs or the train tracks and 

introduce artifacts. Our proposed Fs-SRGAN outperforms the 

compared methods, reducing the artifacts and recovering the 

correct textures. More results can be seen in the supplemental 

material. These also indicate that the shared low-level feature 

extractor of the generator and the discriminator is beneficial. 

3) Visual Comparisons of FA+Fs-SRGAN: We further 

present the visual results of our FA+Fs-SRGAN compared 

with ESRGAN [10], FASRGAN and Fs-SRGAN. As shown 

in Fig. 8, for image ‘57’ and ’OhWareraRettouSeitokai’, the 

results from FA+Fs-SRGAN are better than those of FAS- 

RGAN, and contain more correct textures. The PSNR and 

LPIPS values are both the  best for FA+Fs-SRGAN. More 

results can be seen in the supplemental material. These results 

illustrate that the combined method can restore more contents 

for the SR images and obtains comparable or even better visual 

results compared with FASRGAN and Fs-SRGAN. 

 

E. Model Analysis 

This section compares the sizes and the time complexity of 

the generators between our methods and ESRGAN [10], which 

use RRDB  as the  basic  block to  construct the  generators. 

We are not comparing our methods with SRGAN [8] and 

RankSRGAN [33] in  these aspects  as clearly  they use  16 

 

Resblocks to build their generators, so their parameters and 

inference time are less than ours. 

In the aspect of the numbers of parameters, both ESRGAN 

and our FASRGAN have 23 RRDBs and 16.7M parameters, 

while our Fs-SRGAN and FA+Fs-SRGAN have 17 RRDBs 

and 12.46M parameters in their generators. 

In the aspect of inference time, we run our models and 

the public official test code and model from ESRGAN on 

Urban100 using a machine with 4.2GHz Inter i7 CPU (32G 

RAM) and Nvidia RTX 2080 platform. We conduct five times 

of inference on Urban100 and take the mean as the inference 

time. 

Our Fs-SRGAN and FA+Fs-SRGAN run much faster than 

ESRGAN, where Fs-SRGAN has the average time of 0.1377 

seconds and FA+Fs-SRGAN 0.1364 seconds, while ESRGAN 

has 0.3573 seconds. Even our FASRGAN runs a little faster 

than ESRGAN, with average time 0.3160 seconds. From 

Table I we can see that our Fs-SRGAN has comparable or 

even better results than ESRGAN, which demonstrates the 

efficiency of our feature-sharing mechanism. 

Fig. 9 plots the curves of PI values in the training process of 

our proposed methods on Set14. We observe that the training 

process of FASRGAN is more  stable  and  the  PI  value  is 

the lowest. The average PI value of  Fs-SRGAN  is  higher 

than FASRGAN. As described in [10], the deep model has a 

stronger representation capacity to capture semantic informa- 

tion and reduce unpleasing noises. And as mentioned above, 

Fs-SRGAN contains fewer RRDBs than FASRGAN. Hence, 

we speculate that compared with FASRGAN, Fs-SRGAN with 

fewer RRDBs captures less information for reconstruction but 

brings more noises, causing higher PI values. FA+Fs-SRGAN, 

which combines the fine-grained attention mechanism into Fs- 

SRGAN, obtains the lower PI values than Fs-SRGAN, which 

demonstrates the effectiveness of our fine-grained attention 

mechanism. However, the training of the FA+Fs-SRGAN is 

not stable, which is the concern we need to focus on in our 

future work. 

     PSNR/PI/LPIPS 22.44/6.7571/0.3232 22.73/5.8182/0.2801 23.10/4.3197/0.2420 23.07/4.7250/0.2472 
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PIRM val (4×): 
 

HR 

 

ESRGAN  [10] 

 

FASRGAN (ours) 

 

Fs-SRGAN (ours) 

 

FA+Fs-SRGAN (ours) 

57 PSNR/PI/LPIPS 25.03/2.3358/0.0563 24.87/2.0577/0.0543 25.19/2.0137/0.0586 25.87/1.9691/0.0530 

 

 

 

 
 

Manga109 (4×): 
 

HR 

 

ESRGAN  [10] 

 

FASRGAN (ours) 

 

Fs-SRGAN (ours) 

 

FA+Fs-SRGAN (ours) 

OhWareraRettouSeitokai PSNR/PI/LPIPS 30.50/3.5038/0.0195 29.62/3.4153/0.0227 28.83/3.3394/0.0255 29.75/3.4080/0.0188 

Fig. 8.  A visual results of FA+Fs-SRGAN for x4 magnification. 
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We use the pre-trained ResNet-50 on imageNet as an 

evaluation model and fetch the first 1000 images in ImageNet 

CLS-LOC validation dataset for evaluation. The test images 

are first down-sampled by bicubic and then upscaled by our 

methods and the compared methods. These SR images are 

then used as inputs to the ResNet-50  model  to  calculate 

their Top-1 and Top-5 errors for evaluation. As  shown  in 

Table III, both two methods we proposed and the variant 

FA+Fs-SRGAN achieve considerable accuracy compared to 

the state-of-the-art methods. Among these three methods, 

FASRGAN achieves the lowest Top-1 and Top-5 errors, Fs- 

SRGAN and FA+Fs-SRGAN obtain comparable results with 

ESRGAN, demonstrating the effectiveness of both the fine- 

grained attention and the feature-sharing mechanisms. 

 
Fig. 9.  The changes of average PI on Set14 during the training process for 
4× super-resolution. 

 
TABLE III 

THE RESULT OF OBJECT RECOGNITION BETWEEN OUR METHODS AND THE 

STATE-OF-THE-ART METHODS FOR 4× SR. THE BASELINE USES THE 

ORIGINAL HR IMAGE AS THE INPUT OF RESNET-50 MODEL. 

 
TABLE IV 

THE ABLATION STUDY OF FINE-GRAINED ATTENTION (FA) AND 

FEATURE-SHARING (FS) MECHANISMS FOR 4× SUPER-RESOLUTION. 

 

 

 

 
 

 

 

 

 

 

 

 

F. Object Recognition Performance 

To further demonstrate the quality of our generated SR 

images, we treat them as a pre-processing step for object 

recognition.We use the same setting as EnhanceNet and eval- 

G. Ablation Study 

To study the effects of the two mechanisms in the proposed 

methods, we conduct ablation experiments by removing the 

mechanisms and test the differences, respectively. The quanti- 

tative results are illustrated in Table IV, overall visual compar- 

isons are presented in Fig. 10, Fig. 11 and the supplemental 

material. A detailed discussion is provided as follows. 

1) Removing the Fine-grained Attention Mechanism: 

We first remove the fine-grained attention (FA) mechanism 

in FASRGAN. The attention item is removed from the loss 

functions  of  the  generator  in  the  model  without  FA.  The 

coefficients of Eq.9 are set as λ1  = 5e-3, λ2  = 0 and λ3  = 1e- 

uate the object recognition performance with the generated 2. The fine-grained adversarial loss functions, LD
 

G 
fine 

images by our methods and other state-of-the-art methods: 

SRCNN [1], FSRCNN [13], SRGAN [8], EnhanceNet [29], 

ESRGAN [10], RankSRGAN [33]. 

are also removed. The generators of FASRGAN and the model 

without FA have the same parameters, and the difference lies 

in the loss function in training. 

and L 

P
e
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p
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Model 
FA mechanism Fs mechanism 

w/o FA FASRGAN w/o Fs Fs-SRGAN 
 

PIRM 
PSNR 25.04 25.26 25.44 25.69 
SSIM 0.6454 0.6523 0.6626 0.6785 

Test PI 2.4251 2.1160 2.1420 2.2279 
LPIPS 0.0751 0.0718 0.0731 0.0695 

 

Evaluation Top-1 error Top-5 error 

Bicubic 0.526 0.277 

SRCNN [1] 0.464 0.230 

FSRCNN [13] 0.488 0.252 

SRGAN [8] 0.410 0.191 

EnhanceNet [29] 0.454 0.224 

ESRGAN [10] 0.334 0.132 

RankSRGAN [33] 0.342 0.136 

Fs-SRGAN (ours) 0.338 0.136 

FA+Fs-SRGAN (ours) 0.337 0.134 

FASRGAN (ours) 0.323 0.124 
Baseline 0.241 0.071 
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Urban100(x4): HR SRGAN [8] w/o Attention FASRGAN (ours) 

img 009 PSNR/PI/LPIPS 32.51/3.6891/0.0360 31.11/3.6991/0.0384 32.13/3.6700/0.0345 

 

 

 

 
 

Manga109(x4): HR SRGAN [8] w/o Attention FASRGAN (ours) 

OL Lunch PSNR/PI/LPIPS 24.02/3.5644/0.0291 24.19/3.9100/0.0207 24.18/3.7275/0.0222 

Fig. 10.  The visual results of ablation study of FASRGAN 4× SR. 

 

 

 

 

 

 
Set14(x4): HR SRGAN [8] w/o Feature-sharing Fs-SRGAN (ours) 

zebra PSNR/PI/LPIPS 24.81/3.1552/0.0681 25.00/3.0571/0.0572 25.71/3.1393/0.0582 

 

 

 

 
 

PIRM Test(x4): HR SRGAN [8] w/o feature-sharing Fs-SRGAN (ours) 

292 PSNR/PI/LPIPS 31.06/3.8133/0.0432 30.34/3.8192/0.0498 30.84/3.9621/0.0398 

Fig. 11.  The visual results of ablation study of Fs-SRGAN for 4× SR. 

 
 

From Table IV we can see that FASRGAN surpasses the 

model without FA in all metrics. An obvious performance 

decrease can be observed in Fig. 10. For image ‘img 009’, 

the model without FA mechanism introduces some unnatural 

noises and undesired edges, while FASRGAN can maintain 

the structure and produce high-quality SR images. For image 

‘OL Lunch’, the result from the model without FA mechanism 

contains more artifacts and noise and the letters cannot be well 

recognized, while FASRGAN reduces the artifacts and noises, 

whose result looks closer to the original HR images. The visual 

analysis indicates the effectiveness of the FA mechanism in 

removing unpleasant and unnatural artifacts. 

2) Removing the Feature-sharing Mechanism: We remove 

the feature-sharing (Fs) mechanism, so that the generator and 

discriminator extract their low-level features separately, but 

the loss function keeps the same as that of Fs-SRGAN. The 

discriminator and the generator in our Fs-SRGAN use a shared 

RRDB to extract low-level features, while in the case the Fs 

mechanism is removed, different RRDBs are used to extract 

low-level features for them individually. 

Table IV shows that Fs-SRGAN has lower LPIPS and higher 

PSNR/SSIM than the model without Fs mechanism. Fig. 11 

presents the results of the model without Fs mechanism and 

Fs-SRGAN. We can observe that Fs-SRGAN outperforms the 

model without Fs mechanism by a large margin. The removal 

of Fs mechanism tends to introduce unpleasant artifacts. For 

image ‘zebra’, by employing the Fs mechanism, Fs-SRGAN 

 

can alleviate heavy artifacts and noises, recovering the strips 

of legs more clearly and correctly. For image ‘292’, our Fs- 

SRGAN generates more textures of the pane. The above results 

illustrate the effectiveness of our Fs mechanism. 

3) Feature Visualization of Fine-Grained Attention and 
Feature-sharing Mechanisms: To further verify the effec- 

tiveness of our proposed fine-grained attention and feature- 

sharing mechanisms, we present feature visualizations of the 

first RRDB of the generator (FASRGAN) and the shared 

feature extraction part (Fs-SRGAN) in Fig.12. FASRGAN 

reduces the noises in the image ‘img 063’ and extracts more 

texture information compared with the model without attention 

mechanism. The feature maps from Fs-SRGAN also contain 

more helpful textures, showing that our proposed methods help 

the networks extract more useful information. 

4) The Block Number of the Feature-sharing Part: To 

further study the effect of the depth of the shared feature 

extractor in Fs-SRGAN, we vary the number of RRDBs in 

both the shared low-level feature extractor and the deep feature 

extractor, keeping the total number of RRDBs in the generator 

unchanged. As shown in Fig. 13, increasing the number of 

the shared feature extractor leads to performance reduction 

and increases the burden of the discriminator due to more 

parameters which makes the model difficult to train. Among 

them, E1G16 obtains the best results in both visual quality 

and reconstruction accuracy. 
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Urban100: w/o Attention FASRGAN (ours) Set5: w/o Feature-sharing Fs-SRGAN (Ours) 

img 061 the 7-th channel the 7-th channel baby the 11-th channel the 11-th channel 

 

 

 

 
 

Urban100: w/o Attention FASRGAN (ours) DIV2K val: w/o Feature-sharing Fs-SRGAN (Ours) 

img 063 the 15-th channel the 15-th channel 0869 the 6-th channel the 6-th channel 

Fig. 12.  The feature visualization of the first RRDB of the generators in FASRGAN and the model w/o attention, and of the shared low-level feature extractor 
in Fs-SRGAN and the first RRDBs of the generator in the model w/o feature-sharing. 
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unstable for both the generator and discriminator and hard to 

converge. These results indicate that λ2 = 0.01 is a  good 

setting in practice, which is used in our FASRGAN. 
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TABLE VI 
THE EFFECT OF FINE-GRAINED ATTENTION (FA) AND FEATURE-SHARING 

(FS) MECHANISMS ON SRGAN. 
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Fig. 13. The change of the number of RRDBs in shared low-level feature 
extractor (E) in Fs-SRGAN. G represents the number of RRDBs in the deep 
feature extraction part. The test is conducted on Set5 for 4× super-resolution. 

 

 

 
TABLE V 

THE  ABLATION  STUDY  OF  THE  COEFFICIENT λ2 OF Lattention IN  EQ.8 

 

 

 
 

 

 

 

 
 

 

 

 
5) Coefficient of the Fine-Grained Attention Loss in 

the FASRGAN Generator: We also conduct an ablation 

study to verify the influences of different coefficient λ2 of 

the fine-grained attention loss Lattention in the generator of 

FASRGAN. We set λ2 as 0.05, 0.01 and 0.005, while the 

other settings are kept the same. As shown in Table V, the 

model with λ2 = 0.01 has the best performance in SSIM and 

LPIPS on Urban100 and DIV2K val, and achieves comparable 

results in PSNR and PI. The visual results are shown in the 

supplemental material. When λ2 is set too small, the fine- 

grained feedback from the discriminator has less impact on 

the generator. And when λ2  is set too large, the training is 

6) The Fine-grained Attention and Feature-sharing 
Mechanisms in SRGAN: To verify whether our proposed fine- 

grained attention (FA) and feature-sharing mechanisms can 

improve the performance in other GAN-based SR models, we 

incorporate these two mechanisms into SRGAN [8], denoting 

as SRGAN FA and SRGAN Fs respectively. The generator 

in SRGAN FA is the same as that of SRGAN [8], and the 

discriminator adopts our  proposed UNet-like structure.  We 

use a convolution layer and a residual block (RB) as  the 

shared low-level feature extraction part for the generator and 

discriminator in SRGAN Fs. The rest part of the generator and 

the discriminator are similar with that of SRGAN [8], except 

that the number of RB in the deep feature extraction is 13. 

Hence, the parameter for SRGAN Fs is 1.48K, and 1.554K for 

SRGAN and SRGAN FA. As shown in Table VI, SRGAN FA 

achieves the best performance  in  terms  of  PI  and  LPIPS 

on most of the test dataset. SRGAN Fs also outperforms 

SRGAN in SSIM and LPIPS. These results demonstrate that 

our proposed FA and Fs mechanisms can be well adapted to 

the SRGAN model. 

Dataset Metric SRGAN [8] SRGAN FA SRGAN Fs 

 PSNR 29.91 29.61 29.66 
SSIM 0.8510 0.8437 0.8541 

PI 3.4322 3.0651 3.4440 
LPIPS 0.0389 0.0341 0.0368 

 
Set14 

PSNR 26.56 26.11 26.27 
SSIM 

PI 
0.7093 
2.8549 

0.6977 
2.7550 

0.7179 
2.7705 

LPIPS 0.0696 0.0692 0.0669 

 
Urban100 

PSNR 24.39 24.00 24.04 
SSIM 

PI 
0.7309 
3.4814 

0.7205 
3.4252 

0.7331 
3.4818 

LPIPS 0.0693 0.0688 0.0691 

 
BSD100 

PSNR 25.50 25.35 25.46 
SSIM 

PI 
0.6528 
2.3054 

0.6506 
2.2503 

0.6650 
2.3348 

LPIPS 0.0887 0.0856 0.0876 

 
Dataset Metric λ2 = 0.05 λ2 = 0.01 λ2 = 0.005 

 
Urban100 

PSNR 24.35 24.51 24.31 
SSIM 

PI 
0.7359 
3.5091 

0.7380 
3.5173 

0.7364 
3.5284 

LPIPS 0.0608 0.0588 0.0613 

 
DIV2K val 

PSNR 28.16 28.15 28.19 
SSIM 

PI 
0.7771 
3.1826 

0.7903 
3.3303 

0.7803 
3.2378 

LPIPS 0.0547 0.0542 0.0560 
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Canon HR ZSSR [19] FSSR [21] ESRGAN [10] (FT) FASRGAN (ours, FT) Fs-SRGAN (ours, FT) 

016 PSNR/PI/LPIPS 22.57/7.1428/0.2866 22.15/7.8434/0.3192 21.58/5.5788/0.1274 22.99/5.9955/0.1065 21.48/6.0169/0.1064 

 

 

 

 
 

Canon HR ZSSR [19] FSSR [21] ESRGAN [10] (FT) FASRGAN (ours, FT) Fs-SRGAN (ours, FT) 

030 PSNR/PI/LPIPS 31.50/7.9916/0.1578 29.66/7.4778/0.1520 28.93/3.1849/0.0816 30.99/4.2431/0.0768 28.13/4.5620/0.0723 

 

 

 

 
 

Nikon HR ZSSR [19] FSSR [21] ESRGAN [10] (FT) FASRGAN (ours, FT) Fs-SRGAN (ours, FT) 

045 PSNR/PI/LPIPS 23.32/8.1629/0.3535 22.80/8.3245/0.3514 21.04/3.7778/0.2069 22.71/4.3211/0.1688 22.34/3.9972/0.1530 

Fig. 14.  The visual comparisons between our proposed methods and compared methods on RealSR(V3) test set for 4×. FT represents the model has been 
fine-tuned on RealSR (v3) training set. 

 

 
TABLE VII 

THE QUANTITATIVE COMPARISON OF OUR METHODS AND OTHER SR 
METHODS ON REALSR FOR 4× MAGNIFICATION. FT REPRESENTS THE 

MODEL FINE-TUNES ON REALSR TRAINING DATASET. 
 

Model 
RealSR (V3) Test 

PSNR SSIM PI LPIPS 

SRCNN [1] 27.69 0.7808 7.8679 0.2290 
RCAN  [7] 27.65 0.7803 7.8519 0.2311 

ESRGAN [10] 27.57 0.7748 7.4819 0.2215 
RankSRGAN [33] 27.56 0.7701 7.0521 0.2100 
FASRGAN (ours) 27.57 0.7732 7.1178 0.2111 
Fs-SRGAN (ours) 27.47 0.7744 7.3112 0.2151 

ZSSR [19] 27.56 0.7719 7.4666 0.2069 
FSSR [21] 26.68 0.7773 7.0811 0.1978 

ESRGAN [10] (FT) 26.67 0.7378 4.2885 0.1134 
FASRGAN (ours, FT) 27.57 0.7809 5.0006 0.1063 
Fs-SRGAN (ours, FT) 25.82 0.7663 4.9929 0.1121 

 

 

 
H. Results On the Real-World Dataset 

We also benchmark our proposed methods on  a  pub- 

licly available real-world dataset to test the robustness. We 

adopt the test set from RealSR(V3) [51] as the dataset and 

PSNR/SSIM/PI/LPIPS as evaluation metrics. As shown in the 

top part of Table VII, our FASRGAN and Fs-SRGAN obtain 

better PI and LPIPS than ESRGAN and comparable results 

with RankSRGAN, demonstrating that our proposed models 

have better robustness on real-world LR images. 

In addition, we used the training set from RealSR(V3) to 

fine-tune ESRGAN and our proposed methods. Both of them 

have run  about 150k  iterations, where  the  learning rate  is 

initially set as 10−4 and decays a half every 50k iterations. 

We test the fine-tuned (FT) models on the test set, and also 

compare them with ZSSR [19] and the work from Fritsche et 

al. [21] proposed for the AIM 2019 Challenge on Real World, 

denoted as FSSR. ZSSR is the first unsupervised SR method 

for non-ideal LR images. The codes and models of FSSR are 

 

publicly available, and we adopt the model TDSR of AIM for 

comparison. As shown in the bottom part of Table VII, our 

FASRGAN and Fs-SRGAN still obtain better results in LPIPS, 

indicating that our models are robust on the real-world images. 

Visual results of the fine-tuned models and the compared 

methods are also presented in Fig. 14. We can observe that 

the results generated by ZSSR and FSSR are heavily blurred, 

which brings a bad visual effect. The fine-tuned results from 

ESRGAN  contain  some  artifacts  and  noises,  resulting  in 

unpleasing observation. While our fine-tuned FASRGAN and 

Fs-SRGAN reduce the artifacts and produce more pleasing 

results, demonstrating the robustness of our proposed models. 

 

V. CONCLUSION 

We propose two GAN-based models, FASRGAN and Fs- 

SRGAN, for SISR to overcome the limitations of existing 

methods. FASRAGN introduces a fine-grained attention mech- 

anism into the GAN framework, where the discriminator has 

two outputs: a score for measuring the quality of the whole 

input and a fine-grained attention estimation for the input. The 

fine-grained attention delivers a fine-grained supervisor to the 

generator to ensure generation of pixel-wise photo-realistic 

images. The Fs-SRGAN shares the low-level feature extractor 

of the generator and the discriminator, reducing the number 

of parameters and improving the reconstruction performance. 

These two mechanisms are general and could be applied to 

other GAN-based SR models. Comparisons with other state- 

of-the-art methods on benchmark datasets demonstrate the 

effectiveness of our proposed methods. 
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