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Hierarchical integration of porosity 
in shales
Lin Ma  1,2, Thomas Slater  2, Patrick J. Dowey  1, Sheng Yue3, Ernest H. Rutter1, 
Kevin G. Taylor1 & Peter D. Lee  3,4

Pore characterization in shales is challenging owing to the wide range of pore sizes and types present. 
Haynesville-Bossier shale (USA) was sampled as a typical clay-bearing siliceous, organic-rich, gas-
mature shale and characterized over pore diameters ranging 2 nm to 3000 nm. Three advanced imaging 
techniques were utilized correlatively, including the application of Xe+ plasma focused ion beam 
scanning electron microscopy (plasma FIB or PFIB), complemented by the Ga+ FIB method which is 
now frequently used to characterise porosity and organic/inorganic phases, together with transmission 
electron microscope tomography of the nano-scale pores (voxel size 0.6 nm; resolution 1–2 nm). 
The three pore-size scales each contribute differently to the pore network. Those <10 nm (greatest 
number), 10 nm to 100 nm (best-connected hence controls transport properties), and >100 nm 
(greatest total volume hence determines fluid storativity). Four distinct pore types were found: 
intra-organic, organic-mineral interface, inter-mineral and intra-mineral pores were recognized, with 
characteristic geometries. The whole pore network comprises a globally-connected system between 
phyllosilicate mineral grains (diameter: 6–50 nm), and locally-clustered connected pores within porous 
organic matter (diameter: 200–800 nm). Integrated predictions of pore geometry, connectivity, 
and roles in controlling petrophysical properties were verified through experimental permeability 
measurements.

Shales constitute two-thirds of the volume of sedimentary rocks yet are arguably the least well understood rock 
type of the sedimentary record1. Additionally, these rocks are of particular importance as an economic resource, 
but exploitation may pose certain environmental hazards2–4.

Shale can be a source rock for conventional hydrocarbon systems, a storage reservoir rock for self-sourced 
hydrocarbons4,5, a target for geo-thermal energy6, and also cap rock for hydrocarbon reservoirs, carbon seques-
tration and nuclear waste disposal3,7. An accurately quantified pore model is important for understanding and 
enhancing the above applications. The key properties of shales that underpin commercial viability and minimize 
environmental impact, such as permeability, storativity, elastic properties and electrical conductivity, are directly 
related to pore-size distribution, pore geometry and the connectivity of the pore network8,9. For example, the 
location of nano-pores associated with organic matter or phyllosilicate minerals are pivotal not only for under-
standing pore generation and evolution during maturation and fracturing10, but also in controlling and influenc-
ing gas transport and storage11.

Nevertheless, there remains a poor understanding of the full characteristics of pore systems in shales. 
Systematic quantification of pore geometry and detailed imaging of pore networks in shales, relative to the loca-
tions of pores, are rare. Three dimensional (3D) imaging of pores has been reported for a number of differ-
ent shales12,13, but no integrated pore models have been built to cover the wide range of pore size. A common 
characteristic of prior studies has been to build a micro-scale dataset, combined with relatively low-resolution 
nano-scale datasets using X-ray tomography (XCT) and Focused Ion Beam - Scanning Electron Microscopy 
(FIB-SEM)14–16. An important consensus has emerged that pores greater than tens of nanometres in size do not 
display a connected pore network. Whether a connected pore network is formed by pores below 10 nm, however, 
has not been confirmed through imaging studies due to resolution limitations. Existence of nano-scale pores 
can be detected or inferred from some laboratory experiments, such as nitrogen adsorption, mercury intrusion 
porosimetry (MIP) and small- to ultra-small-angle neutron scattering (SANS–USANS)17, but they have not been 
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directly imaged in 3D. Direct measurements of permeability and acoustic wave velocity anisotropies, and their 
pressure sensitivity, on bulk shale samples11 have also led to the inference that highly anisotropic, nano-scale 
pores of low aspect ratio must control transport properties, whilst the larger pore sizes control overall gas storage 
capacity.

Advanced multi-scale and multi-dimensional imaging of shale has provided opportunities to image pores, 
organic matter and minerals over a range of scales16,18,19. However, the geometry and connectivity of these pores 
were not tied to quantitative measurements, which in shale systems is very complex. Extremely high-resolution 
(nanometre to sub-nanometre) techniques are required to image nano-pores, whilst a large field of view (tens of 
microns) is needed to provide a representative imaging volume. This requires high-resolution electron micros-
copy (EM) such as scanning electron microscope (SEM) and transmission electron microscope (TEM) instead of 
X-ray tomography, as they are able to provide mineral and organic matter information which cannot be acquired 
using present X-ray tomography techniques, due to their lower contrast and resolution20. Consequently, there 
is a need for a combination of electron microscopy techniques that span a wide range of scales to visualize the 
geometry and networking of all pore types.

Traditional planar TEM results have allowed identification of individual nano-pores21,22, but did not docu-
ment spatial geometry and network connectivity. Advanced TEM tomography can provide down to 2 nm res-
olution (sub-nanometre voxel sizes) within a sample a couple of hundred nanometres thick. The advanced Xe+ 
Plasma FIB (PFIB) permits mass removal rates at least 60× greater than conventional Ga+ FIB systems with 
comparable or less damage23. It makes it possible to combine a large field of view (tens to hundreds of microns) 
with high-resolution SEM images (tens of nanometres) at the same site. This can be further combined with con-
ventional Ga+ FIB systems, to allow specific sites to be imaged with a medium field of view (a few microns) and 
high resolution SEM (a few nanometres) images.

Using these techniques, this study aims to build an integrated geometric and network model of a represent-
ative shale sample based on pore occurrence using a principal component analysis (PCA) method to recon-
struct the pore system, and to construct models incorporating properties of size, geometry and network 
connectivity. The sample was selected with typical TOC, maturity, composition and micro-texture from the 
Haynesville-Bossier Shale (a major US shale gas play). We explore the potential of Scanning (S)TEM tomography 
to provide nanometre resolution images for nano-pores and present the first-time application of Xe+ Plasma FIB 
(PFIB) slice-and-view imaging in shale to provide volumes with a large field of view, further combining these 
with Ga+ FIB slice-and-view imaging to bridge the associated length scales. These novel imaging and correlative 
techniques provide pore images over a large size range, from ca. 2 nm to 2 microns, covering the great majority 
of pores in shale over a large volume. Also, four different types of pores and their three distinct size categories 
were characterized using an improved principal component analysis (PCA) method, allowing pore models to be 
constructed that incorporate variability in size, geometry and network connectivity. The results will not only lead 
to an improved understanding of the pore network in shales across a wide range of scales, but also provide the 
fundamental parameters for modelling work.

Results
3D pore visualization across scales. Pores were imaged at three scales, with PFIB images, FIB images 
and STEM images, with spherical-equivalent voxel diameters 22 nm, 13 nm and 0.6 nm, and physical volumes 
20000 µm3, 500 μm3, and 0.02 μm3, respectively (Fig. 1). The front-left plane of these images is parallel to bedding 
and the scale bars apply equally in all dimensions.

To identify individual pores and their connectivity, the pore volumes were separated to individual pores and 
throats. The number of connecting pore throats were counted for each pore and this becomes the ‘coordina-
tion number’ for that pore. The ‘size’ of an individual pore was determined as the diameter of a sphere (equiva-
lent diameter) containing the same number of voxels. The ‘shape’ of an individual pore was characterized using 
Principal Component Analysis24 in which each pore is represented by the ratio of orthogonal principal axes a, b 
and c of an ellipsoid representing the departure from sphericity (see Supplementary materials Figure S3) and its 
orientation. The longest axis is a and the shortest is c, and the intermediate b axis is orthogonal to the a/c plane.

Pores greater than 66 nm equivalent diameter were quantified in 3D in the PFIB images after noise removal. 
PFIB-imaged porosity was measured to be 4.6%, with the largest pore size being 1756 nm in diameter, but no 
continuous pore network was found in the mineral matrix at this scale (Fig. 1A–C).

In FIB images, pores were observed to be locally connected in the porous organic matter, and some of them 
are connected to other pores in the matrix (Fig. 1D–F). The majority of pores in the phyllosilicate matrix are 
isolated at this scale. Connected pore networks were found in the phyllosilicate mineral matrix and inside single 
organic matter particles in (S)TEM images, with voxel sizes (spherical-equivalent voxel after noise removal) down 
to 0.9 nm (Fig. 1G–I).

This voxel size is close to the size of one methane molecule 0.4 nm25, although the true resolution in the 3D 
reconstruction is closer to 2 nm (Figure S2 in supplementary materials). Nevertheless, the pore network extracted 
from these images should be reliable for gas transport modelling.

Pore size distributions. Pore sizes were measured using 3D image analysis, nitrogen adsorption and helium 
porosity. Those from images are displayed by number density (number of pores/µm3) to provide the same stand-
ard for the three scales (~1–3000 nm; Fig. 2A,C). They are compared with pore sizes quantified by the Barrett–
Joyner–Halenda (BJH)26 nitrogen adsorption method in the range of 2–300 nm (Figure A and C). The peaks 
identified using these techniques show similar trends (Fig. 2A) in the overlap ranges (2–300nm). The pores of 
sizes larger than 300 nm are shown by PFIB and FIB data and those below 2 nm are supplemented by helium 
porosity data (Fig. 2A,C). Nitrogen adsorption covers a significant range of sizes, but cannot provide informa-
tion on pore location, geometry, orientation, network and other details which can be measured utilising 3D 
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images acquired in this study. Fractures, quantified to be a few microns in aperture27, were ignored as they are 
normally considered as arising during depressurisation, and assumed to be closed under subsurface pressure 
conditions11,28.

The major peak of pore size number density appears around 2–3 nm (Peak I in Fig. 2A), and the second peak 
is around 20 nm (Peak II in Fig. 2A,B). A third peak is observed at 100 nm (Peak III in Fig. 2A,C). These match 
each of the three image datasets and the first two peaks can also be found in the nitrogen adsorption data. Peak 
I can be only acquired from TEM images, including pores between phyllosilicate mineral grains or within some 
organic matter particles (described as InterM and IntraO respectively in the next section) (Fig. 2D,E). Peak II is 
seen primarily in the FIB dataset, corresponding to a platform in TEM dataset. Most of these pores occur between 
mineral particles (described as InterM in the next section) (Fig. 2E). Peak III is consistent in the FIB and PFIB 
data. Pores inside organic matter particles or between organic matter and minerals (described as IntraO and 
InterOM in the next section) (Fig. 2G,H) contribute a large portion of this peak.

Figure 1. 3D SEM and STEM images of pores and pore networks with varying degrees of connectivity 
(perspective projections). The front-left plane of these images is parallel to bedding and the scale bars apply 
equally in depth as well as to frontal area. (A–C) are from P-FIB images, with physical sizes 80 × 65 × 40 µm3 
and voxel sizes 16 × 13 × 50 nm3, (D,E,F) are from FIB images, with physical sizes 10 × 10 × 5 µm3 and voxel 
sizes 10 × 10 × 20 nm3. (G–I) are from STEM tomography images, with physical sizes 0.6 × 0.6 × 0.06 µm3 and 
voxel sizes 0.6 × 0.6 × 0.6 nm3. (A,D,G) are orthogonal slices of the 3D images, (B,E,H) are segmented pores in 
3D, (C,F,I) are representations of the connectivity of the extracted pore network in 3D view, with the relative 
sizes of the pore volumes represented as equivalent spheres. The small dashed line boxes (A,D) demonstrate the 
relative sizes of the higher resolution technique, rather than the specific relative locations of the images. Bedding 
plane orientations are shown in (A,D,G).
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Pores with coordination numbers greater than 2 are considered to form part of a connected network. Their 
distribution shows a peak at around 10–100 nm (Fig. 2B), corresponding to the Peak II in Fig. 3A. 87% of pores 
with coordination number >2 appear in the range 20–60 nm.

The pore size occurrences by frequency were converted into volume fractions (Fig. 2C). Pores >100 nm equiv-
alent diameter make the greatest contribution, accounting for 57% of total helium porosity, and 3.8% of total rock 

Figure 2. Pore size distributions and corresponding pore types from 1 nm to 3000 nm. (A) Number density 
extracted from 3D images and nitrogen adsorption, (B). Frequency in connected network (C). Cumulative 
volume fractions of 3D images, nitrogen adsorption and helium porosity, (D–H) shows the dominant pore 
types corresponding to three peaks.
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volume. Pores of 10 to 100 nm occupy 39% of the total porosity, and 2.6% of the total rock volume. Pores below 
10 nm, only occupy 3% of the total porosity, and 0.2% of total rock volume.

In summary, Peak I pores contribute the greatest number (Fig. 2A), Peak II pores contribute most towards the 
connected pore network (Fig. 2B), while Peak III pores contribute the most in volume (Fig. 2C).

Porosity-associated phases and corresponding pore types. Pores are associated with organic mat-
ter, mineral grains, and the phyllosilicate mineral-dominated matrix, which we define as ‘porosity-associated 
phases’ (Fig. 3A). Two typical types of organic matter were identified: porous organic matter and non-porous 
organic matter (Fig. 3AI,II). Porous organic matter particles contain large, connected pores (Fig. 3AI), whereas 
non-porous organic matter has crack-like pores aligned along the edge of the phase, but contains no resolvable 
internal pores (Fig. 3AII). Phyllosilicate minerals include illite, chlorite and muscovite (Fig. 3AIII), and granu-
lar minerals are defined here to include quartz, calcite, ankerite, albite and pyrite (Fig. 3AIV). Imaging results 
show that pore geometry and network properties vary according to the phases associated with each type of pore. 
Based on the relationship of pores and associated phases, pores are classified into four types: intra-organic matter 
pores (IntraO), organic-mineral interface pores (InterOM), inter-mineral pores (InterM) and intra-mineral pores 
(IntraM) (Fig. 3AI–IV; for more images see Figures S1-S2 in supplementary materials).

Porous organic matter and Intra organic matter pores (IntraO). IntraO pores are defined as pores completely 
bounded by organic matter. ‘Porous organic matter’ refers to organic matter particles containing at least one 
IntraO pore. A number of organic matter particles are randomly-arranged in the matrix (Fig. 3AI and AII; more 
images see Figure S1 in supplementary materials). Most porous organic matter particles are lamellar in shape, and 
some are interlayered with phyllosilicate minerals. IntraO pores are locally connected within the organic particle, 
and appear in clusters with pyrite framboid-like forms. Pore sizes are relatively uniform in each particle.

Non-porous organic matter/mineral interface pores (InterOM). Organic- mineral interface pores (InterOM) are 
defined as pores at the interface of organic matter with mineral particles. Non-porous organic matter is dom-
inated by spheroidal or irregular polygonal particle shapes (Fig. 3AI and AIII; more images see Figure S1 in 
supplementary materials). However, pores <2 nm are unlikely to be resolved in the disordered organic matter. 
InterOM pores take typically curved flake-like forms or possess a crack-like geometry, aligned along the edges of 
non-porous organic matter particles, commonly parallel to the trace of bedding.

Phyllosilicate minerals and inter-mineral pores (InterM). Phyllosilicate mineral grains, dominantly illite, chlorite 
and muscovite, are oriented subparallel to the bedding plane (Fig. 3AI and AIV; more images see Figure S2 in 

Figure 3. SEM observation, pore size distributions, volume fractions of four pore types. (A) Porosity-associated 
phases and corresponding pore types. (B,C) Pore size distribution displayed respectively by number density 
volume fraction.
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supplementary materials). InterM pores occur within clusters of mineral grains, either between phyllosilicate 
grains or between phyllosilicates and other mineral grains. Most InterM pores have elongated wedge shapes, 
normally slightly larger when fine-grained granular minerals (e.g. quartz) occur within the phyllosilicate mineral 
matrix.

Granular minerals and intra-mineral pores (IntraM). Quartz, calcite, ankerite and albite were commonly found 
in this sample, based on the XRD data and imaged morphologies. IntraM pores are completely encased within 
individual minerals or clusters. They are generally small and have spheroidal or irregular polygonal shapes 
(Fig. 3AI and AV; more images see Figure S2 in supplementary materials). However, IntraM pores do not form 
interconnected pore networks. Pyrite framboids host polygonal-shaped, crystallographically-controlled pores. 
Single pyrite crystals do not host pores. Pores in pyrite framboids can be interconnected, but do not contribute 
significantly to porosity as pyrite occurs only in trace concentrations (<1 wt%).

Only IntraO and InterM pores >20 nm are seen in TEM images. Pores with a 2–3 nm diameter have the largest 
number density (µm−3) for these types (Fig. 3B). A second concentration occurs at 30 nm. IntraO pores have a 
third maximum around 200–300 nm while the InterM curve flattens after the second concentration maximum 
and then decreases rapidly at sizes >500 nm. IntraM pores are relatively few compared to InterOM, only appear-
ing in significant number densities at 20–200 nm with a peak around 50 nm. InterOM pores are observed only in 
small concentrations for diameters of 80–2000 nm. Volume fractions of IntraO, InterM and InterOM pores are 
greatest at 300–900 nm, while the IntraM pore sizes peak at 50 nm (Fig. 3C).

Pore geometry model. The shapes of individual pores in each pore type category from Principal 
Component Analysis can be conveniently described by plotting axial ratios, for example a/b and a/c (Fig. 4A,B). 
The data for each pore type were averaged for each of a series of size categories on a logarithmic scale to base 2.

The 3-dimensional shapes of ellipsoids representing the whole spectrum of pore shapes can be represented 
by plotting a/b versus b/c29 (Fig. 4E). The origin (1, 1) represents spheroidal pores; points along the vertical axis 
represent uniaxial prolate ellipsoids and along the horizontal axis uniaxial oblate ellipsoids. The intervening space 
represents general triaxial ellipsoids, and radial distance from the origin corresponds to increasing eccentricity 
(increasing flattening or stretching). IntraO pores are near–spheroidal with a tendency to prolateness. InterM 
pores are near spheroidal, triaxial ellipsoids. IntraM and IntraOM pores show a tendency towards more eccentric 
and flattened shapes, especially for the intermediate and larger pore sizes, which also tend to be the best con-
nected (larger coordination numbers, Fig. 4F).

The tendency towards flattening (S) or elongation (L) of individual pore shapes can be represented in terms of 
axial ratios using the functions

= + = +S a c b c and L b a c a2/( / / ) 2/( / / )

where S <1 for more flattened shapes, and L >1 for more elongate shapes. These functions are plotted versus log 
grain size in Fig. 4C,D respectively. Substantial deviations from near constant values occur in both cases only for 
large pore sizes. IntraM pores in both cases show the smallest deviations from sphericity, although they are still 
triaxial ellipsoids. The other three pore types exhibit comparable triaxial shapes, with both flattened and elon-
gated forms. InterOM pores exhibit the greatest degrees of both flattening and lineation development, but only at 
the largest pore sizes (>100 nm).

Figure 4D shows the variation of coordination number for the four pore types versus grain size. IntraO and 
InterM pores are best connected (Coordination number ~1) at ca 20 to 200 nm pore size but IntraO pores are 
best connected at ca 1000 nm pore size, but only within the organic particles. Only the InterM pores can form 
extensive connected networks throughout the whole rock, and hence control the permeability. The orientations of 
pores are best appreciated from the SEM imagery (e.g. Fig. 3AI) and tend to be flattened in the plane of bedding, 
reflecting the flattening strain induced during the diagenetic compaction of the rock.

Each of the four pore types contributes a proportion to the overall rock volume, pore number density and to 
characteristic shapes and network connectivity (Fig. 5), although the descriptions of pore networks are not very 
reliable for pores at the two ends of the scale for each image, due to the limitations of total volume and voxel sizes. 
These are described below and summarized in Table 1.

InterM pores display wedge shapes elongate in the trace of bedding. They comprise 97.7% of total pore num-
ber but only 51.9% of total porosity, occupy 3.6% of the total sample volume and form a bedding-parallel, web-like 
connected network at tens to hundreds of nanometres scale across the sample (Fig. 5).

IntraO pores only account for 2.2% of the total frequency of number of pores, 25.8% of the total porosity, and 
1.8% of the whole sample volume. They tend to be larger than the other three pore types; the largest observed 
equivalent diameter is 1796 nm. 13.6% of IntraO pores have a coordination number greater than 2, and an esti-
mated 80.2% of their total volume is locally connected (Table 1) to form a clustered arrangement within organic 
matter particles of the larger sizes, that is up to 1000 nm. These clustered pores are connected to the InterM web 
but are not themselves globally connected.

InterOM pores are frequently present as curved or crack-like lamellae with the c dimension tending to lie 
normal to bedding. They have a low number frequency of less than 0.1% and occupy 0.6% of the total porosity 
and 0.1% of the whole sample volume. Only 1.2% of InterOM pores have coordination numbers greater than 2, 
and they occupy 2.8% of the total pore volume (Table 1).

IntraM pores have typically polygonal geometries, and the lowest frequency fraction (<0.1%). The volume 
fraction of the total porosity is 21.7%, and they comprise only 1.5% of the total rock volume. IntraM pores are 
small and display a narrow size distribution range, 20 nm to 200 nm. Coordination numbers are 0–2 and the pores 
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are largely isolated. Only 4.5% of these pores (by number) have coordination numbers greater than 2 and they 
occupy 24.6% in volume of the connected pore network (Table 1).

Pore network reconstruction across scales. Using these observations linked across scales, an integrated 
pore network can be constructed based on the geometric models and network model for the four pore types. 
The four pore associated phases: porous organic matter, non-porous organic matter, phyllosilicate minerals and 
granular minerals, are segmented from the large scale images (i.e. PFIB image). Quantified parameters (e.g. a/b, 
a/c, coordination number) from the geometry and network models extracted from FIB and TEM images at the 
nanoscale are assigned into four pore associated phases in PFIB images. An integrated large-scale network can be 
built following this workflow (Fig. 6).

Figure 4. Pore shape distributions for the four identified pore types displayed averaged according to volume 
fraction classes. Each class contains hundreds to thousands of pores. (A,B) Show PCA axial ratios a/b and a/c. 
(C,D) Show respectively the tendency for pores to be flattened (values < 1) and elongated (values > 1). (E) Is a 
Flinn plot; pores close to the vertical axis tend to be prolate ellipsoids; those along the horizontal axis are oblate 
elipsoids, and general ellipsoids lie in the intervening space. Shape eccentricity increases with radial distance 
from (1, 1). (F) shows coordination number (number of connections to adjacent pores) as a function of pore 
size.
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Figure 5. Pore geometry and coordination number models based on 3D SEM and 3D TEM images of four pore 
types (all are perspective projections of varying depths). In each case the plane of the bedding is sub-parallel to 
the front, left face of the box. For clarity, only a proportion of the pores in each box are shown. (A) SEM/TEM 
slices, (B) segmented organic matter/mineral grains in relation to neighbouring pore spaces: red- pore spaces, 
blue- organic matter, yellow- phyllosilicate minerals, green- granular minerals. (C) separated pores to illustrate 
geometry, separate colours refer to individual pores, (D) idealized shapes representing the four geometric type 
models, with reference to principal axes a, b and c. (E) Illustration of coordination number concept for the pore/
grain relations illustrated in B; balls mark centroids of pores of various sizes, lines show connections between 
pores. Only pore type InterM shows development of a widespread, spatially-connected network.
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When the whole sample is considered, the integrated pore network across three scales principally combines 
two distinct sub-networks. These are a) a global, web-like pore network between phyllosilicate minerals with sizes 
in the range 6–50 nm and coordination numbers 2–5, and b) a localized, cluster-like connected pore network 
lying within porous organic matter with sizes in the range 200–800 nm with coordination numbers 5–9 (Fig. 6).

Pore types IntraO InterOM InterM IntraM

Associated phases
porous organic 
matter

non-porous 
organic matter

Phyllosilicate 
minerals

Granular 
minerals

Fractions

Frequency 2.2% 97.7% <0.1% <0.1%

Volume fraction 25.8% 51.9% 0.6% 21.7%

Porosity fraction 1.8% 3.6% 0.1% 1.5%

Geometric parameters

Ellipsoid Lamellar Elongated wedge Ellipsoid

a/b 1.38 2.63 1.17 1.61

a/c 2.78 11.11 4.17 3.13

Orientation // bedding vary // bedding vary

Network parameters*

Number fraction 13.6% 1.2% 14.2% 4.5%

Volume fraction 80.2% 2.8% 97.9% 24.6%

Average coordination 
number 3.1 2.07 3.6 2.5

Table 1. Summary of pore characteristics and measurements. *Only for connected pores (coordination number 
>2). The fractions are the percentages of pores of stated type.

Figure 6. Schematic diagram of reconstructed pore networks based on the imaged pore models (perspective 
projections). Four phases hosting pores were identified in the lower resolution images (i.e. PFIB): porous 
organic matter, non-porous organic matter, phyllosilicate minerals and granular minerals. Geometry and 
network models of four corresponding pores were extracted in the higher resolution images (i.e. FIB and TEM 
images), and then upscaled into images with length scale tens of microns (i.e. PFIB).
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Pore geometry and network inferred from bulk permeability measurements. We made perme-
ability measurements for this rock using argon gas as permeant for flow parallel to bedding using the oscillating 
pore pressure technique30. Permeabilities range from 1.0 × 10−17 to 3.7 × 10−21 m2 at a constant pore pressure of 
23 MPa when the effective pressure is increased from 0 MPa to 70 MPa, demonstrating the low-permeability and 
high pressure-dependence of this sample (Fig. 7). Permeability normal to bedding is typically about 2 orders of 
magnitude lower. The high sensitivity of permeability to effective pressure, its low value and its marked anisotropy 
indicates that transport is dominated by flow through crack-like pores predominantly oriented parallel to bedding.

Discussion
Pores sizes in shales normally range from a few nanometres to a few microns28,31. This study reconstructs from 
the basic components of the pore network a comprehensive and integrated 3D pore system over the range 2 nm to 
3 µm in a Haynesville-Bossier Shale sample, covering the great majority of pores in the selected shale sample. The 
PCA method used for the geometry and network characterization significantly improved the accuracy of the pore 
models for the shale system. The imaging method applied combines advanced correlative 3D SEM and STEM 
imaging techniques, including Xe+ plasma FIB, Ga+ FIB and STEM tomography, with the field of view ranging 
from around 30000 µm3 (PFIB), 500 µm3 (FIB) to around 0.02 µm3 (STEM) and corresponding volume-equivalent 
spatial resolution from around 66 nm, through 39 nm to 2 nm. These EM based techniques, compared with X-ray 
tomography techniques, provide higher resolution images with improved contrast, and have the potential to 
be combined with chemical composition mappings32,33. In comparison, the best resolution obtainable by X-ray 
tomography (Nano-CT) is no better than 100 nm (voxel size 50 nm). Also, the optical amplification of Nano-CT 
limits the contrast obtainable between different phases34. Thus it is almost impossible to identify or separate pores 
from phyllosilicate minerals or organic matter accurately20. The combination of the three advanced EM tech-
niques in the present study maximizes the feasibility of imaging and quantification of pore structures in shales.

The present study presents a classification of geometric and network models of porosity according to how 
the pore spaces are hosted by specific solid phases (Fig. 3) or are formed at their interfaces. The low variability in 
geometries and coordination numbers of a given pore type makes this approach practical (Fig. 4). The geometry 
of pores is expected to affect significantly the propagation of induced fractures and porous flow behaviours10,35,36, 
but it has not been possible to evaluate these influences in many other models. The pore geometry and networking 
demonstrated here has the potential to provide higher accuracy and applicability to petrophysical modelling than 
an approach based solely on pore-throat sizes.

The implications of pore geometry and network connectivity from this study can be compared with inferences 
made from experimental permeability measurements made on bulk samples of the same rock as used in this 
imaging study (Figs 5 and 7). These data and many other permeability measurements on mudstones implies that 
gas flow and its pressure sensitivity is indeed controlled by pore structures characterized by the fraction of pores 
with low aspect ratios and aperture widths ranging 20–60 nm30,37, which corresponds closely with the imaging 
results in this study (Fig. 5). Analysis of the permeability results showed that whilst a large portion of the pore vol-
ume is hosted within large storage pores that control bulk rock compressibility and account for the greatest frac-
tion of the whole-rock porosity, these have little effect on permeability38. The observed high pressure sensitivity of 
permeability for flow parallel to bedding, coupled with extreme permeability anisotropy, implies that flow takes 
place via narrow, compressible crack-like pores parallel to bedding that link the large pore volumes that control 
fluid storage. The low magnitude of observed permeability also requires that the conductive channels be no more 
than a few nanometres to tens of nanometres in dimension (i.e. the globally connected InterM pores). Flow of 
gases can occur via a combination of slip flow (at low gas pore pressures, typically <10 MPa) and Darcy viscous 
flow at higher pore pressures. These results are wholly consistent with the imaging results from the present study, 
that only the very narrowest and anisotropically shaped (InterM) pores control the transport properties, and link 
the larger (IntraO and InterOM) pores that provide the fluid storage capacity of the rock.

Figure 7. Bedding-parallel permeability to argon gas plotted as a function of effective pressure at a constant 
pore pressure (23 MPa) in the Darcian flow regime. Measurements made after initial pressure cycling. Three 
further pressure cycles shown. Standard error in permeability measurements is ±0.2 log units.
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The research was performed on one shale sample which is considered to be representative of both the sampled 
formation and more broadly of ‘average’ shale properties. Although this study does not capture the variability in 
the formation or shales generally, the analytical method can be more widely applied, and linked to sedimento-
logical characterization, for example, compaction, cementation, and the kerogen maturity. A linear relationship 
between the volumes of these four pore types with the corresponding compositions has been found in Lublin 
shale samples with similar depositional history27,39.

Conclusions
This study presents a novel combination of 3D SEM and (S)TEM imaging techniques, including Xe+ plasma 
FIB, Ga+ FIB and STEM tomography, enabling the quantification of a wide range of pore sizes. This is the first 
application of Plasma-FIB (PFIB) in shales, and the first study to comprehensively to develop pore geometric and 
network models in 3D based on experimental characterisation over these critical length scales.

Four pore types (Intra-organic pores, Organic-mineral interface pores, Inter-mineral pores, Intra-mineral 
pores) were categorized, associated with four solid-phase components, and their geometric shapes character-
ized. Whilst pores below 10 nm contribute most in number, pores between 10 to 100 nm contribute most to 
pore network connectivity and hence to fluid flow. Pores between 100 to 2000 nm contribute most in volume 
and hence to fluid storage capacity. The resultant integrated geometric and network characteristics lead inde-
pendently to the same conclusions as drawn from experimental permeability measurements made on the same 
Haynesville-Bossier Shale sample.

The geometry and pore network characterizations lead to an improved understanding of mineral- and 
organic-matter pore networks in shales covering a wide range of scales. The implications of the results for gas 
and liquid storage space and transport pathways will be significant in many areas, including shale gas, carbon 
sequestration, nuclear disposal and possibly geo-thermal energy.

Materials and Methods
A representative shale sample for typical shale gas reservoirs in North America was used, selected from the Bossier 
Formation in the Haynesville-Bossier Shale reservoir, currently one of the largest hydrocarbon-producing shale res-
ervoirs in the world. It was characterized as granular minerals (55.3 wt% quartz, calcite, ankerite, albite and pyrite) 
and phyllosilicate mineral-rich (41.0 wt% illite, chlorite and muscovite.) and carbonate-poor, organic-rich (TOC 
3.7 wt%) and gas-mature (Ro 2.3%), determined by X-ray diffraction and proportions quantified by Rietveld analysis.

Multi-scale 3D image acquisition. Three scales were used: microscale, nanoscale and sub-nanometre 
scale. In practice these overlap, but we delineate them for the purposes of describing the features we observe and 
because the scales approximately correspond to the different imaging techniques employed. The corresponding 
spherical-equivalent voxel diameters, approximately 22 nm, 13 nm and 0.6 nm respectively, were acquired sequen-
tially as the sample size was decreased at each stage of the data collection campaign (Table S1).

The largest scale of 3D images in this study was acquired by Xe+ plasma focused ion beam system (PFIB) using 
FEI Helios PFIB Dual Beam FIB-SEM facility. Then, two sites (organic-rich and mineral-rich) were selected for 
Ga + focused ion beam system (FIB) imaging, and the image datasets were acquired using a Dual Beam FIB-SEM 
(Nova NanoLab 600i, FEI, Hillsboro, United States)40. Finally, two sites (organic-rich and mineral-rich) were 
imaged by scanning transmission electron microscope (STEM) tomography, using an FEI Talos TEM operated at 
a voltage of 200 kV. A high-angle annular dark field (HAADF) tilt series was collected using the Xplore3D acqui-
sition software at angular increments of 1° between ±60°. All the facilities are based at the Electron Microscopy 
Centre and the Photon Science Institute in School of Materials in University of Manchester.

Accurate pore quantification depends on both the fields of view and the spatial resolutions of 3D images. A 
single imaging technique combining high spatial resolutions and very large fields of view is not currently availa-
ble. Therefore, a compromise between these two parameters was required, and the combination of multiple image 
datasets at multiple scales is one practicable solution (see supplementary materials for more details).

Image processing and analysis. PFIB and FIB images were aligned, sheared and filtered as a series of block 
face images before segmentation. TEM tomography images were aligned, reconstructed and filtered as a series 
of tilted and penetrating sections. A band-pass filter was used to separate out large structures down to 40 pixels 
(shading correction) and small structures up to 3 pixels (smoothing) by Gaussian filtering in Fourier space. Then, 
non-local means filters (search window 21, local neighborhood 5, similarity 0.6) and a top-hat filter (kernel 1)  
were applied for segmentation.

Pores were measured from PFIB images, FIB images and TEM images, as spherical equivalent voxels of diam-
eters 22 nm, 13 nm and 0.6 nm respectively (Table S1). Pores of fewer than 27 voxels (3 × 3 × 3) were ignored in 
the image analysis owing to the potential for inaccuracies imposed by noise. Therefore, only pores with spherical 
equivalent diameters >66 nm, >39 nm and >1.8 nm have been considered for evaluation of pore quantification 
from each volume respectively.

A number of phyllosilicate mineral pores in the TEM tomography volume, which were observed to be touch-
ing the image boundaries, could not be imaged completely (Figure S4 in supplementary materials). These trun-
cated phyllosilicate mineral pores were recovered into whole pores based on the thickness measured in TEM 
tomography and the three axes geometry model deduced from FIB images (Figure S5 in supplementary mate-
rials). 3D visualization of the imaging data was conducted using the 3D image processing software Avizo™ 
(Standard and Fire versions, FEI).

Pore quantification. Pores, organic matter, granular minerals and phyllosilicate minerals in the 3D images 
were first segmented into four phases. Subsequently, four types of pore were separated based on the occurrence 
and relationships of pores and the other framework phases. To identify IntraO and IntraM pores, undefined 
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voxels within these phases are first filled with the ‘Fill-the-holes’ tool. Where pore voxels overlap with organic 
matter and mineral phase voxels, these are defined as IntraO and IntraM pores, respectively. The same process 
was performed for IntraM pores by filling voids in the granular mineral particles and overlap with pores. InterO 
pores were identified where pores had at least one pixel touching the organic matter boundary and one pixel 
touching a mineral boundary. InterM pores are defined as the remainder of the pores with a boundary touching 
phyllosilicate minerals, granular minerals or both.

To identify individual pore sizes and connectivity, pores were separated the tools ‘separate objectives’ and ‘pore 
network model’ were used in the Avizo™ software. These allowed calculation of ‘watersheds’ between pores and 
hence allowed individual pores to be identified when they formed parts of connected networks.

Pore size distributions were measured by different techniques: PFIB, FIB, TEM, nitrogen adsorption, helium 
porosity. These techniques cover pore sizes in different ranges. PFIB and FIB measures pores larger than 20 nm; 
TEM measures pores in the range of 1–30 nm; nitrogen adsorption gives pore sizes between 2–300 nm; helium 
porosity covers most of pores above 0.14 nm. Although the pore size distribution is not achievable using in helium 
porosity analysis, it can supplement the volume fractions measured by 3D images and BJH, especially in sizes 
below 2 nm. The combination of these techniques covers the full range of pore sizes. It is noted that the left end 
(lowest bin) and right end (highest bin) in sizes of each technique are not reliable due to technique limitations, so 
reliable ranges were selected in the centre of the range of each technique to construct the overall size distribution 
(see Fig. 2C).

Geometric and network models are built according to the pore types. Pore geometry was analysed using 
the principal component analysis (PCA) method see24. Compared to the commonly-used geometric elongation 
method, which quantifies pores according to their longest and shortest dimensions, the PCA method determines 
dimensions along three orthogonal equivalent ellipsoid axes (Fig. 1). It therefore provides the more specific spa-
tial and orientation information required for a full 3D geometric model.

Principal component analysis (PCA): Pores shapes and orientations were characterized based on the eigenval-
ues and eigenvectors of the covariance matrix, The axis length ratios of a/b and a/c were calculated to characterize 
pore shapes and their orientations relative to the imaging coordinates(XYZ, XY reference axes are the bedding 
plane; Fig. 1). Geometric quantifications of pore axial ratios and orientations at three scales were performed sep-
arately and then a more specific quantification of four pore types was conducted at nanoscale and sub-nanometre 
scales using FIB and TEM datasets.

Pore networks are shown as balls and channels (e.g. Fig. 2) in this study, which illustrate pores and throats 
as spheres and connecting lines respectively. The connectivity of pores along three directions was determined, 
and the throat lengths and diameters were calculated for the connected network. The coordination number was 
measured for each pore to evaluate the contribution of individual pores to the network.

Other laboratory measurements. The measured accessible porosity of the sample used was 7.0% on a 
20 mm diameter cylinder with a helium porosimeter. Permeability was measured using argon gas as permeant by 
the pore pressure oscillation technique41 parallel and perpendicular to the bedding on 20 mm diameter samples, 
oven dried at 60 °C. The effective pressure was stepwise cyclically varied from 0 to 70 MPa at a constant pore 
pressure of 23 MPa. After the first pressure cycle permeability versus pressure was reproducible, indicating that 
pressure response was elastic. Pore-size distributions were measured by nitrogen (N2) sorption using a surface 
area analyser (Micromeritics ASAP 2010, Norcross, United States), and the pore size distribution was calculated 
using the Barrett-Joyner-Halenda (BJH) method26.

TOC was measured after rock acidification and organic matter combustion using a carbon analyser at the 
University of Newcastle (Leco, Michigan, United States). Quantitative X-ray Diffraction (Bruker D8Advance 
XRD, Billerica, United States) was undertaken in University of Manchester to confirm the mineralogy and iden-
tify the phyllosilicate phases present in the samples.

Data Statement. The datasets generated and analysed during this study are not publicly available due to 
their large size. They can be made available from the corresponding author on reasonable request.
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