
A Vector Symbolic Approach for
Cognitive Services

and Decentralized Workflows

A thesis submitted in partial fulfilment

of the requirement for the degree of Doctor of Philosophy

Christopher Simpkin

December 2021

Cardiff University
School of Computer Science & Informatics



i

To my wife
Ann

For her infinite patience and everlasting support.

She has always sacrificed to enable my dreams.



ii

Abstract

The proliferation of smart devices and sensors known as the Internet of Things (IoT),

along with the transformation of mobile phones into powerful handheld computers

as well as the continuing advancement in high-speed communication technologies,

introduces new possibilities for collaborative distributed computing and collaborative

workflows along with a new set of problems to be solved.

However, traditional service-based applications, in fixed networks, are typically con-

structed and managed centrally and assume stable service endpoints and adequate net-

work connectivity. Constructing and maintaining such applications in dynamic het-

erogeneous wireless networked environments, where limited bandwidth and transient

connectivity are commonplace, presents significant challenges and makes centralized

application construction and management impossible.

The key objective for this thesis can be summarised as follows: a means is required

to discover and orchestrate sequences of micro-services, i.e., workflows, on-demand,

using currently available distributed resources (compute devices, functional services,

data and sensors) in spite of a poor quality (fragmented, low bandwidth) network in-

frastructure and without central control. It is desirable to be able to compose such

workflows on-the-fly in order to fulfil an ‘intent’.

The research undertaken investigates how service definition, service matching and de-

centralised service composition and orchestration can be achieved without centralised

control using an approach based on a Binary Spatter Code Vector Symbolic Architec-
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ture and shows that the approach offers significant advantages in environments where

communication networks are unreliable.

The outcomes demonstrate a new cognitive workflow model that uses one-to-many

communications to enable intelligent cooperation between self-describing service en-

tities that can self-organise to complete a workflow task. Workflow orchestration over-

head was minimised using two innovations, a local arbitration mechanism that uses a

delayed response mechanism to suppress responses that are not an ideal match and the

holographic nature of VSA descriptions enables messages to be truncated without loss

of meaning. A new hierarchical VSA encoding scheme was created that is scaleable

to any number of vector embeddings including workflow steps. The encoding can also

facilitate learning since it provides unique contexts for each step in a workflow. The

encoding also enables service pre-provisioning because individual workflow steps can

be decoded easily by any service receiving a multicast workflow vector.

This thesis brings the state-of-the-art closer to the ability to discover distributed ser-

vices on-the-fly to fulfil an intent and without the need for centralised management or

the imperative definition of all service steps, including locations. The use of a math-

ematically deterministic distributed vector representation in the form of BSC vectors

for both service objects and workflows enables a common language for all elements

required to discover and execute workflows in decentralised transient environments

and opens up the possibilities of employing learning algorithms that can advance the

state-of-the-art in distributed workflows towards a true cognitive distributed network

architecture.
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Chapter 1

Introduction

This chapter sets the background context for the key problems that this thesis attempts

to address, which feed into a hypothesis that clearly outlines the research goals. This

chapter gives a brief history of the reasons why distributed computing has become the

most powerful architectural approach to data analysis and transaction processing. I

then outline some of the fundamental issues that must be overcome in distributed com-

puting, relating these issues to existing and emerging distributed computing paradigms

and supporting technologies, including workflows and Workflow Management Sys-

tem (WFMS). I then argue that the continuing advances in high-speed networking and

proliferation of smart devices lead to a requirement for a new workflow methodology

capable of discovering and executing workflows in dynamic, decentralized transient

network environments; leading to my hypothesis which states how this can be achieved

using a Vector Symbolic Architecture (VSA).

1.1 Why data analytics

Data analytics in its basic form has been practised from ancient times. For example,

the Mayan civilisation attempted to predict harvests based on current and historical

behaviour of the climate and, albeit an incorrect belief, the configuration of the con-

stellations. The essential benefit gained from data analytics is the potential to correctly

predict some aspect of the future based on records of historical events as well as data
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representing the current situation. As our ability to understand the world and its work-

ings becomes more sophisticated (including human behaviour), we naturally start to

consider more and more of this understanding to make better predictions. By the time

of the Second World War and advent of computers, data analytics was used to analyse

and decipher streams of opposition communications and gain a tactical advantage.

Figure 1.1: Exponential growth of worldwide data availability.

In modern times, data is available and continuously being generated on enormous

scales. The European Organisation for Nuclear Research (CERN) currently generates

around 2.5 petabytes of data daily[7]. Twitter handles an estimated 500 million tweets

per day[8]; Google handles 3.5 billion internet search queries per day[9]. Figure 1.1

shows Hilbert & López’s estimate of the world’s capacity to store data, which, in 2007,

was determined to be approximately 300 exabytes[10]. By 2014, due to the exponen-

tial nature of data generation, this estimate was revised by Hilbert to 4.7 zetabytes[11].
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Machine learning techniques leverage the billions of data samples, available via the in-

ternet, to build statistical models that enable computers to outperform human operators

at specialist pattern matching tasks such as cancer cell detection and have enabled com-

puters to understand natural language commands, including words spoken by people

in many accents and dialects.

Such massive data availability requires multiple computer devices and parallel pro-

cessing in order to obtain useful analysis in a sensible time-frames. This has led to the

advent of the fields of distributed computing and workflow formalisations.

1.2 Distributed Computing

The result of any data analytics task, for example, the possibility of rain tomorrow,

must be arrived at in a timely fashion otherwise it becomes obsolete. When very large

volumes of data must be processed, timely results can only be achieved by partition-

ing the data and processing each piece in parallel. Two mechanisms have emerged to

facilitate this. Modern supercomputers[12] employ many thousands of tightly coupled

processors together with shared memory and storage to achieve the necessary data pro-

cessing speeds required for analysis of computationally intensive tasks such as weather

forecasting, quantum mechanics and molecular modeling. This was the mainstay of all

data and compute-intensive tasks until the advent of high-speed communication tech-

nologies, that enabled multiple, physically separate, computers to participate in data

analytics tasks by message passing. Combined with the relentless fall in computer

hardware prices, this has led to an alternate approach, namely, Distributed Computing.

An essential difference between supercomputing and distributed computing is that su-

percomputing is not scalable. Once built, a supercomputer cannot easily be expanded,

whereas, distributed computing is inherently scalable; to process more transactions or

handle more data or calculate faster, ‘simply’ connect more computers into the task.

Due to this scalability, distributed computing is now the dominant approach for all but
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the most mathematically intensive data analytics tasks. Indeed, even in such realms, it

can now rival supercomputing performance. For example, the Folding@home[13, 14]

distributed computing project, used in the mathematical simulation of protein dynam-

ics, was the first computer architecture of any kind to break the exaFLOPS (1018

floating-point operations per second) barrier. This was achieved by harnessing the

power of 4.63 million CPU cores and almost 430 thousand GPUs located in simple PC

and gaming machines distributed throughout the internet.

This truly impressive feat demonstrates the power brought by the scalability of distrib-

uted computing and is facilitated by two fundamental aspects: high-speed computer

networks, and very low-cost computer hardware. Many technologies have emerged

that leverage these two aspects so that distributed computing and distributed data ana-

lytics are now ubiquitous throughout our daily lives. Almost all human transactions

such as buying groceries, booking a cinema ticket and paying one’s taxes as well as

many forms of human communication, e.g., social networking, often involve messages

being passed around and analysed by various distributed computer systems.

As previously implied, distributed computing is not actually as ‘simple’ as connecting

more computers into the task. Multiple layers of software technologies cooperate to

hide the complexities that enable even a novice user to transact on or retrieve informa-

tion from one of the millions of computer servers connected to the internet, effectively

presenting the distributed hardware and information resources as a single entity, i.e.,

the internet.

Some of the fundamental issues involved in scaling for distributed computing are:

• Size scalability: Are all the computers of the same hardware type and operating

system (typical of Cloud Computing) or is a mix of hardware types and operating

systems to be used (Jungle Computing [15])?

• Geographical scalability: How are the distributed devices to be connected?

In a single location (e.g., Cloud computing), devices are connected via high-
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speed LANs enabling traditional synchronous application programs to run on the

distributed system without imparting too many input/output performance bottle-

necks. On the other hand, in geographically dispersed systems, applications must

be adapted to employ alternate approaches, such as non-blocking asynchronous

message passing, in order to avoid the overall system grinding to an input/out-

put bound halt. Further, data replication and data consistency become far more

complicated problems in geographically distributed systems.

• Administrative scalability: Who owns the computers, a single organisation, co-

operating organisations or arbitrary customers on a pay-as-you-go basis? When

multiple organisations or individuals share the computer resources, how are pri-

vacy and billing to be managed?

• Response time scalability: Are the applications and jobs to be executed time-

sensitive? For example, Massively Multiplayer Online Games (MMOs) require

real-time responses to the gamers’ button clicks or can jobs be executed in batch

or perhaps some mixture of both? Notwithstanding the very high-speed data

communication technologies now employed in today’s internet, communication

speed falls by orders of magnitude as the connection link extends out to the

end user who, these days, will often be on a wireless connection and mobile.

The emerging fields of Edge and Fog computing are approaches that focus on

locating servers as close as possible to the end user in order to try to reduce the

communication latency that becomes a major barrier for the more established

Cloud and Jungle computing approaches.

An in-depth discussion of all aspects of distributed computing is given in [16]. An

excellent review of modern distributed computing architectures is given in [17] which

identifies the main configurations (Cloud, Jungle etc.) in use today and the problems

they are aiming to solve. In general, these architectures help solve the issue of enabling

multiple computers and their associated hardware resources to appear as a single com-

puter. On a higher level of abstraction, the development of virtualization technologies
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(e.g. virtual machines, containers, and so forth) allow applications to adapt elastically

on-demand. The adoption of service interfaces (e.g. REST architectures, and micro-

services) enables complex problems to be broken down into smaller, repeatable tasks,

which enhance scalability compared to the complexities of approaches like monolithic

Service Oriented Architecture (SOA). Workflows and WFMS are yet a higher level of

abstraction that attempt to make it easier to build useful applications by formalising

this process.

1.3 Workflows

The workflow methodology provides a robust means of describing applications con-

sisting of control and data dependencies along with the logical reasoning necessary

for distributed execution. For wired networks, there has been a wide variety of suc-

cessful workflow systems available for researchers to design, test and run scientific

workflows [18–27]. A scientific workflow is a set of interrelated computational and

data-handling tasks designed to achieve a specific goal. It is often used to automate

processes which are frequently executed, or to formalize and standardize processes.

A workflow may be used to define and run computational experiments or to conduct

recurrent processes on observational, experimental and simulation data. Scripting lan-

guages and graphical notations may be used to represent tasks in a workflow, and the

dependencies between them. Similarly, in the business domain, the Workflow Man-

agement Coalition (WfMC) [28] has delivered standards to a vast number of business

workflow systems for over twenty years.

For microservice architectures [29] operating over fixed networks, the underlying TCP/IP

backbone guarantees sufficiently stable service endpoints and connectivity to facilit-

ate the construction and management of multi-service applications using centralized

WFMS. Centralization enables several significant advantages for workflow construc-

tion and operation:
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• Job step allocation and data/parameter passing through a centralized controller

greatly simplifies workflow orchestration since the WFMS knows the addresses

and interface descriptions of each service step.

• A centralized WFMS can enforce rules on service descriptions, via agreed-upon

ontologies, so that they can be stored in searchable central registries, which

greatly simplifies service discovery and matchmaking.

• For time-sensitive applications, a centralized worldview greatly simplifies the

tasks of load-balancing, scaling, and optimisation when executing multiple work-

flows across multiple heterogeneous compute resources.

Nevertheless, in the current state-of-the-art, workflows must be specified imperatively.

The discovery of workflow steps is not dynamic; the exact services to be used for

each workflow step, along with the IP-addresses, connections and data locations, must

be specified in advance. In addition, due to the continuing advancement of wireless

communication technologies, as well as the continual price fall and miniaturisation of

CPU and memory chips, many ordinary devices, collectively known as the Internet of

Things (IoT), are now being endowed with compute and communication capability.

IoT devices and mobile handheld devices typically operate at the edge of networks

where Peer-to-Peer (P2P) operations would be advantageous. However, for milit-

ary environments, the Internet of Battlefield Things (IoBT) [30] and handheld/mobile

devices must often operate in dynamic, low bandwidth, high latency, transient, envir-

onments such as mobile ad hoc networks (MANETs) [31] making centralized WFMS

impractical if not impossible to implement. In addition, P2P workflow discovery and

orchestration architectures [32] that rely on Distributed Hash Table (DHT) for object

discovery are known to perform poorly when network fragmentation and high latency

causes churn in the maintenance of the DHT overlay’s underlying routing tables [33].

Nevertheless, the burgeoning volumes of smart devices and sensors available at the

edge of networks open up the possibility for devices to carry out collaborative tasks
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without reliance upon centralized controllers. For example, multiple edge devices

could collaborate to complete a data analytics task that a single edge device could

not solve (perhaps due to device resource limitations or missing sensor data available

on a sensor nearby) [34, 35]. Secondly, a decentralized multi-user chat application

could enable users to discover and join chats without connecting to a central registry.

In these scenarios, on-demand workflows capable of spontaneously discovering mul-

tiple distributed services without central control, or central registries, are essential. The

resulting distributed pathways are complex and, in some cases, impossible to manage

centrally because they are based on localized decisions and operate in extremely tran-

sient environments.

Consequently, in dynamic environments, a new class of workflow methodology is

required—i.e., a workflow that operates in a decentralized manner and is capable of dis-

covering and intelligently co-opting service resources in a cognitive manner to achieve

a desired intent. By ‘cognitive’, I mean a cooperating set of resources capable of

deciding between themselves from local (decentralized) information and without cent-

ralized control, the best set of resources to participate in a particular workflow request.

By ‘intent’, I mean the ability of the distributed cognitive service architecture to re-

cognise and possibly learn similarities between workflow and sub-workflow requests

when considering such requests as commands. For example, a logistics company may

use multiple workflows to deliver a part to a specific destination. Two workflows that

source the part from different locations, via different assembly lines, but can deliver to

the same endpoint should be considered similar in terms of their ‘intent’.

In a more general sense, a workflow can be considered a sequence of operational steps

needed to complete a task. The workflow paradigm is not confined to computer sci-

ence; many human activities can be considered workflows. For example, the steps

required to sow a field or recover a harvest in farming and those carried out by factory

workers to create a part can all be considered types of workflows that humans carry

out.
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One interesting aspect of human orientated workflows is that the human brain is more

adaptable to changing situations and unexpected events than any workflow engine and

can improvise and discover new ways to carry out procedures. For decentralized work-

flow operation, especially in unreliable network environments, the ability to adapt and

improvise in a human-like manner would be highly advantageous. For this reason, this

thesis investigates the possibility of creating a new workflow methodology that com-

bines the state-of-the-art in computer workflows with the flexibility and potential for

adaption and improvisation offered by a sub-field of Artificial Intelligence (AI), namely

Vector Symbolic Architectures (VSAs), also known as Hyperdimensional computing.

1.4 Vector Symbolic Architectures.

A Vector Symbolic Architecture (VSA) is a form of brain-inspired computing for rep-

resenting and manipulating data in a high-dimensional vector space. Unlike classical

computing, which operates on bits through logical operations and the four arithmetic

operations of addition, subtraction, multiplication and division, VSAs deal with hy-

pervectors through three operations, superposition (a ‘bundling’ or addition operator),

permutation/multiplication (a ‘binding’ operator) and a vector normalisation operator.

Its distributed representation of information inherently makes the computing robust,

scalable and requires less time and data for training and inference.

Various vector space domains have been used for VSA implementations, including

Plate’s real-number Holographic Reduced Representations (HRRs)[36], and Frequency

Domain HRRs [37] and Kanerva’s dense Binary Spatter Code (BSC) vectors. Never-

theless, all VSAs use recursive bundling operations to build hierarchical vector rep-

resentations of objects from their sub-component vectors. For example, in VSA, a

document can be represented as a single VSA vector by hierarchically bundling its

sub-components starting from a set of unique letter vectors as follows; letter vectors

-> word vectors -> sentence vectors -> chapters vectors -> document vector. All vec-
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tors have the same size at every level in a concept hierarchy. The resultant top-level

VSA vector reflects its sub-components so that, at each level in the concept hierarchy,

vectors are semantically comparable.

VSAs have been used extensively in natural language processing [38–40] and cognit-

ive modeling [41, 42] because they are neurologically plausible and capable of sup-

porting a large range of AI tasks including: (a) Semantic composition and matching,

(b) Representing meaning and order, (c) Analogical mapping [43, 44], and (d) Logical

reasoning. For example, in the book ”How to build a brain”, Eliasmith [45] uses HRRs

as the basis for the Semantic Pointer Architecture Unified Network (SPAUN) a dir-

ect application of hyperdimensional computing that successfully demonstrates many

of these tasks using a single VSA model. For a summary and explanation of the tasks

SPAUN can complete (copy drawing, recognition/classification, reinforcement learn-

ing, serial working memory, counting, question answering, rapid variable creation and

fluid reasoning) see [45, Table 7.1, page 252].

In Kleyko [46] BSCs are used for various cognitive tasks, including a very com-

pact temporal pattern classifier small enough for implementation on low-end edge

devices [46, Page 45]. The implementation used only 1kB of memory for several

hundred training samples. A ‘one-shot learning’ implementation of the Hierarchical

Graph Neuron pattern classifier algorithm [47] which, compared to the original im-

plementation, has reduced time complexity (due to the parallel matching capabilities

of BSCs) and improved noise resistance (due to BCS’s inherent noise immunity) [46,

Page 61] and a distributed online learning anomaly detection task [46, Page 107].

Accordingly, most VSA architectures can support a similar set of cognitive tasks.

However, one important difference between HRR and BSC is that BSC implement-

ations are computationally more efficient in terms of both memory (real numbers for

HRRs cf. binary bit strings for BSCs) and processing for implementations (HRRs use

discrete-time Fourier transform (DTFT) for binding cf. bitwise XOR for BSCs).

Hence, this thesis investigates the potential of using VSA as the basis for a new decent-
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ralized workflow methodology capable of robust and flexible operation in unreliable

networks.

1.5 Hypothesis

A VSA based upon BSCs [48] can be used to define a rich and yet com-

pact encoding that will enable highly efficient representations of multi-

modal service descriptions, decentralized service and workflow discovery,

and distributed workflow execution. Further, this scheme will provide se-

mantic matchmaking capabilities that can facilitate reasoning on service

descriptions and service compositions, or workflows.

Applying VSAs to fulfil such objectives requires several research contributions, listed

below, that collectively make up the significant original contributions of this thesis.

Research contribution R1 - Self-describing, multi-modal semantic service objects:

I show how VSA BSCs can be used to build self-describing, multi-modal vector

representations of services, that allow for semantic fuzzy matching during ser-

vice discovery. For example, text and sound sample vectors could be combined

to describe an alarm sensor service. Matching can also be performed on approx-

imate values, for example we can ask, “find an object like ABC that is near this

location XY”, or “find an object ABC that has at least N noodles”.

Research contribution R2 - Hierarchical VSA bundling:

I extend VSAs using a novel hierarchical vector binding and bundling scheme

that maintains the ability to perform semantic matches and avoids the false ac-

tivation and nullification of embedded sub-vectors that plague previous schemes.

The scheme is capable of recursively bundling multiple levels of abstraction

(workflow and sub-workflows/branches) to a practically unlimited depth. The
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ability to scale is a major advantage since it is not unusual for workflows to

require many hundreds of individual steps in today’s microservice workflow ar-

chitectures. The new encoding encapsulates all the information needed to control

workflow discovery and execution without a central controller. It also provides a

unique context for every workflow execution step, which has the potential to

enable service agents to learn the meaning of other agents (and themselves)

in a similar way to how word meanings are learnt in Natural Language Pro-

cessing (NLP).

Research contribution R3 - Holographic dynamic message sizing:

Shows how the holographic properties of BSCs can be exploited to obtain further

bandwidth savings based on message content (the number of sub-feature vectors

encoded in a request, reply or service description).

Research contribution R4 - Bandwidth efficient distributed arbitration:

I have created a bandwidth-efficient mechanism for distributed arbitration of ser-

vice selection during workflow discovery that uses a delayed response mechan-

ism (inversely proportional to match quality) to arbitrate the best match, often

without the need for weakly matching responders to reply at all.

Research contribution R5 - Cognitive workflow model:

My computational model shifts workflow task allocation from a master/slave

‘push’ architecture to a Peer-to-Peer (P2P) ‘reactive’ model in which intelli-

gent cooperation between self-describing service entities occurs to complete a

workflow task. This is enabled via a one-to-many communication style (broad-

cast/multicast) so that autonomous workflow agents can monitor workflow re-

quests and decide for themselves whether they have capability to satisfy a re-

quest. Combined with (R4), this creates a truly peer-to-peer architecture capable

of operating in transient MANET environments without a central point of con-

trol.
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These contributions are integrated into the thesis narrative as follows:

• Chapter 2: Describes the requirements and vision of my sponsors, which is

to create ‘distributed, federated brain’, i.e., a system that can discover and ex-

ecute distributed microservices in transient MANET environments without cent-

ral control. I outline the project’s overall structure and goals and then describe

the specific goals of my sub-project area by way of an example scenario that my

sponsors created. From this, I extract a firm set of requirements that become the

target requirements used to drive the research presented in this thesis.

• Chapter 3: Surveys the state-of-the-art related work considering the strengths

and weaknesses of relevant areas that might fulfil the requirements laid out in

Chapter 2 including: workflows and WFMSs; existing decentralized service dis-

covery mechanisms; and alternate approaches for the creation of semantic ob-

jects that could be applied to the description and discovery of service objects

including, Symbolic AI, Ontologies and Artificial Neural Networks (ANNs). Fi-

nally I introduce VSAs, highlighting why they became my proposed candidate

for creating ‘cognitive’ workflows.

• Chapter 4: Describes the mathematical and statistical properties of VSA BSCs

and explains why BSCs were chosen over alternate VSA representations. It iden-

tifies the operations that can be used to create compound VSA objects represent-

ing collections of sub-features, i.e., service descriptions, and ordered collections

of sub-features, i.e., workflows, and explains why there is a limit to this. Fi-

nally, it discusses the standard methods used to represent ordered sequences in

VSAs giving examples of why these approaches break down when attempting to

create multilevel recursive objects like those necessary for the representation of

complex workflows.

• Chapter 5: Describes how to create (shallow) semantic vector representations

of microservices and service requests using VSA methods (R1). When used for
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matching during service discovery, the vectors are insensitive to order and ag-

nostic to unknown terms. It introduces a novel encoding method that enables

approximate matching on scalar values and shows how to convert existing se-

mantic vector objects to BSC, which improves matching and allows for multi-

modal vector embeddings (R1). Finally, it describes a method to automate the

encoding of existing JSON/XML service descriptions files into semantic BSC

vectors.

• Chapter 6: Describes a new hierarchical VSA encoding scheme (R2) that can

be used to scale linear workflows to a practically unlimited number of workflow

steps. The ability to scale is a significant advantage since it is not unusual for

workflows to require many hundreds of individual steps in today’s microservice

workflow architectures. The chapter details how the new encoding encapsulates

all the information needed to control workflow discovery and execution without

a central controller and without need to specify IP addresses. Finally, it describes

an empirical experiment that tests the encoding’s semantic matching capability

on a 20k sub-vector workflow hierarchy.

• Chapter 7: Describes how to leverage the holographic properties of BSCs for

the dynamic optimisation of workflow orchestration messages before they are

transmitted to the network (R3). It derives a mathematical model that can be used

to calculate the minimum vector size needed to differentiate between similar

Service Vector (SV) object descriptions and presents empirical verification of

the model.

• Chapter 8: Building from the theoretical, empirical evaluations and implement-

ations described in chapters 5, 6 and 7, this chapter describes how I brought

these different components together into a VSA platform that has been used to

address the various use cases described in Chapter 9. The overall computational

model (R5) used to enable decentralized services to self organise and cooperate

to complete a workflow is first presented along with an analogy of how a group
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of humans might cooperate to complete a task. The key features of the layer are

then described.

It then describes a python implementation of the platform giving step-by-step

descriptions and flow diagrams for both the active requester and listener/respon-

der. Details of how these are extended to encode and execute DAG workflows is

also described (R2). A real-time network emulator was used to emulate the op-

eration of multiple services in a MANET environment, which allowed services

to be moved and brought in and out of service.

• Chapter 9: This chapter describes the experiments and outcomes taken from my

published papers, which are used to evaluate the theory and platform/architecture

presented in the previous chapters.

• Chapter 10: The conclusion revisits my research question pointing out the gaps

I identified in the state-of-the-art. It then expands on the research contributions

outlined above before finally considering directions for future work.
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Chapter 2

Requirements

This research is sponsored by The International Technology Alliance in Distributed

Analytics and Information Sciences (DAIS-ITA) or DAIS which is an alliance of sev-

eral universities, industrial and government research laboratories from the United King-

dom (UK) and the United States of America (USA) [34][49]. Through discussions with

my project leads and co-researchers and extracted from various DAIS published and

unpublished documents, this chapter examines the DAIS research vision for the cre-

ation of a distributed federated ‘brain’ (a system that can intelligently compose, dis-

cover and execute workflows consisting of multiple cooperating microservices without

central control in dynamic MANET environments) from which I extract a firm set of

requirements that are used to drive the research for this thesis.

2.1 DAIS-ITA high level goals

The DAIS-ITA envisions future military operations will occur in both the physical

and cyberspace realms. They look to leverage the new capabilities that are becoming

available due to continuing technological advancement for tactical advantage. Such as,

increased bandwidth from 4G and 5G, low-cost phones, wearables, IoT, sensors, and

so forth. They envision a system of interconnected heterogeneous devices, sensors,

and, when available, back-end infrastructure, owned by multiple coalition partners that

can operate as a seamless whole taking into account the various priorities, data security,
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policies, and trust constraints of each partner. They recognise, also, that forward opera-

tions will occur in highly contested urban environments where digital communication,

especially wireless, will often be low bandwidth and transient due to the nature of the

environment. For example, large buildings can block wireless signals and jamming

devices are easily hidden in such cluttered surroundings. Hence, a key requirement

is that such an interconnected system should continue to operate, by finding altern-

ate ‘paths’ to complete workflow tasks (i.e., alternate devices, sensors, or processing

power), in ‘real-time’ and in the face of such transient environments, while simultan-

eously dealing with the challenges of a dynamically changing situation in which power,

computation and connectivity may be severely constrained.

In Verma et al. [35], some of the DAIS technical leads lay out their motivation and

vision for the creation of a “distributed federated brain”, i.e., a distributed Cognitive

Computing System (CCS). They recognise that when high speed reliable and inex-

pensive networks are available, adopting a centralized processing paradigm for a CCS

has many advantages. However, they describe situations where network connectivity

is often poor or even absent, including environments with mobile endpoints such as

automobiles, ships, drones, trains and robotic mules that need to move over wide geo-

graphical areas. Furthermore, in common with the motivations behind fog computing

[50] and mobile edge computing [51], they recognise that there are several conditions

under which a centralized CCS may underperform compared to a distributed CCS, even

where the network connectivity is favourable. For instance, when devices are gener-

ating a significant amount of data, extracting insights from the data can be computed

more efficiently near the location of data generation, as opposed to moving the data to

a central location. Also, as the processing power of distributed devices increases over

time, decentralized cognitive solutions can become more responsive, scalable, and in-

expensive.

In [35], the DAIS authors further identify that a ‘distributed brain’ must have several

key properties. It must be self-healing and resilient since it has to operate in an en-
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vironment where elements may lose connectivity to backend systems, and any of the

small component systems may disappear in an unpredictable manner. It has to react

rapidly to changing situations on the ground, so it must be predictive and proactive in

the decisions it makes. To deal with a dynamic environment, the system must be self-

configuring, agile and adaptive. Since it is dynamically assembled from a large number

of independent components, it needs to be a cooperative and collaborative collective

of individual components. Humans and machines have different types of analytic and

cognitive capabilities. The ‘distributed brain’ must integrate human analytics capabil-

ities into the machine analytics capability in a seamless manner.

Verma et al. [35] then identifies the following four attributes as key considerations that

must be addressed in the attempt to develop a distributed federated brain:

• Composability: How do we compose smaller elements into a larger aggregate

that works like a seamless whole? What are the principles that link the attrib-

utes of a component to the larger whole, and how can we compose components

belonging to different organizations with partial visibility and control in an en-

vironment with limited resources?

• Interactivity: How do different computing elements and people interact with

each other, both with other members of the groups and to external stimuli from

the environment? How should we model and understand the interactions between

different elements and information sources? How do different sub-brains work

together as a larger aggregate brain?

• Optimality: How can elements work together to obtain the optimal results in

an environment with constrained resources? How can analytics be performed so

that optimal performance is obtained automatically, instead of requiring complex

manual optimization?

• Autonomy: How can elements work together in a proactive manner understand-

ing future situations sufficiently well to operate with a degree of autonomous
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behavior? How can a system determine that autonomous operation is inappro-

priate and human intervention is needed? How can different elements simplify

the cognitive burden involved to best assist humans in the loop when intervention

is needed?

In the unpublished Initial Program Plan (IPP), these four attributes are then divided

into the following six project areas:

• P1: Software Defined Coalitions: will explore the principles by which different

elements across a coalition could be composed via control plane interactions to

form a virtualized larger element.

• P2: Generative Policy Models for Coalitions: will investigate approaches for

policy based management in a coalition environment with sufficient autonomy

to its constituent elements.

• P3: Agile Composition for Coalition Environments: will explore new archi-

tectures in which analytics code and data of various types (ISR, HUMINT etc.)

are mobile and composed together optimally.

• P4: Evolution of Complex Adaptive Human Systems: explores the properties

of external groups relevant to a coalition operation, and how such external groups

evolve over time.

• P5: Instinctive Analytics in a Coalition Environment: investigates approaches

for data and services can be matched together to create the analytics services [i.e.,

workflows] that are autonomous and optimal.

• P6: Anticipatory Situational Understanding for Coalitions: explores new

analytics algorithms for proactive situation understanding that can enable create

intelligent advisors for human in the loop systems.
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In the context of this thesis, a CCS architecture will consider the challenge from the

perspective of an interacting network of cognitive micro-services. Our micro-services

are cognitive in the sense that they comply with established principles of cognition

such as those defined by the Core Cognitive Criteria (CCC) [8], which to a large ex-

tent incorporate the four key attributes of composability, interactivity, optimality and

autonomy described above.

2.2 DAIS Cognitive Services Requirements

The research for this thesis comes specifically under the auspices of project P5. How-

ever, there is significant overlap with projects P1 and P3. P2 is also relevant since

workflow composition must consider data and service security policies. The remaining

part of this section, taken verbatim from the IPP, highlights a typical scenario along

with some of the related challenges which the various project areas must cover. (Ref-

erences to ‘we’ in this section should be read as ‘The DAIS team’):

Tactical coalition networks have two unique challenges related to compos-

ability [of workflows]. First, control can be distributed across coalition

members with different policies, priorities, resources, and levels of trust

among each other. Coalition members require secure access to resources

across coalition boundaries in order to interoperate and achieve desired

mission goals. Second, the level of dynamism is very high, due to the

variety and velocity of mobile resources (troops, vehicles, etc.), network

partitioning, and incomplete information, among other factors. In particu-

lar, network fragmentation and re-integration can be a common occurrence

and must be a central focus of any approach for composing resources. Co-

alition operations frequently require the creation of dynamic communities

of interests to conduct operations. This requires establishing functional

networks across organizations within minutes, if not seconds.
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Figure 2.1: Distributed Analytics Scenario.

Consider the scenario depicted by fig. 2.1— the command and control (C2)

obtains local (or global) situational understanding by querying informa-

tion from forward operating bases (FOB), which in-turn get localized in-

formation from associated services (Sij). These services [i.e., workflows]

could be providing any information collection, information processing or

information fusion functions. Furthermore, FOBs and Sijs may have com-

munication links with varying quality to obtain localized situational aware-

ness information from other resources, thereby improving their own situ-

ational understanding.

[DAIS believe that] future coalition networks will be composed of a set

of heterogeneous assets, exposing their capabilities through micro-service

architectures, that come together in an ad hoc manner to fulfil coalition

needs, thus realizing a fully distributed information processing eco-system

across the coalition boundaries.

However, one needs to have the means to bring these services together in a

seamless and timely manner to support decision making in this new oper-

ational context; traditional approaches in which knowledge about services

are centralized to match against user requirements will no longer scale in
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this setting. Thus, in this project, we require a system in which users spe-

cify their needs in a declarative manner, and the system infers required

services (or compositions) by automatically discovering (or composing)

them with respect to the declared user needs.

Project 5 provides a way to dynamically compose the analytics from the

appropriate services and, together with Project 3, will provide insights into

the development of a self-organizing declarative platform for analytics.

This platform will underpin the analytics layer for the system that will

perform information fusion for anticipatory situational understanding, ad-

dressed in Project 6.

In order to advance the current state of the art, we propose to undertake

two research tasks.

• Intelligent distributed analytic compositions: We will explore ap-

proaches that can use semantic technologies to form and orchestrate

services, and enable the attainment of a self-organising architecture.

• Anticipatory instantiations of coalition analytics: We will explore

approaches and algorithms for optimally instantiating service instances.

In order to address the above-mentioned questions, we propose the follow-

ing basic research activities:

• Self-Describing Services: We plan to explore new paradigms by

which we can make services self-describing— as opposed to existing

manual approaches—in order to enable seamless composition.

• Self-Discovering Services: We propose novel service discovery mech-

anisms wherein goals are declared and the system automatically finds

the desired services—be they atomic or composite—on its own by

matching the inferred features of services to the declared goals.
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• Self-Allocating Services: We will introduce a rigorous framework

for allocating services and resources to meet coalitional goals that

accounts for different levels of specificity (resources might need to

be allocated exactly as requested or sufficiently to fulfil a generalized

intent).

• Self-Provisioning Services: In dynamic environments, it is import-

ant to have strategies to optimally reallocate or re-provision service

plans. This is necessary, for example, when services unexpectedly

fail, when more suitable services become available during plan ex-

ecution, or when new exploitation opportunities of existing services

are identified.

• Non Von Neumann Analytics: We propose to investigate the poten-

tial for performing distributed analytics based on brain-inspired com-

putational models. We will explore the potential of neuromorphic

processing to be extended to a distributed network setting, as a rad-

ically new approach for future coalition operations.

2.3 Summary

From Section 2.2 and the perspective of this thesis, the key objective can be summar-

ized as follows; a means is required to discover and orchestrate sequences of micro-

services, i.e., workflows, on-demand, using currently available distributed resources

(compute devices, functional services, data and sensors) in spite of a poor quality (frag-

mented low bandwidth) network infrastructure and without central control. It is desir-

able to be able to compose such workflows on-the-fly in order to fulfil an ‘intent’. For

example, during field operations, a soldier on the ground may request the identification

of a vehicle as ‘civilian’ or ‘military’ using a command such as ‘identify vehicle at

location (x,y)’. Is it possible to dynamically compose and orchestrate a workflow that



2.3 Summary 24

will identify what local sensors and ANN classifier services are available in the area in

order to fulfil such a request? Sensors and services, which are likely located on mobile

devices, must be automatically discovered and connected to perform the analysis and

return an answer to the soldier using the available wireless MANET connections and

without centralized controllers.

From Verma et al. [35], in this approach micro-services are considered as semantic

concepts and can be processed as such. It is in this sense a distributed CCS can truly be

described as a ‘distributed federated brain’. The challenge is to develop an approach

where micro-services are self-describing, can self-discover other micro-services (in-

cluding data services, network services, policy and security services) and where micro-

services are self-allocating and self-provisioning in the sense that they can optimally

position themselves or be invoked within a network to perform the tasks demanded by

users. To achieve these goals, we require a common way to represent our cognitive

services and their capabilities. Distributed cognitive processing is then the patterns of

information flow and influence that occur across the network. The resulting cognitive

phenomena are a property of the larger systemic organization, rather than a property of

the individual micro-services.

In summary, a set of firm requirements for this research task have been identified as

follows:

• Investigate new methods that will enable services to be described semantically

so that alternate candidates, capable of completing a specific workflow step, can

be discovered in distributed network environments without the use of centralized

repositories.

– The ability to discover edge components, including sensors and functional

data analytic capabilities (programs/services) located at the edge without

central registers and domain name services, is needed.

• Investigate how workflows can be represented in a semantic manner that might
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enable invocation of alternate similar workflows to fulfil an ‘intent’.

– That is, can workflows be encoded so that they are semantically compar-

able, perhaps by considering and remembering the contexts in which work-

flows are executed or by using the order and alignment of similar individual

workflow steps within a workflow in a similar way to comparing sentences

in natural language processing?

– In addition, a means of orchestrating workflows in a peer-to-peer manner is

needed.

• Workflow operation must be robust to transient environments and capable of

continuing/completing a task in the face of loss of connectivity and loss of parti-

cipating actors (sensors/edge micro-services).

• We require the ability to operate in low bandwidth environments and to minimize

the communications overhead required run workflows.

• It should be possible to implement such a new workflow/service discovery ab-

straction in non Von Neumann neuromorphic hardware architectures.

– As noted in the requirements scenario, field operations are typically carried

out using mobile devices. For this reason any approaches that can leverage

the orders of magnitude reduction in power consumption promised by the

emerging non Von Neumann neuromorphic hardware architectures is very

attractive.
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Chapter 3

Related Work

This chapter describes related work that is relevant to the thesis objectives. I sur-

vey the current state-of-the-art concerning workflows and WFMSs highlighting areas

of weakness in the context of my requirements summary and specifically transient

MANET environments. I then discuss the technologies available for service discovery

and consider how these can be applied in distributed environments by assessing each

approach’s ability to perform fuzzy semantic matching. Alternate methods for creating

semantic objects that could apply to the description and discovery of service objects

are then discussed. Finally, I introduce VSAs, highlighting related work and why they

are a candidate for creating ‘cognitive’ workflows.

3.1 Workflows and Workflow Management Systems

A WFMS is used to manage the complexity of executing the parallel processing streams

of a distributed application, i.e., a workflow. It manages the various process steps that

are required to execute a task on multiple machines, including the task partitioning,

allocation and instantiation of the steps needed to complete the task and the collection

and collation of the results returned from the parallel execution streams. A WFMS

workflow specification describes how the distributed application is to be partitioned

and the order of execution of the workflow steps, as well as the locations of the data re-

sources needed for input and output. Some WFMSs use a programmatic style for work-
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flow specification, for example, the Swift/T [52] and Pegasus [53] scientific WFMSs

whereas others, such as Triana [54] [55] and Node-red [56], use service-based work-

flows and include a visual programming environment to enable black box compute/data

nodes to be wired together graphically. The Apache Taverna WFMS [23] is a SOA

based system that provides both a graphical workbench environment and scripting lan-

guages. The newest Taverna scripting language uses SCUFL2 [57], a formal ontology

built on OWL WC3 semantic web standards, in order to enable support for service

discovery [58], but service providers are centralized and require manual configuration.

For resource allocation and scheduling, modern WFMSs typically require the high

bandwidth, stable network environments that are typical of LAN connected computer

clusters and, for geographically distributed data analytics, the internet backbone. This

allows the WFMS to maintain a worldview of the available resources from which it

can employ complex resource allocation and scheduling algorithms to optimise the

throughput of a shared set of computing resources. In addition, message passing

between the partitioned sub-tasks always flows through the WFMS engine because,

having scheduled and instantiated the tasks, it is the single point of control that is

aware of the network location of each sub-task.

Hyperflow [27] is based on a formal model of computation called Process Networks,

which uses asynchronous signals to coordinate flow. Such signals can operate in a

decentralized way, but currently, there is no service discovery component; rather, it

relies on the node.js [59] execution environment and employs third-party tools, such as

RabbitMQ [60], to coordinate services. Petri net workflows [61] offer a decentralized

approach by using directed bipartite graphs, in which the nodes represent transitions

(i.e., events that may occur, signified by bars) and places (i.e., conditions, signified

by circles). However, such workflows require predefined DAG-based workflows with

concrete endpoints to be defined before deployment.

Newt [62] is designed to address network edge workflow environments by providing

a reusable workflow methodology for decentralized workflows that incorporates de-
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centralized execution and logic, support for group communication (one to many) and

support for multiple transports e.g., TCP, UDP, multicast, ZeroMq. However, although

Newt has discovery interfaces available, it currently supports only pre-configured pro-

files for its nodes, so dynamic service discovery is not possible. In the Newt paper,

the authors used the dialogue from William Shakespeare’s Hamlet [63] as a workflow,

where each actor is a node that decides what line to say and who to say it to, and the

sending of those lines represents the network payloads. They argued that this example

is highly illustrative of group conversations or distributed analytics at the edge, where

complex local decisions are made and communicated to the distributed node(s) in a de-

centralized way. The play contains several instances where an actor speaks to several

actors, thus creating natural distributed communications and there are other instances

where an actor will speak to himself, causing looping.

The DENEB [64] business workflow system (based on a high-level type of Petri nets)

supports runtime discovery of the service objects required to execute a business work-

flow and is an excellent implementation for mainstream internet e-commerce and busi-

ness logic workflows since it can use formal methods to prove that the selected Petri net

network will implement the desired business logic correctly. It also uses semantic web

standards to facilitate service discovery. However, once again, the platform is designed

around a set of manager middleware components that are unlikely to be effective in our

transient, low bandwidth environments.

For IoT environments, more and more research is focusing on moving the data analytics

task to the edge [65]. Emerging technologies such as Apache Edgent [66] and EdgeX

Foundry [67] are aiming to define standards and programming platforms/architectures

for edge devices that will enable data analytics at the edge. The primary objectives

are to reduce the input/output and processing loads experienced by central servers as

well as to reduce the consumption of communication bandwidth and to enable the

possibility of real-time control of devices in control room scenarios such as factory

assembly lines or large building management systems. For example, monitoring of a
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factory assembly line’s sensors can be performed locally and in real-time on the edge

devices until an anomaly is detected, which might then be relayed to a central server

for further analysis and alarm/action processing. In contrast, consider the load imposed

on a central server and the communication bandwidth cost of taking and processing

thousands of factory sensor readings per second in real-time.

In all of these approaches, stable connectivity among edge devices and to the cent-

ral server is assumed, as is a known network address location for each device. For

more conventional data analytics environments, as previously stated, it is significantly

more practical and efficient to maintain centralized catalogues with load balancing via

a centralized system when high bandwidth reliable connections are available. In low

bandwidth, highly transient MANET networks, such as those operating in military bat-

tlefield scenarios, it is impossible to rely on central registries because a single node

can never be guaranteed to be available all of the time and consequently, a decentral-

ized approach is needed. On-demand distributed analytics workflows for general col-

laborative environments need spontaneous discovery of multiple distributed services

without central control [35]. Applying the current state-of-the-art workflow research

to such dynamic environments is impractical, if not impossible, due to the difficulty

in maintaining a stable endpoint for a service manager in the face of variable network

connectivity; current workflow approaches are more focused on operating on highly

available distributed computing infrastructures using TCP, centralized management

and service discovery. Consequentially, for workflow architectures required to operate

in highly dynamic MANET environments, service discovery is of critical importance

and requires a different approach to the methods used when reliable communications

is available.
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3.2 Service Discovery

Service discovery is a difficult problem even when services are hosted in centralized

repositories. Much research has been carried out for service discovery in MANET en-

vironments [68–73]. The additional complexity relates to service node mobility and

associated frequent network fragmentation as well as limited bandwidth, latency and,

for battery operated mobile devices, available power. An excellent survey of service

discovery in MANET environments is found here [74]. The two main approaches used

for service discovery in MANETs are directory based and directory-less architectures

(hybrid approaches can switch between both mechanisms as network characteristics

change). In proactive directory based protocols, services must advertise their presence

to the network, via uni-cast (when dedicated directory servers are allocated) or broad-

cast/multicast. In reactive directory-less protocols, clients issue queries, usually via

broadcast or multicast to which potentially multiple services respond. Each approach

has advantages and disadvantages based on the MANET’s operating characteristics.

For example, in directory based approaches, directory maintenance imposes additional

bandwidth and power demands on the network. If it is desirable to get whole net-

work coverage for service advertisements and queries, directory-less approaches using

broadcast or multicast can cause significant network congestion when there are high

volumes of requests and service announcements in the network.

In both approaches, to facilitate matching, service announcements and client requests

must be encoded in some form. Simple approaches use well defined/known service

names or Universally Unique Identifiers (UUIDs) for example, Jini [68], mDNS [69–

71]. For more complex matching, service attribute lists are used in the form of key-

value pairs, e.g., INDI [72], ProtoSD [73]. Some architectures have attempted semantic

web/ontology based matching [75–77]. However, in current approaches, as noted by

[74] “it should be noted that in this class of protocols the ontology must be common

for all nodes, and hence a priori agreed to among them”.

A key requirement for DAIS is to locate objects that can fulfil the ‘intent’ described
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by a workflow specification of a complex data analytics task in the face of very transi-

ent fragmented networks. If an exact service match cannot be found during workflow

execution, finding whatever alternatives are available to complete the task is desir-

able. Thus, a mechanism that can perform semantic matching to discover objects in

geographically local, highly fragmented networks is needed. This is complicated in

coalition environments, where services are developed and deployed independently or

by loosely cooperating partners in open environments, because the matching methods

described here require search terms (UUIDs, attribute names, and ontology definitions)

to be agreed upon in advance. For wireless military networks, a further issue with the

current service discovery architectures is protocols requiring service announcement-

s/advertisements may offer an adversary a chance to set up an attack on such a network.

In the next section, we consider how services might be described semantically in order

to obtain the most flexible and ‘intelligent’ matching scheme.

3.3 Semantic representations and matchmaking

Knowledge representation [78–80] is an important sub-branch of AI and is used heav-

ily by the cognitive sciences [43, 45]. This section considers the available approaches

for semantic representation of complex objects, such as microservices, that will enable

discovery of target services and alternatives during workflow execution. In addition, a

means to semantically compare entire workflow and sub-workflow objects is required

so that alternate workflows can be found and executed in response to the original work-

flows functional ’intent’. For example, in the context of DAIS, a coalition member

requesting a particular workflow to be executed could be fulfilled by a partner member

but using the partner’s version of the original workflow request. (Coalition members

will cooperate to fulfil a goal but have their own rules, procedures and workflows.)



3.3 Semantic representations and matchmaking 32

3.3.1 Symbolic AI

Symbolic AI uses ‘atomic’ symbols to define higher-level concepts. The rules for ma-

nipulating and reasoning on such concepts are also defined using the underlying atomic

symbols, as are the production rules (rules that define how to generate valid sequences

of symbols). Examples of the symbolic approach to AI are, traditional programming

languages, such as C++ and Java (which, via classes, use symbols to encapsulate data

and the procedures that are allowed to operate on data), expert systems created out

of traditional programming languages, cognitive modelling systems such as Adaptive

Control of Thought-Rational (ACT-R) [81], and so forth. Traditional von Neumann,

computers implement Symbolic AI systems. Computer ontologies are used to further

facilitate complex semantic, search, retrieval and manipulation of objects and concepts

in Symbolic AI approaches, particularly when such data are stored across the widely

distributed heterogeneous computer storage and database sources that is the internet.

Ontologies

An ontology is a set of concept labels and the relationships between such labels used

by both scientists and philosophers alike in attempting to ‘externalise’ and formalise

the brain’s inbuilt ability to understand objects and concepts in the world. In science

an ontology tends to be specific and restricted to a specialized field. Many ontolo-

gies have been developed and published on subjects as diverse as physics, biomedical

science, law, supply chain, colour, military operations and confectionery to name but

a few. An ontology’s main purpose is to represents knowledge, i.e., the attributes,

properties and relationships of concepts and objects in a specific field. One aim of

an ontology is to provide a common lexicon, that is, an agreed-upon set of symbolic

tags, to enable individuals within and without organisations to communicate on a spe-

cialized subject. In computer science, an ontology enables machines to interface and

communicate with humans as well as enabling autonomous machines to communicate

and compare data via meta-data tags and well defined relationships. This approach
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has proven very successful for many knowledge-based systems and indeed much of

the power of internet search engines comes from being able to process the meta-data

tags embedded in HTML and XML documents. This is being extended further by Web

Ontology Language 2 (OWL 2) and Web Ontology Language for Services (OWL-S)

which are ontology languages aimed at further enhancing semantic lookup for internet

linked data objects and are major components of “The Semantic Web” [82] as defined

by The World Wide Web Consortium (W3C) [83]. Nevertheless, ontologies have some

disadvantages, particularly when applied to the representation of distributed service

objects.

Sabou [84], for example, provides a comprehensive review of issues relating to the

use of OWL-S for web service representation and notes, “An investigation of OWL-S

from an ontological perspective revealed that it presented conceptual ambiguity, poor

axiomatization, loose design and narrow scope thus leading us to the conclusion that

the ontology has a low clarity in semantics and these semantics are poorly formal-

ized.” Additionally, [84] notes, “We observed that the generally available data sets

for ontology learning are textual descriptions of the offered functionalities (e.g., API

documentation, or Web service comments). These textual descriptions have a low

grammatical quality and they employ natural language in a specific way.”

Dong et al. [85] surveys the state of the art with respect to Semantic Web Service

(SWS) match-makers noting, “Unfortunately, none of the existing match-makers has

focused on solving this issue by proposing a dynamic service discovery methodology

that automatically adapts to different types of SWS [ontology] languages and paramet-

ers.”

With respect to the semantic web in general, McCool [86] observes, "The ontological

data model makes representation of any nontrivial factual information difficult because

it can‘t represent context of any kind." and "Each of these formats has seen phenomen-

ally low adoption rates." leading him to declare in [87], "The Semantic Web has failed

to produce communities, quantity, or quality."
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Blass et al. [88] and Iliadis [89] describe one of the central issues relating to the use

of ontologies in general, namely the Tower of Babel problem (ToB) which relates the

problem of how domain experts can collaborate to achieve a common goal when they

do not share a common language. In terms of ontology development, the ToB states

that each time a new database or ontology is constructed, new terms are developed that

represent an ever-changing language, thus complicating applied ontology-building, the

goal of which is to produce semantically strong ontologies that can last over time [89].

In summary, when using ontologies for discovery of distributed service objects, some

of the main issues are listed below.

1. Ontology specification/development requires a lot of effort and cooperation between

domain experts and software engineers. Even then, ontologies only work best in

narrow, highly specialized, use cases.

• despite the effort represented by W3C and OWL 2, because of these diffi-

culties, it is challenging to impose standards, especially in loosely cooper-

ating coalition environments. Alatrish [90] compares five ontology editor

tools and notably concludes “It is quite clear that Ontology development is

mainly an ad-hoc approach”.

• In contrast, since its inception, the exponential growth of the internet is

arguably due, in no small part, to the simplicity, ease of use and uptake of

the original internet standard, HTML, URIs and HTTP [84].

2. Ontologies tend to become large and unwieldy and are difficult to extend and

maintain [84, 91].

• This is not ideal in an edge device scenario, particularly when considering

maintenance and backwards compatibility.

3. Ontologies developed separately cannot be easily combined/merged.
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• “The ToB problem is what prevents ontologists from realizing the full po-

tential of ontologies. Each new category and relation from a different do-

main threatens to undermine an ontology by the heterogeneity of the labels

and data structure.” [89].

4. Concepts based on different ontologies cannot be easily combined (added to-

gether into a single concept) because semantic reasoning and comparison en-

gines are specific to a particular ontology and do not work across separately de-

veloped ontologies without the use of complex translation/mapping techniques,

which are often computationally expensive [85, 89, 92].

These issues are especially problematic when services are created in a coalition type

environment where developers create services independently and often with little or no

common standards. Further, Symbolic AI is considered to be notoriously brittle [93–

95] because it is difficult for a programmer to account for every possible case / code

path in a complex decision tree and such code paths cannot be easily adapted to chan-

ging situations. In addition, ontologies are difficult to perfect, extend and maintain.

In contrast, the Connectionist approach to AI, i.e., ANNs are capable of adapting and

‘learning’ in changing situations. They are more capable at generalising, and can cope

with imprecise inputs.

3.3.2 Connectionist, Sub-Symbolic AI

The Connectionist approach to AI [96–99] employs ANNs. These are large mul-

tilayered networks of mathematical units (artificial neurons), connected in matrices,

that perform a relatively simple mathematical operation (such as integration) in paral-

lel to discover statistical relationships in data of any kind including, image, sound, text,

and speech. ANNs are very good at pattern matching and can often outperform humans

at such tasks. They are capable of learning gameplay and machine control tasks. They

can even exhibit emergent behaviour which, depending on the task at hand, may be
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desirable (e.g., new variations in gameplay) or undesirable (e.g., autonomous car pi-

loting). ANNs are not good at complex reasoning tasks such as might be required

in a situation where improvisation is necessary to get a successful outcome. Inspired

by [100], some of the advantages and disadvantages of ANNs to distributed service

discovery are highlighted below:

Advantages of Artificial Neural Networks (ANN)

1. ANNs are distributed representations: The set of weights associated with each

neuron in a trained ANN (also known as a “model”) represent where information

is being stored about the data on which the ANN has been trained. Individual

weights participate in the conversion of multiple individual data inputs to data

outputs (classification) and multiple weights, but not all are effectively combined

to create the output corresponding to a single input. (Note an “input” must also

be presented to the network in some form of distributed set of values, i.e., a

vector.)

2. ANNs are robust to noise and corruption: Distributed representations are ro-

bust to input noise and can continue to function even if part of the network is

corrupted.

3. ANNs are able to generalise: For the same reason as 2), ANNs can produce

sensible output for previously unseen inputs - this is the major power of ANNs.

4. Parallel processing capability: Due to the parallel organisation and execution

plan of ANN models they are ideally suited for operation on GPUs (gaining

significant speed-up), and they are also suited for implementation on Non von

Neumann neuromorphic architectures (gaining speed-up and reduced power con-

sumption).
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Disadvantages of Artificial Neural Networks (ANN)

1. Unexpected network behaviour: The weights in a trained ANN are derived

using statistical methods, which means that they represent a probability distri-

bution and do not have ‘defined’ behaviour for a previously unseen input, i.e.,

they are non-deterministic. This makes them opaque to analysis and leads to

the potential for unexpected outputs. Consequentially, this reduces trust in the

network.

2. ANN training: ANN training takes considerable effort, often needing thousands

of labeled samples and taking days or months to train even on dedicated highly

parallel, expensive, hardware.

• This is a particular problem when there are not many training samples avail-

able as is the case for the types of workflows used in military scenarios.

3. Centralized architecture: Due to point (2) as well as the sheer size of many

modern ANNs, training must be carried out centrally. (Note, federated/distrib-

uted training of ANNs is currently in the early stages of research.)

4. Fixed, Numeric Input Format: The inputs to an ANN must be converted to

a fixed size numerical vector format. Hence, an ANN cannot process a change

in input format especially where additional input fields are required, i.e., they

cannot easily cater for object descriptions of different size or shape (e.g., number

of sub-features).

Hence, the Connectionist AI approach offers the potential that ANNs might be capable

of learning the “meaning” of services, i.e., their transfer functions, and hence be cap-

able of better generalising when trying to find an alternate service for some specific

step in a workflow. In addition, the robustness offers potentially significant advantage

in contested, transient MANET type environments. Also, ANNs are more neurally

plausible, a DAIS requirement, and, since they are distributed representations, they
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might feasibly be implemented on the emerging Non von Neumann neuromorphic ar-

chitectures (another DAIS requirement).

Nevertheless, the fact that ANNs are non-deterministic and need to be trained cent-

rally with many training examples is detrimental. Further, it is difficult to see how

workflow orchestration can be carried out using only neural networks. Consider the

practically infinite number workflow graphs that could be created from a reasonable

number of workflow steps (services). How could a neural network be trained to cor-

rectly orchestrate such a large number of graphs? Therefore, from the perspective

of distributed service orchestration, it seems that the Symbolic AI approach may be

more advantageous. (Currently all workflow orchestration engines are implemented in

normal, symbolic, programming languages.) In addition, much work has been done

in the service discovery area using Symbolic AI, i.e., the W3C, OWL 2, and OWL-S

standards.

This dichotomy of advantages and disadvantages between the two approaches is high-

lighted, as a general issue, clearly by Kelly and West [101] along with a possible solu-

tion when they state, "The classic symbolic approaches to modelling do not account for

how the symbol manipulations described in the model could arise from neural tissue,

or account for how the symbols themselves come into existence. Classic connectionist

approaches are more concerned with neural plausibility, but are notoriously opaque,

doing little to aid our understanding of the cognitive processes modelled. By contrast,

the [vector-symbolic] approach to modelling explicitly provides an account at both

levels of description."

3.3.3 Vector Symbolic Architectures

Vector Symbolic Architectures (VSAs) [36, 46, 48, 102] are a family of bio-inspired

methods for representing and manipulating concepts and their meanings in a high-

dimensional vector space. They are a form of distributed representation that enables
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large volumes of data to be compressed into a fixed size feature vector in a way that cap-

tures associations and similarities as well as enabling semantic relationships between

data to be built up. Such vector representations were originally proposed by Hinton

[103] who identified that they have recursive binding properties that allow for higher

level semantic vector representations to be formulated from, and in the same format as,

their lower level semantic vector components. As such they are said to be semantically

self-describing. Eliasmith coined the phrase ‘semantic pointer’ [42, 45] to describe

VSA compound/concept vectors because a VSA vector contains noisy copies of each

sub-feature vector from which it was built, i.e., it is ‘pointer’ to each sub-feature. That

is, a high-level VSA concept vector can be ‘unbound’ into a set of noisy sub-feature

vectors each of which can be used to look-up the fully specified ‘clean’ version of it-

self, stored elsewhere in ‘clean-up memory’. At the same time, the VSA compound

vector simultaneously represents the collection of sub-features as a semantic concept

(which can be manipulated directly without unpacking the sub-features).

Typically, in VSA, a basic set of symbols (e.g., letters in an alphabet) are each assigned

fixed, randomly generated, hyper-dimensional vectors. Due to the high dimensional-

ity, these vector symbols are uncorrelated to each other with a very high probabil-

ity. Hence, they are said to be atomic vector symbols [48]. Vector ‘superposition’

(a bundling operation) is then used to build new vectors that represent higher-level

concepts (e.g., words) and these vectors, in turn, can be used to recursively build still

higher-level concepts (sentences, paragraphs, chapters and so forth). These higher-

level concept vectors can be compared for similarity using a suitable distance meas-

ure such as Normalised Hamming Distance (HD) or Cosine Similarity. VSAs have

been used extensively in natural language processing [38–40] and cognitive modeling

[41, 42] because they are neurologically plausible and capable of supporting a large

range of AI tasks including: (a) Semantic composition and matching, (b) Representing

meaning and order, (c) Analogical mapping [43, 44], and (d) Logical reasoning. Such

properties are desirable to the challenge of creating cognitive workflows since they

have the potential to fulfil many of the requirements listed in Section 2.3. The abil-
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ity to represent both meaning and order in a single fixed-size representation suggests

the ability to combine both semantic service object descriptions and ordered workflow

steps into a single compact abstraction. Semantic matching and analogical mapping

suggest the possibility of being able to find workflows that are encoded differently but

that ultimately carry out the same, or a similar, function, i.e., fill an ‘intent’. Since they

are self-describing, they could be used to contain all the information needed to oper-

ate workflows without centralized control. Since the representation size does not grow

as the complexity of the object (service or workflow) grows, they can provide a fixed

size overhead for low bandwidth communication environments. Since VSA vectors

act as both description and address of an object, they may be used to discover objects

semantically as well for passing data between objects. (For example, by using the

VSA vector as a parameterized address of an object in a multicast Remote Procedure

Call (RPC).

3.4 Summary

In summary, the state-of-the-art workflow management systems use centralized con-

trollers and are reliant on high bandwidth stable connections. Where this configuration

is supported, it is highly effective. However, when connectivity is not guaranteed,

it is essential that workflows can operate without central control and are able to find

alternate services, especially when the workflow task is time-critical.

State-of-the-art WFMSs employ Symbolic AI and ontologies (W3C and OWL 2). How-

ever, Symbolic AI is brittle and inflexible when it comes to coding complex behaviours

that need to adapt and change over time. Similarly, ontology creation and development

become problematic as complexity and term coverage requirements increase. On the

other hand, Connectionist AI is good at generalising upon many types of data. It is

robust to noise, and the representation is compatible with emerging neuromorphic ar-

chitectures. Nevertheless, training requires centralized hardware and large volumes of
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data. Also, ANN output to previously unseen data is non-deterministic.

A Vector Symbolic Architecture (VSA) has the potential to gain the benefits of both

sides of the argument. At the symbolic level, VSA objects can be manipulated, com-

bined and operated on in the same way as conventional Symbolic AI using well-defined

mathematical operators. Since each symbol has an underlying distributed representa-

tion, like Connectionist AI, they are robust to noise. They can generalise since when

VSA symbols are combined/bundled, the sub-components bear semantic similarity to

the bundled object.
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Chapter 4

Fundamentals of Vector Symbolic

Architecture and Binary Spatter

Codes

This chapter first considers types of VSA explaining why I chose to base this work

on Binary Spatter Codes (BSCs). Details of the statistical properties of BSCs are then

examined because they are important when assessing BSC vector comparisons. They

also affect the number of sub-feature vectors that can be combined to create a concept

(i.e., service description or workflow). I show how multiple BSC vectors are bundled

together into compound objects and explain why there is a limit to this and, hence, to

the ability to represent complex service and workflow objects without using recursion.

A review of methods for creating ‘set’ like objects is given, showing how to access

individual set members (i.e., sub-vectors). Finally, I discuss the standard methods used

to represent ordered sequences in VSAs and give examples of why these approaches

break down when attempting to create multilevel recursive objects like those necessary

for the representation of complex workflows.
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4.1 VSA types

VSAs use hyper-dimensional vector spaces in which the vectors can be real-valued,

such as in Plate’s HRRs [36], typically having dimension (D), where (512 ≤ D <

2048), or they can be large binary vectors, such as Pentti Kanerva’s BSCs [48], typ-

ically having D ≥ 10, 000. As mentioned in Section 3.3.3, semantic concepts are

represented by combining multiple sub-feature vectors into a single concept vector us-

ing a bundling operation. The statistical variance and standard deviation of similarity

comparisons is directly proportional to 1/
√
D (see Fig. 4.1 and Eq. 4.3 for BSCs

and [36] for HRRs). Higher dimensionality, therefore, increases usable sub-vector

‘memory capacity’.

For example, when sub-vectors are orthogonal, Kleyko [46, Paper B, page 80] estim-

ates the capacity of 10kbit BSCs to be approximately 89 sub-vectors. In [36, Appendix

C], Plate derives a lower bound for the capacity of HRR superposition memories when

sub-vectors are orthogonal as

k ≈ D

3.16 ∗ ln(m/q3)
+ 0.25 (4.1)

Where:

k = number of sub-vectors that can be successfully decoded.

D = the dimensionality of the vectors.

m = the the total number of vectors in the ‘vocabulary’ or search space.

q = the probability of error in decoding all of the contained sub-vectors correctly.

When D=10, 000, m=100, 000 and q=10−6, equation (4.1) estimates the capacity of

HRRs to be k = 62 sub-vectors which compares well to Kleyco’s result of 89 for BSCs.

In practice, however, BSCs typically use higher dimensionality that HRRs. This is be-

cause HRRs use real-number vector elements compared to bit field elements for BSCs.

Therefore, BSC vectors consume only 1.56% per dimension of the memory consumed

by an equivalent, 64bit float, HRR implementation. In addition, HRRs use circular con-

volution (discrete Fourier transforms) whereas BSCs use bitwise exclusive-or, a much
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simpler operator. Hence, BSCs have a significantly lower cost in terms of memory and

processing for implementations. Indeed, Recchia et al. [40] compare circular convo-

lution (HRRs) and random permutation (BSCs) for performance and memory capacity

on a natural language task finding, “Random permutations outperformed convolution

with respect to the number of paired associates that can be reliably stored in a single

memory trace. Performance was equal on semantic tasks when using a small corpus,

but random permutations were ultimately capable of achieving superior performance

due to their higher scalability to large corpora.” For the large corpus, [40] found the

HRR solution to be intractable, reporting issues with computation time and storage ca-

pacity and noting the computational complexity of HRR solutions to be O(k.log(k))

compared to O(k) for BSCs.

Complex workflows might consist of many hundreds of microservice steps requir-

ing the ability to store many sub-feature vectors. Hence, taking into account usable

memory capacity and CPU processing cost, 10kbit BSCs vectors1 was chosen as a

basis for the work here. Nevertheless, it is noted that most of the equations and opera-

tions discussed should be compatible with HRR solutions.

4.2 Binary Spatter Code Vector Space Distribution

BSCs of dimensionality 210k represent a vast vector space. By comparison, a com-

monly accepted estimate for the number of particles (protons, neutrons, neutrinos,

electrons, and photons) in the known universe is only 2561 [104]! As mentioned in

Section 3.3.3, typically in VSA, a basic set of symbols (e.g., letters in an alphabet) are

assigned fixed, randomly generated vectors that are nearly orthogonal to each other.

These are then combined to build new vectors that represent higher-level concepts

(words, sentences, paragraphs, chapters and so forth) which can then be compared for

1From now on when using the term ‘vector’, unless otherwise stated, I mean Kanerva’s dense BSC

vectors.
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similarity using HD or, since we are concerned with matching rather than differences,

Normalised Hamming Similarity (HDS), i.e., HDS = 1−HD.

When generating the atomic symbol set (e.g. alphabet vectors), the probability of

any particular bit being set to a 1 or 0 is 0.5. Hence, for very large independent

and identically distributed (I.I.D) random vectors, the result will be, approximately,

an equal 50/50, split of 1s and 0s distributed in a random pattern across the vector.

Therefore, when comparing any two such randomly generated vectors, the expected

value will be HD=HDS=0.5.

Figure 4.1: Distribution of random vectors with increasing dimension, 108

samples for each vector size.

The HDS comparison of two D dimensional, vectors is equivalent to carrying out ‘D’

Bernoulli trials. Therefore, such comparisons will have a binomial distribution, which

for a high number of comparisons is closely approximated by the normal distribution,
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see Fig 4.1. The variance, Eq. 4.2, and normalized standard deviation, Eq. 4.3 of the

binomial distribution are shown below.

var(µ) = D ∗ p(1− p) (4.2)

σ(µ) =
√
D ∗ p(1− p)

σn(µ) =
√
p ∗ (1− p)/D (4.3)

Thus comparing two I.I.D random BSC vectors of length D=10kbit having bits bi ∈

{b0, b1, · · · , bD−1}, where P (bi = 1|0) = p = 0.5, gives,

var = 10000 ∗ 0.5(1− 0.5) = 2500

σ =
√
2500 = 50

σn = 50/10000 = 0.005

Due to this very tight variance, a practically unlimited number of atomic random

vectors can be generated as needed, on the fly, without fear that the newly gener-

ated vector will be mathematically similar to any existing vector in the vector space.

For example, fewer than 1 in 109 of any two such vectors will be closer in simil-

arity than HDS >= 0.53, see Fig. 4.1; that is, further away from the HDS mean

than six standard deviations, or differing in only 4700 bit positions instead of approx-

imately 5000. Moreover, by implication, when comparing ‘concept’ vectors a result

of hds(v1, v2) >= 0.53 implies a significant similarity with a probability of error

≤ 10−9. A value of hds(v1, v2) >= 0.524 between two vectors implies a match with

a probability of error of ≤ 10−6.

4.3 VSA Bundling operations

For BSCs, bundling is performed using bitwise ‘majority_sum’ addition (i.e., bitwise
majority voting) [48]. Simply put, for any particular column of bits in the sum, the
majority wins; ties are broken randomly. In this text we will denote the majority sum
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operation of n vectors as [V1 + V2 + · · ·+ Vn], where [· · · ] indicates the normalisation
step. Hence, Z = [V1 + V2 + · · ·+ Vn] means add the sub-vectors first, then normalize
so that, for any bit position i, set the corresponding output bit Zi as follows,

Z[i] =



1, if (

n∑
j=1

Vj [i])/n > 0.5

0, if (

n∑
j=1

Vj [i])/n < 0.5

random, if (

n∑
j=1

Vj [i])/n = 0.5

(4.4)

The resulting vector, Z, is often referred to in the literature as a ‘memory trace’ or

alternately, ‘compound vector’, as well as ‘concept vector’. When the number of sub-

vectors to be combined is greater that the decodable capacity of a single vector, the

sub-vector list can be split into a number of smaller groups each of which is then

bundled into chunks. These chunks can then be bundled into a single vector represent-

ing the entire concept in a hierarchical manner, a procedure known as chunking. The

output of a bundling operation is of equal size to its sub-feature vectors and represents

the lossy superposition of these components such that each vector element in the result

participates in the representation of many entities, and each entity is represented col-

lectively by many elements of the resultant vector [41]. The sub-vectors of a sum, such

as Z above, can be probed for using HD or HDS. Since BSCs are I.I.D, the expected

normalized hamming distance, µy, of such a test can be formulated by considering the

majority sum over a single bit-column as shown in Figure 4.2. Consider the column

outlined in green in the figure, from the point of view of each sub-vector, the bit in the

sum vector Z1 will match that of the sub-vector if half or more of the other sub-vectors

have the same bit value. For BSC vectors containing n, distinct sub-vectors, the mean

expected value, µy, is given by Eq. 4.5. This is equivalent to the normalized hamming

distance and is independent of vector dimension. The vector dimension, D, determ-

ines the variance of the mean and is given by eq. (4.3). In Figure 4.2, note that, for

a given D, the standard deviation of the mean is greatest when vectors are orthogonal

(mean = 0.5).
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νy = 1− 1

2m

m∑
i=⌊m/2⌋

(
m

i

)

m = n if n even.

m = n−1 if n odd.

n = # of vectors.

(4.5)

Figure 4.2: Expected, hamming distance, µy of a sub-vector memory-trace.

The majority_sum for odd numbers of vectors is always well defined since for each

column, count(0s) ̸= count(1s). For even numbers of vectors, ties ′?′ are broken

randomly, for example,

10110101
+ 00110011

?0110??1

This can be achieved by appending a randomly generated vector into the sum. For bit

columns already having a majority (marked as ‘⊠’) the random vector does not affect

the sum’s output bit,

10110101
+ 00110011
+ 0⊠⊠⊠⊠01⊠

00110011

As mentioned above, for a given vector dimension, there is a limit to which sub-vectors

can be bundled into a single chunk vector while remaining detectable. This should
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be fairly evident since, when increasingly higher numbers of sub-vectors are bundled

together, the chances of any particular bit in the sum vector matching with the same bit

in one of its component vectors approaches 50%. This is precisely the point at which

the individual component vectors become undetectable within the sum vector. Figure 2

shows the effect of adding increasingly higher numbers of vectors together. Each point

in the blue curve is the result of hd(vi, Sumv) where vi is each of the sub-vectors in the

corresponding Sumv. As can be seen, as more vectors are included into a single sum,

the HD of each sub-vector approaches the orange curve centered on 0.5 which is the

HD distribution obtained for comparison of multiple random vectors, i.e., the Sumv

vector becomes orthogonal to its sub-vectors.

Figure 4.3: HD of sub-component vs Number of component vectors.

4.3.1 Bundling pitfalls of the Majority Sum.

In addition to the limited sub-vector storage capacity of BSCs, it is important to high-

light out some other pitfalls related to the majority sum that must be avoided.
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Addition of repeated terms

Addition of repeated terms when using majority rule addition is shown below: 2

[Av + Av] = Av (4.6)

[Av +Bv + Av] = Av (4.7)

[Av +Bv + Av + Cv + Av] = Av (4.8)

Whenever one particular vector term has a majority presence of one or more over the

sum of alternate terms, then the sum collapses to equal that member’s value. This

is problematic since the non-dominant sub-feature vectors are lost from the resultant

concept vector. This issue can be resolved using a permutation operator that alters

repeating terms in a recoverable way to prevents such clashes. For example (using
′·′ to indicate bitwise exclusive-or), we could XOR3 each term with unique positional

‘role’ vectors (p0r, p1r · · · ) before bundling,

Z = [p0r · Av + p1r ·Bv + p2r · Av + p3r · Cv + p4r · Av] (4.9)

The position vectors effectively permute or map the value vectors to a different part of

the hyper-space making each permuted term unique. A simple, alternate, way of per-

muting BSCs is to perform a cyclic-shift on the vector [40]. This works because large

vectors, having an I.I.D random distribution of 1s and 0s, look completely different if

the bit-pattern is rotated by any number of steps less than the vector dimension. Using

the exponentiation operator to indicate cyclic-shift3, we can resolve the ‘repeated term’

issue by cyclically-shifting terms as shown below,

Z = [A1
v +B2

v + A3
v + C4

v + A5
v] (4.10)

2Remember that [· · · ] indicates normalisation.
3In order to save space and aid readability in vector bundling/binding equations, we use ‘·’

to indicate the bitwise exclusive-or operator and the exponentiation operator to mean cyclic-shift (

+ve = shift right, and −ve = shift left). The ‘∗’ symbol is used for ordinary multiplication.
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Section 4.4 describes how these permutation schemes can be used to access individual

sub-vectors within a bundled compound vector, and Section 4.5 describes how we can

use them to encode ordered sequences.

Pairwise addition of terms

Pairwise addition produces an interesting effect, if for example, a number of vectors

are added in a pairwise manner as shown:

Zv = [ [ [ [ [Av +Bv] + Cv] +Dv] + Ev] + Fv] (4.11)

This method of addition acts as a short term memory such that only the most recent

components are detectable in Zv. In fact, the oldest components rapidly disappear from

the memory trace Zv as shown in the following output using 10kbit vectors:

Test sequence, Zv = [ [ [ [ [Av +Bv] + Cv] +Dv] + Ev] + Fv]

hds(Av, Zv) = 0.5161

hds(Bv, Zv) = 0.5213

hds(Cv, Zv) = 0.5345

hds(Dv, Zv) = 0.5555

hds(Ev, Zv) = 0.6277

hds(Fv, Zv) = 0.749

After just five additions Av and Bv are considered undetectable since their hamming

similarity is below 0.53. The rate at which older sub-features vectors disappear from

the memory trace can be controlled to an extent using a weighted or probabilistic add

algorithm. However, it is better to perform bundling/majority sum operations as one-

shot operations, alternately referred to as late-bundling. When the sub-vectors needed

to create a compound vector are created serially or in a piecemeal fashion, it is better to

maintain an un-normalized chunk vector and a sub-vector count for later normalisation

than performing pairwise bundling and normalisation.
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4.3.2 Using VSA to represent sets

If two high level concept vectors contain a number of similar sub-features, such vectors

are said to be semantically similar. For example, we can create compound objects

analogous to mathematical sets as follows:

Person1v = [ Johnv + Charlesv + 55yrsv + T2Diabeticv ]

Person2v = [ Lucyv + Charlesv + 55yrsv + T2Diabeticv ]

Person3v = [ Gregv + Charlesv + 34yrsv + T2Diabeticv ]

HDS can be used to compare such vectors without unpacking or decoding the sub-

features. Using HDS to compare Person1v
4 with Person2v will give a match since they

have 3 common sub-features. Also, Person1v and Person2v are more similar to each

other than they are to Person3v. An issue arises, however, when using VSA super-

position to represent sub-feature collections as unordered sets. Consider the following

record for example,

Person4v = [ Charlesv + Smithv + 55yrsv + T2Diabeticv ]

Person4v is equally similar to Person1v as it is Person2v despite the obvious difference

in the record.

4.4 VSA Binding operations

In order to resolve such issues, VSAs employ a binding operator that allows vector val-

ues such as Charlesv and 55yearsv to be associated with a particular key, field name,

or role, within the data structure. Here we are using field name in the conventional

sense used for data structures—i.e., it is the name of a subfield within a data structure.
4Throughout this text, a symbol having suffix v (Xv) depicts a vector that represents a value; a

symbol having suffix r (Yr) represents a known atomic, unique, role vector.
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Role is an alternate description of the same and is more easily understood as a conven-

tional variable name. For example, the variable deposit_amount might play the role of

dollars being deposited in a banking transaction program.

An atomic role vector, or simply role vector, is an I.I.D randomly generated vector that

is unique and nearly orthogonal to all other vectors in the vector space for the reasons

explained in Section 4.2. When an atomic role vector is bound to a vector ‘value’ this

results in a role-filler pair which is analogous to variable assignment in conventional

programming. For example, the statement deposit_amount = 300 is said to bind the

value 300 to the variable deposit_amount. In a similar way, feature values such as

Charlesv can be bound to a role vector and detected or extracted from the role-filler

pair vector using an inverse binding operator. Bitwise XOR is used for both binding

and unbinding with BSCs because it is commutative and distributive over superposition

as well as being invertible [48, page 147]. This means that both roles and fillers can

be retrieved from a role-filler pair without any loss. For example, if Z = X ·A then

X · Z = X · (X · A) = X · X · A = A since X · X = 0̂ (i.e., the zero vector) where ‘·’

represents the bitwise XOR operator. Similarly, A · Z = X.

Due to the distributive property, the same method can be used to test for sub-feature

vectors embedded in a compound vector as follows:

Z = [X ·A+ Y ·B] (4.12)

X · Z = X · [X ·A+ Y ·B] = [X ·X ·A+X · Y ·B] (4.13)

X · Z = [A+X · Y ·B] (4.14)

Examination of eq. (4.14) reveals that vector ‘A’ has been ‘exposed’, thus, if we per-

form hds(X ·Z, A), we will get a match. The second term X · Y · B is considered noise

because X · Y ·B is not in our known vocabulary of vector features or symbols.

When a role vector and vector value are bound together using XOR, this is equivalent

to performing a mapping or permutation of a vector’s value elements within the hyper-

dimensional space so that the new vector produced is uncorrelated to both the role and
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filler vectors, for example, if V = R · A and W = R · B then R, A and B will have no

similarity to V or W . However, comparing V with W will produce the same match

value as comparing A with B. In other words, if A is closely similar to B then V will be

closely similar to W because binding preserves distance within the hyper-dimensional

space [48, page 147].

We note that binding with atomic role vectors can be used as a method of hiding

and separating values within a compound vector whilst maintaining the comparability

between compound vectors. This is an important property and can be used to encode

position and temporal information about sub-feature vectors within a compound vec-

tor. It also explains why we can state that X ·Y ·B from eq. (4.14) above will not match

to any known symbol; however, note that we can get back to B from X ·Y ·B by simply

performing the appropriate XOR—i.e., B ≈ [[A+X ·Y ·B] ·X] ·Y . We can now rephrase

our person record in order to differentiate sub-features within the record by using a

role-filler binding for each term; for example, we can formulate Person1v as,

Person1v = FNr · Johnv + SNr · Charlesv +Ager · 55yearsv +Healthr · T2Diabeticv

This clearly resolves the incorrect matching between Person1v and Person2v with Person4v.

To test Person1v for the surname Charlesv we perform,

hds(SNr · Person1v, Charlesv) (4.15)

For 10kbit vectors, if the result of eq. (4.15) is greater than 0.53 then the probability

of Charlesv being detected in error is less than 1 in 109 [48, page 143]. If our person

record is distributed over a network we could transmit or multicast the request vector

Z = SNr · Charlesv + Ager · 55yearsv to the network. Any listening distributed micro-

service having person records containing the surname Charlesv and age 55yearsv can

check for a match and respond or become activated.
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4.5 Encoding Ordered Sequences

As mentioned in Section 4.3.1, a VSA can be used to encode an ordered sequence

such as, A →B →C →D →E. In the context of a workflow composition, we consider

that each letter symbolizes the vector representation of a specific type of microservice

listening for work. That is, each letter {A,B,C · · · } should be considered to represent

a compound/concept vector description of each microservice step that needs to be dis-

covered to execute the workflow. These vector descriptions are built up using role-filler

binding, bundling and, if necessary, recursive embedding of the lower level symbolic

vectors that represent the sub-features of each microservices as described in Section

5.1. Three commonly used schemes for the representation of linear ordered sequences

like the one above are shown below:

Cyclic-shift Scheme:

Z = [A1 + B2 + C3 +D4 + E5] (4.16)

Permutation Scheme:

Z = [p0r · A+ p1r ·B + p2r · C + p3r ·D + p4r · E] (4.17)

Self binding Scheme:

Z = [A+ A1.B + A1.B1.C + A1.B1.C1.D + A1.B1.C1.D1.E] (4.18)

To execute the sequence/workflow shown in each equation, the active requester must

unbind the encoded steps sequentially. For example, to activate the first step, A, the

cyclic-shift encoding (4.16) simply shifts Z one step left. For the permutation vector

workflow (4.17) we XOR the workflow vector with p0r. For the ‘self binding’ encoding

(4.18) the first step is already exposed. The equations below show the first and second

unbinding of each scheme.

Cyclic-shift Scheme:

Z−1 = [ A + B1 + C2 +D3 + E4] (4.19)

(Z−1)−1 = [A−1 + B + C1 +D2 + E3] (4.20)
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Permutation Scheme:

p0r · Z = [ A + p0r · p1r ·B + p0r · p2r · C (4.21)

+ p0r · p3r ·D + p0r · p4r · E]

p0r.p1r(p0r · Z) = [p1r · A+ B + p1r · p2r · C (4.22)

+ p1r · p3r ·D + p1r · p4r · E]

Self binding Scheme:

Z = [ A + A1.B + A1.B1.C + A1.B1.C1.D + A1.B1.C1.D1.E] (4.23)

A1.Z = [A1.A+ B + B1.C +B1.C1.D +B1.C1.D1.E] (4.24)

Some observations:

• Cyclic-shift scheme: Unbinding to activate the next step is very easy, simply

repeat the cyclic-shift-left.

• Permutation Scheme: Activating the next step is complicated by the fact that a

different permutation vector combination must be used for each unbinding, (first

step is p0r, second step is p0r.p1r, third step is p1r.p2r, · · · ).

• Self binding scheme: The activated service simply XORs with a shifted copy of

itself.

• No position information: If we consider the encoded sequences to be distrib-

uted workflows in all schemes, an activated workflow step (microservice) cannot

tell in what position it has been activated.

• Stopping criterion: There is no obvious stopping criterion. If such workflows

are being executed in a P2P distributed manner, how can the last step, service

step E, know NOT to try an unbind and connect to the next service?

In the next section the disadvantages of equations, 4.16, 4.17, and 4.18 is described

when they are used for recursive embedding.
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Disadvantages of Cyclic-shift scheme

This type of sequencing is beautiful in its simplicity; however, it does suffer from some

significant issues when trying to build more complex workflows. One major limitation

is that it cannot support recursive embedding properly. Consider three word vectors

built from alphabet vectors,

Z1 = CRATER → Z1 = C1 +R2 + A3 + T 4 + E5 +R6

Z2 = ROT → Z2 = R1 +O2 + T 3

Z3 = ATE → Z3 = A1 + T 2 + E3

As described above, the individual letters in each word are an analogue for three dif-

ferent workflows. Each letter represents an individual workflow step to be executed.

(Each letter could represent a complex sub-workflow itself.) Then, as unbinding of Z1

proceeds, false activations can occur. For example, Z−1
1 will activate Z2 in preference

to C0 and Z−2
1 will activate Z3 in preference to R0.

Z−1
1 = C0 +R1 + A2+T 3 + E4 +R5

Z2 = (R1 +O2+T 3) matches 2 chars

Z−2
1 = C−1 +R0 + A1+T 2 + E3 +R4

Z3 = (A1+T 2 + E3) matches 3 chars

Disadvantages of Permutation Scheme

Again this scheme cannot support recursive bundling properly. A particular issue is

how to maintain separation at multiple levels of nesting. Use of the same p-vectors for

recursive bundling will cause false activation as shown in the example below:
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Let

Z1 = p1 · A+ p2 ·X

Z2 = p1 · Y + p2 · A

Z3 = p1 · A+ p2 · Y

Create a higher level workflow consisting of steps Z1 followed by Z2

S1 = p1 · Z1 + p2 · Z2

To activate first step in S1, unbind with p1,

p1 · S1 = Z1 + p1 · p2(p1 · Y + p2 · A)

= Z1 + (p2 · Y + p1 · A)

= Z1 + Z3 incorrectly creates and exposes Z3

One solution to this might be to use multiple sets of permutation vectors, one set per

nesting level. However, what happens if we want to bundle a ‘p-level2’ object with a

base level object? For example, let Z1 = p11.A + p12.B. If we now want to create

a workflow Z2 = X → Z11 what p-vectors should we use? If we know that Z1

contains a ‘level-1’ sequence then perhaps we bind it as Z2 = p21.X + p22.Z1, but

what if Z1 is already a p2-level object, e.g., Z1 = p21.A + p22.B? This would cause

B to become activated incorrectly in a similar way to the problems encountered when

attempting to use only one set of p-vectors. Further, determining the correct p-vector

combination required to unbind the next workflow sequence step becomes significantly

more complex.

Disadvantages of Self binding Scheme

Semantic matching does not work well; for example, consider the following encodings

where each letter is regarded as a vector description of a service



4.6 Summary 59

CAT = C + C1.A+ C1.A1.T

CUT = C + C1.U + C1.U1.T

Inspecting terms, clearly

C1.A ̸= C1.U and C1.A1.T ̸= C1.U1.T

Longer workflows represented by words such as MAXIMUM and MINIMUM will

differ in every position after the first ’M‘, hence possibilities for online matching and

learning of sub workflows is inhibited.

4.6 Summary

This chapter shows that a VSA based upon BSCs has the potential to be used for the

representation of service descriptions via binding and bundling as well as for the defin-

ition of workflows which can be encoded as ordered sequences. However, the limits to

which sub-vectors can be bundled into a single BSC vector require an improvement on

the current methods used to perform recursive vector embeddings that must avoid false

activation and maintain the ability to perform matching. How these methods can be

used and extended to create semantic service objects descriptions and workflows that

can operate without a central point is described in the next chapter.
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Chapter 5

Service description using a Vector

Symbolic Architecture

This chapter details how microservices can become self-describing (R1) by creating

(shallow) semantic SV representations of themselves using VSA encoding methods.

These SV self-descriptions are used for matching to workflow requests. I introduce

a novel VSA approach that extends this encoding to include approximate matching

on scalar values (e.g., find an X of about ‘this’ size). I also describe a method to

improve the encoding’s semantics and enable multi-modal vector embeddings. For

example, using this method, vector representations of sound samples or images can

be embedded directly into a service agent’s SV description (that can be matched to

similar samples in a workflow request vector). The method can also convert existing

semantic word databases to BSCs for use when building SV descriptions from textual

and JSON/XML service descriptions.

5.1 Semantic vector representations of services and QoS

Having shown how BSC can be used to represent data structures, I now consider how

to represent service descriptions and their associated Quality of Service (QoS) as sym-

bolic vectors (R1). In the following encoding scheme, recall that Xr represents a unique

atomic role vector and Yv represents a value vector and that Xr · Yv is a role-filler pair
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that binds the category Xr to the filler value Yv and enables later matching and retrieval

of values by specific categories. I also note that it is perfectly valid to XOR role vec-

tors together to represent sub-features as appropriate. Services build representations

of themselves by bundling role-filler pairs together to create a compound Service Vec-

tor (SV) that can be matched upon during workflow service discovery. The SV is built

following the base scheme highlighted by Eq. 5.1.

Z = Servr · Servv +Resourcer ·ResPv +QoSr ·QoSv (5.1)

Where

• Z is the composite service description vector;

• Servr · Servv is the vector representation of the functional description of the

service;

• Resourcer ·ResPv is a vector embedded into a request that points to any needed

external resources. This is not part of a service’s self-description but allows a

matching service to locate any external resources specified by a requester;

• QoSr ·QoSv is a vector representing either the requester’s QoS requirements or

the current QoS value for a specific service.

Building the description vector Servv

Servv is itself comprised of symbolic vectors that semantically describe the essential
elements of a service, in terms of role-filler pairs that are needed to find a match.
To illustrate how this is achieved, an example of relatively simple service description
comprising service name, inputs, outputs, and a functional description of the service is
shown in eq. (5.2):

Servv = Inputsr · Inpv +Namer ·Namev +Descr ·Descv +Outputsr ·Outv (5.2)

Where
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• Inputsr · Inpv describes the required inputs;

• Namer ·Namev a vector encoding of the service name;

• Descr ·Descv a vector encoding of the service’s description;

• Outputsr ·Outv describes the required outputs.

The filler/value components of these vectors are also built from symbolic vectors. For
example, if our service, say Z, has three float inputs and one BitMap input then Inpv

can be encoded as:

Inpv = Oner · Floatr + Twor · Floatr + Threer · Floatr +Oner ·BitMapr (5.3)

Oner, Twor, Threer are atomic role vectors representing numbers. Since data types

are unique, Floatr and BitMapr are also represented by role vectors. This simple

scheme is adequate for representing input/output descriptions because microservices

typically do not have high numbers of input/outputs. More complex input/output de-

scriptions can be encoded via embedding further role-filler pairs. The above vector is a

bag representing the inputs that enables flexible matching. If the input part of a request

vector is encoded as:

InpReqv = Oner · Floatr +Oner ·BitMapr

then the input description for service Z would constitute a match, and provided that the

other sub-features matched sufficiently, including its semantically encoded QoSv the

service could become activated. Note that a different service having exactly one float

and bitmap input would better match the input specification.

5.2 Representing Scalars and QoS

When encoding the sub-features of a concept (e.g., a service description), we will

often need to encode scalar values, particularly when encoding QoS values. There are
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a number of ways to represent scalars depending upon the matching requirements of

such values. For example, when a scalar is used to represent positional information,

assign unique role vectors to each number in the expected range (e.g., Oner, Twor,

Threer · · · , as described above).

For QoS metrics, it is often required to meet a specific maximum or minimum value

for the metric in question. For example, a static QoS metric could specify that a service

must have at least 4 CPU cores available to fulfil a workflow request step. This can be

treated as a request for a scalar range by creating a ‘set’ of acceptable ‘number role’

vectors and, via the distributive property of BSCs, associating such a range with the

object property being requested, as shown in Eq. 5.4,

Reqired_CpuCoresv = CpuCoresv · [Fourr + Fiver + Sixr + · · ·+MaxCoresr] (5.4)

Dynamic QoS metrics such as percent Battery life or available runtime can also be en-

coded in this way. For example, aggregate bandwidth, obtained by each service actively

monitoring its local bandwidth with pings, could be quantized to (1kb, 10kb, 100kb,

1Mb, 10Mb, 100Mb, 1Gb)/Sec. Such values are converted to an enumeration, thereby

allowing us to encode ranges representing different underlying values with the same

role vectors. Thus, encoding a minimum Bandwidth QoS requirement of, say, 100Mb/sec

would be encoded as follows:

Bandwidthr · [Sixr + Sevenr] (5.5)

Integers (up to the vector dimension D−1) can be represented very simply using cyclic-

shift, for example to encode any integer, i, as an atomic role vector cyclic shifted by

‘i’, i.e., NumberBaseir. Passing numeric metadata parameters like this makes decoding

very easy. Simply loop, counting the number of ‘shifts’ until a match is found between

the received vector and NumberBaser.
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5.2.1 Approximate numeric matching (R1)

To match on scalar values that are numerically near to each other (for example, we

might want to find an object that is nearest to a certain position), we can create a set

of role vectors that represent a ‘number-line’, i.e., a sequence of vectors such that the

hamming distance/similarity between each vector in the number-line set proportionally

reflects the distance between steps in a range of numbers. Listing 5.1 describes how to

generate a number-line set. Since BSCs have a fixed dimension, if the required number

range is larger than the vector dimension, then the range should be normalized. The

orth_vec parameter is used as a role vector that enables multiple number-line sets to

be generated, each of which is orthogonal to all other sets. Starting with a unique role

vector, start_vec, the algorithm flips bits repeatedly ensuring that the same bits are not

flipped twice. Since number-line vectors must be compatible with other sub-vectors,

we require the start and end number-line vectors in a range (maximally distant) to have

a HSim = 0.5 (orthogonal vectors have HD = HDS = 0.5) and hence only half of the

vector bit count (vector dimension) can be used when generating the bit-flip interval

required between vectors. Figure 5.1 shows the hamming similarity between points on

a 1D number-line.

Listing 5.1: Generate number-line vectors.

def linear_sequence_gen(max_number, start_vec, orth_vec):

# max_number : terminal number

# start_vec : base starting vector

# orth_vec : a unique role vector used to move the numberline set into its own space

# return list of vectors having equal hamming distances between each vector

if max_number > vec_len:

assert False, "Ranges > number of bits should be normalized"

vec_len = len(start_vec) // 2 # Orthogonal vecs are (vec_dim / 2) bits apart

number_line = [start_vec]

change_map = np.zeros(len(number_line[0]), dtype=int) # Track flipped bits

bits_to_flip = vec_len // max_number # bit interval between steps

for i in range(1, max_number+1):



5.2 Representing Scalars and QoS 65

# Randomly flip bits in the previous vector to create the next vector

z, change_map = gen_next_vec(number_line[i−1], change_map, bits_to_flip)

number_line.append(XOR(z, orth_vec)

return number_line # Ordered list of vectors

Figure 5.1: Hamming Similarity of vectors in a number-line set.

Because XOR binding preserves distance, we can create vectors that represent points on

a 2D plane by binding the x, y coordinates of a point together. The hamming similarity

between such ‘2D point vectors’ is approximately linear except for the extremes of

distance as shown in Fig. 5.2 (the non-linear portion can be excluded by restricting

acceptable values to a subset of a larger range).

Point(x, y) => XOR(Xnumberline[x], Y numberline[y]) (5.6)

The 1D number-line and 2D Point vectors are a very simple way of ‘semantically’ rep-
resenting numerical values. The overlap / mistakes made (when the hamming similar-
ity result suggests the wrong match as the closest) are small, in the sense of ‘semantic

matching’ by value. That is, we are able to make requests such as “ find something that



5.2 Representing Scalars and QoS 66

Figure 5.2: Hamming Similarity between points on a 2D plane.

is near this value(point)”. In order to enable proximity based matching, the required
position vector, let us call it vsa_requested_posn (encoded using Eq. 5.6), is added to
the workflow vector Zx as metadata before it is transmitted as a request vector. This
metadata parameter can be recovered from the workflow vector by each node on receipt
of the workflow request. On receipt of a workflow request each node can compare its
static node description vector, static_match_vec, to the static request vector, weighted
for position as follows:

proximity_vec = XOR(vsa_requested_posn, vsa_node_pos) (5.7)

static_match_vec = XOR(workflow_vec, node_desc_vec) (5.8)

similarity = HSim(proximity_vec, static_match_vec) (5.9)

When vsa_node_pos and vsa_requested_posn are similar to each other, the result of

Eq. 5.7 will be mainly zeros. Similarly when workflow_vec and node_desc_vec are

similar, the result will be mainly zeros. Taking the hamming similarity between the

two, Eq. 5.9 modifies the static_match_vec, weighted by proximity.

This technique can be used to perform weighted matching on any scalar attribute. For
example, battery life can be represented as a 1D number-line, and the same operation,
Eq 5.9, can be used to obtain a vector weight mask for battery life. Multiple weighted
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matches are carried out by applying each in a chained XOR fashion. To match on
battery life as well as position we simply perform the following:

battery_life = XOR(vsa_required_batt, vsa_node_batt) (5.10)

proximity_vec = XOR(vsa_requested_posn, vsa_node_pos) (5.11)

comb_weight_vec = XOR(battery_life, proximity_vec) (5.12)

static_match_vec = XOR(workflow_vec, node_desc_vec) (5.13)

similarity = HSim(comb_weight_vec, static_match_vec) (5.14)

There is no restriction on the number of scalar QoS attributes that can be combined in

this way, not withstanding that as more QoS attributes are chained together, there is

less chance, as to be expected, of a node matching all requirements.

5.3 Using existing semantic vector representations (R1)

Data analysis and machine learning methods use many feature extraction techniques

that ultimately output real number vectors to describe the input object [105]. Data

including images, sound and text can be vectorized in various ways. These vectors

might then be used as input to another analysis or machine learning stage. For example,

the flattened output vector of a CNN’s convolution layers (a vector representation of the

input image) is fed to its fully connected classifier stage. In NLP, words and sentences

are often vectorized for further manipulation and analysis. Word2Vec [106][107] takes

a text corpus as input and generates real number output vectors for each word in the

corpus such that the words having similar meaning have vectors that are closer together

in the output vector space.

It is noted that real number vectors can be converted to BSCs using the method of

randomized binary projection [108]. The conversion method also transfers the spatial

relationships between vectors within the real number vector space to the binary output

vector space. This means that ready made, leading edge, semantic word representation

such as the pre-trained Google News corpus [106] can be leveraged for the purpose of
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BSC service description. Via the method of random binary projection, it is also feasible

to create multi-modal service description vectors. For example, an alarm detection

service could combine a textual word2vec semantic vector description with vectorized

sound samples of the type of noise that the service should detect.

Listing 5.2 provides an algorithm for converting any dimension real number vectors to

BSCs by taking the scalar product between a random binary matrix and the real number

input vectors. Table 5.1 gives a comparison of the cosine distance wordrank search on

the word ‘weather’ from the GoogleNews-vectors-negative300.bin word2vec database

when loading the first 1M words compared to the same database converted to BSCs.

The real number input vectors have size rdim = 300 and the BSC output vectors had

size bdim = 10000.

Listing 5.2: Real2Binary.

class Real2Binary(object):

def __init__(self, rdim, bdim, seed):

"""

Note when converting a ’bank’ / database of realnumber vectors the same seed MUST be used

in order to ensure that the semantic vector space distances are maintatined.

Obviously a single run will maintain this since we generate the mapper on initialisation.

:param rdim: Dimension of the real number vec being converted

:param bdim: Dimension of the equivalent binary vector we want to create

:param seed: for repeatability if needed during research and debug etc

"""

if seed:

np.random.seed(seed)

self.mapper = np.random.randint(0, 2, size=(bdim, rdim), dtype=’uint8’)

def to_bin(self, v):

"""

To create the binary vector take the scalar product between the mapper matrix

and the real number vector. The random bit patterns in self.mapper * v produces

a (bdim * rdim) real number matrix.
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we then sum along axis=1 which gives us a ’bdim’ real number vector.

This is then thresholded to produce a binary bit pattern that maintains distances in

the vector space. The binary vector produced has an, approximately, equal number

of 1’s and 0’s thus maintaining the i.i.d random distribution of bits within the vector.

Example,

2d real number vec R = [0.3, −0.7]

5D binary mapper B = [[1, 0],

[1, 1],

[0, 0],

[1, 0],

[1, 1]]

R * B = [[0.3, 0],

[0.3, −0.7],

[0.0, 0.0],

[0.3, 0.0],

[0.3, −0.71]

Sum R * B along axis1 => RB = [0.3, −0.4, 0.0, 0.3, −0.4]

We then perform thresholding and normalisation on ’RB’ to convert this to a

binary presentation ZZ,

ZZ = [1, 0, 1, 1, 0]

:param v: real number vector to convert.

:return: Binary vector representation of v having an i.i.d, approx equal number of 1’s and 0’s.

"""

Exp_V = 0.5 * np.sum(v)

Var_V = math.sqrt(0.25 * np.sum(v * v))

ZZ = (np.sum(self.mapper * v, axis=1) − Exp_V) / Var_V # Sum and threshold.

# Normalize this to binary

ZZ[ZZ >= 0.0] = 1

ZZ[ZZ < 0.0] = 0
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return ZZ.astype(’uint8’)

We can see from Table 5.1 that the conversion to BSCs effectively maintains the se-

mantic relationships between vectors. For example, a BSC query for the idea ‘weather

service’ will match not only to the word weather but also words such as inclement, fog

and thunderstorms. Because the quality of similarity weights the comparisons, we will

obtain better matches on service objects that directly specify the word weather than

those that only specify synonyms.

rank name Cosine Real no. name HSim BSCs

0 weather 1.0000 weather 1.0000

1 inclement 0.8251 inclement 0.8101

2 fog 0.7592 fog 0.7714

3 daylight 0.7584 daylight 0.7679

4 thunderstorms 0.7065 thunderstorms 0.7526

5 humidity 0.7015 humidity 0.7442

6 snowstorms 0.7005 snowstorms 0.7434

7 forecasters 0.6957 breezes 0.7396

8 nighttime 0.6932 overcast 0.7393

9 overcast 0.6863 nighttime 0.7373

Table 5.1: Top 10 nearest words to ‘weather’ from 1M word GoogleNews

word2vec database and corresponding Hamming Similarity for the same 1M

words converted to a BSC database.

5.4 Encoding JSON / XML service descriptions

In Simpkin et al. [3], the Service Vector (SV) encoding scheme described in Section

5.1 was extended to show how role-filler pair binding and bundling can be used to
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create description vectors directly from a JSON service description file. (Section 9.1.5

describes the majority of this paper; however, the SV description section is described

here.) The method applies equally well to the encoding of any format of key-value

plain text data files. Unique role vectors are built from the sequence of nested keys.

These are then combined with their associated JSON value fields to create a bag of

role-filler pairs that is majority summed into a SV that describes the service.

Listing 5.3 is an example of a JSON service description for one of the Node-RED

object detectors in the Node-RED Traffic Congestion use case (Section 9.1.5).

Listing 5.3: Service Vector Description

{"service":

{"service_name":"object_detector_1",

"service_inputs":[

{"input_name":"image",

"input_data_type":"char64jpg",

"input_related_concepts":[{

"concept_name":"location"}],

"required":true}],

"service_outputs":[

{"output_name":"object_list",

"output_data_type":"list_string",

"output_related_concepts":[

{"concept_name":"car"},

{"concept_name":"person"},

{"concept_name":"bus"}]}],

"service_average_response_time_ms":5000}}

The key-names within the JSON must be converted to unique role vectors, and the

JSON values-fields are converted to semantically comparable vector values. When

using role vectors generated from JSON key-names to categorise the feature values of a

service vector concept, one important question is how to guarantee that the role vectors
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created are unique and have the same value across distributed service implementations?

This is a particularly relevant question for the Node-RED integration test-case since

Node-RED is open source and functional nodes/services can be created arbitrarily by

an unrelated set of developers. One approach is to simply assign, known, random

hyper-dimensional vectors to each role/key-name. However, this does not allow for

unrelated developers to invent new key-names and would require some sort of central

database lookup so that distributed services can agree on the vector value of a role/key-

name, otherwise they would not be able to perform semantic matching.

Simpkin et al. [3] describes an alternate vector encoding method that ensures roles

are always unique based on their case insensitive spelling. The encoding algorithm

used for the key-names is chained XOR of a shared vector alphabet. Cyclic-shift per

character position is used to ensure unique encodings for words such as ‘AA’ and

‘AAA’, which would otherwise collapse into similar values. The collapse is because,

XOR(A, A) = 0̂ and XOR(XOR(A, A), A) = A. The algorithm to convert a field name

to a vector is shown in Listing 5.4.

Listing 5.4: Field Name to Vector.

def field_name_to_vec(name, vec_alphabet):

n = name.lower()

v = vec_alphabet[n[0]]

shift = 0

for c in n[1:]:

shift += 1

v = XOR(v, ROLL(vec_alphabet[c], shift))

return v

The json_to_vecs() method shown in Listing 5.5 recursively encodes a nested JSON

by chaining together the key and sub-key vectors, created by field_name_to_vec(),

together with the associated JSON value, created using CreateV alueV ector().
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Listing 5.5: Chaining Field Names.

def json_to_vecs(json_input):

if isinstance(json_input, dict):

dd = []

for k, v in json_input.iteritems():

rv = json_to_vecs(v) # Recurse

if isinstance(rv, list):

dd.extend([("{} * {}".format(k, i[0]),

# Chain XOR key−names with

# sub role−filler found in i[1]

XOR(field_name_to_vec(k, symbol_dict), i[1]))

for i in rv])

else:

dd.append(("{} * {}".format(k, rv[0]), XOR(

field_name_to_vec(k, symbol_dict), rv[1])))

return dd

elif isinstance(json_input, list):

dd = []

for item in json_input:

rv = json_to_vecs(item) # Recurse

if isinstance(rv, list):

dd.extend([json_to_vecs(i) for i in rv]) # Recurse

else:

dd.append(rv)

return dd

else:

if isinstance(json_input, tuple):

return json_input

else:

return json_input,

CreateValueVector(str(json_input)).myvec
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The CreateV alueV ector() method creates semantically comparable vectors. It can

be customized to create semantic vectors from text strings using a vector alphabet and

suitable encoding scheme, for example eq. (6.1), or by employing existing semantic

word representations as described in Section 5.3. JSON/XML number values can be

encoded using the role and range methods described above, or the number-line method

described in Section 5.2. The algorithm produces a ‘bag’ (python list) of role-filler

vectors that are then further combined into a single, semantically comparable vector

using simple majority_vote addition. The output of json_to_vecs() for JSON Listing

5.3 is shown in schematic form in Listing 4.

Listing 5.6: Output from json_to_vecs().

service * service_name * object_detector_1

service * service_average_response_time_ms * 5000

service * service_inputs * input_data_type * char64jpg

service * service_inputs * input_related_concepts * concept_name * location

service * service_inputs * required * True

service * service_inputs * input_name * image

service * service_outputs * output_data_type * list_string

service * service_outputs * output_name * object_list

service * service_outputs * output_related_concepts * concept_name * car

service * service_outputs * output_related_concepts * concept_name * person

service * service_outputs * output_related_concepts * concept_name * bus

Note, in the listing ′∗′ indicates XOR binding.

Each line in Listing 5.6 represents a compound vector entry in the returned list. The

right most vector is the value vector, all vectors to the left of this are unique role vectors.

During recursion of json_to_vecs(), vectors are returned in right to left order, so that

the resultant vector is built by XOR chaining from right to left as shown:

subfeaturev = service ∗ (service_name ∗ (object_detector_1))

In the above example, object_detector_1 is the value vector and service and service_name
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are both role vectors. If Zv is the result of the final majority_vote superposition, then to

extract a noisy copy of the object_detector_1 value, we would perform

object_detector_1 ≈ XOR(service_namer, XOR(Zv, servicer))

Note, as mentioned above, that the output of json_to_vecs() is combined as a simple

majority_vote bag of vectors, this helps make the vectorisation of JSON service de-

scriptions immune to ordering issues but does limit the number of service line entries

to approximately 100; the maximum capacity of a single 10kbit binary vector [46].

In Node-RED such vector encodings are representative of the required function. The

encoded JSON may be a specific known function that has been previously used or a

generic JSON representing the type of functional service needed to fulfil a workflow

service step.

5.5 Limitations

The encoding methods described in Sections 5.1 and 5.4 for the creation of Service

Vector (SV) descriptions are effectively vector representations of unordered collections

of key-value attribute pairs. As such, these type of SV encodings can offer only shallow

semantic, i.e. syntactic matching, capability. A further work objective is to consider

how deeper semantic representations can be captured. This is a particularly challen-

ging requirement because very often true semantic similarity depends on context. For

example, consider the challenge of finding a camera sensor near a particular location,

say the north end of Oxford Street. We can specify a lat-long as a key-value entry

in a JSON camera resource description file and use the proximity matching technique

described in Section 5.2.1 to encode the location. If the objective of the workflow is

to search for a vehicle of interest near the location specified, then any camera sensors

returned near the lat-long specified, including cameras in adjacent streets, might be
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considered a good match. However, if the workflow objective is to obtain video ana-

lysis of an incident specifically happening at the north end of Oxford street, then only

cameras with a view of Oxford Street would be acceptable. Thus, in the second scen-

ario, a camera located half a mile farther down Oxford street might be an acceptable

match but very close cameras in adjacent streets would not.

One possible avenue for endowing services with deeper semantic meaning is described

in Section 6.2.6; that is, when service objects participate in workflows, the contexts in

which they have previously been invoked can be used to learn similarities between self

and other service objects. In this way when a service ‘sees’ a SV request for a service

that it does not exactly match, it can use the knowledge that it has been invoked in the

same context (i.e. between the previous and subsequent workflow steps) to consider

itself a match.

Another might be to explore how query by example could be encoded in SV descrip-

tions? That is, is it possible in some way to capture the transfer function of a mi-

croservice, considered as a black box, by encoding examples of the typical input it

accepts and corresponding output it produces?

5.6 Summary

This chapter has described creating BSC Service Vector (SV) descriptions (R1) to rep-

resent operational microservices as a binary vector embedding of multiple sub-feature

vectors. Rich multi-model descriptions of service objects and sensors can be created by

encoding the object’s sub-feature vectors from a combination of simple VSA binding

and bundling operations as well as from existing semantic vector word databases such

as word2vec and non-text based vector descriptions. Matching can also be performed

on approximate values using the range and ‘number-line’ methods. Binding and bund-

ling operations are mathematically well defined; therefore, similarity comparisons are

deterministic and explainable.
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Using hamming similarity to compare service descriptions represented as BSC vectors

is a significant advantage over the complex processing necessary when attempting to

compare service descriptions expressed in conventional terms such as JSON/XML or

ontological languages because hamming similarity is a one-shot operation. It returns

a graded match value and is also agnostic to unknown terms and term ordering (due

to the encoding scheme presented) and so does not need to be changed or updated to

cater for new description keys and so forth.

The individual service steps required to perform a particular workflow are also en-

coded as described here, that is, a BSC compound/concept vector representing the

sub-features that a particular workflow step is required to meet. When the workflow is

executed, these workflow service steps are matched to the service descriptions created

by each listening service on the network. The next chapter explains how workflows

can be encoded as ordered sequences of BSC service request vectors.
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Chapter 6

Cognitive Workflows using a Vector

Symbolic Architecture

This chapter describes a new VSA encoding scheme (R2)that can be used to scale lin-

ear and Directed Acyclic Graph (DAG) workflows to a practically unlimited number

of workflow steps. The ability to scale is a major advantage since it is not unusual

for workflows to require many hundreds of individual steps in today’s microservice

approach to workflows. In addition, the new encoding encapsulates all the information

needed to control workflow discovery and execution without a central controller and

without the need to specify the IP-addresses of the required services and maintains se-

mantic matching capabilities at each level in the hierarchy (workflow and sub-workflow

matching).

6.1 Recursive embedding - Chunking

Distributed workflows, particularly in IoBT scenarios, are likely to consist of many

functional microservice and sensor objects. For this reason, if we want to encode

workflows using a VSA, it is necessary to overcome the sub-vector ‘storage’ capacity

limits that are a consequence of the lossy majority_sum BSC bundling operation de-

scribed in Sections 4.1, 4.2, and 4.3. A recursive method for embedding vectors within

vectors is therefore required. Such a method must also maintain the ability to perform
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matching at each level of recursion. In general all recursive embedding, or chunking,

schemes employ the same approach. If an object has too many sub-feature vectors to

be bundled into a single compound vector, then the sub-feature vector list is split into

smaller groups that are bundled into separate vectors. These vectors are then used as

the basis for further chunking operations, thus recursively producing a hierarchical tree

structure as shown in Figure 6.1.

C

B1 B2 B3 B4

A1 A2 A3 A4

+ + +

+ + +

Figure 6.1: Vector Chunk Tree, chunking proceeds from the bottom up

In the diagram, the maximum sequence length is set at four. Chunking proceeds from

the bottom up, bundling the A-node vectors into groups of four. This produces the B-

node ‘parent’ or non-terminal vectors which are summed into the single parent vector,

C. In order to be able to traverse the hierarchy, each ‘parent’ vector must be somehow

made available for use as a clean-up memory for the level below. For example, the

bundled vector C contains noisy copies of B1, B2, B3, B4. To traverse from C to A1

a ‘clean’ copy of B1 is needed since the representation of A1 contained directly in

C maybe too noisy to correctly decode it (or, when thinking of services, to activate

it). In a centralized system, the intermediate parent nodes are simply stored. For a

VSA workflow sequence, the idea of instantiating the intermediate nodes as clean-up

services is introduce that act as a proxy to the terminal node worker services. When

activated, a clean-up service unbinds its clean vector, for example, B1, which will,

when transmitted to the network, activate A1 and so forth, as described in Section

6.2.2.
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6.2 Hierarchical VSA Workflows (R2)

Various methods of recursive vector embedding have been described [36, 41, 46, 48].

However, as demonstrated in Section 4.5, such methods suffer from limitations when

employed for multilevel vector embeddings: some lose their semantic matching ability

even if only a single term differs, while others cannot maintain separation of sub-

features for higher level compound vectors when lower level chunks contain the same

vectors [48, page 148] [36, pages 61, 72, 74–para2] [46, Encoding Sequences, page

14]. One of the linchpins of this thesis is now presented; a novel hierarchical VSA

binding and bundling scheme that enables fully recursive embeddings of vectors (R2).

The new encoding scheme, shown in eq. (6.1), employs both XOR and cyclic-shift

binding to enable recursive bundling that supports a practically unlimited hierarchical

vector embedding scheme capable of encoding any number of sub-feature vectors even

when there are repetitions and similarities between sub-features:

Zx =
cx∑
i=1

(
Zi

i ·
i−1∏
j=0

p0j

)
+ StopV eccx ·

cx∏
i=0

p0i (6.1)

Omitting StopV ec for readability, this expands to,

Zx = p00 · Z1
1 + p00 · p01 · Z2

2 + p00 · p01 · p02 · Z3
3 + . . . (6.2)

Where

• “·” is defined as the XOR operator.

• “+” is defined as the Bitwise_Majority_Vote/Add operator.

• The exponentiation operator is redefined to mean cyclic-shift—i.e., positive ex-

ponents mean Cshift_right, negative exponents mean Cshift_left. Note that cyclic

shift is key to the recursive binding scheme since it distributes over bitwise ma-

jority addition and XOR. Hence, it automatically promotes its contents into a
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new part of the hyper-dimensional space, thus keeping levels in the chunk hier-

archy separate.

• Zx is the next highest semantic chunk item containing a superposition of x sub-

feature vectors. Zx chunks can be combined using eq. (6.1) into higher level

chunks. For example, Zx might be the superposition of B1 = {A1, A2, A3, . . .} or

C = {B1, B2, B3, . . .}.

• {Z1, Z2, Z3, . . . Zn} are the sub-feature vectors being combined for the individual

nodes of Figure 6.1. Each Zn itself can be a compound vector representing a

sub-workflow or a complex vector description for an individual service step,

built using the methods described in Section 5.1.

• p0, p1, p2, . . . are a set of known atomic role vectors used to define the current

position or step in the workflow.

• cx is the chunk size of vector Zx, i.e., the number of workflow service request

vectors being combined.

• StopV ec is a role vector owned by each Zx that enables it to detected when all of

the steps in its (sub)workflow have been executed.

6.2.1 Creating a workflow

Equation (6.1) is used recursively to build a workflow request, conceptually creating

a hierarchical chunk tree as shown in Figure 6.1. The resulting output is a set of

VSA vectors representing the non-terminal clean-up nodes, {C,B1, B2, B3, . . .}, each

of which is a single VSA vector Zx that is itself a compound vector representing the

ordered sequence of its own children.
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C = p00 ·B1
1 + p00 · p01 ·B2

2 + p00 · p01 · p02 ·B3
3 + ...B4

4 + p00 · p01 · p02 · p03 · p04 · C5
StopV ec

B1 = p00 ·A1
1 + p00 · p01 ·A2

2 + p00 · p01 · p02 ·A3
3 + ...A4

4 + p00 · p01 · p02 · p03 · p04 ·B15StopV ec

B2 = p00 ·A1
5 + p00 · p01 ·A2

6 + p00 · p01 · p02 ·A3
7 + ...A4

8 + p00 · p01 · p02 · p03 · p04 ·B25StopV ec

B3 = ... etc

The reason multiple p vectors are XOR chained together to define a single position

within the workflow is due to the distributive property of XOR which operates on every

term for each unbinding (see, eq. (6.4) and eq. (6.6)). Thus, the use of the chained p

vectors when constructing the workflow vector allows for easier iterative unbinding at

execution time using eq. (6.5), discussed below. The generalized version of the concept

vectors, {C,B1, B2, . . .}, is shown in eq. (6.2). Note that in this form, every sub-step Zn

is permuted by at least one p vector that effectively hides each Zn (the p vector permuta-

tion ensures that each combined role-filler pair is orthogonal to the ’self-description’

vectors built by each VSA service listening for work on the network). The workflow is

discovered and orchestrated on the distributed services by, essentially, repeatedly un-

binding the workflow vector, using eq. (6.3) or eq. (6.5), before re-transmitting it from

peer-to-peer.

6.2.2 Ordered Unbinding of High-level Concept Vectors

Microservices such as B1, B2, B3, B4 are termed clean-up services. They are used to

maintain the decodability of large workflows that have been segmented by chunking.

They act as an activation path through to the terminal node services that ultimately

perform the desired operational workflow steps. On becoming activated, by matching

to a noisy version of its SV, such a clean-up microservice broadcasts a ‘clean’ copy

of its SV which will, in turn, cause its child sub-tree to execute. For large workflows

control may pass down through multiple levels of clean-up services before work is
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carried out at the terminal nodes of a chunk tree. Referring to Figure 6.1, control first

passes down the chunk tree, i.e., from C → B1 → A1 using eq. (6.3), before traversing

horizontally, A1 → A2 → A3 → A4 → B1_StopV ec) via eq. (6.5). At this point, B1 sees

its StopV ec and employs eq. (6.5) to activate B2, which then activates its sub-workflow

via eq. (6.3) and so forth.

Starting a (sub)workflow:

Z ′
1 = (p00.[T +Mdata + Zx])

-1
(6.3)

Z ′
1 = p-1

0 .(T -1 +M-1
data) + Z0

1 + p-1
1 .Z1

2 + p-1
1 .p-1

2 .Z2
3+... (6.4)

Traversing horizontally:

Z ′
n+1 = (p−n

n . Z′
n)

−1 (6.5)

Z ′
2 = (p-1

1 .Z ′
1)

-1
= p-1

1 .p-2
0 .(T -2 +M-2

data) + p-1
1 .Z-1

1 + Z0
2 + p-2

2 .Z1
3+ (6.6)

When starting a (sub)workflow using eq. (6.3), notice that Z1 has been exposed, as

shown in eq. (6.4). That is, Z ′
1 is effectively a noisy copy of the currently required

workflow step, Z1, while at the same time it is also a unique permutation of the full

(sub)workflow request. Thus, listening services can only match to Z ′
1 if they are se-

mantically similar to Z1. Note that the act of matching gives a service no other inform-

ation; for example, it cannot deduce by matching alone whether the match occurred at

step 1 or step 30 of the workflow. Hence, the introduction of the T vector in eq. (6.3)

which is used to enable calculation of a node’s position within the workflow.

T vector and Metadata

The T vector is a known atomic role vector. It is added, using late-bundling, to a high

level node’s clean (sub)workflow vector, Zx, before the node uses eq. (6.5) to expose

its first workflow step for transmission to the network. We note that eq. (6.3) is just a

special version of eq. (6.5). Notice in eq. (6.4) and eq. (6.6) how the T vector becomes

permuted in a predictable way. Once the currently active service has completed its own
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workflow step, it uses the current permutation of the T vector to calculate its position

‘n’ within the received request vector. It can then activate the next workflow step in

the request by repeating the unbind operation on the request vector, generalized in

eq. (6.5). Thus, the workflow proceeds in a completely decentralized manner whereby

each node is activated when its preceding node, or parent, unbinds the currently active

chunk vector, creating the next request vector, which it then multicasts to the network

for matching and processing.

Workflow metadata, Mdata, can be added by a clean-up service that is starting its work-

flow vector. It is added, using late-bundling, at the same level as the T vector. Because

the current permutation of the T vector is easy to calculate (simply permute T forward

or Z ′
n backwards using eq. (6.3) or eq. (6.5) and check for a match), the workflow

metadata is easy to retrieve.

Alternative mechanisms for determining the position of the service might be to permute

forward or backwards checking for a match with ‘self ’, i.e the matching service’s SV.

However, this would significantly increase the work that each service has to perform.

In addition, services that are not a match to any step in the workflow would be unable

to discover the metadata vector. The ability to inspect the metadata of any received

SV, via an agreed upon ‘tag’ vector, is useful to the Service Vector Architecture (SVA)

since it can simplify node operations and be used to allow listeners to remain cognizant

of the networks distributed workflow activity as a whole.

6.2.3 Chunk Stop Vector

Continuing with the workflow example, when all the workers of B1 have completed,

B1 must activate B2 in order to continue the workflow. Since the B1 service knows the

value of the B1 vector and understands the workflow progression in use, it can easily

monitor the sub workflow execution. It simply tracks the modification and rebroad-

casting of B1 as the child services pass control from A1 through A4; however, the last
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broadcast it will see is when A3 activates A4. Thus, the B1 service knows that A4 has

started but it needs a mechanism to determine when A4 completes. This is achieved by

appending a STOP vector to the B1 list of vectors being added during chunking. Re-

turning to the example, when A4 completes, it performs an unbind (as does every node

on completion of their task), which results in the multicast of the B1 STOP vector. On

recognising its own STOP vector, the B1 service performs an unbind on the C vector

(since it recognises that its task is complete) and rebroadcasts this to activate the B2

clean-up service and so on.

The simplest STOP vector implementation is to have the parent clean-up service add

a stop role vector to the end of its workflow sequence. The stop vector added must be

unique to each clean-up service in order to avoid several pitfalls:

1. To avoid parallel executing workflows detecting false stop signals.

• In practice, these types of clashes are better resolved using a vector job_id

metadata parameter.

2. If a single role vector, e.g., StopV ecConst, common to all services is used as the

stop vector, this will cause erroneous hamming similarity comparisons, especially

for short workflows. For example, all one-step workflows (e.g., S1 = p0.Z1
1 +

p0.p1.StopV ecConst and S2 = p0.W 1
1 + p0.p1.StopV ecConst) will have

HSim(S11, S2) ≈ 0.625 instead of 0.5!

However, using unique stop vectors would inhibit other listening services from detect-

ing stop vector signals including the worker service that is activated by the final step

of the workflow (the stop vector is owned and added by the parent requester/clean-up

service). For this reason, the stop vector is encoded as follows.

StopV ec = role_stopvec · Z1
last (6.7)

where role_stopvec is a known role vector and Z1
last is the last service step request vector.

This has two benefits.



6.2 Hierarchical VSA Workflows (R2) 86

1. The last service in a sub-workflow, on unbinding the next vector, can detect that it

is about to send the stop vector. This is needed in the implementation because the

normal action of a node on unbinding and sending the next vector is to enter local

arbitration mode and wait for replies. However, if the node is in last position it

should not do this.

2. The use of the last workflow request vector Z1
last, enables better matching for

workflows that end on the same workflow request step in contrast to the idea of

using a single value StopVec as discussed in point (2) of the previous list above.

The use of a permuted copy of the final service step improves matching without

causing erroneous matching.

The StopV ec mechanism can be further leveraged for specific applications to signal

different actions when the end of a workflow is detected. For example, using different

values for the role_stopvec can trigger different behaviours such as looping.

6.2.4 Hierarchical VSA Encoding of DAG Workflows

By way of example, this section describes how the vector representation can be ex-

tended to more complex workflows such as those created by the Pegasus workflow

generator. Figure 6.2 shows a typical Pegasus workflow (the Montage Workflow) hav-

ing multiple connections between nodes with branching and merging of connections.

In order to represent such DAGs, we modify our linear scheme by employing a three-

phase process comprising the following:

1. A recruitment phase, where the required services are discovered, selected and

uniquely rename themselves;

2. A connection phase, where the selected services connect themselves together

using the newly generated names; and
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3. An atomic start command that indicates to the connected services that the work-

flow is fully composed and can be started.

Figure 6.2: Montage Workflow

<job name="mProjectPP" ... id="ID00000"> ... </job>

<job name="mProjectPP" ... id="ID00001"> ... </job>

:

<job name="mDiffFit" ... id="ID00004"> ...</job>

<job name="mDiffFit" ... id="ID00005"> ...</job>

:

<child ref="ID00004">

<parent ref="ID00000"/>

<parent ref="ID00001"/>

</child>

<child ref="ID00005">

<parent ref="ID00000"/>

<parent ref="ID00001"/>

</child>

Listing 6.1: DAX snippet

The workflow shown in Figure 6.2 can be represented as a symbolic vector as follows:

WP = p00 · (RecruitNodes)
1
+ p00 · p10 · (ConnectNodes)

2
+ p00 · p10 · p20 · Start3

where:

RecruitNodes = p00 · Z1
1 + p00 · p10 · Z2

1 + . . . 00 · p10 · p20 · p30 · Z4
1

+ p00 · p10 · p20 . . . · p40 · Z5
2 . . .+ p00 · p10 · p20 . . . · p90 · Z10

2

+ p00 · p10 · p20 . . . · p100 · Z11
3 + p00 · p10 · p20 . . . · p110 · Z12

4

+ p00 · p10 · p20 . . . · p120 · Z13
5 + p00 · p10 · p20 . . . · p150 · Z16

5

+ p00 · p10 · p20 . . . · p160 · Z17
6 + p00 · p10 · p20 . . . · p170 · Z18

7

+ p00 · p10 · p20 . . . · p180 · Z19
8 + p00 · p10 · p20 . . . · p190 · Z20

9
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ConnectNodes =
(
p00 · P1

1 + p00 · p01.C2
1

)
+
(
p00 · p10 · p20 · P3

2 + p00 · p10 · p20 · p30 · C4
2

)
· · ·

Each Zn in RecruitNodes is the compound vector representation of each service. In

our implementation, the vectors are constructed automatically from an XML workflow

definition file, the Pegasus DAX file, see [109] for more details. An example DAX

snippet is given in Listing 6.1. The RecruitNodes vector is built from the <job>

entries found in the DAX—we refer the reader to Figure 6.2 and Listing 6.1, where

there are four mProjectPPs(Z1s), six mDiffFitt(Z2s) and so on.

The ConnectNodes vector, built from the <child> entry section of the DAX, defines
the producer/consumer relationship between nodes. A node can act as both a parent
(producer) and child (consumer) within the workflow (see Figure 6.2). Using Listing
6.1 as an example, the parent, P, and child, C, ends of each edge are constructed as
follows:

P1 = Z0
1 ·

(
NodeID0

r · Parentr
)

C1 = Z0
2 ·

(
NodeID4

r · Childr

)
P2 = Z0

1 ·
(
NodeID1

r · Parentr
)

C2 = Z0
2 ·

(
NodeID4

r · Childr

)
where

• NodeIDn
r is an atomic role vector used to encode a node’s integer id as defined in the DAX.

For this purpose we encode an integer i as a single atomic role vector cyclic shifted by i, for

example, NodeID4
r = (int) 4, see section 5.2.

• Parentr and Childr are fixed atomic role vectors used to bind the resultant vector into the

parent or child category.

• Z1 represents mProjectPP and Z2 represents mDiffFitt, as described above.

By binding these three elements together, we construct a unique encoding for the parent

and child ends of every edge in the DAG. Using eq. (6.1) we then represent the edges

as an ordered list of parent→child ends, (see ConnectNodes above).
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Execution of the workflow

The resulting workflow WP is a superposition representing the linear sequence of steps

needed to: (a) discover the required services, (b) connect the selected services together,

and (c) signal to the selected services that the workflow is composed and work should

begin. Therefore, mathematically, the execution of the workflow proceeds in a similar

manner to that described in Section 6.2.2 but with some additional workflow specific

processing carried out by each selected node. The top level vector, WP, is prepared to

make the initial request as per eq. (6.3):

WP1 = (p0
0 · (T + WP ))-1 = p-1

0 · T -1 + RecruitNodes + noise

When multicast, this activates the RecruitNodes clean-up service, which carries out

the same operation to initiate the recruitment phase:

Recruit′Nodes = (p0
0 · (T + RecruitNodes))

-1

R′
1 = p-1

0 · T -1 + Z0
1 + p-1

1 · Z1
1 + p-1

1 · p-1
2 · Z2

1+ . . .

Z1 is a request for an mProjectPP service, which will be matched by all listening
mProjectPPs. Acting as the local arbitrator, the RecruitNodes service multicasts its
preferred match from the replies received. The newly discovered and activated service
uses the current permutation of the T vector to calculate its position (NodeIDn

r ) in
the RecruitNodes phase from which it can calculate its unique parent and child vector
names to be used during the ConnectNodes phase. Thus, the first mProjectPP, having
position p0 and being a Z1, calculates its parent and child names as:

P0 = Z0
1 ·
(
NodeID0

r · Parentr
)

C0 = Z0
1 ·
(
NodeID0

r · Childr

)
It then enters Listening for Connections Mode while, as the new local arbitrator, it also
multicasts the next recruitment request by performing an unbind using eq. (6.5) on its
received vector R′

1,

R′
2 = (p-1

1 · Z′
1)

-1
= p-1

1 · p-2
0 · T -2 + p-1

1 · Z-1
1 + Z0

1 + p-2
2 .Z1

1+
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The will cause another mProjectPP to be selected and this decentralized process repeats

until the last service to be recruited, the Z9, mjPeg, service unbinds and transmits the

next vector, the RecruitNodes StopVec.

The RecruitNodes clean-up service detects its stop vector, causing it to perform an
unbind, using eq. (6.5) and multicast of WP ′ thereby activating the ConnectNodes

phase:

WP2 = (p-1
1 · WP1)

-1
= p-1

1 · p-2
0 · T -2 + ConnectNodes + noise

At this point all recruited services are listening for connection requests on their unique
parent and child vectors. The activated ConnectNodes service, acting as a clean-up
service, uses eq. (6.3) to initiate and activate the first parent node of the ConnectNodes

phase:

Connect′Nodes = (p0
0 · (T + ConnectNodes))

-1

P′
1 = p-1

0 · T -1 + P0
1 + p-1

1 · C1
1 + p-1

1 · p-1
2 · P2

2+ . . .

When a service matches its parent vector, it performs the next unbind and multicast

to activate its associated child service, automatically informing the child service of the

location of its resources/output/ip-address. When a service matches to its child vector,

it can lookup the sender’s (producer/parent’s) IP-address and send a unicast hello mes-

sage to the parent, thus establishing the required connection before activating the next

parent by performing a further unbind and multicast of the ConnectNodes vector. This

process repeats until the final child request is processed causing the ConnectNodes ser-

vice to detect its StopVec, which, in turn, causes it to unbind and multicast the StartVec

indicating to all nodes that the workflow has been fully constructed and processing can

be started.

6.2.5 Pre-provisoning and learning to get ready

From eq. (6.5) we see that each workflow step is exposed by iterative application of

p vector permutations. Non-matching services can use this method to peek a vector
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enabling anticipatory behavior such as the pre-provisioning of a large data-set or chan-

ging a device’s physical position (e.g., drones). Obviously, services can peek multiple

steps into the future and could learn how early to start pre-provisioning. This ability to

anticipate could be used to perform more complex on-line utility optimization learn-

ing. For example, a drone monitoring multiple workflows may be able to understand

that it will be needed in 10 minutes to perform a low priority task and in 15 minutes for

a high priority task. Under these circumstances, it may choose not to accept the low

priority task.

6.2.6 Learning from context

As can be seen in eq. (6.4) and eq. (6.6), when a particular workflow step is exposed for

discovery and execution by unbinding, it is ‘surrounded by’ (i.e. it is in superposition

with) the rest of the workflow steps that, as can be seen, are permuted in a specific way

depending on the position of the currently exposed/active service in the workflow. We

can think of this as the current permutation of the workflow vector and it constitutes a

semantic context for the workflow step currently in focus.

When a node participates in multiple workflows, these contexts may be usable by learn-

ing algorithms to allow a node to learn/generalise for itself what workflows it is good

at. Because all workflow messages are passed by multicast, these same contexts might

be usable by learning algorithms to model the meaning of workflows and sub-workflow

as well as the meaning, i.e., function, of microservices that participate in workflows, in

the same way that word2vec type algorithms learn the semantic similarity of words by

considering the context of each word appearing in many sentences.

For example, when a service successfully participates in a workflow, it could remem-

ber the permutation state of the workflow vector in which it was activated. If the

service successfully participates in the same workflow repeatedly, the workflow con-

text memory can be used to increase the service’s utility with respect to the specific
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workflow.

6.3 Hierarchical VSA Scaling Preserving Semantic

Similarity

Simpkin et al. [4] included an empirical evaluation designed to show that the encoding

scheme presented in this chapter is scaleable while preserving a measure of semantic

similarity. Using sets of randomly generated vectors, a number of experiments where
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Figure 6.3: Semantic Similarity 20k vectors, Chunk Size 50.

carried out. Two sets, set1 and set2, of 10kbit random vectors were generated and both

sets were chunked using eq. (6.1). The resulting top-level vectors were then compared

by measuring Hamming distance similarity. The comparison was repeated after ran-

domly choosing an increasing percentage of vectors from set2 and copying them into

the same position in set1. The Hamming distance similarity was then recalculated as

the sets become increasingly more similar. The expected result was that no similar-
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ity would be detected when each set had none or very few common vectors and that

Hamming distance similarity would increasingly improve as the sets become similar.
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Figure 6.4: Semantic Similarity 20k vectors, Chunk Size 10
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Figures 6.3 and 6.4 show the results using a set size of 20k for chunk sizes of 50 and

10. Each line shows the average similarity—i.e., (1 − HD)—of chunks at each level

in the chunk hierarchy. For example, in Fig. 6.4, there is only 1 vector at the top level

(green), 8 chunks at each point of red and 400 chunks at each point on the blue line.

Comparing Figs 6.3 and 6.4 we see that ability to detect a semantic match decreases

for smaller chunk size.

When the chunk size is 50, we are able to detect a match with as little as 20% similarity

for the single top level vector, whereas at a chunk size of 10, we can only detect a match

when similarity is approximately 30%. This is to be expected since a smaller chunk

size implies more majority-vote operations, which means more noise is introduced. In

addition, an even-numbered chunk size causes the addition of additional noise in the

form of random splitting of ties during the majority-vote operation. Thus, using the

largest chunk size consistent with the dimensionality of the vectors being used will

facilitate better semantic matching at higher conceptual levels.

6.4 Limitations

6.4.1 Role Vector Distribution

When building SV object descriptions using the methods described in Chapter 5, ser-

vice attributes values are represented by binding each vector value to an atomic role

vector, creating a role-filler pair. For service objects to cooperate and match service

requests, identical copies of these role vectors must be available to each service ob-

ject. Similarly, when encoding workflow request vectors as described in Chapter 6, the

workflow step ‘p’ vectors used to define a position in the workflow, see eq. (6.1), the

‘T ’ vector described in Section 6.2.2 and several other role vectors must all be com-

mon to each service node so that it can operate on the workflow vector when executing

a workflow.



6.4 Limitations 95

A limitation is how one can ensure that role vectors are consistent across multiple

heterogeneous compute devices? The simplest solution might be for VSA enabled

sensor and service objects to generate the role vectors in a well-defined order using

an agreed-upon pseudo-random number generator algorithm and seed. However, can

role vectors be generated in this way on heterogeneous hardware? Are generated role

vectors guaranteed to be consistent?

An alternative approach that is guaranteed to work is to maintain a centralized database

of the role vectors that services can download on start-up. The role vector data set

could be digitally signed and allow distributed services to cache the data set, hence

saving bandwidth until it detects that the digital signature has changed when it needs

to download the changed data set.

6.4.2 Clean-up services

For large workflows consisting of many hundreds of microservice steps, the eq. (6.1)

encoding scheme produces a set of ‘clean-up” service vectors as described in 6.1, 6.2.1

and 6.2.2. How to most efficiently distribute these clean-up vectors throughout the net-

work must be taken into consideration. This issue was simplified greatly during the

evaluations described in Chapter 9 because the network could be created with clean-up

services in place when it was instantiated. The problem is particularly acute when new

complex workflows are created and need to be launched into an existing network. A

future work objective is to consider how best to disseminate clean-up service vectors

into an existing network. One approach is to allow the vectors to diffuse out from the

requester that first issues the workflow request (the workflow creator has a full copy of

all the clean-up service vectors). Figure 8.3 shows that, in the current implementation

of the VSA cognitive layer’s Listener, the workflow request vectors are cached. The

cached vectors can be used to allow any node to act as a clean-up service for vectors that

it has previously cached. Another approach might be to use an announcement scheme

(prior to the workflow being needed in anger). This scheme would consume addi-
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tional bandwidth if many new workflows for which no existing sub-workflow clean-up

vectors exist are constantly being created.

6.4.3 Slot encoding

In consideration of eq. (6.2), we can see that it is effectively a slot encoding scheme,
which are known to be brittle when comparing objects that are even slightly out of
sync. This means that if we encode two sentences, for example,

S1 = p0
0 · My1 + p0

0 · p0
1 · name′s2 + p0

0 · p0
1 · p0

2 · Jim3 (6.8)

S2 = p0
0 · Hello,1 +p0

0 · p0
1 · my2 + p0

0 · p0
1 · p0

2 · name′s3

+ p0
0 · p0

1 · p0
2 · p0

3 · Jim4, (6.9)

then S1 and S2 would give a poor HDS match because all but the first term is permuted

differently and each term after ’The’ is orthogonal to their counter parts in the other

sentence. Nevertheless, the scheme can prove surprisingly successful when the data

is segmented frequently using chunking. For example, if we are encoding a book and

we use a variable chunk size that matches the natural punctuation breaks then there

are multiple opportunities to re-sync. The wording of a particular sentence may vary

which would damage the comparison for such a sentence; however, the story line is

expected to follow and so subsequent sentences may be very similar.

To illustrate how the semantic matching works, Figure 6.5a shows a HDS comparison

between vectors generated from different editions of the play Hamlet. The comparisons

are made between two ‘Old English’ (OE) versions of the play (blue histogram in the

figures) and comparisons between an OE and a modern ‘New English’ (NE) version of

the play (orange histogram). Also shown is a comparison with vectors generated from

the play Macbeth (grey).

The results show that at the level of the entire play and for all acts, the two OE versions

are semantically the same. Perhaps, surprisingly, the comparison between the OE and

NE versions also shows that these are also semantically similar except for Act 2, which
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Figure 6.5: Old English Hamlet compared to New English Hamlet.

does not match. Comparison with the Macbeth vectors shows that these two plays are

essentially uncorrelated. Similar comparisons can also be made at the lower semantic

levels and Figure 6.5b shows the equivalent comparisons at the level of the scenes of

the play. At the scene level, the OE1 vs OE2 are all semantically similar. The OE vs

NE comparison is below the threshold for Act2 Scene1, Act4 Scene7 and is marginal

for Act3 Scene 1, but otherwise the versions are still semantically similar.
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While the eq. (6.1) encoding scheme might work well for complex workflows consist-

ing of many workflow steps, the ability to detect similarities between vectors describ-

ing short workflow sequences will be limited. A future work objective is to allow for

variations in workflow sequence structure by using a vector weighting, or ‘shaping’,

scheme that ‘bleeds’ the previous and subsequent workflow steps into the current/tar-

get workflow step. For example, using eqs. (6.8) and (6.9), consider the second slot in

each; using a weighting scheme, ‘name’s’, in eq. (6.8) would contain a weak repres-

entation of both ‘My’ and ‘Jim’ and similarly in eq. (6.9), ‘name’s’ will contain weak

representations of its surrounding words. Hence, when comparing workflow vectors

that are out of sync by a small number of steps, better comparisons could be obtained.

6.5 Summary

This chapter describes a new recursive VSA bundling and binding scheme that is fully

recursive without the issues that plague previous bundling and binding schemes and

scales to a practically unlimited number of sub-vectors via chunking. It can be used

to encode ordered sequences of workflow steps which is extended to the encoding of

DAG workflows in Section 6.2.4. The encoding creates a set of VSA vectors repres-

enting a hierarchical chunk tree where the root and non-terminal nodes act as proxy

clean-up services that create an instantiation pathway to each real workflow service

request vector located at the terminal nodes. When real worker services are activated

by matching to an exposed workflow request step, they can interrogate their activa-

tion position and decode workflow metadata via a known role vector, the T−V ector.

To discover and execute a workflow, the workflow vectors and sub-workflow vectors

(clean-up services) are repeatedly unbound and passed from peer-to-peer using mul-

ticast so that listening services can match to the newly unbound workflow step (service

description request). The end of a workflow request vector is signaled via a StopV ec,

role vector.
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The workflow encoding supports pre-provisoning because it is very simple to traverse

a workflow request vector exposing the individual workflow request steps. This means

that, on receipt of a multicast workflow request, services can simply wind forwards

(unbind) one or more steps to see if they match to any of the subsequent steps. (Note

that it is just as simple to unbind in reverse, for example, to inspect the workflow’s

metadata.)

Every step within a workflow vector has a unique permutation, which might allow ser-

vice agents to learn about the function of both services (analogous to words in an NLP

application) and workflow request vector similarity (analogous to sentence similarity

in NLP).
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Chapter 7

A Mathematical Model for VSA

Vector Truncation

This chapter describes how BSCs behave like digital holograms, allowing VSA work-

flow orchestration messages to be truncated without loss of information (R3). This

reduces bandwidth overhead; an important consideration in low-bandwidth environ-

ments. The levels of similarity between vectors we would like to decode (e.g., ac-

tivating the correct sensor in preference to some similar sensor) impose a limit on

this. A mathematical derivation of the minimum number of bits needed to differen-

tiate between similar BSC vectors is given, including an empirical verification of the

derived mathematical model.

7.1 Holographic properties of Binary Spatter Codes

This work was originally presented in Simpkin et al. [5]. In Section 4, we explained

that the symbolic vectors we use are typically 10,000 bit vectors. However, one of the

important properties of large BSC compound vectors is that they are distributed rep-

resentations of the bundled sub-vectors. As such, if the number of sub-vectors is small,

then successful decoding and matching comparisons can be made even when the vec-

tors are truncated to a shorter length. This holographic property of BSCs suggests an

approach for saving bandwidth on the message payloads that are exchanged over the
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communications network. Essentially, vectors can be truncated without affecting the

VSA bindings and comparison performance. In this section, we consider the mathem-

atical basis for such a scheme and later, in Section 9.2.6, we describe how the scheme

is used in practice and the typical network bandwidth savings that are possible.

When multiple VSA sub-feature vectors are combined using majority_vote addition,

the resultant vector is a single VSA vector of the same size as its sub-features and rep-

resents the set of sub-features. This can be an ordered set; for example, a workflow

composed via Eq. 6.1, or an un-ordered bag of role-filler pairs used to encode a ser-

vice description vector, as described in Section 5.1. Such compound vectors might be

thought of as a representation of the concept implied by the collection of sub-feature

vectors be it ordered, in the case of a workflow,

e.g., track_car might be the name given to a high-level workflow vector that defines

the steps required to track a vehicle, or unordered, such as a person_record. In VSA,

these types of compound vectors are commonly called chunk vectors, and the number

of sub-feature vectors in a chunk is its ChunkSize [40, 110]. An important property

of such chunk vectors is that the distribution of 1s and 0s remains random. This is

because chunks are ultimately made from random atomic vectors at the bottom of the

chunk hierarchy. Note that when bundling via Eq. 6.1, the permutation vectors ensure

that each sub-feature vector is orthogonal to the other vectors in the sum; however, after

unbinding, the exposed sub-feature vector will bear similarity to other SV descriptions.

As explained in Section 4.3, the majority_vote addition operator creates a superposi-

tion of sub-vectors such that each sub-vector is represented by many, but not all, binary

bits of the resultant vector and each sub-vector has a unique random distribution of bits

within the resultant vector. Hence, a BSC chunk vector can be considered to be a

digital analogue of a hologram in that each sub-vector is represented equally by any

reasonably long sub-segment of the original vector. For example, the mean normal-

ized hamming similarity between a chunk vector S = [A + B] and its sub-features is

HSim(S,A) = HSim(S,B) = 0.75. This means that 75% of the bits in S will match
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to A and a different 75% of the bits in S will match with B. If we compare S to a

random vector not in S, then it is easy to see that 50% of the bits will match. Thus,

25% of the bits in A (or B) actively differentiate it from a random vector. If we take

any reasonable length segment of S, for example, the first 1000 bits, and perform a

hamming similarity comparison to A (or B), we will get approximately, the same 0.75

result. Hence, if there is only a small number of sub-vectors in a workflow request

or reply vector, then we can truncate the vector before transmission without affecting

workflow operations. On ’seeing’ a truncated vector, the VSA service simply truncates

its vector description to the same length and performs its operations in the normal way.

The limit to which a chunk-vector can be truncated whilst maintaining the ability

to detect the sub-vectors it contains is directly related to the number of sub-vectors

bundled. The degree of similarity between sub-vectors in the known vocabulary/clean-

up memory and the size of the vocabulary are also important factors in determining

the minimum size to which a chunk vector can be truncated. When matching to a

truncated vector, it is necessary to be able to distinguish between the target sub-vector

embedded in the chunk in preference to some similar sub-vector that is not part of the

chunk. Truncating a chunk vector to its minimum decodable size is a direct corollary

for the capacity of a chunk for which estimations and lower bounds are derived in

[36, 46, 110]. Below, we provide a mathematical derivation of the minimum number

of bits needed to differentiate between BSC vectors when similarity between vectors is

expected to exist in the network (e.g., similar sensor objects).

Consider the following scenario: we compose a workflow that aims to activate a camera

sensor ‘Y ’ as its first step. There are many camera sensors in the system, and we know

that there are cameras of similar type in other locations. Suppose some other camera-

service sensor ‘X’ elsewhere in the network, differs from the target camera-service

in only three parameters: the frame rate, resolution and location. If the total number

of sub-feature vectors used to describe each camera is 9, then the two cameras share 6

common sub-features, making them notionally 66% similar to each other. Let WF be a
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workflow request for camera Y , eq. (7.1), which is activated by unbinding the workflow

vector WF exposing Y ′ as a noisy copy of itself, Y ′ = Z1. We want to determine the

minimum number of bits that can be used for transmission of the unbound workflow

vector WF ′ = Z1 so that camera Y will be matched and differentiated in preference to

all other service vectors in the system.

WF ′
1 = Z1 = p−1

0 · T−1 + Y 0 + P−1
1 · Z1

2 + p−1
1 · p−1

2 · Z2
3 (7.1)

Consider each service Y and X. On receipt of Z1, both will perform a hamming simil-

arity calculation to check for a match. Let the match values be µy and µx respectively.

The target service, Y is a sub-vector of Z1, therefore, the mean normalized hamming

similarity, µy, is calculated as described in Section 4.3 and is given by:

µy =
1

2m

m∑
i=⌊m/2⌋

(
m

i

)

m = n if n even.

m = n −1 if n odd.

n = # of vectors.

(7.2)

Since we know the similarity of Y to Z, we can calculate the similarity of X to Z if
we can find the similarity of X to Y , that is µsim_xy =HSim(X,Y ). The similarity of
service vector X having sub-vectors in common with Y is then given by:

P (X=Z) = P (X=Y ) ∗ P (Y =Z) + P (X ̸=Y ) ∗ P (Y ̸=Z) (7.3)

That is, (the probability that X =Y when Y =Z) + (the probability that X ̸=Y when

Y ̸=Z), or in terms of mean hamming similarities:

µx = µy ∗ µsim_xy + (1 − µy) ∗ (1 − µsim_xy) (7.4)

Referring to Figure 7.1, since X and Y are I.I.D strings of 1s and 0s we can consider a

single bit column in order to calculate µsim_xy. Consider any column in Figure 7.1, say

the left most column; there are three shared vectors, which means there are 23 possible

combinations of bit values, {000, 001, · · · , 111}. Equation (7.6) gives the probability,
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Figure 7.1: Shared vectors contribute to the similarity between similar service-

vectors.

Pi, of the ith bit pattern appearing in a column among the shared vectors. For example,

the pattern {111} will only occur with probability 1/23 = 0.125, whereas the equival-

ent patterns {001, 010, 100} (order does not matter for majority_sum) will occur with

probability 3/23 = 0.375. Equations (7.7) and (7.8) give the probability that the ith

shared bit pattern will determine the the value of the corresponding bit in X and Y .

The mean hamming distance between X and Y is then given by1:

µsim_xy =
S∑

i=(S+1)div2

Pi ∗ (xi ∗ yi + (1 − xi) ∗ (1 − yi)) (7.5)

where

Pi =
1

2S
∗

2

2(S div i) − 1

(
S

i

)
(7.6)

and

xi =
1

2N−S
∗
∑

j=WN

(
N−S

j

)
(7.7)

1Note, in the original paper [5] the calculation of unknown, similar, expected values (referred to in

the paper and below as µx) was obtained empirically.
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and

yi =
1

2M−S
∗

M−S∑
j=WM

(
M−S

j

)
(7.8)

Y = The target vector to be matched.

X = A similar vector to Y within the ’service’ vocabulary.

S = Number of vectors common to both X and Y.

M = Total number sub-vecs in Y.

N = Total number sub-vecs in X.

Pi = the probability of the ith shared bit combo occurring.

Note, when S is even, 2
2⌊S/i⌋−1 = 1 for the first term in i = {. . . }

and 2 for all terms otherwise.

xi = the probability that the bit in X will match the ’sense’ (1 or 0) of the majority taken

from the shared vecs S, P (Xn = Smaj|icombo).

yi = same as xi, but for Y, P (Yn = Smaj|icombo).

WN = the number of bits needed to make majority in X, given i bits from the shared vectors,

WN = max(⌊N/2⌋ + 1 − i, 0).

WM = the number of bits needed to make majority in Y, given i bits from the shared vectors,

WM = max(⌊M/2⌋ + 1 − i, 0).

N − S = number of bits available from X’s sub-vecs that aren’t shared.

M − S = number of bits available from Y’s sub-vecs that aren’t shared.

Figure 7.2 compares eq. (7.5) to empirical measurement of µsim_xy. The number of

vectors in the target service-vector, Y , was fixed at 35. The total number of vectors in

the similar service-vector, X was allowed to vary around 35 ±33% to show that the

calculation is accurate even when X and Y have a differing numbers of sub-vectors.

The X-axis is the number of shared vectors, and the Y-axis is the hamming similarity

of both calculated and empirical findings. The empirical test was conducted using 100

million trails for each data point. From the graph, it can be seen that the theoretical

curve is coincident with the empirical result, this is because results agreed to better than

4 decimal places. To try to give a sense of how well the results match and highlight
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Figure 7.2: Comparison of the theoretical similarity between vectors, eq. (7.5),

and an empirical evaluation.

any slight deviations, the empirical result was translated up and down by 30 standard

deviations; see the grey and pale-orange lines.

Now that we can accurately predict the similarity between vectors having a number of

sub-feature vectors in common, we can use eq. (7.3) to predict µx, the mean similarity

between a competing service-vector and the noisy workflow-request vector Z1. Figure

8.4 presents correlation graphs for eq. (7.4) compared to empirical measurement for

two vector dimensions and shows that the results obtained are highly accurate.

For the empirical measurements, a set of random vectors was repeatedly generated

and bundled into a target vector Y . A proportion of the same set, along with other

random vectors, was then used to generate a ‘competing’ similar vector X. A multi-

step workflow vector was simulated by bundling Y with a number of other random



7.2 Truncation 107

Figure 7.3: Comparison of the theoretical similarity between vectors, eq. (7.5),

and an empirical evaluation.

vectors as shown in the right-hand side of Figure 7.1. The similarity between X and

Z1 was then measured and compared to the result obtained from eq. (7.4). As in the

previous test, 100 million trials were carried out. For completeness, Figure 7.4 shows

correlation graphs for the target vector’s normalized mean hamming similarity, µy,

calculated using eq. (7.2). These graphs were obtained during the same test.

7.2 Truncation

Note, in the original paper [5], the continuous normal distribution and error func-

tion were used to estimate the joint probability and calculation of minimum truncation

length. This is improved upon below by use of the discrete binomial probability to

calculate on the overlapping distributions.

All Hamming distance/similarity matching operations carried out by VSA services

will follow a binomial distribution centered on their expected values, see Figure 7.5.

Having established the mean normalized hamming similarity (expected value) between

the workflow-request vector Z1 and the target service-vector Y =µy, as well as other
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Figure 7.4: Comparison of the theoretical similarity between vectors, eq. (7.5),

and an empirical evaluation.

potentially similar service-vectors X=µx, we can now calculate the minimum number

of bits required to successfully match Y in preference to similar vectors X. Let,

PY ∼ B(i, νy), 0 ≤ i ≤ D (7.9)

and

PX ∼ B(i, νx), 0 ≤ i ≤ D (7.10)

Where:

PY = The discrete probability distribution of HD(Y, Z1)

PX = The discrete probability distribution of HD(X,Z1)

B = The Binomial probability mass function.

νy = 1 − µy , the expected value (normalized hamming distance) of Y when compared to Z1.

νx = 1 − µx, the expected value (normalized hamming distance) of X when compared to Z1.

D = The vector dimension.

After T trials, the expected distribution of HD(Y, Z1) and HD(X,Z1) are given
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Figure 7.5: Overlapping, un-normalized, Hamming Distance distributions us-

ing different ‘similarity factors’ and total vocabulary sizes for vectors having

chunk_size = 21 and vec_dim = 1K. The grey areas indicate the probabil-

ity of successfully differentiating the target vector from other ‘competing’ vectors

with a probability of error of, P _error ⩽ 10−4.

by (see Figure 7.5):

HD_allY ∼ ⌊PY ∗ T ⌋ (7.11)

HD_allX ∼ ⌊PX ∗ T ⌋ (7.12)

To compute the probability of correctly matching Y to Z1 in preference to a library of

other vectors having size V , we must compute the probability of not matching with

any of the alternate vectors X. The probability of not matching with any X is given by

the complement of the cumulative binomial probability distribution of X:

PV ∼
(
1 −

D∑
i=0

PX

)V

(7.13)
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Hence the probability of matching the unbound vector with the clean vector and not a

noise vector is given by:

Pmatch ∼ PY ∗ PV (7.14)

The binomial distribution for the number of matches (i.e., wins, depicted by the grey

distributions in Figure 7.5) after T trials is given by:

all_wins ∼ ⌊Pmatch ∗ T ⌋ (7.15)

And the probability of service Y being chosen in preference to X is given by:

P _win =

(
D∑
i=0

all_wins

)
/T (7.16)

The probability that an alternate vector could be detected in preference to the target

vector is then:

P _error = (1 − P _win) (7.17)

In order to calculate the minimum number of bits that can be used to avoid such an

error we must specify an acceptable error_rate and then find the minimum vector

dimension D that satisfies this criterion:

min_bits = min
{
D ∈ Z+ |P _error ⩽ error_rate

}
(7.18)

Figure 7.6 shows the minimum number of bits that are required to ensure that the

unbound workflow-request vector will be correctly matched with the corresponding

service vector, in cases where all the service vectors are orthogonal (i.e., 0% simil-

arity) and for different levels of ‘similarity factor’ between Service Vector (SV) de-

scriptions in the network. The term ‘similarity factor’ is introduced because services

build their SVs autonomously, hence the level of similarity between services can only

be estimated. As can be seen, when there are similarities between SVs, the minimum

bits required increases. The best truncation/compression is obtained when all SVs are

orthogonal.
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As stated in Section 7.1, the minimum bits calculation is a corollary of the maximum

capacity of BSCs. Therefore, eq. (7.18) can be used to calculate the maximum sub-

vector capacity for a given vector dimension, vocabulary size and acceptable error rate.

From Figure 7.6, it can be seen that the capacity of orthogonal 10kbit BSCs is 93. This

concurs well with the result obtained in [46, Paper B, page 80] where Kleyko finds the

capacity of orthogonal 10kbit BSCs to be approximately 89.

Figure 7.6: Minimum message size (No Bits) needed at different chunk sizes (num-

ber of bundled sub-vectors) and similarity factors. The vector dimension is capped

at 10Kbit to highlight the maximum number of sub-vectors that can be encoded

at this value when similarity between concept vectors is taken into account.

The model depicted by Figure 7.6 can now be used to minimize the message size of

vectors transmitted to the network. Before a request or response vector is transmitted,

using its knowledge of the bundled vector count, the sender simply looks up the min-

imum bits required to ensure that the message will be decoded correctly and truncates

it accordingly. However, since the variance of HD and HDS match calculations var-
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Figure 7.7: Required threshold to ensure best matching performance as a function

of the vector size (No of bits) and for varying similarity factors .

ies with vector dimension as 1/
√
D and is proportional to expected value, eq. (4.3),

these factors must be taken into account by VSA enabled services when calculating the

match thresholds that should be used on receipt of a truncated vector. For single HD

comparisons using an error probability of 10−6, Figure 7.7 shows the upper bounds

need to minimize both false positive and false negative activations. The blue curve is

the expected value (normalized HD) and is determined from the received vector’s sub-

vector count using eq. (4.5). The sub-vector count can be encoded as metadata by the

sender or deduced from the received vector’s length using Figure 7.6. (Alternatively,

the sender can calculate and embed the match threshold as metadata.) The orange

curve is the upper bound HD threshold value above which matches are considered in-

valid. This occurs in the case when all concept vectors can be considered orthogonal

because from Figure 7.6, maximum truncation (i.e., lowest vector dimension) is used

in this case. When, as is expected, the distributed services and sensors bear similarity
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to other services in the network, a larger dimensionality is required to avoid confusion.

Therefore, as shown in Figure 7.7, tighter bounds are required when there is a need

to differentiate between similar service vector descriptions because vector dimension

dominates eq. (4.3). For example, if the expected similarity factor between services in

the network is 50% and a vector of length 439 bits is received, then from Figure 7.6,

yellow curve, this implies a maximum sub-vector count of 3 vectors and from 7.7, yel-

low curve, the match threshold to be used to test for a valid match is HD = 0.3471

or HDS = 0.6529.

7.3 Limitations

The limitation with respect to using this vector truncation model is in the estimation of

similarity factor. For heterogeneous service and sensor resources, the level of similarity

between items that we would prefer to differentiate (in contrast to those that we would

happily consider equal) is likely to be difficult to estimate. It may be possible to learn

a network’s similarity factor over time, and indeed, for networks that are continually

evolving, the network’s similarity factor could be continually updated via some form

of on-line distributed learning.

7.4 Summary

This chapter described how to leverage the holographic properties of BSCs to save

bandwidth for VSA workflow orchestration messages based on content. It provides

a definitive mathematical treatment for calculating the minimum vector dimension

needed to avoid confusion when trying to differentiate between BSC vectors that are

similar. The equations described enable correct prediction of the minimum bits re-

quired to store or transmit BSC vectors in any field where BSCs might be applied,

including cognitive modelling and, in our case, distributed service orchestration. The
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same equations can also be used to accurately predict the maximum sub-vector bund-

ling capacity of BSCs for a given error rate and level of expected similarity between

BSC vectors in an application. An experiment used to test the type of bandwidth

savings that can be achieved using the vector truncation model described is given in

Section 9.2.6.
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Chapter 8

The VSA Platform

Building from the theoretical, empirical evaluations and implementations described in

chapters 5, 6 and 7, this chapter describes how the different components are brought

together into a VSA platform that has been used to address the various use cases de-

scribed in Chapter 9. This chapter also addresses some of the nuances that are needed

in a system that applies the VSA approach to real-world use cases, including sys-

tems considerations, message listener and buffering, memory requirements, compar-

ison, reasoning and local arbitration to minimize the local network overhead in the

service selection process.

8.1 Computational Model

For a system to behave cognitively, it must be aware of events occurring within the

environment in which it operates. In other words, services must make local decisions

on local data and act autonomously from the other services in the network. My com-

putational model facilitates this in two ways:

• A one-to-many communication style, namely multicast, is used for all workflow

discovery and orchestration messages (R4).

– A delayed response algorithm, inversely proportional to match quality, min-

imizes network congestion (R5).
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• To ensure that all objects ‘speak’ a common language, a VSA is used for both

workflow and service descriptions.

– Service objects self-describe their functionality and QoS by maintaining a

VSA Service Vector (SV) description (R1).

– Multi-step linear or DAG workflow vectors, also encoded in VSA, are up-

dated to reflect the current workflow state and passed around from peer to

peer (R2).

These features create a distributed network environment within which individual ser-

vices can interrogate VSA encoded workflow messages, compute their compatibility

to a particular workflow step and offer service if their match quality is high enough.

If a service calculates a weak match, it will delay its reply (proportional to the inverse

of its match quality) and listen for better quality matches from other services on the

multicast channel. Should a matching service ‘hear’ a better response, it will suppress

its response, saving bandwidth (R5).

This workflow paradigm is analogous to a group of humans listening to various work

requests and deciding for themselves whether they are capable and available to do a

piece of work. All humans can understand the work request message, and each human

knows for themselves if they are available and capable of doing the work. Naturally,

more than one person may offer to do a particular job, and therefore, a negotiation,

spoken or unspoken, must take place to decide who gets to do the work. Interest-

ingly, when doubtful about their ability to help, a human will often delay their offer

of help (perhaps hoping that someone more qualified will step in) before stepping in

themselves should no other offer materialize.
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8.2 Key features

Figure 8.1 highlights some of the key features required to build the test framework

which are described below.

8.2.1 Message Listener and buffer

Figure 8.1: VSA Platform components.

The VSA enabled service has a capabil-

ity to listen to the transmission of vectors

from other services (e.g., in a multicast

group) and store these messages into a

temporary buffer. The decision to store a

message in the buffer may require the re-

ceived message to be compared with one

or more vectors in the VSA memory us-

ing the Comparator component. An ex-

ample of this would be the typical case of

a service that only responds to semantic

vectors that semantically match the spe-

cific service description vector.

8.2.2 Symbolic Vector Memory

The Symbolic Vector Memory is used to store vectors that are to be used for any op-

eration required by the VSA layer of the specific service. This includes the service

description vector, stop vector and various role vectors used to support vector binding

and unbinding operations or to support ‘clean-up services’ that is described in Sec-

tions 6.1 and 6.2.2. In other examples, the memory is used to store application vectors

that when received on previous occasions resulted in the service being selected. These
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vectors essentially represent the context in which the service was historically invoked,

and these can be used to increase the utility (i.e., QoE) of the service if the same work-

flow is requested at a later time.

8.2.3 Comparator

To semantically compare vectors, we use a Normalised Hamming Similarity (HDS)
measure and declare a match if the HDS is within particular ranges. The comparator
uses the computed HDS to determine an appropriate time delay based on the degree of
the semantic match. The semantic match time delay, tsm, must be normalized to the
expected value of a perfect match and is given by:

tsm =

 0, if h_match > e_match

n_latency ∗ (e_match − h_match)/sim_range, otherwise
(8.1)

Where:

• h_match: is the similarity between the request vector and the service description vector.

• e_match: is the expected value of a perfect match calculated from the number of vectors stored

in the workflow command vector using eq. (4.5).

• n_latency is a multiple of the estimated network latency. This causes the timing of responses

to effectively be quantized in terms of the delayed response behaviour, section 8.2.5, because

transmissions in intervals smaller than the network latency will not be seen in time for a service

to suppress its response.

• sim_range = e_match − 0.53: The expected range, 0.53, is the base threshold of a valid

match and represents a match probability of error of 10−9.

8.2.4 VSA Reasoner

The VSA Reasoner performs various operations on received symbolic vectors that ex-

ceed the HDS threshold. These operations depend on the type of vector that is re-

ceived. For example, in the case of receiving an unbound workflow request vector that

matches the service’s description vector, the VSA reasoner builds a response vector
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that is passed to the message transmit buffer for transmission by the delayed response

timer. In other cases, the response to a match may be to transmit a clean version of

the noisy vector that was received (clean-up service). Additionally, the reasoner can be

tasked to ‘peek’ a received workflow vector and to determine if and when the current

service may be called in order to pre-provision the service. This task can also include

listening to the progress of a particular workflow as flow control is passed among the

component services to ensure that the current service has reached its maximum utility if

and when it is invoked. The VSA Reasoner also includes an important sub component

called the Vector Encoder, which is used to compile symbolic vectors that semantic-

ally describe the supported service and its current utility. These vectors can themselves

be constructed from other symbolic vectors using the various methods described in

sections 5.1 and 6.2.

8.2.5 Delay Response Timer and Local Arbitration (R5)

A major advantage of the VSA approach is the ability to discover and select services

using semantic matching. Section 5.2 described how to extend SV encoding beyond

simple matches to include measures of real time utility. Service selection therefore

involves choosing the correct service with the highest utility or, if the service is not

available, suggesting the nearest semantically matching service. For time critical ap-

plications that need to be resilient to changes in network connectivity, robustness can

be achieved by distributing multiple copies of services throughout the communications

network. Further, within the constraints of our target environment—i.e., field opera-

tions in very transient, low bandwidth MANETs— it is critical that we do not use un-

necessary bandwidth in order to discover an optimal set of services if a sub-optimal set

can meet requirements. Using the delayed-response mechanism (R5) largely addresses

this by reducing the number of services that respond; however, network latency some-

times results in situations where multiple responses are received. In such situations,

the current requester acts as a local arbitrator by inspecting the responses and choos-
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ing which responder is the winner. It is described in Section 8.3.3, steps 4–8. Note

that while the currently active service behaves as the final arbiter for services that do

send a match response, the process of local arbitration is actually a distributed process.

Matching services can and do exclude themselves, as described in Section 8.3.3, steps

6 and 7, without ever transmitting their match response.

The purpose of the Delay Response Timer is to ensure that only services with the best

symbolic match and hence the highest utility to perform the task will multicast a re-

sponse message, thereby saving bandwidth, as described in 8.3.2. The use of a time

delay to select resources with the highest utility has previously been used successfully

to control the connectivity and growth of a dynamic distributed database architecture

known as the Gaian Database [111, 112]. How this mechanism operates can be un-

derstood from a simple example of a service that is attempting to offer itself as a can-

didate to be included in a requested workflow. To do this, it needs to determine that

it semantically matches the requested service and then be the first matching service to

react by transmitting a Response vector. On reception of the workflow vector, the ser-

vice uses the Comparator to determine its degree of match and the corresponding time

delay tsm. The service must also have a particular utility to perform the task, which

may be based on a number of factors such as available power, the compute platform

that it is operating on, connectivity to other resources required for the task, and so on.

The service uses its utility to compute a second time delay, tut, which ranges from zero

where there is the highest utility rising to ∆t where the utility is low but still adequate

to compute the task. If the utility is not sufficient, then tut is essentially infinity and the

Delay Response Timer will not allow the response vector to be multicast. The Delay

Response Timer now computes a total delay of td = tsm + tut and stores this with

the message in the Message Transmit Buffer.
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8.2.6 Message Transmit Buffer

The Message Transmit Buffer is tasked to transmit any messages stored in the message

buffer after the corresponding time delay period has elapsed. The proviso is that no

other service has transmitted the same message during the time delay period. There-

fore, during the time delay period, the Message Transmit Buffer is compared with the

Message Listener Buffer, and if there is a match, then the corresponding message is

removed from the transmit buffer.

The next section describes a python2 implementation of the VSA Platform includ-

ing a step-by-step description and flow diagram of both active requester and listener-

s/responders.

8.3 Implementation

The experimental platform was implemented using Python2 for Simpkin et al. [2], and

then later versions were implemented in Python3. The Python3 version was also ex-

tended in [3] and [4] with tooling to support real world emulations using the CORE/E-

MANE [113] real-time network emulator. An ubuntu 14.04 virtual machine running

under Parallels1 was used as the base operating system for all of the experiments. The

base hardware used was a 16 GB, 2.8 GHz Intel Core i7 laptop. Service agents are

started in their own VM; each of which has a separate IP-Address on the simulated

wireless mesh network. To create redundancy in the network and ensure competition

between services capable of satisfying a particular workflow step, multiple copies of

the same service are enabled by instantiating duplicates into separate VMs. Between

and during runs, we can move services in and out of the wireless network, taking them

in and out of service.
1©1999-2020 Parallels International GmbH. All rights reserved.
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Figure 8.2: Overview of the VSA Implementation platform.

The VSA platform has a modular architecture with several components that are cap-

able of being reused as plugins to other systems. The platform is used to evaluate and

demonstrate how symbolic vectors can be automatically constructed from typical sci-

entific workflow representations and how these vectors can then be used to construct,

in a decentralized manner, the required workflow in an emulated wireless network en-

vironment into which the VSA enabled services are randomly deployed.

• The Workflow Importer component can import workflow definitions in vari-

ous formats including JSON, XML and DAX (a Pegasus workflow definition

file [114]). The Workflow Importer consists of a number of bespoke parsers

written specifically to convert existing microservice definition files and work-

flow definition files into service description vectors and workflow request vec-

tors. The workflow request vectors produced are encapsulated in an ordered list:

NodeV ectors, of function+utility description vectors representing the required

workflow steps. For DAG workflows, an additional list representing the connec-
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tions between nodes is produced: the EdgeV ectors list. The Workflow Importer

passes these lists to the VSA Creator.

• The VSA Creator is used to bind the lists of vectors into a single vector, a re-

duced representation of the workflow using chunking. Chunking is performed

bottom up so that higher level vectors are produced as needed. These are re-

cursively bundled until the vector list is reduced to a single vector value. In the

case of the static workflow modality, used for discovering and executing DAG

workflows, the NodeVectors list and EdgeVectors list are combined separately

producing two clean-up Service Vectors (SVs): the RecruitNodes vector and the

ConnectNodes vector. The VSA Creator then bundles these two vectors together

with a Startr role vector into a single vector representing the entire workflow.

This WorkFlow vector and all its associated sub-vectors are encapsulated in a

chunk tree object as per Figure 6.1 which is then then passed to the VSA ex-

ecutor.

• The VSA Executor is used to instantiate the test case into the CORE/EMANE

environment. It flattens the workflow by distributing copies of all non-terminal

chunk vectors into the terminal (bottom level/worker) nodes. Non-terminal nodes

are distributed to the first child of a parent node to ensure that clean-up services

are actively available. For robustness, the VSA Executor can be made to distrib-

ute more than one copy of the clean-up service objects into other terminal node

objects.

• The VSA Layer consists of the following sub-components:

– The VSA Reasoner is responsible for: (1) matching and responding to

VSA request vectors as a listener; (2) Unbinding and multicasting the next

step in a request vector; (3) Performing local arbitration on responses.

– The Comparator is a Hamming distance function that performs the com-

parison of vectors to perform the matching.
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– Delay Response Time Engine is responsible for calculating the fitness

function and initiates a delay timer based on the resulting utility.

• Messaging System which provides the communications interface for transmit-

ting and listening for vector communications to and from other nodes, along with

internal buffers for synchronization with the other system components.

• The Logging Component collects metrics as the workflow runs to feed into

external processors. Logging currently collects a trace of the nodes and edges

that are being processed by the workflow.

• The Visualisation Component takes the log output and generates a DAG layout

graph using Graphviz [115].

8.3.1 Control Operations

The control of the initiation and subsequent passing of flow control between the differ-

ent cognitive layers follows a sequence that is the same for all cognitive layers. The Ini-

tiator performs a subset of the tasks of the cognitive layers to launch and acknowledge

the completion of a workflow task by performing the following steps: (1) Compile the

workflow vector Zx with a stop vector Sx as the last vector element; (2) Transmit Zx;

(3) Enter collecting mode and listen for response vectors Responsex; (4) If more than

one response, then arbitrate and multicast a winner vector, Winner_Selected, to the

waiting responders; (5) Listen for stop vector Sx; and (6) On receipt of Sx, unbind and

transmit to initiate the next workflow step at the same semantic level and then terminate

its operation.

The current implementation of the Cognitive Service Layer can operate in one of two

modes. In the first or dynamic mode, the workflow is required to instantiate and run

the associated services, on-the-fly, as the workflow unbinding progresses. This mode

is applicable to linear workflows. In the second or static mode the vector unbinding
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is used to gather and connect the services into a workflow configuration that is then

initiated to perform the required task. This is applicable to more complex workflows

with branching and merging requirements. In Chapter 9, examples of both linear and

complex workflow use-cases are given.

8.3.2 Service Selection by Local Arbitration

As explained in Section 8.2.5, due to the Delayed Response mechanism, local arbitra-

tion is, in large part, a distributed negotiation. Services ‘hear’ responses from better

matching services and consequently cancel their own response. However, when more

than one response is issued to a request, the currently active node is responsible for

arbitrating between responses to select a winner. Using terminology from eq. (6.3)

and eq. (6.5), this is achieved in the implementation as follows: if the currently active

service is Z′
n, then after transmitting the next service request, it enters match collect-

ing mode to arbitrate matches from all nodes that reply within a tunable window of

time. After the interval expires, the highest ranking responder is selected and a Win-

ner_Selected message is broadcast by Z′
n identifying the winner. Since all VSA mes-

sages are multicast, all services see all messages, and consequently the winning service

continues and losing services discontinue. The Responsev and Winner_Selectedv

vectors are encoded using the currently active workflow vector as a ‘tag-id’ as follows:

Responsev = Responser · Z′
n + MyIDr · IDv + Matchr · Matchv (8.2)

Winner_Selectedv = Response1v (8.3)

Where

• Responser: is a role vector used to re-encode/permute the received request vec-

tor Z′
n. This mechanism is a useful way to identify responses since both sender

and receiver agree on the original message that was sent.
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– When a requester issues a request, it builds a similar match response vector

locally and listens on this ‘tag-id’ for replies.

– When a match is made on the response tag, the requester can use other

agreed upon and commonly known role vectors to decode additional in-

formation about the responder, including the responder’s match quality.

• MyIDr · IDv: allows for differentiating between responders. Each responder

generates a unique IDv and adds this role-filler pair into its Responsev mes-

sage. After the currently active local arbitrator has examined the responses and

transmitted the Winner_Selected message, each responder can inspect this for

its IDv. In this way the winning responder is activated (and the other responders

know that they have lost and should not continue).

• Match_r ·Matchv: advises the requester of the quality of the responder’s match.

This is used to choose the best match, but note that the best match will usually

be the first responder due to the delayed response mechanism.

– Responders also use this to inspect other replies while waiting for their

own delayed send to expire. If they see a better response, they cancel their

response.

• Winner_Selectedv: The winner and losers are easily notified when the re-

quester/local arbitrator simply multicast the winner’s Response1v vector shifted

by one place. The shift is a neat trick that prevents the winner message from

looking like a Responsev vector.

8.3.3 Dynamic Workflow Control

In this subsection, we provide a step-by-step account of how a workflow is instantiated

as a result of the workflow vector unbinding and matching process. Figure 8.3 shows
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the logical process for both the Listener and Requester parts of the VSA executor. Each

side of the execution logic is described below starting from the listener perspective,

assuming that the workflow vector has been unbound and multicast to the network by

a previous peer step in the workflow or the workflow requester.

Figure 8.3: Requester / Listener program Flow.

LISTENER:

1. Compile local service description vector Zs and utility vector Zu

2. Listen and receive Z′
N

3. Compare service component of Z′
N (i.e. Z′

N · Servr ) with local service vec-

tor to compute the semantic match and if there is a match, compute time delay

tsm based on the Hamming similarity. If no match, return to listening for new

vectors.

4. Compare utility component of Z′
N (i.e. Z′

N ·Utilr ) with local utility vector, and

if a match, compute time delay tut based on the Hamming similarity. If poor

utility for the task, return to listening for new vectors.



8.3 Implementation 128

5. Compute response vector RN .

6. Listen for RN equivalent vectors from other fitter services for the delayed-send

period, td = tsm + tut. If none are received, then transmit RN .

7. Listen for the Winner_Selected message. If this node is not the winner, then

return to listening for new vectors.

8. If no Winner_Selected message is received after time-out period, then return to

listening for new vectors.

9. On receipt of a Winner_Selected vector, perform the local service task. We

note that this may be a null task or a task to run a sub workflow as a new initiator

or simply to perform an action.

REQUESTER:

10. On completion of the local service task, unbind the received vector again to get

Z′
N+1 and transmit.

11. Listen for responses RN+1

12. Arbitrate the responses and multicast out the winner message,

• Winner_Selected = R1
N+1

13. Return to listening for new vectors.

8.3.4 Static Workflow Control

In the static workflow mode, steps 1–12 from the dynamic mode are performed, but

rather than terminate at step 13, the cognitive layer computes new semantic vectors

that are a combination of the current service name Zs and its position in the unbound

vector to essentially create two temporary service names; a parent-node description
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vector and a child-node description vector— encoding details of these vectors is given

in Section 6.2.4. These vectors are stored in the memory, and the service listens for

these vectors. On receipt of a parent or child vector, steps 3–12 are repeated. Step 4 is

not required since the name is unique and only this service can respond. In the case of

receiving a child vector, the layer also accesses the IP address in the associated message

and unicasts a ‘hello’ message to the associated service to create a connection. The

cognitive layer then either listens for new requests, since its service can simultaneously

be part of multiple workflows, or waits until the service has completed the current

workflow and then resumes listening for new vectors on its original functional service

vector description.

8.4 Summary

The VSA Listener/Requester is implemented as a VSA service layer bound to each

functional service or sensor. The overall workflow paradigm is that of a one-to-many

‘reactive’ discovery architecture. All workflow orchestration messages can be received

and acted upon by any listening service. Services compute their compatibility to re-

quests and respond only if they are compatible and do not detect a response from a more

compatible service (delayed response mechanism). The comparator is responsible for

matching and calculates the delayed response timer interval, which it normalizes relat-

ive to the expected match value calculated from the number of sub-vectors embedded

in the workflow request. The workflow request vector contains all the information

needed to execute the encoded workflow and is unbound to expose the next workflow,

which is then re-transmitted on the multicast channel by the currently active service.

Each unbinding of the workflow vector is a unique permutation of the requested step

and is matched upon by listening services. If more than one service responds to a par-

ticular workflow request step, then the requesting node arbitrates between responses to

chose a winner.
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Chapter 9

Use Cases and Evaluation

This chapter describes the experiments taken from my published papers [2–6] that were

used to evaluate and verify the thesis hypothesis that:

A VSA based upon BSCs [48] can be used to define a rich and yet com-

pact encoding that will enable highly efficient representations of multi-

modal service descriptions, decentralized service and workflow discovery,

and distributed workflow execution. Further, this scheme will provide se-

mantic matchmaking capabilities that can facilitate reasoning on service

descriptions and service compositions, or workflows.

9.1 Use Cases

For the evaluation, several use cases were developed and executed on the VSA Plat-

form. Each use case centred on a particular workflow task designed to test aspects

of the research claims. Since the VSA Platform brings together all research claims

into a single application, note that some of the research claims were addressed by

all use cases. In particular, Scalable hierarchical VSA bundling and semantic match-

ing (R2), Bandwidth efficient distributed arbitration (R4) and Cognitive workflow

model (R5) together manage flow control/orchestration while minimising the number

of messages exchanged during decentralized discovery and winner arbitration. Hence,

these aspects were tested by all use cases because they all ran on the VSA Platform.
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Therefore, in the list below, entries for research claims (R2), (R4)and (R5)are only

included for those use cases where specific evidence was provided.

Below is an overview of the uses cases, highlighting which research claims each sup-

ports:

1. Hamlet use case:

This use case models the Shakespeare play Hamlet as a workflow where the

words of the play represent the functional worker nodes required to be executed

as workflow steps. Higher levels in the play (i.e., acts, scenes, stanzas and sen-

tences) act as ‘clean-up’ nodes when the entire play is encoded as a hierarchical

workflow as described in Section 6.2.

(a) Self-describing, multi-modal semantic service objects (R1):

• Each service object maintained two QoS parameters encoded using the

method described in Section 5.2. During QoS testing, logs showed that

when multiple functional (i.e., word) matches occurred in the network,

the service that had the best QoS responded first and was selected as

the winner.

(b) Scalable hierarchical VSA bundling and semantic matching (R2):

• The use case encodes 30k words into sentences, stanzas, scenes, acts

and finally a single ‘Hamlet’ workflow vector showing that the en-

coding scheme is scalable and can successfully discover and execute

decentralized linear workflows. See Section 9.2.3.

• During Hamlet playback (i.e. workflow execution), target words were

deliberately made unavailable to see that alternate shallow semantic

matches (nearest similar word) were found, allowing play back to con-

tinue. This demonstrates that the encoding scheme enables semantic

matching capability.

(c) Holographic dynamic message sizing (R3):
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• The workflow was run with and without dynamic vector truncation to

obtain bandwidth saving measures and confirm that the workflow was

executed correctly when vector truncation was enabled. On average

a 30% bandwidth reduction was achieved for workflow orchestration

messages, see Section 9.2.6 and Table 9.6.

2. Pegasus use case:

This use case was designed to validate the DAG encoding scheme described in

Section 6.2.4 it makes use of various DAG workflows obtained using the Pegasus

workflow generator [114].

(a) Self-describing, multi-modal semantic service objects (R1):

• Each Pegasus service object encodes its SV description from a Pe-

gasus DAX (XML) file, [109], using the key-value to vector encoding

method described in Section 5.4.

• Each service object maintained two QoS parameters encoded using

the method described in Section 5.2. During QoS testing, logs showed

that when multiple functional matches occurred in the network, the

best QoS service responded first and was selected as the winner.

(b) Scalable hierarchical VSA bundling and semantic matching (R2):

• A number of Pegasus workflows were used to confirm that DAG work-

flows can be encoded, discovered and executed using the hierarchical

binding scheme in static workflow mode. In this mode, nodes must

first be recruited, after which the edge connections are made using

dynamically generated parent and child vector addresses, see Section

6.2.4.

• Scaling was tested using several DAG sizes, up to 1000 nodes, taken

from the Pegasus library, see Section 9.2.6, tables 9.2 and 9.3.

(c) Holographic dynamic message sizing (R3):
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• This use case was also used to assess dynamic vector truncation by

running with and without dynamic vector truncation, see Section 9.2.6

• In addition, the Pegasus Montage100 workflow was used to assess the

effect of chunk size and object similarity. Figure 9.6 shows how com-

pression ratio varies with chunk size and similarity factor and is an

experimental verification of the theoretical compression ratios shown

in Figure 7.6.

3. Traffic for London use case:

This use case aimed to demonstrate that an existing centralized workflow could

be migrated to operate in a decentralized environment by interfacing the existing

services with a VSA cognitive adapter/wrapper service. In this way, an existing

Node-RED workflow was adapted to run in a decentralized environment emu-

lated using the CORE/EMANE network emulator, see Section 9.1.5. In order

to exercise the VSA Platform fully, this use case also incorporated the Pegasus

workflow, which could optionally run in parallel to the Node-RED workflow.

Operating multiple workflows in parallel verified that the various role vectors

employed for encoding SV descriptions (R1)and those used for workflow encod-

ing (R2)were able to maintain separation in the vector space for correct workflow

operation.

(a) Self-describing, multi-modal semantic service objects (R1):

• This use case demonstrated self-describing objects. Each sensor and

service object was described by a JSON Node-Red service description

file which was converted to a SV description using the JSON to vector

method described in Section 5.4. Evidence of semantic comparisons

using HDS is can be seen in the workflow operation video and is doc-

umented in Section 9.2.5.

(b) Scalable hierarchical VSA bundling and semantic matching (R2):

• In the video of workflow operation supplied with this use case, many
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aspects of (R2) can be seen. These are described in sections 9.1.5 and

9.2.5.

(c) Bandwidth efficient distributed arbitration (R4):

• The delayed send and local arbitration mechanisms combine to minim-

ize the number of workflow orchestration messages exchanged during

workflow execution. This can be seen by inspecting the log screen in

the video supplied with this uses case. See also, Section 9.1.5, Figure

9.4 and Section 9.2.5.

4. Radio reconfiguration:

This use case was designed to show that autonomous decentralized resources

(i.e., battlefield radios) can cooperate, (R5), to complete a task that would oth-

erwise be practically impossible because not all devices in the workflow request

are connected to the same network. A secondary objective was to investigate the

energy savings that might be achieved by carrying out some vector operations on

a neuromorphic Phase-Change Memory device. Thirdly, communication band-

width savings from dynamic vector truncation, (R3), were assessed. See Section

9.1.7 for full details of this use case.

(a) Holographic dynamic message sizing (R3):

• When using dynamic vector truncation, this use case achieved a 2.7x

reduction in bandwidth consumption compared to operation without

truncation, see Section 9.2.7.

(b) Cognitive workflow model (R5):

• This uses case demonstrates the effectiveness of a one-to-many react-

ive communications paradigm. In the scenario, nodes cache workflow

request vectors that they ‘hear’ (one-to-many communications) and

cooperate to complete the workflow by fulfilling ‘takeover requests’

which are issued by the currently active requester when it fails to get
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a response from the workflow vector’s currently active target node

(workflow step).

5. Future Mission Network:

This use case shows how VSA can be used to select appropriate services and

entities based not only on their functional capabilities but also on dynamically

changing variables such as distance from a specified location (R1), see Sec-

tion 9.1.8.

(a) Self-describing, multi-modal semantic service objects (R1):

• Each asset creates its SV description from its JSON node description

file, see Figure 9.12, using the json_to_vecs() algorithm from Sec-

tion 5.4.

• In addition, each resource object maintains its position encoded as a

2D number-line vector (Section 5.2.1).

• The task successfully demonstrated resource discovery using vector

encoded attribute collections weighted by the resource’s position rel-

ative to a request position.

9.1.1 Test Data

In order to successfully evaluate and validate the various methods and encodings de-

scribed in chapters 5, 6 and 7, suitable workflows were required. This proved to be of

significant difficulty because while there are many mature, albeit centralized, WFMS

available to choose from, there are very few published workflows of sufficient com-

plexity and containing sufficient detail (including service/resource descriptions and

workflow specifications) to test the various aspects of my decentralized, scalable VSA

approach to workflows.

Using Shakespeare’s Hamlet as a large scale linear workflow was originally sugges-

ted by Macker and Taylor [116] as a use case for their Network Edge Tool (NEWT).
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The play was modeled as a workflow by distributing the actors across a wireless net-

work and having them converse their lines as decentralized messages of communica-

tion between one actor and another as the play progressed. I chose to adopt this idea

for many of the test cases presented because the hierarchical nature of the play (acts,

scenes, sentences, words) mapped perfectly onto my hierarchical binding scheme and

it contains many duplicated concepts (words and sentences) so that multiple compet-

ing service objects would be available in the network. In addition, there are a total of

29,770 words, of which 4620 are unique. Thus, representing large workflows and sub

workflows (acts, scenes, sentences) is possible.

The Pegasus workflow generator [114] was adopted for testing of the static DAG, work-

flow control, Section 6.2.4, because a wide range of large and small sample DAG work-

flows are available. Pegasus DAGs are easy to parse because they are specified using

an XML description language: the Pegasus DAX file [109]. In addition, images of

each sample DAG are available for visual comparison.

9.1.2 Data Collection and Verification

In all of the use cases described below, verification of the outcomes was based on res-

ults collected through data logging. In each case, data from the distributed VSA service

nodes was captured in one place using a python HTTP log handler. This greatly sim-

plified the aggregation of results for verification against the known test case targets.

For example, in the Hamlet use case, the exact order in which the words/sentences are

spoken in the play are known. Therefore logging is used to collect the output from

the distributed services and a line-check is used to confirm that the play was correctly

executed. In the Pegasus use case, the node discovery/recruit phase and edge connec-

tion messages were logged from which the output DAG can be created. This same

approach, checking of planned/known outcomes, was used for the Radio Reconfig-

uration and Federated Mission Networks (FMN) use cases. However, in addition to

the HTTP logger, the IBM Fyre cloud environment provided additional event logging,
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network consumption, data logging and graphing, and graphical visualisation of the

outcomes.

9.1.3 Dynamic VSA Workflows and QoS - Hamlet workflow

In Simpkin et al. [2](best paper award), to compare with alternative approaches such

as those described in [116], the entire text of Shakespeare’s play Hamlet was encoded

using eq. (6.1) into a hierarchical chunk tree as shown in Figure 9.1. In this example,

the component services at the lowest level are the 4620 unique words of the play; the

semantic level above are the individual stanzas spoken by each character (not shown in

the diagram); the level above this are individual scenes of the play(e.g., A1S1, A1S2);

next are the five acts, A1-A5 and then finally a single 10kbit vector semantically rep-

resents the whole play (Hamlet). A vector alphabet, a unique vector per alphabet char-
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Figure 9.1: Hamlet as a serial workflow

acter, was used to build compound vectors for each word-service in the play. The idea

is that each letter making up a word represents some feature of a service description,

i.e., analogous to the different input/output/name/descriptions parts of a real world ser-

vice, as described in Section 5.1. Thus, variable lengths of words and similarity of

spellings represent a mix of different services of different complexity and functional
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compatibility. At the next level, sentences represent a more complex mix of variable

length sub-workflows, and so on. It is important to recognise that the higher level vec-

tors do semantically represent the recursive bundling of all the levels below. This fact

is used to allow alternative, semantically similar, service compositions to be invoked

if the best matching composition is not available. Figure 9.1 shows the word service

‘where’ being invoked, in preference to the ‘the’ service that also responded, as an

alternate to the requested ‘there’ service that was unavailable. (This type of syntactic

matching is entirely appropriate when modelling service descriptions; deep semantic

similarity is unnecessary for this test case.) Note also that when ‘where’ completes, it

automatically synchronises to the original workflow because it simply unbinds the next

step from the original workflow vector it received.

Multiple copies of the individual component vectors (words, sentences, acts...) from

each level in the hierarchy were distributed in my CORE/EMANE test network and by

multicasting the top level vector, the whole play is performed in a distributed manner

with 29,770 component word services being invoked in the correct order. Note that the

CORE/EMANE network emulator could not support more than about 46 nodes when

running on my 16 GB, 2.8 GHz Intel Core i7 laptop. Therefore, only sections of the

play could be executed using CORE/EMANE in one run. Larger runs were achieved

by using local (OSX) Listener/Requester nodes and limiting the number of duplicate

‘word services’ instantiated. The entire play was also encoded/decoded in a single-

threaded looping mode that calls the exact same VSA methods I implemented for the

service Listener/Requester code (bind,unbind,bundling,matching, etc.).

QoS experiments

In Simpkin et al. [4], the QoS encoding described in Section 5.2 was simulated using

two random variables: current_load and battery_life. From the requester’s point of

view, responders having minimum current_load and maximum battery_life should re-

spond first. Acceptable ranges of values were randomly chosen when encoding service
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request vectors, and each service simulated its own QoS in the same manner. Thus,

matching on functional as well as QoS criterion was tested. Verification of correct

matching for the QoS experiments was done by noting that, when multiple responses

were received, the best responder should have logged the minimum current_load value

and the maximum battery_life value. The VSA Listener code was updated to output

these values in the ‘PWORK’ and ‘WORK’ logger entries (see Figure 9.4 for an

example of multiple responders).

9.1.4 Static VSA Workflows - Pegasus DAG workflows

Simpkin et al. [2] and [4] also presented an evaluation of Section 6.2.4 which describes

how more complex DAG workflows can be discovered and connected using the VSA

hierarchical binding scheme (R2). The main objectives of this experiment were to;

• demonstrate that DAG workflows can be encoded into a symbolic vector repres-

entation and then recursively decoded to assemble the required workflow in a

decentralized setting,

• show that the workflow constructed was also resilient to changes in the commu-

nications network, and

• to demonstrate that semantic matching on SV descriptions (R1), built from Pe-

gasus DAX workflow description files, can be used to discover and recruit service

nodes into the DAG without knowledge of their IP-Address locations.

For the evaluation, we used five different DAG workflows, generated using the Pegasus

workflow generator [114]:

1. Montage (NASA/IPAC) stitches multiple input images together to create custom

mosaics of the sky.
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Figure 9.2: A comparison of five different DAX workflows as input and the VSA

reconstructed workflows from post processing the semantic vector.

2. CyberShake (Southern Calfornia Earthquake Center) characterizes earthquake

hazards in a region.

3. Epigenomics (USC Epigenome Center and Pegasus) automates various opera-

tions in genome sequence processing.

4. Inspiral Analysis (LIGO) generates and analyzes gravitational waveforms from

data collected during the coalescing binary systems.

5. SIPHT (Harvard) automates the search for untranslated RNAs (sRNAs) for bac-

terial replicons in the NCBI database.

We again ran a series of experiments using the CORE/EMANE network emulator to

simulate a MANET network. Pegasus DAX workflows were processed using the VSA
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creator to build the semantic vector workflow encodings and also to generate the ser-

vice description vectors that semantically describe each of the component services.

Each service creates its SV description from the Pegasus DAX job step entries to which

it is assigned and listens for multicast work requests that match ‘self ’. Note that many

of the underlying node process specified in these workflows are highly compute in-

tensive so that they cannot be run in a laptop environment, meaning that once the DAG

was formed and connected, stub services were used in place of the real Pegasus mod-

ules. The workflow request vector was launched from some node in the network, and

the workflow was constructed in a decentralized manner, with control being passed

between services as the workflow vector was recursively unbound. During the work-

flow execution process a range of metrics was extracted which provided a detailed log

of the run and the order of execution. The nodes and edges selected during the run was

extracted from the log, and a visual result was displayed using Graphviz. Figure 9.2

shows the results for the five different Pegasus workflows evaluated. The coloured

images represent the Pegasus generated workflows and blue workflows show the VSA

generated reconstruction of the workflows. Aside from the cosmetic difference, this

demonstrates that all workflows were composed and correctly connected in all cases.

To demonstrate the resilience of the approach, the network connectivity was modi-

fied by moving nodes in and out of operation in order to demonstrate that different

instances of the correct services were selected and that this still produced the same re-

quired workflow. However, since DAG workflows are discovered and connected before

they are started, see Sections 6.2.4 and 8.3.4, note that I did not attempt to implement

recovery methods for the case when a node fails during DAG workflow operation (an

area requiring future work).

For the QoS investigations, the same testing and verification approach described in

Section 9.1.3 was used, and it showed that when multiple similar services respond to

a request, the service with the highest utility was selected in preference to services

having lower utility.
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9.1.5 Node-RED Integration - Traffic Congestion

The main focus of Simpkin et al. [3] was to investigate means whereby Node-RED

workflows can be migrated to operate in a decentralized execution environment, so

that such workflows can run on Edge networks, where nodes are extremely transient in

nature. The objectives were to:

1. Confirm that JSON service descriptions and service request steps can be vector-

ized, (R1), and that these vector descriptions can be used to discover and execute

decentralized workflows (R2), (R4) and (R5).

2. Highlight the fact that matching on vectorized JSON descriptions is greatly sim-

plified because all that is needed is to perform a hamming distance or dot product

match.

3. Show that the VSA approach described in this thesis can be used to extend a

centralized architecture and allow it to discover and execute decentralized work-

flows without the need to specify IP-Address locations and without having all

messages pass through the central controller.

The work demonstrated the feasibility of such an approach by showing how an exist-

ing Node-RED based traffic congestion detection workflow could be migrated into a

decentralized environment.

In the scenario, an existing Node-RED traffic congestion use case, Harborne et al.

[117, 118] was simplified to count the number of cars on a given street by discovering

a sensor service in the correct location, connecting this to an available object_detector

having the appropriate input/output data types and classification abilities, and finally

connecting the object detector to a ‘counting_service’, see Figure 9.3. The sensor, ob-

ject detector, and counting services were implemented as RESTful flask [119] wrapper

services, termed Workflow-Agents (WAs) in the paper. The WAs act as shims to the
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(a) VSA workflow composition using

vsa_service node. (b) Node-RED vsa_service properties.

Figure 9.3: VSA enabled Node-RED workflow.

existing Node-RED local or remote services and use a defined set of endpoints to com-

municate with the VSA cognitive layer and also to send results and receive workflow

requests to and from Node-RED.

The Transport for London (TFL) traffic camera network and API1 were used for the

sensor services. These allows access to imagery and video from around one-thousand

traffic cameras situated around London. The imagery and video are updated every five

minutes, and the video provided is a ten-second clip recorded at the beginning of the

five minute interval. The location and capabilities (e.g., resolution and latency) of each

camera were also specified using JSON service description files.

Multiple (including duplicate) TFL camera, object detector and counting services, hav-

ing differing capabilities described using JSON similar to that shown in Listing 5.3,

were instantiated in the CORE network. Each WA activates its VSA workflow layer by

passing its JSON description file to the VSA importer. The importer converts this to a

VSA semantic vector using the algorithm listed in Section 5.5 and originally described

in [3]. In effect, this converts the existing Node-RED microservices into a cooperat-

ing set of decentralized proxies, which are instantiated into the CORE environment by

1http://www.trafficdelays.co.uk/london-traffic-cameras/
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adding a cognitively-aware wrapper around each service to facilitate decentralized dis-

covery and execution. Workflows are then composed using the Node-RED graphical

interface to describe the connectivity and functional requirements of each workflow

step but without specifying IP locations as per the normal Node-RED scheme. The

user interface is then used to launch the workflow request into the CORE environ-

ment for distributed discovery and execution, and the results are returned to Node-

RED for display. In addition to the traffic congestion workflow, the new Node-RED

mode was used to graphically create and run a distributed simulation of the Montage

Pegasus[114] workflow in the CORE/EMANE environment.

For further details of the scenario and use case details see Simpkin et al. [3].

Results

A video of the Node-RED use case, which is narrated below with time-stamps, is avail-

able at:

https://drive.google.com/file/d/1Bore6cRnY19R0rfiaM-EngUYUBrVhphG/view?

usp=sharing

To understand the video, an explanation of some of the log entry terms is given first:

• PMATCH: 0.6427 | node_name: This indicates that a clean-up node has

matched, with the HDS value shown, and is a potential (P) candidate to execute

its sub-workflow.

• MATCH: 0.6302 | node_name: Indicates that the node knows it is selected as

the winner and is carrying out its clean-up service (by descending the workflow

hierarchy, Section 6.2.2).

• PWORK: 0.6427 | node_name: This indicates that terminal/worker node has

matched, with the HDS value shown, and is a potential (P) candidate to do the

work.

https://drive.google.com/file/d/1Bore6cRnY19R0rfiaM-EngUYUBrVhphG/view?usp=sharing
https://drive.google.com/file/d/1Bore6cRnY19R0rfiaM-EngUYUBrVhphG/view?usp=sharing
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• WORK: 0.6136 | node_name: Indicates that the terminal/worker node knows

it is selected as the winner and is carrying out its function, after which it will

unbind the workflow vector to traverse horizontally in the workflow hierarchy,

Section 6.2.2).

• %TAKEID% shows a node being selected during the recruitment phase. It cal-

culates its position in the workflow, i.e., NodeID, which is used to calculate its

parent and child vector IDs. These vector IDs are used during the ConnectNodes

phase to connect the DAG, section 6.2.4.

• %REQCON% shows a node acting as a parent (producer) node during the

ConnectNodes phase requesting a connection to a child (consumer) node. The

IP-Address listed is the node’s own address (can be cross referenced in the log

when the workflow is started).

• %TAKCON% shows a node acting as a child node accepting a request for con-

nection. The IP-Address listed is the node’s own address.

Figure 9.4: Delayed Send and Local Arbitration

Video narration:

• 00 : 06 shows two workflows being activated using the Node-RED interface,

the traffic congestion workflow and a Pegasus montage workflow, which will be
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Figure 9.5: TFL Camera, traffic workflow starting.

executed in parallel. (Note that the image will have changed by the end of the

demonstration because the workflow will have retrieved a live image for pro-

cessing.)

• 00 : 10 The CORE/EMANE graphical interface displays a mesh network with

various nodes positioned haphazardly.

• 01:28 shows the individual nodes being started in CORE/EMANE, each having

a different IP-Address (which is unknown to the VSA workflow).

• 02 : 22 shows the recruit phase of both the traffic (Recruit_exp_cam) and Pe-

gasus workflows (Recruit_exp_peg) sending their respective Recruitnodes vec-

tors labeled as “sending start command”. The respective clean-up services in-

stantiated on individual nodes announce that they have detected a PMATCH.

In the case of the Pegasus workflow, the HDS match quality indicates 0.6427,

and for the traffic workflow, the match quality is 0.6302.

• 03 : 04 Shows that the delayed send, Section 8.3.2, causes nodes to actively

cancel their planned transmission on seeing a better match, Figure 9.4.

• 04 :05 Shows the discovered traffic workflow connected and operating Peer-to-

Peer (P2P), Figure 9.5.
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1. The “Job Connected, Starting” notification is seen.

2. The “Sending /INIT/ message to ...” entries show the flask services belong-

ing to the VSA layer being started.

3. The line following (2) shows how each discovered node is informed of

the IP-Addresses of each of its parent and child partners (as well as the

return route to Node-RED or keyword ‘DMY’ if none is appropriate) using

a JSON POST message.

• 05:05 Shows the discovered Pegasus montage workflow connected and operat-

ing Peer-to-Peer (P2P). The “Job Connected,|Starting” notification is seen. The

“Sending /INIT/ message to ...” entries show the flask services belonging to the

VSA layer being started

• 05 : 33 shows the Node-RED composition of the target Pegasus workflow and

that it correctly terminated on an mJeg object (mJpeg-10). Again, the selected

node names, flask IP-Addresses and so on can be inspected in this part of the

log.

• 05:37 shows the that a new camera image was retrieved and that the number of

cars detected was thirteen.

9.1.6 Binary Spatter Code Message Truncation (R5)

Chapter 7 and Simpkin et al. [5] describe the mathematical model for BSC vector

truncation (R4). This section reports on the empirical results obtained in [5]. The

truncation model was applied to the Hamlet and Pegasus use cases described in sec-

tions 9.2.3 and 9.2.4. The objective was to investigate how much bandwidth could

be saved by truncating the vector requests for both workflow discovery and orchestra-

tion based on the number of sub-vectors that each VSA concept vector contains and

for various levels of similarity between Service Vector (SV) descriptions in the net-

work. The VSA Platform was updated to perform vector truncation on the fly at the
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point of multicast transmission. All SV descriptions and workflow graphs were built

in the usual way using 10kbit VSA vectors. The discovery and orchestration scheme

remained unchanged as described in sections 6.2 and 8.3.3, except for the inclusion of

the minimum vector size calculation and truncation of the vectors before transmission.

The owner of every VSA concept vector knows how many sub-vectors it contains

(since it was built by adding sub-vectors) and therefore it can use the information con-

tained in Figure 7.6 to calculate the minimum vector size needed to transmit its vector.

For example, the ’Hamlet’ workflow vector contains seven sub-vectors (the five acts

plus some meta-data). If the system can assume it is safe to use a similarity factor of

50% then Figure 7.6 indicates that the 10kbit vector can be truncated to 1680 bits. The

vector is unbound to reveal the Act_1 vector then truncated to 1680 bits before it is

multicast to the network. Each service compares this vector with the first 1680 bits

of their vector and measures the Hamming distance. Since the number of bits is now

1680, the service computes the threshold from the information in Figure 7.7, which is

a value of 0.42, and if the measured hamming distance is less than the threshold then

the service follows the protocol for determining if it should respond or not. Should the

service calculate itself to be a good match, then before responding, it must truncate its

reply vector to the minimum understandable length. To do this, it counts the number

of sub-vectors contained in its response, which is 10; therefore, from the model, it will

truncate its vector to 2751 bits before transmission.

Table 9.1 shows the results obtained, via logging, for the bandwidth savings achieved

using the Hamlet linear workflow test-case. For this test-case we used two different

word binding methods, positional and XOR chaining, when building the representa-

tion so that we were able to manufacture different levels of similarity. The positional

binding scheme creates words vectors that are similar to each other whereas the XOR

chaining scheme creates unique vectors for words (but not sentences, since the posi-

tional scheme was used at the sentence level in both cases). In Table 9.1, column ’10k’

is the bandwidth consumed without vector truncation. Columns ’s60’ and ’s50’ are the
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Workflow 10k s60 s50 s60% s50%

ACT_1 72.71 57.15 49.57 78.60 68.18

ACT_2 61.74 48.74 43.14 79.37 69.87

ACT_3 78.25 62.21 54.39 79.50 69.52

ACT_4 55.55 45.25 38.72 81.46 69.71

ACT_5 59.37 46.93 40.86 79.06 68.83

Table 9.1: Bandwidth savings (MB) and compression ratio for Hamlet workflow,

chunk size variable based on sentence length.

Workflow 10k s50 s40 s50% s40%

Epigen_24 0.87 0.45 0.35 53.23 41.94

Montage_25 1.24 0.66 0.52 56.51 44.15

Inspiral_40 1.43 0.77 0.60 58.08 45.54

Inspiral_100 3.66 2.03 1.59 53.85 41.96

Montage_100 6.07 3.43 2.68 55.46 43.44

Epigen_997 34.48 19.95 15.62 58.09 45.35

Inspiral_1k 33.69 19.57 15.28 51.72 40.23

Montage_1k 59.07 34.31 26.90 57.86 45.30

Table 9.2: Bandwidth savings (MB) and compression ratio for discovery of vari-

ous Pegasus worklfows, ChunkSize = 23.

bandwidths consumed when a similarity factor of s60=60% (used for the positional

binding scheme) and s50=50% (used for the XOR binding scheme). Columns ’s60%’

and ’s50%’ are the compression ratios obtained for the respective similarity factor. It is

interesting to note that we could not get consistently clean runs when using a similarity

factor of ’s50%’ and the positional binding scheme, nevertheless the positional binding

scheme allows for better semantic matching of the sentence and word concepts we are

using to model workflow and service objects in this test-case.
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Workflow 10k s50 s40 s50% s40%

Epigen_24 0.83 0.51 0.40 60.94 48.19

Montage_25 1.22 0.79 0.62 64.96 50.82

Inspiral_40 1.39 0.90 0.69 64.32 49.64

Inspiral_100 3.57 2.49 1.92 67.71 53.78

Montage_100 5.89 4.16 3.24 70.56 55.01

Epigen_997 32.54 23.55 18.69 72.39 57.44

Inspiral_1k 31.97 23.13 18.18 72.36 56.87

Montage_1k 57.07 41.51 32.44 72.74 56.84

Table 9.3: Bandwidth savings (MB) and compression ratio for discovery of vari-

ous Pegasus worklfows, ChunkSize = 29.

Tables 9.2 and 9.3 show the bandwidth savings obtained using the same approach for

discovery and connection of various Pegasus workflow examples. There is less simil-

arity between differing service objects in these Pegasus examples, so these runs were

conducted at similarity factors of ’s50’ and ’s40’. The savings listed represent purely

the savings in the message bandwidth generated for discovery and orchestration; no

actual data processing was executed. the Pegasus workflow examples were used as a

means to test that the VSA Platform could successfully encode, discover and connect

DAG workflows in a verifiable way when employing truncation. Verification of correct

runs was carried out as described in Section 9.2.4.

Figure 9.6 shows how compression ratio varies with chunk size and similarity factor

and is an experimental verification of the theoretical compression ratios shown in Fig-

ure 7.6. All graphs where obtained by building the Montage_100 test case at various

chunk sizes and then running discovery on these workflows using different similarity

factors. The obvious conclusion from Figure 9.6 is that small chunk sizes give better

compression ratios and it should be noted that the recursive nature of eq. (6.1) enables

the use of small chunk sizes for concepts containing many sub-features. However, the
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Figure 9.6: Minimum message size (No Bits) for chunk vectors containing n sub-

feature vectors.

results in section 6.3 and originally shown in [4] suggest that smaller chunk sizes can

reduce the semantic matching capabilities of the resulting concept vectors. This is an

area for future investigation.

9.1.7 Radio Reconfiguration with Neuromorphic Phase-change

Memory Integration

This use case was originally described in Bent et al. [6] and represents a strong valid-

ation of the research presented in this thesis because it is one of only a few separately

funded technology transition contracts to be awarded by my sponsor, the U.K. Ministry

of Defence (MOD).

The scenario is loosely based around the Anglova tactical military scenario [120] and
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Figure 9.7: Schematic of the scenario showing the current and target communic-

ation plans in three channel layers. The colour coding of the different radio/plat-

forms is used to illustrate the vector unbinding .

experimentation environment developed by the NATO IST-124 Research Task Group.

In the scenario, different types of platforms and their associated radios, operating in

a low bandwidth Tactical Communications and Information Systems (TacCIS) envir-

onment, are assigned to the one of three different UHF radio channels, as shown in

Figure 9.7. Some of the radios are assumed to be on a fixed channel; some can operate

on any two channels, and a minority can operate on all three channels. After some

events in the field, a commander requires a number of the distributed assets and ser-

vices to switch from their current radio channel assignments to a new set of channel

assignments. The approach used is particularly applicable to a future military Inter-

net of Battlefield Things (IoBT) where rapid reconfiguration of assets is required to

support changing mission needs. The main objectives were:

1. to demonstrate that a set of VSA-enabled resources can cooperate in a decent-

ralized P2P manner (R5)using the hierarchical VSA workflow scheme (R2) to

carry out a reconfiguration task without central control and without nodes hav-

ing knowledge of IP-locations and even in the case when the target node does

not share a common channel with the current requester.

2. to investigate the bandwidth savings obtained when vector truncation (R3) is

used as described in Section 7.2.
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3. to show how a neuromorphic phase-change memory (PCM) chip might be in-

corporated into the VSA workflow architecture and assess the potential energy

benefit of using such a device.

My contribution to this paper was to extend the implementation of the VSA Platform

to meet objectives 1) and 2) and show how the reactive one-to-many communication

paradigm (R5) facilitates cooperation between autonomous nodes to complete such a

difficult decentralized configuration task. The main extension was the introduction of

the ‘take-over’ request message, which is used when the current workflow requester

node fails to get a response to its unbinding and multicast of the workflow request

vector. The purpose is to find a peer node that will act as a proxy for the requester so

that the request vector can be multicast on channels to which it does not have access.

The take-over request specifies the channels on which the workflow request has been

made so that only listening nodes that have access to channels that have not been visited

will respond. The VSA Platform used its caching of previously seen workflow request

vectors to easily implement this behaviour. For more details of how the Platform was

extended to cater in such situations, see [6, Sections 5, 6, 7].

The Anglova environment and radio modeling was created by the IBM Hursley au-

thors. The PCM investigations were carried out by the IBM Zurich authors and will

not be included here because I did not contribute to this section of the paper (except by

supplying access to BSC vectors for use in the PCM experiment). For more informa-

tion on the PCM part of the paper see [6, Section 4, page 6-9]. The implications of the

PCM experiment and findings with respect to this thesis are reserved for Section 9.2.7.

Experimental Environment and Data Collection

The simulation, built by the IBM Hursley authors, was performed in the IBM Fyre

cloud environment using a Ubuntu 20.04 VM, which has been set up with the Anglova

network emulation scripts, a Mosquitto MQTT server and the Node-RED orchestration
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Figure 9.8: Initial and target communications plans showing the first 25 radio

definitions.

engine and network packet capture. Each radio, its associated platform and the code

required to perform the VSA operations is encapsulated in Linux Containers running

EMANE. For more information see [6, Section 8.1, page 16].

Experimental Results

The demonstration scenario comprises sixty radio assets, where each asset is described

by a set of characteristics and is initially assigned to a specific radio channel. Each

asset is also given a list of the channels on which it is accredited to operate. The initial

and target communications plans are shown in Figure 9.8 for the first 25 radios in the

scenario.

This target plan is requesting 20 specified assets to be on Channel 1, 20 on Channel

2 and 20 on Channel 3. For the purposes of the demonstration, twenty out of the

sixty assets have been randomly initialized onto channels different from the required

designation in the new workflow plan. The objective is to discover these assets and

instruct them to move to the required channel. Correct operation can then easily be

verified using the environment’s graphical display as well as from the logs.

A video of the demonstration is available at:
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Figure 9.9: The demonstrator screen showing the location of the different radios

and the communications that are occurring as the scenario plays out.

https://drive.google.com/file/d/1HGcVuVRqVJpv8yfKVXmENTzisXyCBQoW/view?

usp=sharing

The layout of the demonstration display is shown in Figure 9.9. On the left hand side

is a map that displays the location of the different assets. In the centre of the display

are various panels that indicate the actions that are taking place and on the right hand

side of the display are panels that show the data transfers (bytes transmitted) as the

workflow progresses.

In Figure 9.10, we show the maps corresponding to the location and initial and final

configuration of the assets. The shaded polygons, each corresponding to a radio chan-

nel, indicate the area within which assets on a particular radio channel are located.

Sequence of Operations

To understand the sequence of operations in the demonstration video, we describe

here the first few actions occurring in the scenario to illustrate the different actions

https://drive.google.com/file/d/1HGcVuVRqVJpv8yfKVXmENTzisXyCBQoW/view?usp=sharing
https://drive.google.com/file/d/1HGcVuVRqVJpv8yfKVXmENTzisXyCBQoW/view?usp=sharing
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Figure 9.10: Initial and Final Configurations

performed in the rest of the scenario. The initial steps are as follows:

1. The workflow vector is injected by Company1-1, which is on Channel 1. In the

demonstration video, this action can be seen in the map display by the multicast

of the vector to all assets on Channel 1 and a corresponding transmission of

770bytes. The initial unbound vector is an instruction for Company1-2 to switch

to Channel 1. Since we are using dynamic vector truncation, the workflow vector

only requires 770 bytes compared to the 1403 bytes that would be required for

the corresponding 10Kbit vector message.

2. Company1-2, is initially on Channel 2, so it does not see the initial request and

there is no response.

3. Company1-1 does not receive a response on Channel 1 and so switches to Chan-

nel 2 and tries again. This time it receives a response from Company1-2 and

replies with an acknowledgement vector and switches back to its original chan-

nel, which is Channel 1.
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4. Company1-2 now has control and switches to the instructed channel, which is

Channel 1, and then unbinds the workflow vector and transmits this on Channel

1. The unbound workflow vector in this case is a request for Company1-6 to

move to Channel 1.

5. Since Company1-6 is on channel 3, there is no response to the request on Chan-

nel 1, and so Company 1-2 switches to Channel 2 and transmits the vector, but

again there is no response.

6. Since Company 1-2 has now tried on all of its available channels it needs to

discover an asset that can switch to channels that it cannot reach (in this case

channel 3).

7. Company 1-2 therefore issues a ‘Take-Over’ request vector on Channel 2 and

receives a response from Company1-56 which is a vehicle and can access all

three channels.

8. Company 1-2 sends an acknowledgement to Company1-56.

9. Company1-56 now takes over control, switches to Channel 3 and transmits the

vector to which Company1-6 responds and Company1-56 acknowledges. This

results in Company 1-56 returning to Channel 1 and Company 1-6 switching to

Channel 1 as instructed.

The scenario proceeds until all of the assets are on the correct channel. Figure 9.11

shows the state of the demonstration at step 7 in the scenario. The data transmissions

and bandwidth consumed were measured both with and without vector truncation re-

spectively. Without vector truncation the total bandwidth required was 252,515 bytes

and with truncation was 92,846 bytes, a saving of 2.7x which is significant in the low

bandwidth (16.5 Kbit/sec) TacCIS environment in which we are operating.

The total time taken to switch all 20 assets to the correct channel was between 5 min

30 seconds and 6 min, i.e., 16.5 seconds per channel with an average of 4642 bytes per
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Figure 9.11: State of the scenario demonstrator at point 7

asset. This time could potentially be significantly reduced by a more judicious choice

of time delays, bringing it closer to approximately 3 seconds per asset on 16.5 kb/sec

channels.

9.1.8 Attribute and Proximity Matching for Federated Mission

Networks

This section describes another separately funded MOD technology transition contract

that once again confirms the relevance of the work presented in this thesis.

Federated Mission Networks (FMN) follow the NATO C3 taxonomy of services where

each mission network will contain a subset of the possible services and military entities

that need to use them in different configurations. There is currently no system that

is capable, in an agile way, to automatically discover and connect the services and

military entities into new configurations to meet changing mission needs. The objective

of this task is to show how shallow semantic attribute matching, using the methods

described in Section 5.1 (R1), combined with the proximity based matching described
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in Section 5.2.1 (R1) can be used to select appropriate services and entities based not

only on their functional capabilities but also, on dynamically changing variables such

as distance from a specified location.

The scenario consists of a number of FMN services (e.g., chat servers, e-mail serv-

ers) that are distributed on different assets and which, as in the Radio Reconfigura-

tion scenario, may be operating on different radio channels. The list of assets and their

characteristics is given in Table 3.1.

A commander wants to put together a group of assets (vehicles, soldiers) where the

assets each have some specified characteristics stored on their associated radio device.

For example, the commander wants to issue a VSA workflow that can discover the best-

placed chat server and then instruct a collection of team members having the required

asset types to connect to this.

To illustrate how the semantic ‘number-line’ vectors are used, the commander’s request

must be constructed such that team members who match the required characteristics

(i.e., static node attributes) are discovered but those that are actually chosen are based

on their proximity to the chat server. It is important to note that the commander does not

need to know the current location and/or radio channel of the required group members

in order for the task to be undertaken. The initial location of the assets is shown in

Figure 9.14a, and a snapshot of the communications occurring after the workflow has

Figure 9.12: JSON representation of two radios each with different configura-

tions.
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Figure 9.13: List of assets and their characteristics

been executed is shown in Figure 9.14b, where it can be seen that a chat server has

been discovered and selected and assets of the required type are now communicating

via the discovered chat server.

Experimental Results

In the demonstration scenario, twenty assets are distributed in unknown geographical

positions. Each asset creates its SV description from its JSON node description file

(R1), see Figure 9.12, and can determine its Military Grid Reference System (MGRS)

geospatial reference location from the experimental environment.

The workflow vector is constructed using Eq. 6.1 as a sequence of the nodes description

SVs, Zi, where each Zi is built from a the required node attributes, (i.e., a subset of

the attributes shown in Figure 9.12). The required position vector is added to the

workflow vector Zx as metadata before the workflow vector is multicast injected into

the network. The VSA enabled nodes match against their static SV descriptions and,

if a match is found, weight their HDS score for proximity using the method described
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(a) before (b) after

Figure 9.14: Scenario laydown of assets before and after the workflow discovery

and connection has been executed.

in Section 5.2.1 (R1).

The demonstrator interface is identical to that used for the Radio Reconfiguration task

and is shown in Figure 9.15. The interface shows the location of the assets on a map

and the current patterns of communication between the nodes. A series of additional

windows together indicate node activity and the volume of communications that are

occurring between the different nodes as the scenario unfolds. A video of the activities

is available at:

https://drive.google.com/file/d/1oe7LmVA48c5q6LY0KMSvQJbytpy7u8e6/view?

usp=sharing

This video should be downloaded and viewed at full resolution using slider bar to

inspect the state of the scenario at different times during the execution to understand

the details of what is occurring.

https://drive.google.com/file/d/1oe7LmVA48c5q6LY0KMSvQJbytpy7u8e6/view?usp=sharing
https://drive.google.com/file/d/1oe7LmVA48c5q6LY0KMSvQJbytpy7u8e6/view?usp=sharing
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Figure 9.15: The demonstrator interface showing the location of the assets and

the communications occurring as the demonstration unfolds.

In Figure 9.16, the demonstrator Interface shows the location of the assets and the com-

munications occurring as the nodes are recruited (blue line in Data Protocol window)

and following the completion of the workflow steps when the nodes are communicat-

ing via the chat service (white line in the Data Protocol Window). The node recruit-

ment takes approximately 60 seconds with an average network bandwidth utilization

10Kbits/sec in a 12.5 Kbit/sec network.

It should be noted that in this scenario, when selecting the chat server to use, the

workflow vector was constructed to prefer a node near to the node initiating the query

that had the capability to become a chat server rather than a node having an active chat

server if such a node was further away. If the chat server workflow recruitment step

omitted the Available_Role key-value and instead specified the current Role key-value,

then the workflow vector would select the closest active server.
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Figure 9.16: The demonstrator Interface showing the location of the assets and the

communications occurring as the nodes are recruited (blue line in Data Protocol

window) and following the completion of the workflow steps when the nodes are

communicating via the chat service (white line in the Data Protocol Window).

9.2 Evaluation of Use Cases

9.2.1 Test Data

I found the use of Shakespeare’s Hamlet as a model for constructing scalable hier-

archical workflows to be a very useful approach that was easily verifiable. However,

during presentations of my work, and despite repeated and careful attempts at clarify-

ing the analogy, a number of the military advisors representing my sponsors did not

find the Hamlet workflow analogy to be a convincing representation of real world mil-

itary scenarios. With this in mind, I conclude that careful selection of test data to reflect

believable scenarios for the target audience is an important consideration to be carried

forward into the future.

The diversity of DAG workflows available using the Pegasus workflow generator al-
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lowed the VSA representation of DAGs to be easily tested and verified. However, the

use of stub processes in place of real Pegasus modules should be improved upon in

order to test VSA workflows in the most realistic scenarios possible.

9.2.2 Data Collection and Verification

Using a HTTP logger to collect output from the distributed services into a single log

file was essential for the empirical analysis, verification and debugging of decentralized

P2P workflows.

9.2.3 Dynamic VSA Workflows and QoS - Hamlet workflow

The evaluation was performed using the CORE/EMANE network emulator to simulate

a MANET network and used a MANET multicast routing protocol to communicate

vectors between the nodes containing the services. Multicasting the top level Hamlet

vector results in the whole play being enacted by worker services that generate each

word in the play. The VSA workflow implementation of Hamlet has a number of ad-

vantages over the Newt[116] implementation. Specifically, the Newt implementation

requires that the IP address of participating services be known and encoded into the

workflow, whereas our VSA approach can discover the service(word/sentence) needed

on the fly using semantic matching. In Newt, if the service specified by IP address be-

comes unavailable, i.e., we intentionally move it out of wireless range in CORE, then

the workflow halts and is broken. In VSA Hamlet, the same action results in the auto-

matic discovery of multiple exact and near-match candidate word/sentence/services,

and the best match is then chosen. When multiple, functionally equal matches were

discovered, the local arbitration function ensured that the service having best simu-

lated utility was chosen and logged as such. The best ‘near’ match was chosen when

we contrived to make exact matches unavailable in CORE. Additionally, the advantage

of passing around the workflow as a vector superposition was highlighted because the
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stand-in service automatically resynchronized the workflow after ‘speaking’ its sub-

stitute word by simply performing an unbind and transmit of the workflow vector it

received. Newt has none of these capabilities.

9.2.4 Static VSA Workflows - Pegasus DAG workflows

This experiment shows that DAG workflows can be composed, discovered and con-

nected in a completely decentralized way using the VSA hierarchical binding scheme

described in section 6.2.4 (R5). The encoding of DAG node descriptions into BSC

vector descriptions enables services to be discovered and recruited into the DAG by

matching their functional and QoS characteristics to the workflow’s vector node de-

scriptions instead of the need to specify the IP-location of each node. By use of se-

mantic vector descriptions for node discovery, this experiment also demonstrated that

it is possible to locate alternate similar services which is a significant advantage for en-

vironments where network fragmentation is common-place. However, recovery from

node disconnects and failures after DAG workflow execution has been started was not

addressed. This is significantly more problematic for DAG workflow operation than

it is for sequential workflows (where the failing step can be simply restarted) because

of the problem associated with how to synchronise the overall workflow state of the

DAG. Therefore, recovery from node failures during decentralized execution of DAG

workflows should be considered an important and challenging future work area.

While NEWT [62] has demonstrated workflow orchestration of DAG workflows in a

decentralized environment, it requires the specification of each node’s IP-address loca-

tion and so would be inflexible to network fragmentation. Therefore, this approach ex-

tends the state-of-the-art by being the first to demonstrate flexible DAG discovery and

connection in such distributed decentralized environments without the need to specify

node address locations.
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9.2.5 Node-RED Integration - Traffic Congestion workflow

This experiment successfully demonstrated that Node-RED workflows can be migrated

to operate in a decentralized execution environment by converting Node-RED service

objects into semantically comparable BSC vectors (R1) and converting Node-RED

JSON workflow descriptions (Node-RED flows) into my hierarchical VSA workflow

representation (R2). This was tested using an existing Node-RED traffic counting

workflow and a simulation of a Pegasus DAG workflow. The log output and graphic

provided in the video results clearly demonstrate research contributions (R1), (R2),

(R4) and (R5) in action, for example:

• PMATCH: 0.6427 | node_name: and PWORK: 0.6427 | node_name:

entries demonstrate (R1). In many sections in the video, for example (03 : 04)

(see also, Fig 9.4), multiple nodes report their HDS match values. This shows

that similar services can be semantically compared and differentiated using their

BSC SV representations built the json_to_vecs method.

• MATCH: 0.6302 | node_name: and WORK: 0.6136 | node_name: entries

demonstrate (R1). The service object chosen will have the the highest HDS

score, which can be checked by comparing to preceding PMATCH and PWORK

log entries.

• %TAKEID% entries demonstrate the recruit phase of the VSA DAG encod-

ing Section 6.2.4 (R2). The winning node can be seen to correctly calculate its

activation position within the workflow.

• %REQCON% and %TAKCON% demonstrate the connection phase of the

VSA DAG encoding, Section 6.2.4 (R2).

• Figure 9.4 and (03:04) clearly demonstrate (R4). Multiple nodes actively cancel

their planned transmission on seeing a better match.
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The Node-RED graphical user interface is very intuitive and easy to use. By integrating

my VSA framework with Node-RED, this use case has demonstrated that Node-RED

could find new employment for rapid workflow creation in military field operations

where the network address of assets is difficult to keep track of due to frequent frag-

mentation.

9.2.6 Binary Spatter Code Message Truncation (R5)

This experiment was an empirical evaluation of the mathematical model presented in

Chapter 7. The results confirm that "Holographic dynamic message sizing (R4)" is an

effective method to reduce the size of BSC message packets for on-the-wire commu-

nication, thereby reducing communication bandwidth while maintaining the semantic

information content. From the test-case results, it is noted that while the resulting band-

width savings may appear low in terms of MB saved and would not be important in a

fixed network infrastructure, savings of 45% in our target environment will prove to be

extremely important. This is because, for tactical edge military networks, bandwidth

can become a critical resource when devices are mobile. At greater distances from their

nearest neighbours, bandwidth is increasingly reduced due to path loss and networks

become fragmented. This thesis is the first to suggest using the holographic properties

of the symbolic vectors to perform compression, taking into consideration the num-

ber of combined sub-vectors along with similarity bounds that determine conflict with

other encoded vectors used in the same context.

9.2.7 Radio Reconfiguration with Neuromorphic Phase-change

Memory Integration

This technology transition task demonstrated how my VSA workflow framework could

be used to solve a real-world military problem that currently does not have a satis-

factory solution using other means. My VSA framework was used to successfully
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perform a communications replanning task in a Tactical Communications and Inform-

ation Systems (TacCIS) environment. The communications plan was represented as a

BSC workflow vector (R2) using eq. (6.1) which, when multicast injected into the ra-

dio network, was exchanged between assets to discover and instruct assets on different

radio channels to reconfigure into a desired configuration (communications plan). The

associated demonstration environment shows that the reconfiguration of twenty assets,

initially assigned to random communication channels, can be discovered and instruc-

ted to achieve this goal in a completely decentralized manner (R5). Whilst there is still

scope for improvements in terms of performance, the feasibility of such an approach

has been demonstrated.

This use case clearly demonstrates the effectiveness of my research contributions, (R2),

(R3), and (R5) in a number of ways:

• (R2) is demonstrated because it was easy to construct a single BSC workflow

vector that was passed around from peer to peer in away that caused each node

to reprogram its radio communication channel onto a new designation.

• The successful execution of take-over requests also demonstrated the effective-

ness of representing workflows as BSC vectors (R2) because it allowed for any

node executing the take-over to re-synchronise its cached copy of the workflow

vector in question into the correct/active workflow step permutation in a very

simple manner.

• The effectiveness of a one-to-many reactive communications paradigm, “cog-

nitive workflow (R5)”, is demonstrated by successful execution of take-over re-

quests because it enables any node to cache any workflow vector it ‘hears’ on

the multicast channel, regardless of whether or not the node is participating in

the workflow. This enables nodes to perform take-over requests in a very simple

manner and without the need to understand the information content of the work-

flow for which it is proxying.
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• The effectiveness of “Holographic dynamic message sizing (R3)” was confirmed

because the experiment reported a saving of 2.7x reduction in bandwidth con-

sumption (252,515 bytes without truncation, compared to 92,846 bytes with

truncation). This is a significant saving for the low bandwidth (16.5 Kbit/sec)

TacCIS environment.

Phase Change Memory Results

Operation of the PCM device was benchmarked against a conventional 65 nm CMOS

device, see [6, Section 4.2]. The results found that the PCM device had a total energy

efficiency of 117.5:1 compared to the all CMOS configurations. Similarly there was a

31.9 x reduction in required chip area. This suggests that these types of devices would

clearly have a significant impact in energy constrained environments such as IoBT

and IoT applications. From the perspective of this thesis, this is a strong argument

for the use of BSC for the representation, discovery and orchestration of services and

workflows because PCM devices are inherently parallel processing architectures that

are designed to operate on high-dimensional vectors.

9.2.8 Attribute and Proximity Matching for Federated Mission

Networks

This transition task is a compelling demonstration of (R1), (R2), and (R5) because it

successfully demonstrated how my VSA framework could be used to perform agile

command-and-control tasks in a TacCIS type environment fulfilling a so far unsolved

MOD requirement. The task successfully demonstrated resource discovery using vec-

tor encoded attribute collections, Section 5.4 (R1), weighted by the resource’s position

relative to a request position, both encoded as 2D number-line vectors as described in

Section 5.2.1 (R1). A sequence of the required vector asset descriptions is encoded

into a BSC workflow request (asset recruitment) vector (R2), along with the target
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position vector (added as metadata). When multicast injected into the network, the

workflow request is executed as described in, sections 6.2.2 (R2) and 8.1 (R5), so that

the resources are discovered and connected in a completely decentralized manner.

My VSA workflow framework could therefore provide an entirely new approach to

agile command and control. Mission goals can be achieved by discovering resources

based on their functional capabilities (semantic attribute matching) and dynamically

changing operational characteristics such as vehicle fuel status, radio battery life, etc.

Such an approach would optimise the use of available assets while minimising the need

for detailed pre-mission planning.
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Chapter 10

Conclusion

For wired networks, there are many successful WFMS available [18–27]. However, in

the current state-of-the-art, workflows and workflow management systems are heavily

reliant on centralized architectures using stable high bandwidth networking and must

be specified imperatively, as described in Sections 1.3 and 3.1. More recently, research

into Edge computing [65–67] is focused on exploiting the processing power available

in edge devices to reduce loads on centralized controllers, improve latency and reduce

bandwidth consumption. In both of these approaches, stable connectivity among edge

devices and to cloud servers is assumed, as is a known network address location for

each device.

When workflows must operate in more dynamic environments, such as MANETs (as

described in section 3.2), service discovery becomes an essential component of the

WFMS. Current approaches for service discovery in MANETs are classified as pro-

active directory based or reactive directory-less. Directory based architectures, which

must be distributed for useful operation in MANETs, carry more bandwidth overhead

due to the necessity of server announcements and requirement to keep directories up

to date. This is an issue in low-bandwidth scenarios. In addition, because directories

can easily go out of service during network fragmentation, directory based approaches

are not appropriate when networks are likely to suffer frequent fragmentation, as is

the case for military field operations. Directory-less architectures, which typically use

broadcast or multicast, are more flexible in the face of network fragmentation. How-

ever, this approach can cause significant network congestion [74] and therefore present
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difficulties for operation in low-bandwidth networks.

In the current state-of-the-art, the important issue of matching requests to services is

implemented in a number of ways: 1) mapping known service identifies to URLs,

2) attribute matching and, in a few cases, 3) ontology matching techniques [75–77].

Each approach has some benefits and weaknesses. Simple identifier approaches keep

workflow discovery message overhead low and can often be embedded in the under-

lying transport protocol such as in DNS-SD architectures, however, fuzzy semantic

matching is not possible. Attribute matching allows for richer queries, but attribute

names must be agreed and assessing match quality can be computationally difficult

and brittle [93–95] as discussed in section 3.3.1. Ontologies such as OWL-S and W3C

can be used for semantic matching but, as described in section 3.3.1, they are difficult

to develop and maintain, especially when targeted for use among loosely cooperating

coalition partners. They are not easily combined or extended and can become large

and unwieldy (which is not ideal for low power mobile devices).

Therefore, a need is identified for a compact representation that can facilitate com-

plex semantic matching on workflow requests with little overhead and is capable of

supporting the execution of workflows in a decentralized, low-bandwidth, transient

environment without reliance on central registries and centralized controllers.

This thesis has shown that the basis of such a workflow architecture can be formulated

using a Binary Spatter Code (BSC) Vector Symbolic Architecture (VSA). Resource

and service objects build and maintain BSC vector representations of themselves, en-

abling fuzzy matching to workflow requests via a simple Hamming similarity test.

Complex workflows are also represented as BSC vectors that contain the details needed

for composition, discovery and orchestration of the services and resources needed to

complete a task. The one-to-many reactive workflow paradigm facilitates coopera-

tion between autonomous decentralized agents (service objects, resources and sensors)

while the decentralized local arbitration mechanism minimizes the number of work-

flow orchestration messages that must be exchanged to control workflow execution. In
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addition, because BSC vectors are distributed representations, further bandwidth op-

timization is obtained through vector truncation while maintaining full matching and

operational capability.

The research contributions are now discussed commenting on their impact and poten-

tial to fulfil existing issues with respect to the current state-of-the art:

Research contribution R1 - Multi-modal semantic service object descriptions:

Alternate approaches for the description and semantic matching of service ob-

jects were considered in Section 3.3. Complex semantic matching for service

discovery is typically performed using a service ontology such as OWL-S and

W3C. However, ontologies are difficult to develop and maintain, especially

when targeted for use among loosely cooperating coalition partners and require

complex processing to perform semantic matching.

Representing services and resources as vectorized attribute collections, Chapter

5, represents an improvement in the state-of-the-art for service discovery, partic-

ularly when considering low power edge devices, because semantic comparisons

can be made using a computationally efficient Normalised Hamming Similar-

ity (HDS) calculation, especially if the calculation is implemented in hardware.

In addition, by using BSC to represent services, rich multi-model descriptions of

service objects and sensors can be created by encoding the object’s sub-feature

vectors from a combination of simple VSA binding and bundling operations as

well as from existing semantic vector word databases (Section 5.3), and non-

text based vector descriptions using the method of randomized binary projection

[108]. Matching can also be performed on approximate values using the range

and ‘number-line’ methods, Section 5.2.1. Binding and bundling operations are

mathematically well defined, and therefore, similarity comparisons are determ-

inistic and explainable.

Research contribution R2 - Hierarchical VSA bundling:

I extend VSAs using a novel hierarchical vector binding and bundling scheme
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that maintains the ability to perform semantic matches and avoids the false ac-

tivation and nullification of embedded sub-vectors that plague previous schemes.

The scheme is capable of recursively bundling multiple levels of abstraction

(workflow and sub-workflows/branches) to a practically unlimited depth as demon-

strated by the Hamlet use case 9.2.3. The ability to scale is a major advantage

since it is not unusual for workflows to require many hundreds of individual steps

in today’s microservice workflow architectures. Describing workflows using a

self-contained BSC vector provides a very efficient way of controlling decentral-

ized workflow execution because the vector can be ‘wound’ forwards and back-

wards to any position in the workflow without needing knowledge of the work-

flow vector’s operational content as evidenced in the Radio Reconfiguration use

case when any node was able to act as a proxy for an unrelated node during the

processing of takeover-request, see Sections 9.1.7 and 9.2.7, as well as in the

Hamlet use case, Section 9.2.3, which showed that the dynamic workflow auto-

matically re-synchronised onto its original path after an alternate service was

selected. The new encoding encapsulates all the information needed to control

workflow discovery and execution without a central controller. It also provides

a unique context for every workflow execution step, which has the potential to

enable service agents to learn the meaning of other agents (and themselves) in a

similar way to how word meanings are learnt in NLP, see Section 6.2.6.

Research contribution R3 - Holographic dynamic message sizing:

Chapter 7 extends the state-of-the-art for BSC vector symbolic research in gen-

eral by being the first to provide a definitive mathematical model for calculating

the minimum vector dimension needed to avoid confusion when trying to differ-

entiate between BSC vectors that are similar. Message size optimization is par-

ticularly important for the edge computing in low-bandwidth transient MANET

environments, and its effectiveness was demonstrated in the Radio Reconfigura-

tion task, 9.1.7 and 9.2.7 when it achieved a 2.7x reduction in consumed band-

width compared to workflow execution without truncation.
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Research contribution R4 - Bandwidth efficient distributed arbitration:

The multicast reactive model for workflow discovery is the simplest to manage,

but reactive multicast service discovery protocols are prone to network conges-

tion when many servers and requesters are issuing announcements and requests

[74]. The delayed response mechanism, Section 8.2.5, extends the-state-of-the-

art in service discovery because it will enable the multicast reactive model to be

used without causing network congestion. When combined with the represent-

ation of services as BSC vectors (R1), it is a very efficient mechanism because

all listeners have a very simple method to test for semantic match quality, us-

ing hamming similarity, and therefore, they are not overloaded processing match

calculations in order to make decisions on their delayed response.

Research contribution R5 - Cognitive workflow model:

Section 3.1 identifies that WFMS are almost exclusively controlled by a central-

ized task coordinator/manager. This means that they are not suitable for oper-

ation in MANET environments where fragmentation is frequent and stable end

points cannot be guaranteed. This thesis extends the workflow state-of-the-art

by using a reactive one-to-many communication model for all workflow orches-

tration messages, represented as BSC vectors. This means that all workflow

orchestration messages can be received and acted upon by any listening service,

which enables services to gain awareness of workflow activity in the network

and facilitates cooperation between autonomous services as demonstrated in the

Radio Reconfiguration use case when any node was able to act as a proxy for an

unrelated node during the processing of takeover-request, see sections 9.1.7 and

9.2.7. Combined with (R4), which minimizes workflow orchestration message

overhead, this creates a truly peer-to-peer architecture capable of operating in

transient MANET environments without a central point of control.

This thesis is the first work to describe workflows and their component services as

distributed vector representations. The outcomes demonstrate a new cognitive work-
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flow model that uses one-to-many communications to enable intelligent cooperation

between self-describing service entities that can self-organise to complete a workflow

task. Workflow orchestration overhead was minimized using two innovations, a local

arbitration mechanism that uses a delayed response mechanism to suppress responses

that are not an ideal match and the holographic nature of VSA descriptions enables

messages to be truncated without loss of meaning. A new hierarchical VSA encoding

scheme was created that is scaleable to any number of vector embeddings including

workflow steps. The encoding can also facilitate learning since it provides unique con-

texts for each step in a workflow. The encoding also enables service pre-provisioning

because individual workflow steps can be decoded easily by any service receiving a

multicast workflow vector.

10.1 Future Work

10.1.1 How can semantic representation of service objects

be improved?

As described in Section 5.5, the encoding methods described in Sections 5.1 and 5.4 for

the creation of Service Vector (SV) descriptions are effectively vector representations

of unordered collections of key-value attribute pairs. As such, these type of SV en-

codings can only offer shallow semantic, i.e., syntactic matching, capability. A further

work objective is to consider how deeper semantic representations can be captured.

This is a particularly challenging requirement because very often true semantic sim-

ilarity depends on context. For example, consider the challenge of locating a camera

sensor near a particular location, say the north end of Oxford Street. We can specify

a lat-long as a key-value entry in a JSON camera resource description file and use the

proximity matching technique described in Section 5.2.1 to encode the location. If the

objective of the workflow is a search for some vehicle near the location specified, then
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any camera sensors returned near the lat-long specified, including cameras in adjacent

streets, might be considered a good match. However, if the workflow objective is to

obtain video analysis of an incident specifically happening at the north end of Oxford

street, then only cameras with a view of Oxford Street would be acceptable. Thus, in

the second scenario a camera located half a mile further down Oxford street might be

an acceptable match but very close cameras in adjacent streets would not.

Another might be to explore how query by example could be encoded in SV descrip-

tions. That is, is it possible in some way to capture the transfer function of a mi-

croservice, considered as a black box, by encoding examples of the typical input it

accepts and corresponding output it produces?

The fundamental research question might be how to create deep semantic vector rep-

resentations of services and resources?

10.1.2 Learn a semantic vector space of workflows

Word2Vec [106, 107] creates semantic vector space for words by processing a large

corpus of text. The resulting vectors can be combined and operated on in ways that

make sense to the human brain, for example KING − MALE = QUEEN . As de-

scribed in Section 6.2.6, the hierarchical binding scheme described in eq. (6.1) creates

unique vector contexts in the workflow vector, eq. (6.4) and eq. (6.6), as workflow

execution proceeds. A fundamental research question might be:

Can these unique contexts be used to learn a semantic vector space of workflows that

would allow such semantic workflow vectors to be combined in order to create new

and novel workflows that have not been executed before?
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Figure RP-1

Research Vision

With the explosion in low cost phones, wearables and the Internet of Things, most coalition operations will
take place in an environment with a diverse set of small elements capable of computation, storage and
communication. We propose leveraging the various devices available across the coalition members to create a
system with distributed collaborative and cooperative capabilities. This interconnected system will provide an
infrastructure for performing analytics required for coalition operations. It will leverage all the services offered by a
wired backend infrastructure (e.g. a backend cloud system, data center or available cellular network infrastructure)
but it will not be critically dependent on a continuous connectivity to the backend.

We envision a future where the interconnected system operates seamlessly across networks and systems
belonging to different organizations (i.e. coalition members or sub-groups within a single coalition member). This
system is frequently charged with performing tasks that require creating dynamic groups on a short notice. Such
dynamic groups may be short-lived (days or hours), but could also last for a longer period (months). Differences in
the pedigree of disparate systems belonging to different organizations necessitate the development of approaches
that work with partial visibility, partial trust, and cultural differences, while simultaneously dealing with the
challenges of a dynamically changing situation in which power, computation and connectivity may be severely
constrained.

We want the ability to create an intelligent interconnected system, i.e. a system that can analyze the situation
on the ground in real-time, anticipate the situation likely to happen in the future, and determine whether the situation
requires human involvement. If the situation does not require human involvement, the system would undertake the
most appropriate automatic action to the situation. When the situation needs human involvement, the system will
recommend alternative courses of actions, along with their pros and cons. We refer to this capability that coordinates
different elements, with opportunistic assistance from a fixed infrastructure with interrupted connectivity, as the
distributed coalition intelligence.

2,5 and 10 Year Goals

The goal of our basic research is to discover and formulate the scientific principles that enable the physical
realization of distributed coalition intelligence at the conclusion of our 10-year research agenda. This physical
realization will require the transition of our basic research into the appropriate systems and solution development.
We use the metaphor of a distributed brain to describe the end-vision. Just as the human brain is made of two parts,
a left hemisphere and a right hemisphere, the distributed coalition intelligence will be an aggregation of several
smaller sub-brains, each sub-brain belonging to a coalition member. All of the sub-brains work in a coordinated
manner to perform analytics, and leverage the assets and knowledge available across the entire system. Just like the
left hemisphere and right hemisphere of the human brain react differently to different stimuli, we expect different

sub-brains to react differently in any situation, but the overall
distributed system coordinates the different reactions in a seamless
manner as needed. A pictorial representation of the concept is shown
in Figure RP-1.

To attain the 10-year goal outlined above, we need to
understand the fundamental principles underlying some of the key
properties of the distributed coalition intelligence when applied to
analytics. Our 5-year goal is to understand those principles
underlying those properties.

In order to achieve our strategic vision, we must get an insight
into the following properties by the end of 5-years.

Composability: How do we compose smaller elements into a larger aggregate that works like a seamless whole?
What are the principles that link the attributes of a component to the larger whole, and how can we compose
components belonging to different organizations with partial visibility and control in an environment with
limited resources?
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Interactivity: How do different computing elements and people interact with each other, both with other
members of the groups and to external stimulus from the environment? How should we model and understand
the interactions between different elements and information sources? How do different sub-brains work together
as a larger aggregate brain under?
Optimality: How can elements work together to obtain the optimal results in an environment with constrained
resources? How can analytics be performed so that optimal performance is obtained automatically, instead of
requiring complex manual optimization?
Autonomy: How can elements work together in a proactive manner understanding future situations sufficiently
well to operate with a degree of autonomous behavior? How can a system determine that autonomous operation
is inappropriate and human intervention is needed? How can different elements simplify the cognitive burden
involved to best assist humans in the loop when intervention is needed?

Understanding the principles behind these four attributes will allow us to attain significant capabilities for
military defense as articulated in the UK MoD Technology Roadmap and in the U.S. third offset strategy.

Our six projects are defined so that the insights we obtain from them can be combined to help us understand
the underpinnings of the four
attributes. Our current view on how
the different projects can be linked
together to obtain the understanding of
the four properties at the 5-year point
is shown in Figure RP-2. Specifically,
we plan on combining the results from
projects P1, P2, P3 and P4 to
understand the principles underlying
composability, the results from
projects P2, P4 and P6 to understand
the principles that explain interactions
among groups, the results from
projects P1, P3 and P5 to understand
how to self-optimize a system under
limited resources, and the results
from projects P2, P5 and P6 to
understand the principles of

autonomy. The results from the 5 years will be combined to get insights into principles governing the distributed
coalition intelligence, which will enable us to physically realize such a system in 10 years by combining these
scientific insights with appropriate systems building efforts.

Figure RP-2

Composability

Interactivity

Optimality

Autonomy
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The success of future military coalition operations be they combat or humanitarian will increasingly
depend on the coalition's ability to share data and data processing services (e.g., aggregation, summarization, fusion)
at the network edge. This is mainly because, future coalition networks will be composed of a set of heterogeneous
assets exposing their capabilities through micro-service architectures that come together in an ad hoc manner to
fulfill coalition needs, thus realizing a fully distributed information processing eco-system across the coalition
boundaries.

However, one needs to have the means to bring these services together in a seamless and timely manner to
support decision making in this new operational context; traditional approaches in which knowledge about services
are centralized to match against user requirements will no longer scale in this setting. Thus, in this project we
propose a system in which users specify their needs in a declarative manner, and the system infers required services
(or compositions) by automatically discovering (or composing) them with respect to the declared user needs. We
propose mechanisms in which services are discovered by features that are learnt over time so that the knowledge
about these distributed services is derived in an (semi) automated manner. Furthermore, we will make our approach
context sensitive (i.e., relevant to user needs) while being also sensitive to the uncertainties in the operating
environment. Ultimately with all these components together we envision a brain-inspired computing paradigm to
automatically match distributed coalition services to requirements so that the full potential of the future military
networks may be realized.

We believe the analytic services available in a coalition environment should be automatically discovered and
matched to support the tasks at hand without requiring any complex input from the user. We call such an
infrastructure instinctive an infrastructure that reacts automatically to address the analytics task at hand. In order to
meet this objective, this project will undertake research into theorems, frameworks and mechanisms required to
create instinctive analytics infrastructures. This will require bringing together multiple strands of research from the
fields of machine learning, knowledge representation, optimization, and systems engineering 66 , 67 . Within the

66 Johnson, M. P., Rowaihy, H., Pizzocaro, D., Bar-Noy, A., Chalmers, S., La Porta, T. F., & Preece, A.
(2010). Sensor-mission assignment in constrained environments. Parallel and Distributed Systems, IEEE
Transactions on, 21(11), 1692-1705
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