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Abstract
Recent studies have identified roles for complement in synaptic pruning, both physiological during development and patho-
logical in Alzheimer’s disease (AD). These reports suggest that C1q initiates complement activation on synapses and C3 
fragments then tag them for removal by microglia. There is an urgent need to characterise these processes in rodent AD 
models; this requires the development of reagents and methods for detection and quantification of rodent C1q in fluids and 
pathological tissues. These will enable better evaluation of the role of C1q in disease and its value as disease biomarker. 
We describe the generation in C1q-deficient mice of novel monoclonal antibodies against mouse and rat C1q that enabled 
development of a sensitive, specific, and quantitative ELISA for mouse and rat C1q capable of measuring C1q in biological 
fluids and tissue extracts. Serum C1q levels were measured in wild-type (WT), C1q knockout (KO), C3 KO, C7 KO, Crry 
KO, and 3xTg and  APPNL-G-F AD model mice through ageing. C1q levels significantly decreased in WT,  APPNL-G-F, and 
C7 KO mice with ageing. C1q levels were reduced in  APPNL-G-F compared to WT at all ages and in 3xTg at 12 months; C3 
KO and C7 KO, but not Crry KO mice, also demonstrated significantly lower C1q levels compared to matched WT. In brain 
homogenates, C1q levels increased with age in both WT and  APPNL-G-F mice. This robust and adaptable assay for quantifi-
cation of mouse and rat C1q provides a vital tool for investigating the expression of C1q in rodent models of AD and other 
complement-driven pathologies.
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Introduction

Alzheimer’s disease (AD) is a severe neurodegenerative disor-
der characterised by amyloid-ß (Aβ) plaques, neurofibrillary 
tangles of hyperphosphorylated tau, neuroinflammation, syn-
aptic loss, and cognitive decline. Multiple lines of evidence, 
genetic and experimental, have implicated the complement 
system in the aetiology of AD. Genome-wide association 

studies (GWAS) have repeatedly associated single nucleotide 
polymorphisms (SNPs) in genes encoding complement regula-
tors clusterin (CLU) and complement receptor 1 (CR1) with 
risk of late-onset AD [1–4]. Biomarker studies have identified 
altered levels of complement proteins and activation products 
in plasma and/or cerebrospinal fluid (CSF) that distinguish 
AD patients from controls and predict progression from mild 
cognitive impairment (MCI) to AD [5–9]. Microarray studies 
identified upregulation of numerous complement genes in AD 
patients versus age-matched controls [10]. Immunohistochemi-
cal analysis of post-mortem AD brains identified deposition of 
complement proteins and activation products, including C1q, 
C3, and C4, in and around plaques and tangles [11–13]. Fur-
thermore, deletion of C3 or suppression of C3 activation in 
multiple AD mouse models increased amyloid burden, indicat-
ing that complement is involved in amyloid clearance [14–16].

The complement system is the innate immune system’s 
primary defence against invading pathogens. In excess of 
30 soluble and membrane-bound proteins, three distinct 
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pathways coordinate to promote inflammation and destruc-
tion of pathogens. The classical pathway of complement 
activation is initiated when the circulating C1 complex 
binds to target surfaces via its C1q subunit, a heterohexa-
meric defence collagen that recognises immunoglobulin Fc 
domains [17]. The other C1 components C1r and C1s asso-
ciate with the collagen stalks of C1q, the latter catalysing 
proteolysis of C4 and C2 to form the classical pathway C3 
convertase [18]; this then cleaves the central complement 
component C3 into C3a and C3b with multiple downstream 
consequences including opsonisation for phagocytosis, gen-
eration of the inflammatory mediator C5a, and formation of 
the membrane attack complex (MAC) [19–21].

Previous studies have highlighted a critical role for the 
classical complement cascade in physiological synaptic 
pruning during development. C1q and C3 fragments (C3b/
iC3b) localise to and tag specific synapses for removal in 
the developing rodent visual system and substantial syn-
aptic pruning defects were demonstrated in C1q knockout 
(KO), C3 KO, and C4 KO mice [22–24]. It is established 
that microglia are responsible for phagocytosis of synapses 
during developmental pruning, a process that involves 
interaction of complement receptor 3 (CR3; CD11b/CD18) 
expressed on the surface of microglia and its ligand iC3b on 
target synapses [25, 26].

Synaptic elimination also occurs pathologically, and is 
an early event in the pathogenesis of AD, occurring up to 
20 years prior to the onset of cognitive dysfunction [27]. 
Studies in AD rodent models have implicated the classical 
pathway in pathological synaptic loss; C1q is deposited on 
synapses destined for elimination, and synaptic elimination 
is reduced or abolished by either C1q deletion or blocking 
of C1q with inhibitory antibodies in both amyloid and tau 
models [28, 29]. Microglia from CR3 KO mice displayed 
impaired synaptic engulfment triggered by local administra-
tion of oligomeric Aß [28]. Pathological synaptic pruning 
driven by complement is also reported in multiple sclerosis 
(MS) [30, 31] and in schizophrenia, where dysregulated C4 
expression contributes to abnormal synaptic pruning [24, 
32, 33].

While the precise mechanism of synaptic loss in AD 
remains conjecture, the prevailing hypothesis is that the 
developmental synaptic pruning process is reactivated and 
becomes dysregulated, resulting in inappropriate classical 
pathway activation and microglial phagocytosis of comple-
ment-opsonised synapses; hence, there is a pressing require-
ment for reliable and reproducible methods for measuring 
expression of C1q and other classical pathway components 
in fluids and pathological tissues in models and man. We 
have generated a panel of monoclonal antibodies against 
rodent C1q and developed an enzyme-linked immunosorbent 
assay (ELISA) that allows specific and quantitative meas-
urement of mouse and rat C1q protein levels in serum and 

in brain extracts. We demonstrate that the ELISA identifies 
age-related changes in C1q concentration and differences in 
C1q levels between wild-type (WT) mice, complement KO 
mice and the  APPNL-G-F and 3xTg mouse models of AD.

Materials and Methods

Reagents and chemicals were purchased from Thermo Fisher 
Scientific (Paisley, UK) unless stated otherwise. Composi-
tion of phosphate-buffered saline (PBS) is 137 mM NaCl, 
2.7 mM KCl, 10 mM  Na2HPO4, 1.8 mM  KH2PO4, pH 7.4. 
All dialysis was performed overnight at 4 °C with 12–14-
kDa cut-off dialysis tubing (Medicell, London, UK). All 
cells were cultured at 37 °C in 5%  CO2. All protein stain 
and Western blot images were captured using the G:BOX 
Chemi XX6 (Syngene, Cambridge, UK).

Animals

All procedures complied with UK Animals Scientific Pro-
cedures Act 1986 and local regulations. All animals were 
group-housed in environmentally enriched cages, under 
standard pathogen-free conditions, with a 12-h light/dark 
cycle, and access to food and water ad libitum. C57BL/6 
(WT; Harlan, Bicester, UK), C1q KO [34], C3 KO [35], C7 
KO (Jackson ImmunoResearch), Crry KO [36],  APPNL-G-F 
[37], and 3xTg [38] mice have been described elsewhere. 
With the exception of the 3xTg line which is on a mixed 
background, all of the mouse lines were on the C57BL/6 
background and all had been back-crossed onto in-house WT 
mice; all were maintained in the same room in the facility at 
the same level of containment.

All mice were humanely euthanised by increasing  CO2 
concentration, death was confirmed by palpation, and 
whole blood was collected by transcardial puncture. WT 
and  APPNL-G-F mice were perfused with cold PBS; brains 
were removed, and snap-frozen. Blood samples were taken 
from 3-month-old male Brown Norway rats (Envigo, Bices-
ter, UK) by tail tipping under anaesthesia. Collected mouse 
and rat blood was allowed to clot at room temperature for 
10 min, placed on ice for 1 h, then centrifuged; serum was 
removed and immediately stored in aliquots at −80 °C.

Mouse brain homogenates were obtained using standard  
methods. In brief, frozen mouse brains (one hemisphere) 
were homogenised in a Dounce glass homogeniser in 1 ml 
of 5 mM KCl, 1 mM  MgCl2, 25 mM HEPES, 120 mM NaCl, 
and 2 mM  CaCl2 (pH 7.5), supplemented with complete mini 
EDTA-free protease inhibitors (Roche, Welwyn Garden 
City, UK), and phosphatase inhibitor cocktail V (Millipore, 
Watford, UK). Homogenates were passed through 80-μm 
nylon filters (Millipore). Samples were lysed on ice in RIPA 
buffer (Sigma-Aldrich, Gillingham, UK) containing protease 
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inhibitors. The resultant lysate was centrifuged at 17,000×g 
for 10 min at 4 °C and supernatant collected. Total protein 
concentration was measured using the Pierce BCA protein 
assay kit.

Isolation of Mouse C1q from Mouse Serum

C1q was isolated from mouse serum via a three-step pro-
tocol on an ÄKTA pure chromatography system (GE 
Healthcare, Amersham, UK). Elements of the proto-
col were derived from published methods [39, 40]. Ster-
ile mouse serum (TCS Biosciences, Claydon, UK) was 
0.22-μm-filtered and diluted 1:1 in binding buffer (20 mM 
Tris, 120 mM NaCl, 20 mM EDTA, pH 7.0) to dissociate 
C1 complexes. Human IgG (10 mg) was immobilised on a 
5-ml HiTrap NHS-Activated HP column (GE Healthcare; 
manufacturer’s protocol); rabbit anti-human IgG antiserum 
was passed over this column to saturate binding sites. The 
column was washed and equilibrated with 5 column volumes 
(CV) of binding buffer. Filtered mouse serum was applied 
to the column, the column was washed, and bound C1q was 
eluted with 3 CV of elution buffer (50 mM Tris, 1 M NaCl, 
20 mM EDTA, pH 10). In order to remove contaminating 
mouse immunoglobulins, the eluate was applied to a 5-ml 
HiTrap Protein G HP column (GE Healthcare; manufactur-
er’s instructions), the flow-through collected, dialysed into 
cation exchange binding buffer (20 mM HEPES, 60 mM 
NaCl, 10 mM EDTA, pH 7.8), and applied to a 5-ml HiTrap 
SP HP column (GE Healthcare) equilibrated with 5 CV of 
cation exchange binding buffer. Proteins were eluted with 
an increasing salt gradient in cation exchange elution buffer 
(to 700 mM NaCl) over 20 CV. Fractions containing eluted 
protein were dialysed into 50 mM  NaH2PO4 and 100 mM 
NaCl (pH 7.4), and concentrated to 0.5 ml using a 30-kDa 
Vivaspin 6 centrifugal concentrator (Sartorius, Epsom, UK); 
concentration was measured using Bradford reagent accord-
ing to the manufacturer’s protocol (Sigma-Aldrich) and pure 
C1q-containing fractions identified by SDS-PAGE on in-
house 12.5% tris-glycine gels in the presence and absence 
of β-mercaptoethanol and stained with Coomassie (0.25% 
(w/v) Coomassie Brilliant Blue R-250, 40% (v/v) methanol, 
10% (v/v) acetic acid).

The novel anti-C1q monoclonal antibodies (mAb) were 
also used to affinity-purify mouse C1q in a single step. The 
mAb (3 mg) was conjugated to a 1-ml HiTrap NHS-acti-
vated HP column (GE Healthcare; manufacturer’s protocol), 
pooled mouse serum was 0.22-μm-filtered and diluted 1:1 in 
binding buffer (10 mM Tris, 150 mM NaCl, 20 mM EDTA, 
pH 7.4). The mAb column was equilibrated with 5 CV of 
binding buffer. Filtered mouse serum was applied to the col-
umn, the column was washed in binding buffer, and bound 
C1q was eluted with 3 CV of elution buffer (100 mM gly-
cine, 20 mM EDTA, pH 3). C1q-containing fractions were 

identified, dialysed, concentrated, quantified, and examined 
via SDS-PAGE as described above.

Immunisation, Generation, and Isolation 
of Hybridoma

C1q KO mice (8–16 weeks of age) were immunised subcu-
taneously with 50-μg mouse C1q in complete Freund’s adju-
vant, boosted after 4 weeks with 50-μg mouse C1q in incom-
plete Freund’s adjuvant and then repeat boosted 1 week later. 
A week after the second boost, mice were tail-bled, serum-
harvested, and screened for immunoreactivity against mouse 
C1q via direct ELISA as described below. Mice with the 
strongest immune response then received an intra-peritoneal 
boost of 50 μg C1q in PBS and were humanely sacrificed 
2 days later, and spleens were removed. Splenocytes were 
extracted and fused with SP2/0-Ag14 mouse myeloma cells 
(European Collection of Animal Cell Cultures, Salisbury, 
UK) using an established protocol [41].

Cells from the fusion were grown in RPMI 1640 medium 
containing 2% penicillin/streptomycin, 2 mM glutamine, 
1  mM sodium pyruvate, and 15% foetal bovine serum 
(FBS), supplemented with HAT (Gibco, Paisley, UK) to 
select hybridomas, in 96-well plates (10 plates per fusion) 
with C1q KO mouse peritoneal macrophages as feeder 
cells. After 14 days, medium was harvested from each well 
and screened for C1q immunoreactivity via direct ELISA 
as described below. Positive clones were sub-cloned three 
times by limiting dilution to ensure monoclonality, and 
ELISA was used for screening at each cloning to verify 
C1q specificity. Positive monoclonal hybridomas were then 
isotyped using an IsoStrip™ Mouse Monoclonal Antibody 
Isotyping Kit (Roche) and cultured in CELLine™ 1000 bio-
reactor flasks (VWR, Lutterworth, UK) with RPMI 1640 
medium containing 2% penicillin/streptomycin, 2 mM glu-
tamine, 1 mM sodium pyruvate, and 10% ultra-low IgG FBS 
(Gibco). Bioreactor flasks were harvested every 7–10 days. 
IgG mAb were purified using a 5-ml HiTrap Protein G HP 
column (GE Healthcare; manufacturer’s instructions); IgM 
mAb were purified using a 1-ml HiTrap Protein L column 
(GE Healthcare; manufacturer’s instructions). All mAb were 
dialysed into PBS. Selected mAb were conjugated to biotin 
using the EZ-Link™ Sulfo-NHS-LC-Biotin reagent (Sigma-
Aldrich; manufacturer’s protocols).

Screening for Antibodies Specific to Mouse C1q

Pure mouse C1q was diluted to 0.5 μg/ml in carbonate buffer 
(100 mM  NaHCO3, 100 mM  Na2CO3, pH 9.6), dispensed 
(50 μl/well) into Nunc MaxiSorp™ flat-bottom 96-well 
plates (Invitrogen, Paisley, UK), and incubated overnight 
at 4 °C. Wells were blocked with 2% (w/v) bovine serum 
albumin (BSA) in PBS-T (100 μl/well) for 1 h at 37 °C, 
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washed twice with PBS-T, and either serum from immunised 
mice (diluted 1:100 in 0.2% BSA-PBS-T) or neat hybridoma 
supernatant (50 μl/well) added and incubated for 90 min 
at 37 °C. Wells were washed again with PBS-T and then 
incubated with a 1:1000 dilution (50 μl/well) of peroxidase-
conjugated goat anti-mouse IgG (H + L) secondary antibody 
(Jackson ImmunoResearch) for 30 min at 37 °C. Following 
two final washes, plates were developed using O-phenylen-
ediamine dihydrochloride (SIGMAFAST™ OPD, Sigma-
Aldrich). Absorbance was measured at 492 nm with a FLU-
Ostar™ Omega Microplate Reader (BMG LABTECH).

ELISA Characterisation of Novel mAb

Anti-C1q mAb were diluted to 5 μg/ml in carbonate buffer 
and coated onto Nunc MaxiSorp™ flat-bottom 96-well 
plates (50 μl/well) for 1 h at 37 °C. Blocking and washing 
was performed as described above. Mouse (WT and C1q 
KO), rat, and human sera were loaded in a dilution series 
from 1 to 0.001% and incubated at 37 °C for 2 h. Bound C1q 
was detected using rabbit anti-human C1q polyclonal anti-
body (2 μg/ml; in-house) and peroxidase-conjugated donkey 
anti-rabbit IgG secondary antibody (1:5000; Jackson Immu-
noResearch, West Grove, PA, USA). OPD development was 
performed as detailed above.

Western Blotting

Pure mouse C1q (1 μg) was run on in-house 12.5% tris-gly-
cine gels in the presence and absence of β-mercaptoethanol, 
then transferred onto nitrocellulose 0.45-μm membrane 
(GE Healthcare) using a Mini Blot Module (Invitrogen). 
Membranes were blocked for 1 h at room temperature with 
5% (w/v) BSA in PBS-T, incubated with mouse anti-C1q 
antiserum (1:500) or anti-C1q mAb (2 μg/ml) overnight at 
4 °C and developed using peroxidase-conjugated donkey 
anti-mouse IgG (H + L) secondary antibody (1:5000; Jack-
son ImmunoResearch) followed by ECL Western blotting 
detection reagent (GE Healthcare).

To validate the ELISA, pure mouse C1q (200 ng) and 
sera (diluted 1:10 in PBS, 10 μl loaded) from C1q KO, WT, 
and  APPNL-G-F mice (3 and 12 months) were analysed under 
reducing conditions as described above. Membranes were 
stained with Ponceau S immediately after transfer according 
to the manufacturer’s instructions (Sigma-Aldrich). Follow-
ing blocking, membranes were incubated with rabbit anti-
C1q mAb (2 μg/ml; Abcam, Cambridge, UK) overnight at 
4 °C and developed using peroxidase-conjugated donkey 
anti-rabbit IgG (H + L) secondary antibody (1:5000; Jack-
son ImmunoResearch). Densitometry was performed using 
GeneTools (Syngene).

Haemolytic Assays

Sheep erythrocytes were isolated from blood (TCS Bio-
sciences) and antibody sensitized as described [42]. For 
assays involving mouse serum, sensitised sheep erythrocytes 
were additionally sensitised with 20 μg/ml mouse anti-rabbit 
IgG (Invitrogen). Characterisation of novel mAb in human, 
rat, and mouse haemolytic assays was performed accord-
ing to published methods [43]. To assess the function of 
immunoaffinity-purified mouse C1q, a titration of purified 
protein (25 > 0 μg/ml) was added to 25% C1q KO mouse 
serum and then tested in haemolysis assays as above.

Development of a Sandwich ELISA for Quantification 
of Mouse C1q

The anti-C1q mAb selected for capture was diluted to 5 μg/
ml in carbonate buffer and coated onto Nunc MaxiSorp™ 
flat-bottom 96-well plates (50 μl/well) for 1 h at 37 °C. 
Blocking and washing were performed as described above. 
Pure C1q standards in a dilution series from 2 μg/ml > 2 ng/
ml were loaded in duplicate to generate a standard curve. To 
measure levels in serum (mouse and rat) and mouse brain 
homogenate, samples were analysed in triplicate (50 μl/well) 
at dilutions of 1:800 for serum and 0.5 mg/ml total protein 
for brain homogenates, respectively. Inter-assay controls 
were included on all plates. All samples and standards were 
incubated for 2 h at 37 °C then washed twice with PBS-
T. The anti-C1q mAb selected for detection (biotinylated) 
was diluted in 0.2% (w/v) BSA-PBS-T (2 μg/ml, 50 μl/well), 
added, and incubated for 1 h at 37 °C. After washing, wells 
were incubated (1 h, 37 °C) with streptavidin-HRP (1:200; 
R&D Systems, Abingdon, UK) diluted in 0.2% (w/v) BSA-
PBS-T (50 μl/well). After two final washes, colour was 
developed using OPD and absorbance measured as above. 
C1q concentrations in serum and brain samples were inter-
polated from the standard curve using Prism 5 (GraphPad, 
La Jolla, CA, USA).

To test assay performance, ten WT mouse serum sam-
ples (age 3 months, male n = 6, female n = 4) were analysed 
using the above protocol multiple times on different days and 
either with or without addition of 10 mM EDTA to dissoci-
ate C1. To test whether the assay could detect C1q in CSF, 
human CSF (hCSF) was supplemented with a known quan-
tity of pure mouse C1q and then measured using the assay. 
Spike recovery was performed by adding a known amount 
of pure mouse C1q to WT mouse serum prior to dilution and 
then measuring levels in the base and supplemented serum 
using the assay as above. Spike recovery was calculated as a 
percentage of calculated recovery relative to expected recov-
ery. Inter- and intra-assay coefficients of variability (%CV) 
were derived from the multiple measurements by standard 
methods [44].
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Statistical Analyses

All statistical analyses were performed using GraphPad 
Prism 5. Data points that fell 1.5× the interquartile range 
above or below the mean were considered outliers and 
excluded. All data was checked for normality with the Kol-
mogorov-Smirnov test. The paired t-test was used to test for 
differences in the same serum samples in the presence or 
absence of EDTA. The unpaired t-test was used to test for 
differences in serum C1q levels between age groups of the 
same complement KO genotype, and for differences in brain 
C1q levels between age groups of the WT and  APPNL-G-F 
genotypes. One-way analysis of variance (ANOVA) was 
utilised to test for differences between age groups of the 
WT and  APPNL-G-F genotypes, two-way ANOVA was used 
to test for differences between genotypes at each age. Tuk-
ey’s post hoc test and the Bonferroni post hoc test were co-
implemented with one-way ANOVA and two-way ANOVA, 
respectively. P < 0.05 was considered significant. C1q levels 
are described in the results as mean ± standard deviation.

Results

Purification of Mouse C1q and Generation of mAb

C1q was purified from mouse serum using IgG affinity chro-
matography followed by cation exchange (Fig. 1A); C1q 
eluted from cation exchange as a double peak, the first peak 
containing predominantly aggregated C1q (Fig. 1A, B). The 
second peak was aggregate-free and pure on Coomassie-
stained SDS-PAGE (Fig. 1B). Two fusions were performed; 
from 2880 wells screened, six hybridoma clones producing 
mouse C1q-specific antibodies were identified, five of which 
were IgM mAb; two of the clones, 9H10 and 2F6, gave con-
sistently higher ELISA signal during screening and were 
taken forward for full characterisation (Table 1). Species 
cross-reactivity of 9H10 mAb (IgG2b isotype) and 2F6 mAb 
(IgM isotype) was evaluated via sandwich ELISA using a 
polyclonal anti-human C1q for detection. 9H10 cross-
reacted with mouse, rat, and human C1q (Fig. 1C); 2F6 was 
specific for mouse and rat C1q only and gave no signal with 
human C1q (Fig. 1D). C1 inhibitory activity of 9H10 and 
2F6 was assessed in haemolysis assays; 9H10 did not inhibit 
in any of the sera tested (Fig. 1E), while 2F6 only inhibited 
haemolysis in rat serum (Fig. 1F). In order to determine the 
C1q chain specificity of the mAbs, Western blotting was 
performed on purified mouse C1q. 9H10 predominantly rec-
ognised the A chain of C1q (~ 27 kDa) under reducing and 
non-reducing conditions; 2F6 was very weak in westerns, 
suggesting that its epitope was conformation-dependent 
(Fig. 1G). Immunoaffinity chromatography on 9H10 iso-
lated C1q from mouse serum in a single step (Fig. 1H); the 

purified C1q restored activity to C1q KO mouse serum, 
demonstrating that it was fully functional (Fig. 1I).

A quantitative sandwich ELISA was developed using 
9H10 mAb as capture and biotinylated 2F6 mAb as detec-
tion. The sandwich ELISA detected C1q in both mouse and 
rat sera but C1q-deficient mouse serum gave no signal in 
the assay (Fig. 2A). The assay did not detect C1q in human 
serum, expected as the 2F6 mAb was not reactive against 
human C1q; substitution of 2F6 with a polyclonal anti-C1q 
antibody enabled quantification of human C1q (not shown). 
Using pure mouse C1q as standard, the assay had a detection 
limit of 2 ng/ml and a working range of 15 ng/ml to 250 ng/
ml (Fig. 2B). Dissociation of the C1 complex with EDTA 
had no significant effect on detection of C1q (Fig. 2C). Spike 
recovery was 93% (Fig. 2D), which was within acceptable 
parameters [45]. As expected, human CSF gave no signal 
in the assay; however, pure mouse C1q spiked into human 
CSF at levels similar to those reported for C1q in human 
CSF (200–500 ng/ml) [46] was readily detected with recov-
ery of 73% (Fig. 2E). Two mouse serum samples, one with 
high and one with low C1q levels, were measured in tripli-
cate across 10 assay plates to calculate an inter-assay coef-
ficient of variability (%CV): for the “high” sample, mean of 
means = 56.40 μg/ml, SD = 4.19 μg/ml, CV = 7.44%; for the 
“low” sample, mean of means = 34.71 μg/ml, SD = 4.67 μg/
ml, CV = 13.36%. The overall inter-assay CV was 10.45%. 
Sample replicates for all cohorts were used to generate an 
intra-assay %CV as described [47]; the intra-assay CV was 
6.14%.

Quantification of Serum C1q in WT Mice, AD Mice, 
and Complement KO Mice and Rats

The concentration of C1q in serum samples from WT and 
 APPNL-G-F mice aged 3, 6, 9, and 12 months was quantified 
using the sandwich ELISA (Table 2). In WT mice, serum 
C1q levels progressively decreased with age and were sig-
nificantly decreased at 12 months compared to 3 months 
(Fig. 3A).  APPNL-G-F mice showed a more pronounced 
decrease with age, significant at both 9 and 12 months 
relative to 3 months (Fig. 3B). These observations were 
replicated via Western blotting with a commercial mAb 
(Figs.  S1A, B). Serum C1q levels were significantly 
decreased in  APPNL-G-F mice compared to WT mice in all 
age groups (Fig. 3C); similar trends were observed at 4 
and 12 months in the 3xTg AD mice compared to WT, 
reaching significance at 12 months (Fig. 3D). C1q levels in 
rat serum measured in the ELISA were 97.69 ± 14.31 μg/
ml (n = 11; data not shown). In order to evaluate whether 
knocking out other complement components had any 
effect on serum C1q levels, C1q was measured in differ-
ent complement KO mouse strains at 6 and 12 months 
of age (Table 2). As expected, C1q KO mouse sera gave 
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no signal in the assay (Fig. 4A). In C3 KO mice, serum 
C1q levels were significantly lower compared to WT at 
6 months but were not different between the two age points 
(Fig. 4B, E). Similarly, in C7 KO mice, C1q levels were 
significantly lower compared to WT at 6 and 12 months; 
however, in this mouse, strain levels were significantly 
lower at 12 months compared to 6 months (Fig. 4D, E). 
In Crry KO mice, C1q levels were similar to WT at 6 
and 12 months and showed a small, non-significant fall at 
12 months relative to 6 months (Fig. 4C, E). There were 
no significant differences between genders for C1q levels 
in any of the mouse lines (Table 2).

Quantification of C1q in Brain Homogenates 
from WT and AD Mice

The ELISA was used to quantify C1q levels in brain homoge-
nates; WT and  APPNL-G-F mice aged 3 and 12 months were 
analysed (Table 2); brain C1q levels, expressed relative to 
total protein, were significantly elevated at 12 months com-
pared to 3 months in both WT (Fig. 5A) and  APPNL-G-F mice 
(Fig. 5B). When strains were compared, brain C1q levels 
were significantly reduced in  APPNL-G-F mice compared to 
WT mice at 3 months, but not at 12 months (Fig. 5C). There 
were no significant differences between genders for brain 
C1q levels in either of the mouse lines (Table 2).

Discussion

Although long-established as hallmarks of AD and other 
dementias, the mechanisms of neurodegeneration and 
pathological synaptic loss are yet to be fully understood. 
There is now a substantial body of evidence that synaptic 
pruning, an essential developmental process, is aberrantly 
reactivated in the AD brain [22, 23]. In AD, it is broadly 
accepted that synaptic loss is the best correlate of cogni-
tive decline [48]. Both physiological and pathological syn-
aptic pruning are complement-dependent processes that 
entail activation of the classical pathway with deposition 
of components C1q and C3b/iC3b onto “weak” synapses, 
marking them for removal by microglia [28, 29]. Precisely, 
what C1q binds on weak synapses, and what designates 
synapses as “weak”, remains unknown. Many researchers 
are using rodent models to investigate the role of C1q in 
this context; however, sensitive and reproducible methods 
of detecting and quantifying C1q in rodent biological flu-
ids and pathological tissues are lacking. To address this 
need, we generated anti-C1q mAb in C1q-KO mice using 
pure mouse C1q as immunogen, and developed a quan-
titative, sensitive, and specific sandwich ELISA from a 
non-competing pair of mAb that enabled measurement of 
C1q levels in mouse and rat serum. The sandwich ELISA 
passed all the standard immunoassay tests of reproducibil-
ity and reliably quantified C1q in rodent serum and brain 
tissue. Serum C1q levels measured in 3-month-old WT 
mice aligned with previous reports [49, 50].

To test the utility of the assay in experimental models, 
we first examined the effect of ageing on serum C1q levels 
in WT and AD model mice on the C57BL/6 background. 
We observed a progressive and significant decrease in 
serum C1q with age in WT mice, significant at 12 months; 
 APPNL-G-F AD model mice also demonstrated a progres-
sive and significant decrease in serum C1q concentra-
tions with increasing age, more marked than in WT mice, 
significant at 9 and 12 months compared to 3 months. 
Comparison between the two strains showed decreased 
C1q levels in  APPNL-G-F mice compared to WT at each 
age (Fig. 3). We observed a similar decrease in plasma 
C1q levels in male 3xTg AD model mice that reached 
significance compared to WT at 12 months despite the 
low sample number available for analysis. These findings 
contradict several reports that serum C1q levels, measured 
using Western blotting, a semi-quantitative and insensi-
tive method, did not change or even increased with age in 
C57BL/6 mice [51, 52]. One report described a substantial 
increase in serum C1q levels between 2 and 12 months 
in C57BL/6 mice via Western blotting, supported by an 
unspecified ELISA technique [53]. Fonseca et al., using 
Western blotting and densitometry, reported no significant 

Fig. 1  Isolation of pure mouse C1q and characterisation of novel 
monoclonal antibodies. (A) Representative ÄKTA chromato-
gram from the cation exchange purification of mouse C1q showing 
2 peaks. (B) SDS-PAGE of cation exchange fractions (2.5  μg/lane) 
from peak 1 and peak 2; non-reduced (NR), or reduced with 5% 
β-mercaptoethanol (R), proteins were stained with Coomassie blue. 
Peak 1 contained aggregated mouse C1q that reduced to the indi-
vidual C1q A, B, and C monomers at 31 kDa, 29 kDa, and 26 kDa; 
peak 2 contained pure mouse C1q with no aggregates that reduced 
to C1q monomers. (C) C1q sandwich ELISA using 9H10 as capture 
antibody and polyclonal anti-C1q as detect showing cross-reactivity 
with mouse, rat, and human C1q. (D) C1q sandwich ELISA using 
2F6 as capture antibody and polyclonal anti-C1q as detect showing 
2F6 cross-reactivity with mouse and rat C1q but not human C1q. 
(E, F) Classical pathway haemolytic assays showing that 9H10 had 
no inhibitory activity towards mouse, rat, or human C1q, while 2F6 
inhibited rat C1q, but not mouse or human C1q. (G) Western blot of 
mouse C1q. Denatured pure C1q (1  μg/lane) under NR and R con-
ditions and Western blotted with mouse anti-C1q antiserum (1:500), 
9H10, and 2F6 (2  μg/ml). 9H10 bound the A chain in denatured 
C1q under both non-reducing and reducing conditions; staining with 
2F6 was weak under both conditions. All membranes were exposed 
together, and for the same time, the images are unmodified from the 
original .tif files. (H) SDS-PAGE of mouse C1q isolated via IgG 
affinity followed by cation exchange (1) and 9H10 immunoaffinity 
purification (2) under both non-reducing and reducing conditions and 
stained with Coomassie blue. (I) Classical pathway haemolytic assay 
demonstrating that titration (from 25  μg/ml) of mouse C1q isolated 
via 9H10 immunoaffinity restored activity to C1q KO serum (25%); 
116 ng/ml of mouse C1q was required to restore lysis to 50%

◂
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differences in serum C1q levels at 5 and 10 months in the 
Arctic48 AD model compared to WT mice [52]. The fact 
that we used a sensitive and specific ELISA, incorporating 
two mAb against mouse C1q and properly validated with 
appropriate quality control measure, gives us confidence 
that the findings we report in WT and AD model mice are 
correct. We show that our assay accurately measures both 
free C1q and C1q in the C1 complex, important in con-
texts where the proportions of free C1q and C1 complex 
might vary and enabling quantification in both serum and 
EDTA plasma; in the latter,  Ca2+ chelation disrupts the 
C1 complex.

Several studies report that serum C1q levels increase 
with age in healthy human donors [54, 55]. In our recent 
AD plasma biomarker study, there was no difference in 
serum C1q levels between aged healthy controls, and indi-
viduals with MCI or AD [8]. Others have reported that C1q 
levels are reduced in the CSF of AD patients compared 
to controls and suggested that this might be an AD bio-
marker [56]. Of note, CSF C1q levels reported in this study 
were ~ 0.2–0.4 μg/ml, comfortably within the working range 
of our assay. We were unable to source mouse CSF for the 
study, so to support the capacity of our assay to measure C1q 
in CSF, we spiked mouse C1q into human CSF at a relevant 
dose and showed that it could be measured in the assay with 
good recovery. While we are not aware of published stud-
ies measuring C1q levels in rodent CSF, the assay detects 
mouse C1q in an appropriate matrix (human CSF) at the low 
(ng/ml) levels predicted from human data to be present in 
rodent CSF; these data show that the described assay offers 
the prospect of such studies in disease models.

Next, we explored the impact of complement gene 
knockouts; serum C1q was measured in C1q KO, C3 
KO, C7 KO, and Crry KO mouse models (Fig. 4). All of 
these lines were on the C57/BL6 background, all had been 
back-crossed onto the in-house C57BL/6 (WT) line, and 
all were maintained in the same room and under identical 
containment; these precautions reduce but do not eliminate 

risk of other genetic or environmental differences impact-
ing the inter-line comparison. As expected, serum from 
C1q KO mice gave no signal in the assay, confirming 
the specificity of the assay and the novel mAbs reported 
here. Serum C1q levels were reduced in C3 KO mice at 
6 and 12 months, significantly in the former, compared 
with matched WT mice. Precisely, how the absence of 
C3 impacts C1q levels is unclear; however, collaboration 
between C1q and C3 is critical to modulation of innate and 
adaptive immunity in mice and men [57, 58]. Absence of 
C3 might thus favour immune dysregulation and increased 
C1q consumption. Crry is the dominant cell-associated C3 
convertase inhibitor in rodents; deficiency of Crry causes 
systemic consumption of C3 and secondary C3 deficiency 
[36]. No differences in C1q levels were observed between 
WT and Crry KO mice at any age suggesting that second-
ary C3 deficiency does not have the same effect as primary 
C3 deficiency in the mice. In C7 KO mice, serum C1q 
levels were significantly reduced at 6 and 12 months com-
pared to matched WT mice, an unexpected finding given 
that absence of C7 impacts only the terminal pathway 
and formation of MAC. MAC plays roles in the homeo-
static clearance of apoptotic cells [58, 59]; we suggest 
that absence of MAC may lead to an increased burden of 
apoptotic cells during ageing that bind C1q, well described 
in lupus models, leading to reduced plasma C1q levels.

Finally, in order to demonstrate whether the assay could 
be used to measure levels of C1q in tissue extracts, we meas-
ured the protein in mouse brain homogenate (Fig. 5). The 
assay performed well in brain homogenates, and we observed 
a significant increase in brain C1q levels at 12 months com-
pared to 3 months in WT mice, a finding that is concordant 
with the literature as both C1q protein and mRNA levels 
have been reported to increase with age in the human and 
mouse brain [10, 51, 60]. We also demonstrated a significant 
increase in brain C1q levels in aged  APPNL-G-F mice, almost 
doubling from 3 to 12 months of age. Brain C1q levels were 
significantly lower in  APPNL-G-F mice relative to WT mice 
at 3 months, but because of the extent of increase with age, 
they were not significantly different at 12 months. Others 
have reported increased C1q expression in and around areas 
of pathology in the  APPNL-G-F model [61]. Our whole-brain 
measures would miss local changes in expression; dissection 
and separate analysis of key brain regions for measurement 
of such changes is an obvious next step. Elevated brain C1q 
levels at late disease stage in AD mouse models relative 
to matched WT mice have been reported in several other 
studies, mostly using Western blotting to semi-quantify C1q 
[28, 52, 60–62]. Although there is an abundance of immu-
nohistochemical evidence for C1q deposition in late-stage 
AD brain [63, 64], we are not aware of published studies 
that quantitatively measure C1q protein levels in healthy and 
AD human brain tissue; our unpublished work suggests that 

Table 1  Novel C1q antibodies. Six antibodies were identified via 
direct ELISA screening against mouse C1q. 2F6 and 9H10 consist-
ently gave higher signals in ELISA and were taken forward for further 
characterisation. The remaining antibodies were discontinued and 
hence not tested (N/T) for cross-reactivity

Antibody Isotype Cross-reactivity

Mouse Rat Human

1G1 IgM + N/T N/T
2F6 IgM +++ +++ –
7F3 IgM ++ N/T N/T
7H2 IgM + N/T N/T
9H10 IgG2b +++ +++ +++
10G11 IgM + N/T N/T
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the assay described here, modified to measure human C1q, 
could detect and quantify C1q in AD brain extracts.

Although the current work is focussed on AD models, 
complement-driven synaptic elimination is also reported 

in other neurodegenerative disorders, including MS, and 
in neurodevelopmental disorders such as schizophre-
nia. Beyond the brain, C1q is a critical factor in auto-
immune and autoinflammatory diseases [65]. Hence, the 
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Fig. 2  Optimisation and quality testing of in-house quantitative sand-
wich ELISA. (A) C1q sandwich ELISA using 9H10 mAb as capture 
and biotinylated 2F6 mAb as detection. Standard curves were gener-
ated by titrating WT mouse, C1q KO mouse, rat, and human serum 
from 1% serum concentration. The assay detected C1q in mouse 
and rat but not human serum. (B) Pure C1q was used as standard in 
the assay; detection range was 10–500  ng/ml. (C) Measurement of 
the same WT mouse serum samples (3  months, male n = 6, female 
n = 4) in the presence or absence of 10 mM EDTA to dissociate the 

C1 complex. EDTA had no significant effect on measured C1q lev-
els. (D) Spike recovery. Mouse C1q (50 μg/ml) was added into WT 
mouse serum samples (3 months, male, n = 5) and C1q levels meas-
ured. Average recovery was 93%. (E) C1q spiked into human CSF 
(hCSF). Mouse C1q (500  ng/ml) was spiked into hCSF samples 
(n = 3; hCSF/C1q) or the same volume of buffer (C1q); C1q lev-
els were measured. Unspiked hCSF was used as a control. Average 
recovery was 73%
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availability of a novel ELISA to reliably quantify C1q lev-
els in rodent biological fluids and tissues may have wide 
application in the study of models of diverse complement-
driven disorders.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12035- 021- 02419-5.
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Table 2  Sample cohorts. A 
list of each strain and age 
cohort analysed in the ELISA, 
including the number of 
animals of each gender within 
each cohort at 3, 4, 6, 9, and 
12 months (m). Mean serum 
and brain C1q levels are 
reported in microgrammes per 
millilitre and nanogrammes per 
microgramme total brain lysate 
protein (± sd), respectively. No 
significant differences in gender 
were found in any of the mouse 
lines (non-significant; ns). n/a, 
not applicable

Genotype Age Male Female C1q (mean ± sd) Gender 
differ-
ence

Serum WT 3 m 6 4 72.45 ± 15.25 Ns
6 m 5 5 64.76 ± 8.95 Ns
9 m 4 6 59.91 ± 16.11 Ns
12 m 5 7 55.54 ± 12.38 Ns

APPNL-G-F 3 m 5 5 56.01 ± 16.54 Ns
6 m 5 4 43.08 ± 6.31 Ns
9 m 4 6 40.42 ± 12.98 Ns
12 m 4 6 40.16 ± 9.55 Ns

3xTg 4 m 4 0 46.95 ± 17.50 n/a
12 m 5 0 32.86 ± 11.07 n/a

C3 KO 6 m 3 4 39.41 ± 7.08 Ns
12 m 4 3 41.92 ± 6.20 Ns

C7 KO 6 m 5 4 49.51 ± 15.01 Ns
12 m 5 5 32.84 ± 8.30 Ns

Crry KO 6 m 6 6 68.31 ± 25.70 Ns
12 m 5 4 56.87 ± 16.81 Ns

C1q KO 6 m 6 5 n/a n/a
12 m 4 4 n/a n/a

Rat 3 m 11 0 97.69 ± 14.31 n/a
Brain WT 3 m 4 4 0.285 ± 0.039 ns

12 m 4 4 0.353 ± 0.043 ns
APPNL-G-F 3 m 4 4 0.234 ± 0.013 ns

12 m 4 4 0.386 ± 0.024 ns
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permitted by statutory regulation or exceeds the permitted use, you will 
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