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Abstract 

 

In “network neuropsychology”, network modelling and graph theory is applied to the neuropsychological 

test scores of patients with neurological disorders to investigate cognitive functioning. This review 

identifies the emerging literature on several disorders before focusing on the assumptions about cognition 

underlying the studies; specifically, that cognition can be thought of as a network of interrelated variables 

and that changes in these interrelationships, or cognitive rearrangement, can occur in neurological 

disorders. Next the review appraises how well network models can provide a “map” of this cognitive 

“territory”. In particular, the review considers the lack of correspondence between the variables and 

properties of network models and cognitive functioning. The challenges of explicitly accounting for latent 

cognitive constructs and making inferences about cognition based on associative, as opposed to 

dissociative, methods are also discussed. It is concluded that the validity of network neuropsychological 

models is yet to be established and that cognitive theory and experiments, as well as network models, are 

needed to develop and interpret better maps.    

1. Introduction 

Some neuropsychological approaches focus on the subtractive effect of cerebral damage on cognition, 

such as cognitive neuropsychology (Ellis and Young, 1996; McCarthy and Warrington, 1990). These 

reductionist approaches help to identify the major cognitive effects of neurological disorders. However, 

they may struggle to model the complex interrelationships amongst cognitive functions which typify normal 

cognition (Kan et al., 2019; van der Maas et al., 2017) and may change in response to brain pathology.  

In the last six years, several studies have used network modelling and graph theory to investigate 

cognitive functioning in various neurological disorders. Network modelling is a holistic way of representing 

relationships amongst many variables and graph theory provides a set of metrics to describe patterns of 

associations within these network models (Christensen, 2019). This modelling strategy may broaden 

understanding of cognitive functioning in neurological disorders. For example, in a sample of stroke 

patients, Massa et al. (2015) estimated domain-specific network models based on tests of each of the five 

Birmingham Cognitive Screen domains (i.e., attention, memory, language, praxis, and number) and an 

across-domain model. In the reductionistic within-domain models, tests of specific cognitive 

subcomponents tended to be linked with each other and unrelated to tests of other subcomponents. By 

contrast, in the holistic between-domain model, in which tests were conditioned on tests of all other 

domains, multiple tests were associated with others outside of their purported domains. These findings 

suggest that patterns of test associations, and, perhaps, interrelationships amongst cognitive functions, 

differ when holistic investigations are performed.  
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As network models represent interrelationships, they may benefit clinical practices that invoke these. For 

example, case formulations often consider the influence, whether compensatory or detrimental, of one 

function on another (Lamberty and Nelson, 2015, pg. 55). If an assessment reveals impaired free recall but 

preserved recognition memory, attention, visuospatial functioning, and so on, a formulation might be that 

impaired retrieval underlies difficulties with episodic memory. As this formulation references functioning 

in one area relative to others, it makes sense to use an approach that explicitly models interrelationships. 

Graph theory metrics might also highlight potential avenues for treatment. For example, if a function is the 

most central, it can be thought to strongly influence other variables. Supporting this function might be 

expected to also benefit others (Rodebaugh et al., 2018).  

The disorders studied with these methods include adult and paediatric epilepsies (Garcia-Ramos et al., 

2021, 2015; Kellermann et al., 2016, 2015), mild cognitive impairment (Ferguson for the Alzheimer’s Disease 

Neuroimaging Initiative, 2021), Alzheimer’s disease (Ferguson for the Alzheimer’s Disease Neuroimaging 

Initiative, 2021; Nevado et al., 2021a; Tosi et al., 2020; Wright et al., 2021), vascular encephalopathy (Tosi 

et al., 2020), stroke (Massa et al., 2015), and frontal and non-frontal lesions arising from various aetiologies 

(Jonker et al., 2019). Comparable studies have created network models of more specific aspects of 

cognition, including intelligence (Kan et al., 2019; Schmank et al., 2019; van der Maas et al., 2017), reading 

(Angelelli et al., 2021; Goring et al., 2021; Zoccolotti et al., 2021), and semantic fluency (Bertola et al., 2014; 

De Marco et al., 2021; Goni et al., 2011˜ ; Lerner et al., 2009; Nevado et al., 2021b), or developmental 

processes like ageing (Garcia-Cabello et al., 2021; Konigs et al., 2021¨ ), in clinical and non-clinical groups. 

Other related studies have combined neuroimaging and cognitive, behavioural, and/or self-report data in 

clinical groups (Bathelt et al., 2020; Hilland et al., 2020; Simpson-Kent et al., 2021), or investigated 

relationships amongst neuropsychological variables and the symptoms of autism spectrum disorder 

(Ibrahim et al., 2016) and attention deficit hyperactivity disorder (Eadeh et al., 2021).  

The studies summarised in Table 1 are united by four characteristics, outlined a posteriori, which are not 

ubiquitous across the other related studies:   

1 Groups of patients with neurological disorders are studied.   

2 There is predominant, or exclusive, use of neuropsychological test scores in the network models.   

3 There is a focus on cognitive functioning, and, occasionally, on neuropsychological measurement.   

4 Finally, neuropsychological profiles and scores across tests are focused on rather than singular 

functions and individual neuropsychological tests.  

The common approach in the studies in Table 1 can be provisionally termed “network neuropsychology”. 

A summary of the main findings of network neuropsychology studies is presented in Table 1 (the search 

strategy is reported in the supplementary materials); although, a systematic review would be premature. 

Network neuropsychology is in its infancy and it is not yet possible to draw conclusions about cognitive 

interrelationships in neurological disorders or to direct clinical practice.  

Significant theoretical issues are present and it is important to investigate these sooner rather than later. 

Namely, the fundamental issue of how well network models and graph theory can represent cognition is 

yet to be appraised. Korzybski famously wrote that “A map is not the territory it represents, but, if correct, 

it has a similar structure to the territory, which accounts for its usefulness” (Korzybski, 1995). This review 

aims to uncover the cognitive “territory” that network neuropsychology is interested in and evaluate the 

usefulness of network modelling and graph theory in providing a “map” of this. 
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Table 1     

Summary of network neuropsychology studies    

Study Groups Domains tested  Associations  Main findings 

Ferguson for the Alzheimer’s  

Disease Neuroimaging  

Initiative (2021)   

• Mild cognitive impairment 

(n = 395)   

• Early Alzheimer’s disease  

(n = 191)   

• Cognitively normal controls 

(n = 229)   

• Attention/ 

processing speed   

• Demographic 

variables   

• Episodic memory   

• Fluency   

• Language   

• Premorbid ability   

• Visuospatial   

• Working memory  

Partial correlations   • Network structures differed across models for CN 

and eAD and aMCI and eAD groups.   

• Two putative communities (not statistically 

determined) in models for clinical groups in contrast 

to fractionated domains in HC model:   

1 Attention-working memory-processing speed.   

2 Memory-language-semantic.  

Garcia-Ramos et al. (2021)   • Temporal lobe epilepsy 

phenotype groups (n = 104):   

○ No cognitive impairment 

(n = 53)   

○ Focal cognitive impairment 

(n = 31)   

○ Generalised cognitive 

impairment (n = 20)   

• Healthy controls (n = 30)   

• Executive   

• Executive/ 

processing speed   

• Intelligence   

• Language   

• Language/ executive   

• Memory   

• Motor speed   

• Processing speed   

• Visuospatial  

Partial correlations   • Reduction of positive associations amongst tests 

across models for control and TLE phenotype groups.   

• Increased clustering and modularity from control to 

phenotype models.   

• Decreased global efficiency across models for groups.   

• Different communities in clinical models compared to 

HC model.   

• Lower strength centrality of nodes in models for focal- 

and generalised-cognitive impairment epilepsy 

groups.  

Garcia-Ramos et al. (2015)   • Paediatric epilepsy  

(various syndromes) (n = 

104)   

• Healthy controls (n = 74)   

• Academic 

achievement   

• Executive   

• Intelligence   

• Language   

• Memory  

Correlations   • Higher harmonic mean in the model for the epilepsy 

group compared to that for the healthy control 

group.   

• Lower clustering in epilepsy group model relative to 

healthy control model.   

• Three communities in control group model:   

1 Intelligence-achievement.   

2 Memory-semantic-language.  3 Speed-

executive.   

• Five communities in epilepsy group model:   
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1 Speed-executive.   

2 Working memory-fluency.   

3 Intelligence-achievement.   

4 Memory-language.   

5 Visuospatial-speed.   

• Category switching and verbal intelligence tests 

showed high betweenness centrality in models for 

both groups.  

Jonker et al. (2019)   • Frontal lesions (n = 62)   

• Non-frontal lesion patients (n 

= 66)   

• Controls (n = 67)   

• Working memory   

• Memory   

• Executive function   

• Frontal symptoms  

Partial correlations   • Three communities in HC model:   

1 Memory.   

2 Letter fluency-working memory.   

3 Divided attention-interference control-frontal 

symptoms.   

• Two communities in frontal model:   

1 Memory-letter fluency-working memory.   

2 Divided attention-interference control-frontal 

symptoms.  

• Four communities in non-frontal model:  

1 Memory.  

2 Letter fluency-working memory.  

3 Frontal symptoms.  

4 Divided attention-interference control.  

• Immediate memory most degree central in all 

models.  
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• Working memory and divided attention less central 

in frontal model than control and non-frontal 

models. 

Kellermann et al. (2015) • Paediatric epilepsy (various 

syndromes) (n = 127)  

• Healthy controls (n = 80) 

• Intelligence  

•  Academic 

performance  

• Language  

• Memory  

• Executive function 

• Psychomotor speed 

Correlations • Epilepsy group displayed poorly separated modules 

in comparison with the control group. 

• Higher clustering coefficient, greater degree 

connectivity, and shorter path length in epilepsy 

group, indicative of poorer segregation. 

Kellermann et al. (2016) • Temporal lobe epilepsy (n = 

100) 

• Healthy controls (n = 82) 

• Academic 

achievement  

• Attention  

• Executive function  

•  Fluency  

• Language 

• Memory  

• Motor  

• Processing speed 

• Visuospatial skills 

• Working memory 

Correlations • Four communities in HC model:  

1 Verbal memory.  

2 Language-perception-intelligence.  

3 Speed-fluency.  

4 Visual memory-executive.  

•  Three communities in TLE model:  

1 Executive-verbal/visual memory. 

2 Speed-fluency.  

3 Speed-executive-perception-language-

intelligence-nonverbal memory. 
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Massa et al. (2015)   • Stroke (various aetiologies 

and locales) (n  

= 287)   

• No control group.   

• Affect   

• Attention/ 

executive   

• Language   

• Memory   

• Motor  

performance   

• Number skills   

• Praxis  

Partial correlations   • Within-domain analyses suggested separation 

between tests tapping different elements of each 

domain.   

• Between-domain analyses showed that cognitive 

tests were linked within their purported domains; 

however, many tests were also linked beyond 

domains.   

• Between-domain analyses suggested cognitive 

functioning was not associated with anxiety, 

mood, and motor functioning.  

Nevado et al. (2021a)   • Dementia, mixed 

aetiologies (n = 2040)   

• Mild cognitive impairment 

(n = 5981)   

• Healthy controls (n = 7623)   

• Attention   

• Executive function   

• Memory   

• Language  

Partial correlations   • Largely invariant network structure across models 

for all groups.   

• Four communities in models for all groups:   

1 Attention.   

2 Executive.  3 Memory.   

4 Language.   

• Executive (composite) was most the central 

(composite) across groups.   

• More interrelationships were seen amongst 

memory and language variables in the dementia 

model.  
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Tosi et al. (2020)   • Alzheimer’s disease (n = 

191)   

• Vascular encephalopathy 

(n = 129)   

• Healthy controls (n = 165)   

• Attention   

• Demographics   

• Episodic memory   

• Fluency   

• Intelligence   

• Language   

• Screening   

• Visual memory   

• Visuospatial   

• Working memory  

Partial correlations   • Segregated profile for HC group model.   

• Reduced impact of age and education in clinical 

models   

• Two putative communities (not statistically 

determined) in the AD model:   

1 Memory.   

2 Executive.   

• Preserved integration and segregation but weaker 

associations amongst tests in VE network model.   

• Category fluency was the most central node in the 

AD and VE models.  

Wright et al. (2021)   • Healthy controls  ○ 

Young (n = 75)   

○ Middle aged (n = 75)   
○ Older (n = 70)   

• Mild cognitive 

impairment  ○ naMCI (n 

= 60)  ○ aMCI (n = 75)   

• Alzheimer’s disease (n = 

60)   

• Attention/ 

processing speed   

• Fluency   

• Inhibition   

• Intelligence   

• Language   

• Visuospatial   

• Working memory  

Correlation (conditioned on 

age and education only before 

network estimation.)   

• Control groups showed increased average global 

and local efficiency, clustering coefficients and 

connection density across an increasing age range.   

• Clinical groups displayed higher network 

segregation, clustering coefficients, and local 

efficiency than healthy control groups.   

• Clinical groups displayed lower betweenness 

centrality for semantic processing than control 

groups.  

NB. cognitive domain labels were taken from the original articles for Ferguson for the Alzheimer’s Disease Neuroimaging Initiative (2021), Garcia-Ramos et al. (2021) and (2015), 

Kellermann et al. (2015) and (2016), Massa et al. (2015), and Nevado et al. (2021a); domains for Tosi et al. (2020) and Wright et al. (2021) were assigned post-hoc. Community 

titles for Ferguson for the Alzheimer’s Disease Neuroimaging Initiative (2021), Kellermann et al. (2015) and Kellermann et al. (2016), and Tosi et al. (2020) were taken from the 

original papers 
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2. The territory  

2.1. A network system of cognition  

Most network neuropsychology studies assume that cognitive functions influence each other and can 

therefore be modelled as a web-like structure or a network (Kan et al., 2019; van der Maas et al., 2006). A 

helpful metaphor for this view of cognition is found in network neuropsychology studies which sought to 

characterise the cognitive network “topology” or “landscape” of “cognitive landmarks” (Jonker et al., 

2019; Garcia-Ramos et al., 2015, 2021; Kellermann et al., 2015, 2016). “Topology” means the way in which 

constituent parts are interrelated or arranged and “landmark” means a recognisable feature of a 

landscape and/or an event marking an important stage or turning point in something (Oxford English 

Dictionary). “Cognitive landmarks” then can refer to cognitive functions and/or changes in them over 

time, such as maturation or decline. Studies in Table 1 sought to investigate both the arrangement of 

interrelationships amongst variables (e.g., Ferguson for the Alzheimer’s Disease Neuroimaging Initiative, 

2021; Jonker et al., 2019; Garcia-Ramos et al., 2021; Kellermann et al., 2015, 2016; Nevado et al., 2021a; 

Massa et al., 2015; Tosi et al., 2020) and developmental changes in these (e.g., Garcia-Ramos et al., 2015; 

Wright et al., 2021).  

Auxiliary assumptions about cognition are sometimes made. For example, Massa et al. (2015) referred to 

domain-general and domain-specific factors following stroke. They stated that domain-general factors, such 

as working memory and sustained attention, can influence the functioning of domain-specific factors, such 

as language, memory, and attention. That some aspects of cognition affect others is consistent with the 

network intuitions previously described. However, Massa et al.’s assumptions about cognition are also 

hierarchical, as some domains (e.g., working memory) control others, and directional, as these higher 

domains control others in top-down, non-reciprocal manner. These additional assumptions do not prohibit 

viewing cognition as a network, they just specify the nature of the relationships between variables.  

2.2. Segregation and integration  

It may also be assumed that cognitive networks display patterns of segregation and integration (Garcia-

Ramos et al., 2015, 2016, 2021; Kellermann et al., 2016; Tosi et al., 2020; Wright et al., 2021). For example, 

Garcia-Ramos et al. (2015) observed that patients with paediatric epilepsy displayed both lower integration 

and segregation across neuropsychological tests.  

Patterns of segregation and integration have been investigated in graph theoretical rather than cognitive, 

or information processing, terms (e.g., Ellis and Young, 1996; Fodor, 1983). In graph theory, segregation is 

a property of network models that allows substructures to exist within the wider model whereas integration 

involves connections between elements of the wider model (Garcia-Ramos et al., 2016). These properties 

might reflect specialised and integrative processes occurring within the cognitive network. However, this 

cannot be readily determined based on network models alone. This issue will be explored in the second 

part of the review, which considers how well network models provide a map of the cognitive territory 

outlined here.  

2.3. Latent cognitive functions  

Network theories are sometimes presented as alternative explanations to latent variable theories in 

intelligence, psychopathology, and personality research (Cramer et al., 2016; Guyon et al., 2017; Kan et al., 

2019; van der Maas et al., 2006). For example, the mutualism hypothesis disavows the existence of latent 
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general intelligence. Instead, it proposes that the development of a given cognitive function (e.g., abstract 

reasoning) occurs because of the influence of the development of other cognitive abilities (e.g., working 

memory) as well as autonomous development in that function. This gives rise to a network of mutually 

reinforcing abilities which can explain the positive associations commonly seen amongst cognitive tasks 

without recourse to latent general intelligence (Kan et al., 2019; van der Maas et al., 2006).  

None of the studies in Table 1 posit that latent cognitive functions, such as working memory or divided 

attention, do not exist. Across the discipline of neuropsychology, it is widely accepted that latent cognitive 

functions exist, even though the exact nature and the existence of some functions is contested (e.g., see 

Morey, 2018 regarding visuospatial short-term memory). Consistent with the assumption of influences 

amongst cognitive functions in network neuropsychology, latent cognitive constructs are intercorrelated in 

some latent variable models of cognition (e.g., Agelink van Rentergem et al., 2020).  

2.4. The “normal” network  

A fairly typical pattern of interrelationships is present across the adult control group models in Table 1, 

providing an impression of normative functioning against which clinical models can be compared. Generally, 

relatively distinct communities of tests probing the same cognitive domains and weaker associations 

between tests probing different domains are observed (Ferguson for the Alzheimer’s Disease Neuroimaging 

Initiative, 2021; Jonker et al., 2019; Garcia-Ramos et al., 2021; Kellermann et al., 2016; Nevado et al., 2021a, 

Tosi et al., 2020). These findings are broadly consistent with factor models of cognitive functioning in 

healthy groups which allow latent cognitive functions to correlate (e.g., Agelink van Rentergem et al., 2020). 

Also, this pattern is consistent with cognitive theories proposing patterns of specialisation and integration 

or domain specific and domain general processing (Massa et al., 2015). However, this pattern should not be 

over­interpreted. It is likely to change across the lifespan (Kan et al., 2019); reflecting, for example, the 

progressive specialisation of cognition in childhood (D’Souza and Filippi, 2017) and neural dedifferentiation 

in older age (Goh, 2011; Koen and Rugg, 2019; Wright et al., 2021). 

 

2.5. Cognitive rearrangement  

Network neuropsychology is also concerned with the changing relationships amongst cognitive functions 

in neurological disorders. Historically, the possibility of cognitive rearrangement has been implied by several 

neuropsychologists (Kertesz, 1983, pg. 8; Riddoch and Humphries, 1994, pg. 6; Shallice, 1988, pg. 241). 

Modelling such changes is important for informing the assessment and treatment of patients with 

neurological disorders as well as understanding cognition. Returning to the metaphor of the “cognitive 

network topology” of “cognitive landmarks”, cognitive rearrangement can be understood as the 

rearrangement of this map following illness or injury. Patient-control group network neuropsychology 

studies generally report differences in the overall network structure of neuropsychological test scores of 

neurological groups relative to control groups (Ferguson for the Alzheimer’s Disease Neuroimaging 

Initiative, 2021; Garcia-Ramos et al., 2015, 2021; Jonker et al., 2019; Kellermann et al., 2015, 2016; Tosi et 

al., 2020; Wright and Woods, 2020; Wright et al., 2021), with one notable exception (Nevado et al., 2021a), 

which may suggest that cognitive rearrangement occurs. Note that rearrangement refers to changes in the 

interrelationships amongst cognitive functions and not the invention of new cognitive functions, which is 

implausible in the mature brain (Ellis and Young, 1996, pg. 19; Saffran, 1982). It is important to hold this in 

mind when interpreting communities and associations amongst neuropsychological test scores in network 

models.  
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2.6. Adaptation and maladaptation  

If present, cognitive rearrangement may also be adaptive or maladaptive. There is evidence for these 

phenomena independent of network neuropsychology. Compensatory rehabilitation strategies provide 

evidence for a temporary form of adaptive cognitive rearrangement which may cease if the strategies are 

discarded (e.g., Pamir et al., 2021; Signoret and Lhermitte, 1976; Shallice, 1988, pg. 374). For example, 

semantic scaffolding and mental imagery appear to aid learning on verbal paired associates in patients with 

anterior communicating artery lesions (Signoret and Lhermitte, 1976; Shallice, 1988, pg. 374). The 

upregulation of attention has also been linked with language recovery in stroke (Geranmayeh et al., 2014). 

Regarding the deleterious impact of aspects of some aspects of cognition on others, unilateral neglect, a 

predominantly spatial attention issue, can be exacerbated by secondary deficits in executive functioning 

and working memory (Malhotra et al., 2005; Massa et al., 2015).  

In network neuropsychology, Kellermann et al. (2016), for example, observed less segregation between 

purported domains in a group of people with temporal lobe epilepsy compared to controls. They speculated 

that this interdependency across domains reflected compensatory attempts to maintain cognitive 

functioning. It seems likely that the nature of cognitive rearrangement is shaped by the nature of the 

pathology, premorbid cognitive functioning, and developmental stage.  

3. The map  

3.1. The basics of network models  

A network model consists of a set of variables and the associations amongst them. In network 

neuropsychology, these variables are generally neuropsychological test scores. The associations amongst 

test scores can be correlations or partial correlations after conditioning on all the test scores in the model. 

Network models can represent the presence/ absence and strength of associations amongst test scores. If 

the assumption of multivariate normality is met, connected scores in partial correlation networks can be 

assumed to be conditionally dependent given the other scores in the model (Christensen, 2019; Epskamp 

et al., 2018; Epskamp and Fried, 2018). The network can be visualised in a plot and graph theory metrics 

can also be calculated (see the supplementary materials for an overview of these).  

3.2. Why network models and graph theory?  

In network neuropsychology, the application of network modelling and graph theory generally stems 

from the assumptions about cognition, especially regarding interrelationships and cognitive rearrangement. 

Historically, the clinical utility of modelling interrelationships amongst cognitive functions in neurological 

diseases has been hinted at (Riddoch and Humphries, 1994, pg. 6):  

In the clinic the rehabilitationist will typically be faced with patients with multiple deficits, where the 

damage has not respected the strict boundaries between functionally independent processing modules. 

It may be clinically relevant to understand how much one deficit impinges on another, or even more 

particularly, whether an associated deficit constrains rehabilitation of a given ability.  

Network modelling enables the estimation of a structure in which connected variables can be thought to 

influence each other and graph theory provides measures of the interrelationships amongst individual 

elements as well as their participation in the wider system, making it a natural choice for analysis in network 
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neuropsychology (Garcia-Ramos et al., 2016). However, the ability of network modelling and graph theory 

to provide a useful map of the cognitive terrain of interest is yet to be established.  

The use of network modelling and graph theory can also be pragmatic, as there are scenarios where the 

properties of network models are desirable but the assumption of a network system of cognition is not 

relevant (Epskamp et al., 2018). For example, in modelling the relationships within screening tests (Massa 

et al., 2015) or amongst screening tests and tests designed to measure specific constructs (Tosi et al., 2020), 

potentially to ascertain convergent and discriminant validity. Network modelling and graph theory could 

also be motivated by detecting disease (as proposed by Wright et al., 2021). In these situations, network 

modelling and graph theory can be used to model statistical relationships between tests, while conveniently 

conditioning on multiple relevant variables, without making any assumptions about the relationships 

amongst the cognitive functions underlying test performance. Neither do these applications necessitate a 

detailed representation of the cognitive terrain.  

3.3. Problems with parallelism  

There are two immediate ways in which network models may struggle to map cognition. First, 

neuropsychological test scores are not the same as the cognitive functions they are sensitive to. This is for 

at least four reasons, including a lack of specificity of a test to a cognitive function (Koekkoek et al., 2014; 

Lezak et al., 2012, pg. 127), the challenge of defining functions (Bilder et al., 2009; Kent, 2018; Poldrack et 

al., 2011), the ubiquity of measurement error (Crawford, 2004), and the lack of process homogeneity 

amongst people who score differently on the same test (Borsboom, 2005, pg. 84). By extension, it is unclear 

what exactly covariance amongst test scores, the basis for estimating network models, means cognitively. 

Certainly, it cannot be equated with information processing in vivo (e.g., the recall of information from long 

term to working memory to solve a problem).  

Second, the correspondence between the parameters and properties of network models and cognitive 

functioning is opaque (Bringmann et al., 2019; Fried and Cramer, 2017). The former are statistical 

descriptions which can reflect multiple causal relationships (Dablander and Hinne, 2019). Betweenness 

centrality, for example, is taken as a measure of how well a variable facilitates communication between 

other variables (Garcia-Ramos et al., 2015, 2016; Tosi et al., 2020; Nevado et al., 2021a; Wright et al., 2021). 

Mathematically, it quantifies how often a score is in the shortest route from one score to another in the 

network model (Bringmann et al., 2019). One might predict that a working memory score would display 

high betweenness centrality, given the role of working memory role in co-ordinating thinking and behaviour 

(Baddeley, 2007). However, the supervisory properties of working memory could not be inferred from 

network models alone. Both cognitive theory and experimental research are needed to establish such 

claims based on network models (Fried, 2020).  

3.4. Error is ever present  

Even though neuropsychological test scores are not perfect representations of cognitive functions 

(Crawford, 2004), many network models do not assume measurement error (Epskamp and Fried, 2018). 

Clearly, this contradicts the conventional wisdom in neuropsychology that measurement error is ubiquitous. 

In addition to the error that is part and parcel of neuropsychological assessment, error is likely to be 

introduced into network models by including multiple tests of the same cognitive function (Epskamp et al., 

2017). Multiple tests of the same function are present in all the studies in Table 1, but this source of 

measurement error is also ignored. Latent variable models of cognition can mitigate this error by reducing 
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a larger number of test scores to a smaller number of latent variables based on shared variance, although 

these factors are not necessarily cognitively meaningful (Delis et al., 2003; Kent, 2013).  

3.5. Network versus latent variable models of cognition  

Network neuropsychology does not disavow latent cognitive functions. However, the studies in Table 1 

model associations amongst test scores, even though cognitive functions are not synonymous with the tests 

used to measure them (Borsboom, 2005; Poldrack et al., 2011). By modelling shared variance across scores, 

latent variable models can suggest latent cognitive functions (e.g., Agelink van Rentergem et al., 2020; 

Jewsbury et al., 2017). Although, this approach is not without limitation (Delis et al., 2003); long-term 

memory would not exist across healthy subjects if factor analytic models were taken as facsimiles of 

cognition (Kent, 2013)! The question of whether network or latent variable models provide the best map of 

the cognitive terrain emerges.  

Mathematically, a hard distinction is redundant. Network and latent variable models are often 

statistically equivalent (van Bork et al., 2021) and strength centrality is nearly perfectly correlated (r > 0.97) 

with factor loading when latent variables exist (Hallquist et al., 2019). Indeed, while network models do not 

assume latent variables, dense communities of associations amongst variables imply that they are present 

(Epskamp et al., 2017, 2018; Epskamp and Fried, 2018). For example, in network models of Weschler Adult 

Intelligence Scale normative data, Schmank et al. (2019) found three communities of tests in the working 

memory, processing speed, and crystallised intelligence domains and an enmeshed community of subtests 

across fluid reasoning and visuospatial ability domains. These findings can suggest latent variables, although 

the authors did not.  

While network models and latent variable models are often statistically equivalent, the emphasis in 

interpretation is shifted from shared variance to the unique variance between tests in network models 

(Costantini et al., 2015; Epskamp and Fried, 2018). It is unclear whether unique variance is clinically 

meaningful in neuropsychological assessment (Crawford, 2004, pg. 133), although current network 

neuropsychological models depend on it being so.  

A potential step forwards is in using latent network modelling (Epskamp et al., 2017) to model a network 

of associations amongst theoretically specified latent variables. This method is consistent with the 

assumption of interrelationships amongst cognitive functions while explicitly handling latent constructs and 

error. However, it is not a panacea for mapping the cognitive terrain in network neuropsychology. Latent 

factors or communities of test scores, like the scores themselves, are not necessarily the same as cognitive 

functions (Delis et al., 2003; Kent, 2013). Also, network models of latent cognitive factors may provide a 

more invariant representation of cognition and therefore reduce sensitivity to any cognitive rearrangement 

(Nevado et al., 2021a).  

3.6. Modelling associations versus dissociations  

Communities and graph theory metrics reflect associations, being based, in one way or another, on 

covariance or the number of connections amongst test scores (Garcia-Ramos et al., 2016). It is has been 

argued that associations amongst test scores are less powerful than dissociations, especially double 

dissociations, for making inferences about cognitive functioning (Ellis and Young, 1996, pg. 19; McCarthy 

and Warrington, 1990, pg. 19–20). Unlike dissociations, associations amongst test scores may occur for 

anatomical rather than cognitive reasons as proximal but distinct neural substrates are damaged (Ellis and 
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Young, 1996, pg. 6). It follows that graph theory may be of limited use for understanding cognition per se, 

although changes in graph theory metrics may reflect the nature of cerebral damage.  

For example, in network models for groups with dementia, stronger interrelationships are observed 

amongst tests of episodic memory, semantic knowledge, and language (Ferguson for the Alzheimer’s 

Disease Neuroimaging Initiative, 2021; Nevado et al., 2021a; Tosi et al., 2020; Wright et al., 2021). These 

associations may reflect mesial temporal lobe pathology rather than rearrangement amongst cognitive 

functions per se (e.g., semantic memory offering some compensation for episodic memory impairment). Of 

course, cognitive functioning ultimately depends on the brain and the level of neurocognition which 

network models reflect may not be an issue in all cases (e.g., for ruling pathology in or out). However, 

indications for cognitive rehabilitation (e.g., using semantic strategies to attenuate the impact of episodic 

memory deficits) may be groundless if a network model is presumed to reveal interrelationships amongst 

cognitive functions but actually reflects neural damage without rearrangement at the cognitive level.  

 

3.7. Independencies, dissociations, and deficits  

 

Network models can represent conditional independence relationships (Epskamp and Fried, 2018; 

Epskamp et al., 2018), which are akin to single dissociations, insofar as they suggest that one cognitive 

function is not affected by another. A conditional independence relationship is present in a partial 

correlation network model when two variables are not connected after conditioning on all variables in the 

model. For example, in their network model of language test scores in stroke patients, Massa et al. (2015) 

observed that language comprehension was conditionally independent given sentence construction, 

sentence reading, picture naming, and nonword reading. This finding is consistent with cognitive 

neuropsychological models of object recognition and language (e.g., Ellis and Young, 1996, pg. 31, 222), 

which posit distinct cognitive functions underlying these tests. While conditional independence 

relationships can suggest that processing in one area is not dependent on processing in another, they do 

not encode deficits relative to spared functioning, just the lack of statistical association. The sparing and 

impairing of functions needs to be considered simultaneously.  

3.8. Variable selection  

The variability in tests used across network neuropsychological models makes it harder to draw 

inferences about cognition. As shown in Table 2, there is generally weak overlap across test/scores (e.g., 

digit span backwards) used in studies of the same disorder, although overlap at the levels of subdomains 

(e.g., auditory working memory) and domains (e.g., working memory) is considerably better. Two network 

neuropsychology studies (Tosi et al., 2020; Wright et al., 2021) also suffered from a lack of a standardised 

battery across healthy and clinical groups, limiting comparison of network model structures.  

Progress in network neuropsychology is likely to be limited unless tests are used consistently across 

studies. Without consistency, pragmatic studies aiming to identify disorders would be undermined as the 

parameters and properties of network models heavily depend on the specific task scores included (Burger 

et al., 2020). Investigations of cognition would also be problematised because test scores are not equivalent 

to cognitive functions. In effect, two tests of a particular cognitive function in two otherwise identical 

network models based on two identical samples may engender two different impressions of the role of the 

same function in the disorder.  
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A similar issue is the need to probe the same underlying cognitive functions across studies. Table 2 shows 

that broad cognitive domains (e.g., attention) are well represented across studies. However, subdomains 

(e.g., divided attention, focussed attention, sustained attention, attention switching), which are closer to 

specific cognitive functions, are less consistently probed across studies. Like variability in the tests used, 

discrepancies in the underlying functions probed by tests problematise meaningful understanding of 

cognitive rearrangement in neurological disorders. Firm conclusions cannot be drawn from a series of 

studies aiming to understand interrelationships amongst cognitive functioning in a given disorder if the 

sampled functions differ across studies.  

A potential remedy is to use standardised batteries, which exist for several neurological disorders, 

including mild cognitive impairment (Boccardi et al., 2021), Alzheimer’s disease (Morris et al., 1989; 

Weintraub et al., 2018), and frontotemporal lobar degeneration (Haanpa¨a ¨ et al., 2015). Generally, these 

batteries identify reliable tests sensitive to differences in key cognitive constructs. However, standardised 

batteries are not present for all disorders and established batteries do not cover all relevant cognitive 

subdomains.  

comparison of studies (Evans, 1996; Fried, 2017). 

3.9. Maps for individuals and groups  

Neuropsychological network models of groups do not necessarily provide accurate characterisations of 

individual patients. There is evidence of intra- and inter-individual variation in cognitive functioning over 

time in both health and disease (Karr et al., 2013; Vaughan et al., 2013; Gomes et al., 2014; Villard and Kiran, 

2015; Felice and Holland, 2018; Jones et al., 2019), which is not well accounted for in network 

neuropsychology. Most of the studies in Table 1 were based on cross-sectional, group level data. Group-

based network models can offer an impression of individual patients’ cognitive networks (Garcia-Ramos et 

Table 2  

Overlap of tests/measures used and domains and subdomains probed by topic.    

  Content overlap (Jaccard Index) 

Disorder  Studies  Measure  Subdomain  Domain  

Alzheimer’s 

disease  

Ferguson for the Alzheimer’s Disease 

Neuroimaging Initiative (2021) Tosi et al. 

(2020)  

Wright et al. (2021)  

0.21* (Weak)  0.38* (Weak)  0.58* 

(Moderate)  

Paediatric 

epilepsy  

Garcia-Ramos et al. 

(2015) Kellermann et 

al. (2015)  

0.17 (Very 

weak)  

0.5 

(Moderate)  

0.8 (Very 

strong)  

Temporal lobe 

epilepsy  

Kellermann et al. 

(2016) Garcia-Ramos 

et al. (2021)  

0.83 (Very 

strong)  

0.88 (Very 

strong)  

0.93 (Very 

strong)  

NB. Overlap is described with the Jaccard Index with reference to interpretive guidelines provided by Evans 

(1996), as in Fried (2017). The assignment of the tests/measures to domains and subdomains, which formed 

the basis of the Jaccard Index calculations, was based on that of the source studies, where reported. 

Otherwise, assignment was performed by the review author (see data and code at https://osf.io/f9g2e/). 

*An average of the Jaccard Index for each possible pairwise  

https://osf.io/f9g2e/
https://osf.io/f9g2e/
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al., 2016). However, they are helpful approximations in the same way that an average can be a useful 

summary statistic. Like an average, the parameters and properties of a group network model are not 

necessarily displayed by any of the individuals in the group. The extent to which a model for an individual 

can be derived from a group model is a continuum rather than an all or nothing property (Adolf and Fried, 

2019), but stronger resemblances enable better inferences, which are important in clinical practice.  

Network neuropsychology might establish greater similarity between group models and the cognitive 

functioning of individual patients through refining group status, comparing similarities amongst multiple 

pairs of scores, or by explicitly modelling within-subjects changes. Regarding the former approach, one 

study used machine learning methods to group temporal lobe epilepsy patients into cognitive phenotypic 

groups prior to network modelling (Garcia-Ramos et al., 2021). This ensured more homogeneous groups; 

however, group status was based on exploratory techniques which do not apply to individual patients. In 

clinical practice, cognitive phenotypes are often what is to be ascertained rather than known a priori, which 

limits the utility of phenotype-based attempts to draw conclusions about individual patients from group 

models.  

Outside of Table 1, in a study of healthy young adults, Konigs et al. ¨ (2021) estimated networks for 

individuals based on the difference in Z scores between multiple pairs of tests before referencing to a group 

model and only maintaining connections in individual models that were also present in the group model. 

Unsurprisingly, they found that models for healthy individuals and groups were consistent. This method 

could highlight quantitative differences in the strength of associations amongst tests between an individual 

and a group, but not qualitative differences; that is, different patterns of associations, as predicted by inter-

subject variability and the assumption of cognitive rearrangement.  

Alternatively, idiographic network models can be used to explicitly model both inter-subject and intra-

subject interrelationships amongst test scores over time. However, this method must contend with practice 

effects, the availability of parallel test versions, test-retest reliability, and the burden of high-frequency 

testing on patients. Idiographic models also assume that the structure of the relationships and variances 

must remain the same over the entire period of data capture (Wright and Woods, 2020), which may not be 

the case for individual patients with neurological disorders.  

 

4. Conclusions  

Network neuropsychology makes two core assumptions about cognition. First, that cognitive functions 

are interrelated. Second, that cognitive rearrangement can occur in neurological disorders. Additionally, 

network neuropsychology does not disavow the presence of latent cognitive functions or patterns of 

segregation and integration at a cognitive level, although these are not well defined in the literature. These 

assumptions signify the cognitive terrain that network neuropsychology attempts to map with network 

modelling and graph theory. However, the correspondence between the maps and the terrain is not 

straightforward. Neither the variables within nor the metrics used to summarise network models readily 

correspond to cognitive processes. Tension also arises as latent cognitive functions are accepted but 

modelling strategies that do not explicitly account for these and for measurement error are used. At 

present, the validity of network models and graph theory for overall cognitive functioning is unestablished. 

Cognitive theory and experimental studies, as well as statistical models, are needed to build and interpret 

better network maps of cognition.  
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5. General recommendations  

• Neuropsychological test scores should not be presented as synonymous with underlying cognitive 

functions. For example, digit span backwards should not be equated with working memory manipulation. 

Researchers should specify which tests are known to be sensitive to differences in which functions.   

• Network parameters and properties should not be conflated with cognitive processing. For example, 

associations amongst test scores sensitive to attention, working memory, long term memory, and 

executive functioning should not be taken to denote the transfer of attended to information from 

working memory to long term memory with influence from executive encoding strategies.   

• Latent network modelling (LNM) should be used to explicitly account for latent cognitive constructs and 

measurement error. For example, if several groups of tests sensitive to episodic memory differences, 

attentional capacity, and visuospatial processing are included in the same network model, LNM should 

be used to model associations amongst these latent constructs.   

• If researchers are interested in deficits as well as interrelationships amongst functions, then patterns of 

spared/impaired performance and associations amongst scores should be considered simultaneously 

while interpreting network models.   

• Before making inferences about interrelationships amongst functions based on patterns of associations 

amongst test scores, researchers should consider the possibility that neural changes account for these 

patterns as opposed to cognitive rearrangement per se.   

• Standardised batteries should be used across studies of the same disorder to ensure consistent test use, 

which will facilitate replicability, and sampling of the same cognitive functions, which will avoid further 

complication with making inferences about interrelationships amongst cognitive functions based on 

associations amongst test scores.   

• The feasibility of using idiographic network modelling methods should be explored, particularly regarding 

the test-rest reliability and availability of parallel forms of neuropsychological tests and the acceptability 

of repeated assessment to patients.   

• Cognitive theory and experiments, as well as network models, should be utilised. For an intuitive 

example, the central executive is theorised to direct and regulate other functions. In network terms, one 

might anticipate high centrality for a central executive related variable in a network model as several 

other variables, including one related to long term memory acquisition (for example), would presumably 

be associated with it. An independent experiment might then test whether manipulating central 

executive demands during encoding of new memoranda impacts on long-term storage to (dis) confirm 

the influence of the central executive on memory acquisition. Cognitive theories might also arise based 

on network models. These should also be investigated with independent experiments.  

6. Author contributions  

Cameron E. Ferguson - conceptualization, writing, and editing.  

Declaration of Competing Interest  

The author has cited their own work in this review.  



NETWORK NEUROPSYCHOLOGY 

 

Acknowledgments  

I would like to thank Dr Matteo De Marco (Brunel University) and Dr Laura Wright (University of 

Nottingham) for their insightful discussion of issues covered in this review.  

Appendix A. Supplementary data  

Supplementary material related to this article can be found, in the online version, at 

https://doi.org/10.1016/j.neubiorev.2021.11.024.  

References  

Adolf, J.K., Fried, E.I., 2019. Ergodicity is sufficient but not necessary for group-to- individual 
generalizability. Proc. Natl. Acad. Sci. 116 (14), 201818675 https://doi. org/10.1073/pnas.1818675116.  

Agelink van Rentergem, J.A., de Vent, N.R., Schmand, B.A., Murre, J.M.J., Staaks, J.P.C., ANDI Consortium, 
Huizenga, H.M., 2020. The Factor Structure of Cognitive Functioning in Cognitively Healthy Participants: 
a Meta-Analysis and Meta-Analysis of Individual Participant Data. Neuropsychol. Rev. 30 (1), 51–96. 
https://doi.org/ 10.1007/s11065-019-09423-6.  

Angelelli, P., Romano, D.L., Marinelli, C.V., Macchitella, L., Zoccolotti, P., 2021. The simple view of reading 
in children acquiring a regular orthography (Italian): a network analysis approach. Front. Psychol. 12, 
686914 https://doi.org/10.3389/ fpsyg.2021.686914.  

Baddeley, A., 2007. Working Memory, Thought, and Action. Open University Press.  
Bathelt, J., Geurts, H.M., Borsboom, D., 2020. More than the sum of its parts: merging network 

psychometrics and network neuroscience with application in autism.  
BioRxiv. https://doi.org/10.1101/2020.11.17.386276, 2020.11.17.386276.   
Bertola, L., Mota, N.B., Copelli, M., Rivero, T., Diniz, B.S., Romano-Silva, M.A., Ribeiro, S., Malloy-Diniz, L.F., 

2014. Graph analysis of verbal fluency test discriminate between patients with Alzheimer’s disease, mild 
cognitive impairment and normal elderly controls. Front. Aging Neurosci. 6, 185. https://doi.org/ 
10.3389/fnagi.2014.00185.  

Bilder, R.M., Sabb, F.W., Parker, D.S., Kalar, D., Chu, W.W., Fox, J., Freimer, N.B., Poldrack, R.A., 2009. 
Cognitive ontologies for neuropsychiatric phenomics research. Cogn. Neuropsychiatry 14 (4–5), 419–450. 
https://doi.org/10.1080/ 13546800902787180.  

Boccardi, M., Monsch, A.U., Ferrari, C., Altomare, D., Berres, M., Bos, I., Buchmann, A., Cerami, C., Didic, M., 
Festari, C., Nicolosi, V., Sacco, L., Aerts, L., Albanese, E.,Annoni, J.M., Ballhausen, N., Chicherio, C., 
Demonet, J.F., Descloux, V., Diener, S., ´ Consortium for the Harmonization of Neuropsychological 
Assessment for Neurocognitive Disorders, 2021. Harmonizing neuropsychological assessment for mild 
neurocognitive disorders in Europe. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association. 
https://doi.org/10.1002/alz.12365, 10.1002/ alz.12365. Advance online publication. 
https://nextcloud.dzne.de/index.php /s/EwXjLab9caQTbQe.  

Borsboom, D., 2005. Measuring the Mind: Conceptual Issues in Contemporary Psychometrics. Cambridge 
University Press.  

Bringmann, L.F., Elmer, T., Epskamp, S., Krause, R.W., Schoch, D., Wichers, M., Wigman, J.T.W., Snippe, E., 
2019. What Do Centrality Measures Measure in Psychological Networks? J. Abnorm. Psychol. 128 (8), 
892–903. https://doi.org/ 10.1037/abn0000446.  

Burger, J., Isvoranu, A., Lunansky, G., Haslbeck, J.M.B., Epskamp, S., Hoekstra, R.H.A., et al., 2020. November 
28). Reporting Standards for Psychological Network Analyses in Cross-sectional Data. 
https://doi.org/10.31234/osf.io/4y9nz.  

https://doi.org/10.1016/j.neubiorev.2021.11.024
https://doi.org/10.1016/j.neubiorev.2021.11.024
https://doi.org/10.1073/pnas.1818675116
https://doi.org/10.1073/pnas.1818675116
https://doi.org/10.1007/s11065-019-09423-6
https://doi.org/10.1007/s11065-019-09423-6
https://doi.org/10.1007/s11065-019-09423-6
https://doi.org/10.3389/fpsyg.2021.686914
https://doi.org/10.3389/fpsyg.2021.686914
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0020
https://doi.org/10.1101/2020.11.17.386276
https://doi.org/10.1101/2020.11.17.386276
https://doi.org/10.3389/fnagi.2014.00185
https://doi.org/10.3389/fnagi.2014.00185
https://doi.org/10.3389/fnagi.2014.00185
https://doi.org/10.1080/13546800902787180
https://doi.org/10.1080/13546800902787180
https://doi.org/10.1080/13546800902787180
https://doi.org/10.1002/alz.12365
https://doi.org/10.1002/alz.12365
https://nextcloud.dzne.de/index.php/s/EwXjLab9caQTbQe
https://nextcloud.dzne.de/index.php/s/EwXjLab9caQTbQe
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0045
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0045
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0045
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0045
https://doi.org/10.1037/abn0000446
https://doi.org/10.1037/abn0000446
https://doi.org/10.31234/osf.io/4y9nz


NETWORK NEUROPSYCHOLOGY 

 

Christensen, A.P., 2019. NetworkToolbox: methods and measures for brain, cognitive, and psychometric 
network analysis in r. R J. 10 (2), 422. https://doi.org/10.32614/ rj-2018-065.  

Costantini, G., Epskamp, S., Borsboom, D., Perugini, M., Mottus, R., Waldorp, L.J., ˜ Cramer, A.O.J., 2015. 
State of the aRt personality research: a tutorial on network analysis of personality data in R. J. Res. Pers. 
54, 13–29. https://doi.org/10.1016/j. jrp.2014.07.003.  

Cramer, A.O.J., van Borkulo, C.D., Giltay, E.J., van der Maas, H.L.J., Kendler, K.S., Scheffer, M., Borsboom, D., 
2016. Major depression as a complex dynamic system. PLOS ONE 11 (12), e0167490. 
https://doi.org/10.1371/journal.pone.0167490.  

Crawford, J.R., 2004. Psychometric foundations of neuropsychological assessment. In: Goldstein, L.H., 
McNeil, J. (Eds.), Clinical Neuropsychology: A Practical Guide to Assessment and Management for 
Clinicians. Wiley.  

D’Souza, D., Filippi, R., 2017. Progressive modularization: reframing our understanding of typical and 
atypical language development. First Lang. 37 (5), 518–529. https:// 
doi.org/10.1177/0142723717720038.  

Dablander, F., Hinne, M., 2019. Node centrality measures are a poor substitute for causal inference. Sci. 
Rep. 9 (1), 6846. https://doi.org/10.1038/s41598-019-43033-9.  

De Marco, M., Blackburn, D.J., Venneri, A., 2021. Serial recall order and semantic features of category 
fluency words to study semantic memory in normal ageing. Front. Aging Neurosci. 13, 678588 
https://doi.org/10.3389/fnagi.2021.678588.  

Delis, D., Jacobson, M., Bondi, M., Hamilton, J., Salmon, D., 2003. The myth of testing construct validity 
using factor analysis or correlations with normal or mixed clinical populations: lessons from memory 
assessment. J. Int. Neuropsychol. Soc. 9 (6), 936–946. https://doi.org/10.1017/S1355617703960139.  

Eadeh, H.-M., Markon, K.E., Nigg, J.T., Nikolas, M.A., 2021. Evaluating the viability of neurocognition as a 
transdiagnostic construct using both latent variable models and network analysis. Research on Child and 
Adolescent Psychopathology 49 (6), 697–710. https://doi.org/10.1007/s10802-021-00770-8.  

Ellis, A.W., Young, A.W., 1996. Human Cognitive Neuropsychology. Psychology Press.  
Epskamp, S., Fried, E.I., 2018. A tutorial on regularized partial correlation networks.  
Psychol. Methods 23 (4), 617–634. https://doi.org/10.1037/met0000167.  
Epskamp, S., Rhemtulla, M., Borsboom, D., 2017. Generalized network psychometrics: combining network 

and latent variable models. Psychometrika 82 (4). https://doi. org/10.1007/s11336-017-9557-x.  
Epskamp, S., Borsboom, D., Fried, E.I., 2018. Estimating psychological networks and their accuracy: a 

tutorial paper. Behaviour Research Methods 50 (1), 195–212. https://doi.org/10.3758/s13428-017-
0862-1.  

Evans, J.D., 1996. Straightforward Statistics for the Behavioral Sciences. Brooks/Cole Publishing.  
Felice, S.D., Holland, C.A., 2018. Intra-individual variability across fluid cognition can reveal qualitatively 

different cognitive styles of the aging brain. Front. Psychol. 9, 1973. 
https://doi.org/10.3389/fpsyg.2018.01973.  

Ferguson, C., for the Alzheimer’s Disease Neuroimaging Initiative, 2021. A network psychometric approach 
to neurocognition in early Alzheimer’s disease. Cortex 137, 61–73. 
https://doi.org/10.1016/j.cortex.2021.01.002.  

Fodor, J.A., 1983. The Modularity of Mind. MIT Press.  
Fried, E.I., 2017. The 52 symptoms of major depression: lack of content overlap among seven common 

depression scales. J. Affect. Disord. 208, 191–197. https://doi.org/ 10.1016/j.jad.2016.10.019.  
Fried, E.I., 2020. Lack of theory building and testing impedes progress in the factor and network literature. 

Psychol. Inq. 31 (4), 271–288. https://doi.org/10.1080/ 1047840x.2020.1853461.  

https://doi.org/10.32614/rj-2018-065
https://doi.org/10.32614/rj-2018-065
https://doi.org/10.32614/rj-2018-065
https://doi.org/10.1016/j.jrp.2014.07.003
https://doi.org/10.1016/j.jrp.2014.07.003
https://doi.org/10.1016/j.jrp.2014.07.003
https://doi.org/10.1371/journal.pone.0167490
https://doi.org/10.1371/journal.pone.0167490
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0075
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0075
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0075
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0075
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0075
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0075
https://doi.org/10.1177/0142723717720038
https://doi.org/10.1177/0142723717720038
https://doi.org/10.1038/s41598-019-43033-9
https://doi.org/10.3389/fnagi.2021.678588
https://doi.org/10.1017/S1355617703960139
https://doi.org/10.1017/S1355617703960139
https://doi.org/10.1007/s10802-021-00770-8
https://doi.org/10.1007/s10802-021-00770-8
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0105
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0105
https://doi.org/10.1037/met0000167
https://doi.org/10.1037/met0000167
https://doi.org/10.1007/s11336-017-9557-x
https://doi.org/10.1007/s11336-017-9557-x
https://doi.org/10.1007/s11336-017-9557-x
https://doi.org/10.3758/s13428-017-0862-1
https://doi.org/10.3758/s13428-017-0862-1
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0125
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0125
https://doi.org/10.3389/fpsyg.2018.01973
https://doi.org/10.1016/j.cortex.2021.01.002
https://doi.org/10.1016/j.cortex.2021.01.002
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0140
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0140
https://doi.org/10.1016/j.jad.2016.10.019
https://doi.org/10.1016/j.jad.2016.10.019
https://doi.org/10.1016/j.jad.2016.10.019
https://doi.org/10.1080/1047840x.2020.1853461
https://doi.org/10.1080/1047840x.2020.1853461
https://doi.org/10.1080/1047840x.2020.1853461


NETWORK NEUROPSYCHOLOGY 

 

Fried, E.I., Cramer, A.O.J., 2017. Moving forward: challenges and directions for psychopathological network 
theory and methodology. Perspect. Psychol. Sci. 12 (6), 999–1020. 
https://doi.org/10.1177/1745691617705892.  

Garcia-Cabello, E., Gonzalez-Burgos, L., Pereira, J.B., Hernandez-Cabrera, J.A., ´ Westman, E., Volpe, G., 
Barroso, J., Ferreira, D., 2021. The cognitive connectome in healthy aging. Front. Aging Neurosci. 13, 
694254 https://doi.org/10.3389/ fnagi.2021.694254.  

Garcia-Ramos, C., Lin, J.J., Prabhakaran, V., Hermann, B.P., 2015. Developmental reorganization of the 
cognitive network in pediatric epilepsy. PLoS One 10 (10), e0141186. 
https://doi.org/10.1371/journal.pone.0141186.  

Garcia-Ramos, C., Lin, J.J., Kellermann, T.S., Bonilha, L., Prabhakaran, V., Hermann, B. P., 2016. Graph theory 
and cognition: a complementary avenue for examining neuropsychological status in epilepsy. Epilepsy 
Behav. 64, 329–335. https://doi.org/ 10.1016/j.yebeh.2016.02.032.  

Garcia-Ramos, C., Struck, A.F., Cook, C., Prabhakaran, V., Nair, V., Maganti, R., Binder, J.R., Meyerand, M., 
Conant, L.L., Hermann, B., 2021. Network topology of the cognitive phenotypes of temporal lobe 
epilepsy. Cortex 141, 55–65. https://doi. org/10.1016/j.cortex.2021.03.031.  

Geranmayeh, F., Brownsett, S.L.E., Wise, R.J.S., 2014. Task-induced brain activity in aphasic stroke patients: 
what is driving recovery? Brain 137 (10), 2632–2648. https://doi.org/10.1093/brain/awu163.  

Goh, J.O.S., 2011. Functional dedifferentiation and altered connectivity in older adults: neural accounts of 
cognitive aging. Aging Dis. 2 (1), 30–48.  

Gomes, C.M.A., Arújo, Jde, Ferreira, M.G., Golino, H.F., 2014. The validity of the Cattel- Horn-Carroll model 
on the intraindividual approach. Behavioral Development Bulletin 19 (4), 22–30. 
https://doi.org/10.1037/h0101078.  

Goni, J., Arrondo, G., Sepulcre, J., Martincorena, I., de Mendiz˜ abal, N.V., Corominas- ´ Murtra, B., 
Bejarano, B., Ardanza-Trevijano, S., Peraita, H., Wall, D.P., Villoslada, P., 2011. The semantic organization 
of the animal category: evidence from semantic verbal fluency and network theory. Cogn. Process. 12 
(2), 183–196. https://doi.org/ 10.1007/s10339-010-0372-x.  

Goring, S.A., Schmank, C.J., Kane, M.J., Conway, A.R.A., 2021. Psychometric models of individual differences 
in reading comprehension: a reanalysis of Freed, Hamilton, and Long (2017). J. Mem. Lang. 119, 104221 
https://doi.org/10.1016/j. jml.2021.104221.  

Guyon, H., Falissard, B., Kop, J.L., 2017. Modeling Psychological Attributes in Psychology - An 
Epistemological Discussion: Network Analysis vs. Latent Variables. Front. Psychol. 8, 798. 
https://doi.org/10.3389/fpsyg.2017.00798.  

Haanpa¨a, R.M., Suhonen, N.-M., Hartikainen, P., Koivisto, A.M., Moilanen, V., ¨ Herukka, S.-K., Hanninen, 
T., Remes, A.M., 2015. The CERAD neuropsychological ¨ battery in patients with frontotemporal lobar 
degeneration. Dement. Geriatr. Cogn. Dis. Extra 5 (1), 147–154. https://doi.org/10.1159/000380815.  

Hallquist, M.N., Wright, A.G.C., Molenaar, P.C.M., 2019. Problems with centrality measures in 
psychopathology symptom networks: why network psychometrics cannot escape psychometric theory. 
Multivariate Behav. Res. 56 (2), 1–25. https:// doi.org/10.1080/00273171.2019.1640103.  

Hilland, E., Landrø, N.I., Kraft, B., Tamnes, C.K., Fried, E.I., Maglanoc, L.A., Jonassen, R., 2020. Exploring the 
links between specific depression symptoms and brain structure: a network study. Psychiatry Clin. 
Neurosci. 74 (3), 220–221. https://doi.org/ 10.1111/pcn.12969.  

Ibrahim, G.M., Morgan, B.R., Vogan, V.M., Leung, R.C., Anagnostou, E., Taylor, M.J., 2016. Mapping the 
network of neuropsychological impairment in children with autism Spectrum disorder: a graph 
theoretical analysis. J. Autism Dev. Disord. 46 (12).  

Jewsbury, P.A., Bowden, S.C., Duff, K., 2017. The Cattell–Horn–Carroll model of cognition for clinical 
assessment. J. Psychoeduc. Assess. 35 (6), 547–567. https:// doi.org/10.1177/0734282916651360.  

https://doi.org/10.1177/1745691617705892
https://doi.org/10.1177/1745691617705892
https://doi.org/10.3389/fnagi.2021.694254
https://doi.org/10.3389/fnagi.2021.694254
https://doi.org/10.3389/fnagi.2021.694254
https://doi.org/10.1371/journal.pone.0141186
https://doi.org/10.1371/journal.pone.0141186
https://doi.org/10.1016/j.yebeh.2016.02.032
https://doi.org/10.1016/j.yebeh.2016.02.032
https://doi.org/10.1016/j.yebeh.2016.02.032
https://doi.org/10.1016/j.cortex.2021.03.031
https://doi.org/10.1016/j.cortex.2021.03.031
https://doi.org/10.1016/j.cortex.2021.03.031
https://doi.org/10.1093/brain/awu163
https://doi.org/10.1093/brain/awu163
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0185
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0185
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0185
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0185
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0185
https://doi.org/10.1037/h0101078
https://doi.org/10.1007/s10339-010-0372-x
https://doi.org/10.1007/s10339-010-0372-x
https://doi.org/10.1007/s10339-010-0372-x
https://doi.org/10.1016/j.jml.2021.104221
https://doi.org/10.1016/j.jml.2021.104221
https://doi.org/10.1016/j.jml.2021.104221
https://doi.org/10.3389/fpsyg.2017.00798
https://doi.org/10.1159/000380815
https://doi.org/10.1080/00273171.2019.1640103
https://doi.org/10.1080/00273171.2019.1640103
https://doi.org/10.1080/00273171.2019.1640103
https://doi.org/10.1111/pcn.12969
https://doi.org/10.1111/pcn.12969
https://doi.org/10.1111/pcn.12969
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0225
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0225
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0225
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0225
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0225
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0225
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0225
https://doi.org/10.1177/0734282916651360
https://doi.org/10.1177/0734282916651360


NETWORK NEUROPSYCHOLOGY 

 

Jones, J.D., Burroughs, M., Apodaca, M., Bunch, J., 2019. Greater intraindividual variability in 
neuropsychological performance predicts cognitive impairment in de novo parkinson’s disease. 
Neuropsychology 34 (1), 24–30. https://doi.org/10.1037/ neu0000577.  

Jonker, F., Weeda, W., Rauwerda, K., Scherder, E., 2019. The bridge between cognition and behavior in 
acquired brain injury: a graph theoretical approach. Brain Behav. 9 (3), e01208 
https://doi.org/10.1002/brb3.1208.  

Kan, K.-J., van der Maas, H.L.J., Levine, S.Z., 2019. Extending psychometric network analysis: empirical 
evidence against g in favor of mutualism? Intelligence 73, 52–62. 
https://doi.org/10.1016/j.intell.2018.12.004.  

Karr, J.E., Garcia-Barrera, M.A., Areshenkoff, C.N., 2013. Executive functions and intraindividual variability 
following concussion. J. Clin. Exp. Neuropsychol. 36 (1), 15–31. 
https://doi.org/10.1080/13803395.2013.863833.  

Kellermann, T.S., Bonilha, L., Lin, J.J., Hermann, B.P., 2015. Mapping the landscape of cognitive 
development in children with epilepsy. Cortex 66, 1–8. https://doi.org/ 10.1016/j.cortex.2015.02.001.  

Kellermann, T.S., Bonilha, L., Eskandari, R., Garcia-Ramos, C., Lin, J.J., Hermann, B.P., 2016. Mapping the 
neuropsychological profile of temporal lobe epilepsy using cognitive network topology and graph theory. 
Epilepsy Behav. 63, 9–16. https://doi.  

org/10.1016/j.yebeh.2016.07.030.  
Kent, P.L., 2013. The evolution of the wechsler memory scale: a selective review. Appl. Neuropsychol. 

Adult 20, 277–291. https://doi.org/10.1080/ 09084282.2012.689267.  
Kent, P.L., 2018. Evolution of clinical neuropsychology: four challenges. Appl. Neuropsychol. Adult 27 (2), 

1–13. https://doi.org/10.1080/ 23279095.2018.1493483.  
Kertesz, A., 1983. Localization in Neuropsychology. Academic Press.  
Koekkoek, P.S., Rutten, G.E.H.M., Biessels, G.J., 2014. Chapter 11: cognitive disorders in diabetic patients. 

Handb. Clin. Neurol. 126, 145–166. https://doi.org/10.1016/ b978-0-444-53480-4.00011-4.  
Koen, J.D., Rugg, M.D., 2019. Neural dedifferentiation in the aging brain. Trends Cogn. Sci. 23 (7), 547–559. 

https://doi.org/10.1016/j.tics.2019.04.012.  
Konigs, M., Verhoog, E.M., Oosterlaan, J., 2021. Exploring the neurocognome: ¨ neurocognitive network 

organization in healthy young adults. Cortex 143, 12–28. https://doi.org/10.1016/j.cortex.2021.06.011.  
Korzybski, A., 1995. Science and Sanity: An Introduction to Non-Aristotelian Systems and General 

Semantics, 5th ed. Institute of General Semantics.  
Lamberty, G.J., Nelson, N.W., 2015. Case Formulation in Clinical Neuropsychology, pp. 44–60. 

https://doi.org/10.1093/med:psych/9780195387445.003.0004.  
Lerner, A., Ogrocki, P., Thomas, P., 2009. Network graph analysis of category fluency testing. Cogn. Behav. 

Neurol. 22, 45–52. https://doi.org/10.1097/ WNN.0b013e318192ccaf.  
Lezak, M.D., Howieson, D.B., Bigler, E.D., Tranel, D., 2012. Neuropsychological Assessment, 5th ed. Oxford 

University Press.  
Malhotra, P., Jager, H.R., Parton, A., Greenwood, R., Playford, E.D., Brown, M.M., ¨ Driver, J., Husain, M., 

2005. Spatial working memory capacity in unilateral neglect. Brain 128 (2), 424–435. 
https://doi.org/10.1093/brain/awh372.  

Massa, M.S., Wang, N., Bickerton, W.-L., Demeyere, N., Riddoch, M.J., Humphreys, G.W., 2015. On the 
importance of cognitive profiling: a graphical modelling analysis of domain-specific and domain-general 
deficits after stroke. Cortex 71, 190–204. https://doi.org/10.1016/j.cortex.2015.06.006.  

McCarthy, R.A., Warrington, E.K., 1990. Cognitive Neuropsychology: a Clinical Introduction. Academic 
Press. 

Morey, C.C., 2018. The case against specialized visual-spatial short-term memory. Psychol. Bull. 144, 849–
883. https://doi.org/10.1037/bul0000155.  

https://doi.org/10.1037/neu0000577
https://doi.org/10.1037/neu0000577
https://doi.org/10.1002/brb3.1208
https://doi.org/10.1002/brb3.1208
https://doi.org/10.1016/j.intell.2018.12.004
https://doi.org/10.1016/j.intell.2018.12.004
https://doi.org/10.1080/13803395.2013.863833
https://doi.org/10.1016/j.cortex.2015.02.001
https://doi.org/10.1016/j.cortex.2015.02.001
https://doi.org/10.1016/j.cortex.2015.02.001
https://doi.org/10.1016/j.yebeh.2016.07.030
https://doi.org/10.1016/j.yebeh.2016.07.030
https://doi.org/10.1016/j.yebeh.2016.07.030
https://doi.org/10.1080/09084282.2012.689267
https://doi.org/10.1080/09084282.2012.689267
https://doi.org/10.1080/09084282.2012.689267
https://doi.org/10.1080/23279095.2018.1493483
https://doi.org/10.1080/23279095.2018.1493483
https://doi.org/10.1080/23279095.2018.1493483
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0275
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0275
https://doi.org/10.1016/b978-0-444-53480-4.00011-4
https://doi.org/10.1016/b978-0-444-53480-4.00011-4
https://doi.org/10.1016/b978-0-444-53480-4.00011-4
https://doi.org/10.1016/j.tics.2019.04.012
https://doi.org/10.1016/j.tics.2019.04.012
https://doi.org/10.1016/j.cortex.2021.06.011
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0295
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0295
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0295
https://doi.org/10.1093/med:psych/9780195387445.003.0004
https://doi.org/10.1093/med:psych/9780195387445.003.0004
https://doi.org/10.1097/WNN.0b013e318192ccaf
https://doi.org/10.1097/WNN.0b013e318192ccaf
https://doi.org/10.1097/WNN.0b013e318192ccaf
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0310
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0310
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0310
https://doi.org/10.1093/brain/awh372
https://doi.org/10.1093/brain/awh372
https://doi.org/10.1016/j.cortex.2015.06.006
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0325
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0325
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0325
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0325
https://doi.org/10.1037/bul0000155


NETWORK NEUROPSYCHOLOGY 

 

Morris, J.C., Heyman, A., Mohs, R.C., Hughes, J.P., Belle, Gvan, Fillenbaum, G.,  
Mellits, E.D., Clark, C., 1989. The consortium to establish a registry for alzheimer’s disease (CERAD). Part I. 

Clinical and neuropsychological assessment of alzheimer’s disease. Neurology 39 (9), 1159–1165. 
https://doi.org/10.1212/wnl.39.9.1159.  

Nevado, A., Rio, D.D., Pacios, J., Maestú, F., 2021a. Neuropsychological networks in cognitively healthy older 
adults and dementia patients. Aging Neuropsychol. Cogn.  

1–25. https://doi.org/10.1080/13825585.2021.1965951.  
Nevado, A., Río, D.D., Martín-Aragoneses, M.T., Prados, J.M., Lopez-Higes, R., 2021b. ´ Preserved semantic 

categorical organization in mild cognitive impairment: a network analysis of verbal fluency. 
Neuropsychologia 157, 107875. https://doi.org/ 10.1016/j.neuropsychologia.2021.107875.  

Pamir, Z., Bauer, C.M., Bennett, C.R., Kran, B.S., Merabet, L.B., 2021. Visual perception supported by 
verbal mediation in an individual with cerebral visual impairment (CVI). Neuropsychologia 160, 107982. 
https://doi.org/10.1016/j. neuropsychologia.2021.107982.  

Poldrack, R.A., Kittur, A., Kalar, D., Miller, E., Seppa, C., Gil, Y., Parker, D.S., Sabb, F.W., Bilder, R.M., 2011. 
The cognitive atlas: toward a knowledge foundation for cognitive neuroscience. Front. Neuroinform. 5, 
17. https://doi.org/10.3389/ fninf.2011.00017.  

Riddoch, J.M., Humphries, G.W., 1994. Cognitive Neuropsychology and Cognitive Rehabilitation. Lawrence 
Erlbaum Associates.  

Rodebaugh, T.L., Tonge, N.A., Piccirillo, M.L., Fried, E., Horenstein, A., Morrison, A.S., Goldin, P., Gross, J.J., 
Lim, M.H., Fernandez, K.C., Blanco, C., Schneier, F.R.,  

Bogdan, R., Thompson, R.J., Heimberg, R.G., 2018. Does Centrality in a Cross- Sectional Network Suggest 
Intervention Targets for Social Anxiety Disorder? J. Consult. Clin. Psychol. 86 (10), 831–844. 
https://doi.org/10.1037/ccp0000336. Saffran, E.M., 1982. Neuropsychological approaches to the study 
of language. Br. J.  

Psychol. 73 (3), 317–337. https://doi.org/10.1111/j.2044-8295.1982.tb01815.x.  
Schmank, C.J., Goring, S.A., Kovacs, K., Conway, A.R.A., 2019. Psychometric network analysis of the 

hungarian WAIS. J. Intell. 7 (3), 21. https://doi.org/10.3390/ jintelligence7030021.  
Shallice, T., 1988. From Neuropsychology to Mental Structure. Cambridge University Press.  
Signoret, J.-L., Lhermitte, F., 1976. The amnesic syndrome and the encoding process. In: Rosenwig, M.R., 

Bennett, E.L. (Eds.), Neural Mechanisms of Learning and Memory. MIT Press.  
Simpson-Kent, I.L., Fried, E.I., Akarca, D., Mareva, S., Bullmore, E.T., Kievit, R.A., 2021. Bridging brain and 

cognition: a multilayer network analysis of brain structural covariance and general intelligence in a 
developmental sample of struggling learners. J. Intell. 9 (2), 32. 
https://doi.org/10.3390/jintelligence9020032.  

Tosi, G., Borsani, C., Castiglioni, S., Daini, R., Franceschi, M., Romano, D., 2020. Complexity in 
neuropsychological assessments of cognitive impairment: a network analysis approach. Cortex 124, 85–
96. https://doi.org/10.1016/j.  

cortex.2019.11.004.  
van Bork, R., Rhemtulla, M., Waldorp, L.J., Kruis, J., Rezvanifar, S., Borsboom, D., 2021.  
Latent variable models and networks: statistical equivalence and testability. Multivariate Behav. Res. 56 

(2), 175–198. https://doi.org/10.1080/ 00273171.2019.1672515.  
van der Maas, H.L.J., Dolan, C.V., Grasman, R.P.P.P., Wicherts, J.M., Huizenga, H.M., Raijmakers, M.E.J., 

2006. A dynamical model of general intelligence: the positive manifold of intelligence by mutualism. 
Psychol. Rev. 113 (4), 842–861. https://doi. org/10.1037/0033-295x.113.4.842.  

van der Maas, H., Kan, K.-J., Marsman, M., Stevenson, C.E., 2017. Network models for cognitive 
development and intelligence. J. Intell. 5 (2), 16. https://doi.org/10.3390/ jintelligence5020016.  

https://doi.org/10.1212/wnl.39.9.1159
https://doi.org/10.1080/13825585.2021.1965951
https://doi.org/10.1016/j.neuropsychologia.2021.107982
https://doi.org/10.1016/j.neuropsychologia.2021.107982
https://doi.org/10.1016/j.neuropsychologia.2021.107982
https://doi.org/10.1016/j.neuropsychologia.2021.107982
https://doi.org/10.3389/fninf.2011.00017
https://doi.org/10.3389/fninf.2011.00017
https://doi.org/10.3389/fninf.2011.00017
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0360
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0360
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0360
https://doi.org/10.1037/ccp0000336
https://doi.org/10.1111/j.2044-8295.1982.tb01815.x
https://doi.org/10.3390/jintelligence7030021
https://doi.org/10.3390/jintelligence7030021
https://doi.org/10.3390/jintelligence7030021
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0380
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0380
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0380
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0385
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0385
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0385
http://refhub.elsevier.com/S0149-7634(21)00518-2/sbref0385
https://doi.org/10.3390/jintelligence9020032
https://doi.org/10.3390/jintelligence9020032
https://doi.org/10.1016/j.cortex.2019.11.004
https://doi.org/10.1016/j.cortex.2019.11.004
https://doi.org/10.1080/00273171.2019.1672515
https://doi.org/10.1080/00273171.2019.1672515
https://doi.org/10.1080/00273171.2019.1672515
https://doi.org/10.1037/0033-295x.113.4.842
https://doi.org/10.1037/0033-295x.113.4.842
https://doi.org/10.3390/jintelligence5020016
https://doi.org/10.3390/jintelligence5020016
https://doi.org/10.3390/jintelligence5020016


NETWORK NEUROPSYCHOLOGY 

 

Vaughan, L., Leng, I., Dagenbach, D., Resnick, S.M., Rapp, S.R., Jennings, J.M., Brunner, R.L., Simpson, S.L., 
Beavers, D.P., Coker, L.H., Gaussoin, S.A., Sink, K.M., Espeland, M.A., 2013. Intraindividual variability in 
Domain-Specific cognition and risk of mild cognitive impairment and dementia. Curr. Gerontol. Geriatr. 
Res. 2013, 1–10. https://doi.org/10.1155/2013/495793.  

Villard, S., Kiran, S., 2015. Between-session intra-individual variability in sustained, selective, and 
integrational non-linguistic attention in aphasia. Neuropsychologia 66, 204–212. 
https://doi.org/10.1016/j.neuropsychologia.2014.11.026.  

Weintraub, S., Besser, L., Dodge, H.H., Teylan, M., Ferris, S., Goldstein, F.C., Giordani, B., Kramer, J., 
Loewenstein, D., Marson, D., Mungas, D., Salmon, D., Welsh-Bohmer, K., Zhou, X.-H., Shirk, S.D., Atri, A., 
Kukull, W.A., Phelps, C., Morris, J.C., 2018. Version 3 of the alzheimer disease centers’ neuropsychological 
test battery in the uniform data set (UDS). Alzheimer Dis. Assoc. Disord. 32 (1), 10–17. https://doi.org/ 
10.1097/wad.0000000000000223.  

Wright, A.G.C., Woods, W.C., 2020. Personalized models of psychopathology. Annu. Rev. Clin. Psychol. 16 
(1), 1–26. https://doi.org/10.1146/annurev-clinpsy-102419- 125032.  

Wright, L.M., De Marco, M., Venneri, A., 2021. A graph theory approach to clarifying aging and disease 
related changes in cognitive networks. Front. Aging Neurosci. 13, 676618 
https://doi.org/10.3389/fnagi.2021.676618.  

Zoccolotti, P., Angelelli, P., Marinelli, C.V., Romano, D.L., 2021. A network analysis of the relationship 
among reading, spelling and maths skills. Brain Sci. 11 (5) https:// doi.org/10.3390/brainsci11050656, 
656.   

https://doi.org/10.1155/2013/495793
https://doi.org/10.1155/2013/495793
https://doi.org/10.1016/j.neuropsychologia.2014.11.026
https://doi.org/10.1097/wad.0000000000000223
https://doi.org/10.1097/wad.0000000000000223
https://doi.org/10.1097/wad.0000000000000223
https://doi.org/10.1097/wad.0000000000000223
https://doi.org/10.1146/annurev-clinpsy-102419-125032
https://doi.org/10.1146/annurev-clinpsy-102419-125032
https://doi.org/10.1146/annurev-clinpsy-102419-125032
https://doi.org/10.3389/fnagi.2021.676618
https://doi.org/10.3389/fnagi.2021.676618
https://doi.org/10.3390/brainsci11050656
https://doi.org/10.3390/brainsci11050656

