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Abstract

A micromechanical constitutive model for plain concrete and other quasi-brittle

materials was formulated using a micromechanical damage approach. The model

improved upon predecessors via the inclusion of a mechanism which simulated the

transition from diffuse directional microcracking to localised macrocracking at the

constitutive level. The mechanism was formulated using observations from non-

destructive testing and numerical experiments carried out via lattice simulations.

Lattice model simulations were used to gain insight into the crack localisation

process. Modelling the transition to localised cracking was found to give more

realistic results, especially under tensile loading paths where the post-peak re-

sponse was too ductile with only diffuse microcrack growth. Also, by simulating

the development of macrocracks, the model was able to capture tensile-splitting.

The constitutive model was extended to simulate the behaviour of fibre-reinforced

cementitious composites by incorporating micromechanical solutions for the crack-

bridging mechanism of short fibres. Comparison of the behaviour predicted by

the model with experimental results showed that the model gave realistic results.

Next, a plastic-damage approach was used to formulate a micromechanical con-

stitutive model for quasi-brittle materials where crack-planes were represented

by local plastic yield surfaces and separate hardening parameters were used to

capture isotropic and directional effects. The new model built on the previ-

ous micromechanical damage constitutive model for plain concrete by allowing

for permanent deformations. Comparing numerical simulations to experimental

data showed that the model matched the expected characteristic behaviour well.

Suggestions were made on how the predictions could be improved further in the

future.

The micromechanical plastic-damage model was implemented in the LUSAS finite

element software package and regularised using the crack band method. Initial

assessments of the performance of the implemented model were made by simu-

lating a direct fracture test and a four-point bending test. Localised cracking

behaviour was successfully predicted.
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Chapter 1. Introduction 1

Chapter 1

Introduction

Whilst there is some debate around the topic, the oldest concrete discovered was

found in the floor of an Isreali hut and dated back to 7000 BC (Singh 2017).

The addition of fibres to a material to improve its tensile behaviour is also not a

new concept. Some 3500 years ago in ancient Mesopotamia (modern day Iraq),

the 57m tall stepped temple tower “Aqar Quf” was built with sun-baked bricks

reinforced with straw (Swamy 1980).

The Romans were the first civilization to extensively use volcanic earth to make

hydraulic cement (Delatte 2001) and they made significant advances in concrete

technology. Concrete structures used in Roman seaports along the coast of Italy

remain intact to this day despite having being immersed in seawater for 2000 years

(Jackson et al. 2013). According to Jahren & Sui (2018), the large advances in

concrete technology made by the Romans can be attributed to systematic doc-

umentation of methods, the recognition of the greater durability of pozzolan

cement over other materials, the diversity in the use of concrete and the diverse

challenges faced across a large empire and the ability to spread technology. Un-

fortunately, the fall of the Roman Empire led to limited use and development of

concrete for over 1000 years (Camões & Ferreira 2010, Jahren & Sui 2018).

After the long period of disuse of concrete, modern cement, known as Portland

cement, was patented in 1824 by a builder from Leeds, England called Joseph

Aspdin (Neville & Brooks 2010). A few decades later, French gardener Joseph

Monier pioneered the use of plant pots made from reinforced concrete to replace

those made from ceramics and wood (Camões & Ferreira 2010, Wang 2013).

Following his success, Joseph Monier filed a patent for reinforced concrete in 1866

(Camões & Ferreira 2010). The initial development of modern fibre-reinforced

concrete would follow a century later in the 1960s (Naaman 2011).
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In the present age, concrete is second only to water as the most consumed ma-

terial in the world (Gagg 2014) and the cement industry contributes as much as

8% of the total global CO2 emissions (Andrew 2018). In light of environmental

and industrial concerns, major work has been carried out to improve the sustain-

ability of concrete. The current avenues of research range from experimental and

numerical work on self-healing concrete technologies (Freeman et al. 2020, Davies

et al. 2021, Balzano et al. 2021) and engineered cementitious composites (Huang

et al. 2021, Zhu et al. 2021) to hybrid fibre-reinforced cementitious composites

(Bhosale & Prakash 2020, Chella Gifta & Gopal 2021) and concrete with recycled

or man-made aggregates (Belmokaddem et al. 2020, Thomas et al. 2020, Duan

et al. 2021).

Numerical modelling and experimental work must be considered in unison to

progress science and engineering (Van Mier 2013). In experimental studies, di-

rectly observing fracture in concrete is difficult because of the small scale of mi-

crostructural events during the fracture process (Skarżyński & Tejchman 2013).

Though non-destructive testing and imaging techniques exist which enable study

of these events, there are limitations in capturing the entirety of the cracking pro-

cess. Numerical modelling is one method of gaining an insight into the fracture

process. Experimental work is also valuable as analysing experimental results can

lead to improved theories (Van Mier 2013).

Despite the decades of effort, there still no well-accepted, robust and accurate

material model that is able to predict the characteristic mechanical behaviour of

concrete and the evolution of cracking in the material. Constitutive models for

plain concrete suffer from instability during the non-linear solution procedure as

there is a lack of steel reinforcement which typically provides numerical stability

(Markou & Roeloffze 2021). Additionally, the complex heterogeneous material

structure causes highly complex material behaviour. In fact, the complexity of

the behaviour means that there are no standard laboratory tests for concrete

subject to multiaxial stresses (Mehta & Monteiro 2006).

The issue becomes further complicated with the addition of fibres to cementi-

tious composites. For example, it is possible for addition of fibres to alter the

mechanical behaviour to such an extent that the failure mode changes and the

response is more akin to that of a ductile material (Li 2019). In order to engineer

these significant changes in composite behaviour, composites must be optimised

and theoretical models are necessary to avoid having to empirically investigate

infinite combinations of different fibre, matrix and interface properties (Li 2019).
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It is well accepted that the macroscopic behaviour of cementitious materials is

controlled by the heterogeneous structure at the micro and meso-scales. Based

on this understanding, a series of micromechanical constitutive models were de-

veloped for plain and fibre-reinforced concrete by Jefferson, Mihai and co-workers

e.g. Jefferson & Bennett (2007), Mihai & Jefferson (2011, 2017). These models

are the predecessors to the work contained in this thesis. The models successfully

simulate the characteristic mechanical behaviour of concrete and fibre-reinforced

concrete; however they do not simulate the entirety of the cracking processes

that occur. Namely, the development of macrocracks and the transition from dif-

fuse microcracking to localised macrocracking is not covered. The models must

incorporate the crack localisation mechanism, which is the mechanism by which

concrete fails (Zhao et al. 2018), to be able to simulate the characteristic cracking

behaviour.

1.1 Overall aims and objectives

The main aims of the present thesis are listed below.

� Develop a full 3D micromechanics based constitutive models for quasi-

brittle cementitious materials which improves upon its predecessors and

to which prescribed stresses and strains can be applied.

� Extend the constitutive model to include the effects of the addition of

short fibres to a cementitious composite on the mechanical and cracking

behaviour.

� Simulate the characteristic mechanical and cracking behaviour of conven-

tional concrete and fibre-reinforced concrete at the constitutive level.

� Validate and assess the predictions from the constitutive models using data

from relevant literature.

� Implement a constitutive model for fibre-reinforced cementitious composites

in a commercial finite element software package and validate the results

using data from experiments.

1.2 Outline of thesis

The present thesis is divided into 8 chapters which detail the development and

implementation of different constitutive models for cementitious composites.

In chapter 2, a review is presented of the current understanding of the cracking

behaviour of plain and fibre-reinforced concrete. The review relies on experimen-

tal findings from literature. Chapter 3 focuses on presenting methods for mod-
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elling cementitious composite behaviour. Together, these two chapters provide

the background information necessary for developing numerical material mod-

els that improve upon their predecessors at matching the characteristic cracking

behaviour of concrete observed in experiments.

Chapter 4 describes the development of a micromechanics and continuum damage

based constitutive model for quasi-brittle cementitious composites. The model

used different micromechanical solutions to incorporate homogenised elastic prop-

erties and directional microcracking. However, the novel feature of the model

was the ability to capture the transition from diffuse microcracking to cracking

localised to macrocracks. The work was supported by the understanding gained

from numerical experiments carried out via lattice simulations in addition to ob-

servations from non-destructive testing in the literature. The chapter describes

improvements in predicted material behaviour as a result of including the transi-

tion to localised cracking and also describes comparisons of numerical predictions

from the model with experimental data.

Chapter 5 details the extension of the aforementioned constitutive model to cap-

ture the behaviour of fibre-reinforced cementitious composites. The model used

micromechanical formulations to implement the underlying crack-bridging mech-

anism of short fibres. Assessments of the model made by comparing numerical

simulations to data are given in the chapter.

In chapter 6, a new micromechanical plastic-damage constitutive model for quasi-

brittle cementitious composites is proposed. The plastic-damage framework of

the model addressed the inherent issue of not being able to capture permanent

deformations using the damage based approach in the previous models. The

model featured crack planes represented by local plastic yield surfaces and two

plastic hardening parameters to capture directional and isotropic effects. The

chapter also presents a series of validations carried out by comparing the results

of simulating various loading paths to experimental data.

Chapter 7 covers implementation of the micromechanical plastic-damage model

in the commercial finite element package LUSAS. This is followed by details of

regularisation of the model performed using the crack band method to deal with

the computational issues related to strain-softening behaviour. Next, the chapter

describes finite element simulations carried out as an initial assessment of the

implemented model.

Finally, in chapter 8 the conclusions of the main body of research and recommen-

dations for future work to be carried out are given.



1.3. List of publications 5

1.3 List of publications

A journal paper has been drafted by the author:

� Bains, A., Mihai, I. C., Jefferson, A. D., Grassl, P. 2021. Micromechanical

constitutive model for crack localisation in quasi-brittle materials. Interna-

tional Journal of Solids and Structures. Submission imminent.

The author presented at the following national conference as first author:

� Bains, A., Mihai, I. C., Jefferson, A. D., Grassl, P. 2021. Micromechanical

constitutive model for crack localisation in quasi-brittle materials. UKACM

2021 Conference, Loughborough, UK.

The author was also accepted to present at the following international conference

as first author however attendance was not possible due to complications arising

from the ongoing global Covid-19 pandemic:

� Bains, A., Mihai, I. C., Jefferson, A. D., Grassl, P. 2021. Micromechanical

constitutive model for crack localisation in quasi-brittle materials. XVI

International Conference on Computational Plasticity (COMPLAS XVI),

Barcelona, Spain.



6 Chapter 1. Introduction



Chapter 2. Review of cracking mechanisms in cementitious materials 7

Chapter 2

Review of cracking mechanisms

in cementitious materials

2.1 Introduction

This section describes the current understanding of cracking behaviour in concrete

and fibre-reinforced concrete. Cracking in concrete and fibre-reinforced concrete

can be divided into two main stages, namely microcracking and macrocracking.

The following sections use experimental evidence from the literature to describe

the evolution of cracking in plain concrete followed by the details of underlying

mechanisms of fibre-reinforced concrete and effects of the addition of fibres on

the cracking behaviour.

2.2 Plain concrete

2.2.1 Microcracking

Microcracks prior to application of loading

Microcracks are present in concrete before loading is applied and are concentrated

at the matrix and aggregate interface (Slate & Hover 1984). The interfacial tran-

sition zone (ITZ) microcracks can be caused by drying shrinkage, the hydration

process and chemical shrinkage (Van Mier 1997). Early observation of these mi-

crocracks were made by Slate & Olsefski (1963) using X-ray and microscopic

methods. The ITZ microcracks, which were caused by drying shrinkage, were

seen to be concentrated around the largest aggregate particles. Also, during

investigations of microcracking in concrete cylinders under uniaxial and triax-

ial compression, Nemati & Monteiro (1997) and Nemati et al. (1998) saw that

microcracks existed in specimens to which no load had been applied. The obser-
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vations were made using a metal alloy porosimetry method and scanning electron

microscope.

Types of microcracks

Early work that successfully observed the microcracking process was carried out

by Hsu et al. (1963) for concrete cylinders under uniaxial compression, with

a microscope and X-ray photographs. Hsu et al. (1963) identified 3 different

types of microcracks which were later verified by Derucher (1977) using scanning

electron microscopy:

� Bond microcracks exist between the cementitious matrix and aggregate par-

ticles prior to the application of loading.

� Matrix microcracks are bond microcracks that have propagated into the

cementitious matrix.

� Aggregate microcracks occur just before failure is reached.

Microcracking process

The microcracking process was also observed by Nemati & Monteiro (1997) and

Nemati et al. (1998). According to Nemati & Monteiro (1997) and Nemati et al.

(1998), microcracks form as a result of local tensile stresses that are tangential

to the the boundary of pores in the ITZ, as illustrated in Figure 2.1. From the

pore boundaries the microcracks propagate into the matrix and then join with

microcracks that are initiated in the matrix. The process is similar under tensile

loads. If an applied tensile load is increased past the initiation threshold, existing

microcracks propagate and further microcracks are progressively initiated in the

ITZ of smaller aggregate particles (Karihaloo 1995). Microcrack initiation and

propagation cause the pre-peak non-linearity that is seen in typical tensile stress-

strain diagrams.

Figure 2.1: Diagram of microcracks at the interface between the cementitious
matrix and aggregate particles. Adapted from Hearn (1999).
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Influence of the ITZ

Crack initiation in concrete is related to the ITZ which acts as a weak zone.

Kaplan (1963) cited by Karihaloo (1995) measured the strain at the initiation

of microcracking in concrete under different tensile tests. It was found that the

onset of microcracking only depended on the volume fraction of coarse aggregate

in the concrete. This suggests that the onset of microcracking is based on the

availability of matrix-aggregate interfaces where cracking can initiate. Note that

although Kaplan (1963) suggests that the initiation of microcracking only depends

on the the availability of matrix-aggregate interfaces, the relative properties of

the cementitious matrix and aggregates, as well as the porosity of the matrix

would also have an influence.

2.2.2 Crack localisation

Introduction

For concrete, fibre-reinforced concrete and other quasi-brittle materials, crack

localisation is the formation of localised macrocracks via the coalescence of mi-

crocracks. Localisation of diffuse microcracks to localised macrocracks leads to

failure in quasi-britle materials. However, there has been limited experimental

work on studying localisation.

Tensile loading

Localised concrete behaviour was first measured by Evans & Marathe (1968) un-

der uniaxial tension by ensuring that the localised macrocrack develops within

the gauge length. The gauges around this localised zone measured a strain soft-

ening stress-deformation behaviour that early studies were not able to measure.

If the gauges had been placed outside the localised zone then unloading of the

specimen would have been measured (Van Mier 1997).

The onset of localised cracking has been studied with quantitative acoustic emis-

sion (AE) techniques. Quantitative AE was applied to concrete under uniaxial

tension by Li & Shah (1994), Li (1996) and to mortar under three point bending

by Landis & Shah (1995). AE events were concentrated at the localised zone

between approximately 80% of the pre-peak load and 80% of the post peak load

in the tests by Li & Shah (1994), Li (1996). AE events were concentrated at the

localised zone at aproximately 75% of the peak load in the tests by Landis &

Shah (1995). The peak load is illustrated in Figure 2.2.
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Figure 2.2: Diagram illustrating the peak load point during a uniaxial tension
test by Li & Shah (1994). Reproduced from Li & Shah (1994).

Compressive loading

The failure of concrete under compressive loads is also a localisation phenomena.

Van Mier (1984) tested prismatic concrete specimens of different heights under

uniaxial compressive loading. The post peak stress-strain response of the different

specimens depended on the specimen height. However, when the post-peak stress-

displacement curves of the specimens are compared, it is clear that the same

deformation is required to cause fracture. Localisation of cracking explains why

the stress-strain responses of the specimens were not similar even though the

stress-displacement responses were similar. Localisation of cracking means that

cracking is concentrated to a cross-section which would be of different size for the

specimens hence why the post-peak stress-strain response is different.

The onset of localisation in compression has been studied. Vonk (1992) found that

localisation occured at peak stress. The same result was also suggested by Tor-

renti et al. (1991), Vonk (1992), Torrenti et al. (1993), Puri & Weiss (2006). Tor-

renti et al. (1991) and Torrenti et al. (1993) tested prismatic concrete specimens

under uniaxial compression. Torrenti et al. (1993) varied boundary conditions by

altering whether platen rotation was allowed and whether an antifriction system

was used. Cracking patterns were analysed with strerophotogrammetry in both

studies and localisation was found to occur at peak stress. Vonk (1992) carried

out uniaxial compression tests of prismatic concrete speciments. Cracking in the

specimens was analysed fluorescent epoxy resing vacuum impregnation method.

Vonk (1992) found that the crack growth became unstable and localised at peak

stress. Puri & Weiss (2006) tested concrete cylinders under uniaxial compression.
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Microcracking of the specimens was analysed using an acoustic emission method.

Puri & Weiss (2006) suggests that crack localisation occurs at peak loading based

on their analysis.

Jansen & Shah (1997) tested concrete cylinders under uniaxial compression. Vis-

ible cracks and the development of a localised failure zone were observed post

peak stress. Longitudinal cracks extended from the failure zone resulting in sin-

gle shear or cone-type failure. According to Jansen & Shah (1997), compression

tests of concrete cylinders were carried out by Shah & Sankar (1987). The crack

patterns were analysed using a petrographic method. Localisation was found to

occur just prior to the peak stress.

Unstable crack growth

According to Shah et al. (1995), the growth of a macrocrack which begins to form

in the pre-preak regime is stable i.e. the crack only propagates with increasing

load. In the post-peak regime, unstable localised macrocracking occurs with

unloading of the material outside of the localised region. Microcracks starting to

coalesce to a macrocrack coincides with a distinct jump in the rate of dissipated

acoustic energy as was observed by Li & Shah (1994), Li (1996) and Landis &

Shah (1995) - detailed above. During uniaxial tension tests on plain mortar and

mortar with pre-arranged aggregates, Maji & Shah (1988) also observed a sharp

increase in AE events prior to the peak load. However, the highest rate of AE

events occurred just after the peak load. This is consistent with the notion that

unstable macrocrack growth occurs after the peak load.
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Figure 2.3: Diagram showing the evolution of the acoustic energy release rate
where Fmax is the peak load and F is the applied load. The AE energy rate was
calculated by measuring the AE energy (J) over the time interval corresponding
to a crack mouth opening displacement of 1µm. Reproduced from Alam & Loukili
(2017).

The jump in the AE rate has also been seen under other loading cases e.g. the

work of Puri & Weiss (2006), Alam et al. (2014), Alam & Loukili (2017). Alam

& Loukili (2017) used a combination of acoustic emission techniques and DIC to

study the fracture of concrete beams under three point bending. From 90% of

the pre-peak load to 80% of the post-peak load, Alam & Loukili (2017) observed

a distinct jump in the acoustic energy release rate - see Figure 2.3. The phase of

increased energy release rate coincided with the transition from diffuse microc-

racking to discrete cracking. Performing the same test and analyses on concrete

beams, Alam et al. (2014) also showed a similar jump in the acoustic energy re-

lease rate. Microcracks were observed by Alam et al. (2014) to coalesce to form

localised cracks in the post-peak phase with higher acoustic energy release rate.

Puri & Weiss (2006) report that for concrete cylinders under compression, the

rate of acoustic energy dissipated jumps at the peak stress. The jump in acoustic

energy rate coincided with the formation of a localised compression damage zone

and continues untill 60% of the post-peak stress.

2.2.3 Macrocracking
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Fracture process zone

The growth of a macrocrack in concrete under tension derives from the frac-

ture process zone (FPZ). In early literature, the existence of the fracture process

zone was debated and measurement methods were not uniform (Mindess 1991).

Mindess (1991) described the confusion as “... the old story of a group of blind

men trying to describe an elephant.” Current literature defines the FPZ as

the localised zone of microcracking in front of a macrocrack (Zhou et al. 2021).

Existence of the fracture process zone and the cause of of the tension softening

behaviour has been confirmed through experiments as described below.

The initiation of microcracks near the tip of a macrocrack begins the development

of the FPZ. The microcracks develop around the tip of the macrocrack because

of a high state of stress (Shah et al. 1995). This process is known as microcrack

shielding. According to Otsuka & Date (2000), it is possible to detect microcrack

shielding with optical microscopy, electron microscopy, acoustic emission meth-

ods and laser speckle methods. X-ray, laser interferometry and laser holography

methods have also been used to detect microcrack shielding (Li & Maalej 1996).

Early work includes Cedolin (1987), Struble et al. (1989). Cedolin (1987) de-

tected microcracked zones ahead of macrocrack tips with laster interferometry in

concrete under tension. Struble et al. (1989) detected microcracking zones ahead

of the tips of macrocracks in hardened cement paste with a scanning electron

microscope. Otsuka & Date (2000) observed that the microcracking zones ahead

of notches in concrete specimens grow as the applied load increases.

Crack bridging

Aggregates and unbroken material ligaments bridge cracks such that they are able

to transfer stress across the crack until the aggregate or ligament is fractured or

pulled out. Studies have shown that the bridging of cracks causes the strain

softening behaviour of concrete (Li & Maalej 1996). Bridging prevents the stress

transfered by concrete from dropping to zero immediately on the formation of

macrocracks. Struble et al. (1989) detected bridging of cracks by unfractured

material ligaments in hardened cement paste with scanning electron microscopy.

Van Mier (1991) tested concrete plates under uniaxial tension. Using a vacuum

impregnation method, bridging of cracks by material ligaments was observed. As

will be discussed in later sections, fibres-reinforcement in concrete also bridges

cracks.
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Macrocrack paths

The path that macrocracks follow depends on the strength of the aggregates.

Bentur & Mindess (1986) studied the crack patterns of wedge loaded conventional

concrete, lightweight concrete and high strength concrete cantilever beams and

studied the crack patterns with a microscope. For the conventional concrete

beam, Bentur & Mindess (1986) saw that macrocracks went around aggregates

and were tortuous. For the high strength concrete beam at the normal loading

rate, the observed cracking patterns were similar. A difference in cracking pattern

was observed for the lightweight concrete beam with the crack path going through

the aggregate. When the loading rate was increased, the cracks in the high

strength concrete beam also went though the aggregates. The crack paths were

discontinuous.

2.3 Fibre-reinforced concrete

2.3.1 Introduction - the crack-bridging mechanism

Significant research has been devoted to improving the low cracking resistance of

concrete over the last six decades. One of the main avenues for this research is

the addition of randomly distributed short fibres into a cementitious matrix.

The underlying mechanisms behind the improvements in material behaviour due

to the addition of fibres is crack-bridging by the fibres. As cracks widen, fibres

that cross the cracks become debonded from the cementitious matrix and slip

until they are pulled out. During the process, the fibres apply closure tractions

to the crack faces which leads to stabilisation of crack growth (Lin & Li 1997).

Conventional fibre-reinforced concrete (FRC) uses low volume fractions of fibres

and has an increased fracture toughness compared to plain concrete though the

post-peak behaviour does not differ considerably (Fantilli et al. 2009). The effects

of the crack-bridging mechanism on the cracking process are given in the sections

that follow.

When sufficiently high volume fractions of short fibres are used, sufficient load

can be transferred after first cracking to allow the material to exhibit strain-

hardening and multiple cracking behaviour (Lin & Li 1997). Strain-hardening

behaviour for cementiitous composites reinforced with short steel fibres was first

observed by Li (1998). Such composites are referred to as high performance

fibre-reinforced cementitious composites (HPFRCCs). In the context of fibre-

reinforced concrete, the “high performance” definition refers to the post-cracking

strength being greater than the cracking strength (Naaman 2011). Section 2.3.3
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will discuss this phenomena in greater detail.

2.3.2 Prevention of unstable microcrack widening and un-

stable microcrack growth

The addition of fibres to concrete reduces crack widths. For example, Lakavath

et al. (2020) carried out three-point bending tests on concrete beams with varying

volume fractions of hooked-end steel fibres. Using digital image correlation (DIC)

it was concluded that crack widths decrease with increasing fibre volume fraction.

More recent studies focusing on hybrid or multiscale fibre-reinforced composites

also show that fibres delay microcrack opening. Lawler et al. (2003) carried

out uniaxial tension tests of mortar specimens reinforced with PVA and steel

microfibres and steel macrofibres. Cracking was analysed with a DIC method.

The microfibres were observed to be more effective than macrofibres at delaying

microcrack propagation because the smaller spacing between fibres meant that

there was greater chance of bridging microcracks.

Much work has been carried out by Li and co-workers over the last few decades on

using the ability of fibre-reinforcement to delay unstable microcrack growth. This

led to the creation of a new class of fibre-reinforced concrete called ”engineering

cementitious composites” or ECCs (Lin & Li 1997, Wang & Li 2007, Li 2019).

ECCs are designed so that the interactions between fibres, the fibre/matrix inter-

face and the matrix give controlled crack widths and multiple cracking. Multiple

cracking leads to toughening of the composite subsequently increasing the tensile

strain capacity to typically 200 times greater than conventional FRC. In addition

to the volume fraction of fibres, the parameters which control whether strain-

hardening behaviour is achieved include the fibre aspect ratio, fibre mechanical

properties, the matrix properties and interfacial properties such as chemical and

frictional bonds.

An example of tests in which multiple cracking was observed is Moreno et al.

(2014) who tested prismatic hybrid fibre-reinforced concrete specimens. Steel

macrofibres, PVA-microfibres and a steel reinforcing bar were used in the speci-

mens. The fibres were able to delay unstable microcrack propagation leading to

multiple cracking behaviour. See section 2.3.3 for more details about the multiple

cracking behaviour in fibre-reinforced composites.

2.3.3 Crack localisation

The localisation behaviour of fibre-reinforced cementitious composites under ten-

sion depends on whether the composite is strain softening or strain-hardening.
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In strain softening composites, the formation of the first through crack or perco-

lating crack coincides with crack localisation (Naaman 2008). Whereas in strain-

hardening composites, the formation of the first through crack coincides with

multiple cracking (Naaman 2008) and localisation coincides with fibre pull-out

after the peak stress point. According to Choi et al. (2016), fibres support most

of the load once a cracked plane has developed in the matrix. The tensile be-

haviour is then controlled by the pull-out of fibres from the matrix. The typical

behaviour of fibre-reinforced cementations composites is shown in Figure 2.4.

Generally, using sufficiently high volume fractions of fibre reinforcement prevents

crack localisation from occurring. As described in section 2.3.2, the addition

of fibres to a cementitious composite can delay unstable microcrack propaga-

tion leading to multiple cracking behaviour. Some other examples of experi-

ments where multiple cracking behaviour has been observed include Mobasher

et al. (1990), Wille et al. (2011), Kwon et al. (2014), Magalhães et al. (2014).

Mobasher et al. (1990) reinforced dog bone cement specimens with 8% and 12%

volume fractions of polypropylene fibres. The dog bone specimens were loaded

with uniaxial tension and the resulting cracks were analysed with reflective holo-

graphic interferometry and quantitative image analysis. Mobasher et al. (1990)

observed that the fibres prevented unstable microcrack propagation and so lo-

calisation did not occur. Wille et al. (2011) carried out uniaxial tension tests

of ultra-high-performance concrete reinforced with 1% steel fibres. The response

of the composite was strain-hardening and multiple cracking was visually ob-

served. Kwon et al. (2014) observed multiple cracking during the uniaxial testing

of hybrid fibre-reinforced concrete dog bone specimens.
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Figure 2.4: Diagram of the typical behaviour of fibre-reinforced cementious com-
posites. Adapted from Naaman (2008).

Studies have been carried out confirming that localisation in fibre-reinforced

strain-hardening cementiious composites occurs after the peak stress. For ex-

ample, a comparative study of crack formation in strain-hardening cementitous

composites has been published by van Zijl et al. (2016). As part of the compara-

tive study, Magalhães et al. (2014) tested PVA fibre-reinforced strain-hardening

cementitious composites under uniaxial tension. Multiple cracking followed by

localised cracking at peak stress was reported.

2.3.4 Macrocracking

Delay in macrocrack growth

Fibres strongly bonded to the matrix can delay the development of the FPZ

ahead of macrocracks. Nelson et al. (2002) carried out fracture toughness tests

of fibre-reinforced concrete. With a microscope and AE, polyvinyl fibres were

seen to delay the formation of microcracks in the FPZ. Polypropylene fibres were

seen to not be able to provide the same effect. According to (Nelson et al. 2002),

the Polypropylene fibres were not able to delay microcrack formation because the
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chemical and frictional interfacial bond to the matrix was too weak.

Macrofibres are more effective than microfibres at bridging macrocracks. Lawler

et al. (2003) carried out uniaxial tension and flexural tests of hybrid fibre-reinforced

mortar specimens. Macrofibres were seen to increasingly carry greater load as

cracks widened. Flexural tests of microfibre-reinforced concrete and macrofibre-

reinforced concrete were carried out by Marković (2006). The macrofibres were

seen to more effectively bridge cracks during the flexural tests, leading to en-

hanced ductility of the specimens.

Toughening

The pull-out of fibres from the cementitious matrix is a major toughening mecha-

nism. Trainor et al. (2013) tested fibre-reinforced reactive powder concrete beams

under 3-point bending. The beams were loaded to just past the maximum load

and then X-ray computed tomography imaging was used to measure the inter-

nal energy dissipation. Trainor et al. (2013) manually measured the distance of

fibre pull-out from the digital scans. It was shown that approximately half of

the internal energy was dissipated by cracking of the matrix (including increased

matrix cracking induced by fibres bridging cracks) and the remaining energy was

dissipated by fibre pull-out. About 90% of the internal energy dissipation was

accounted for. Later, The work of Trainor et al. (2013) was extended by Landis

et al. (2019) to include split-cylinder fracture of ultra-high performance concrete

with fibre reinforcement. Fibre pull-out was shown to be the main internal en-

ergy dissipation mechanism albeit only 60% of the total energy dissipation was

accounted for.

Change in failure mechanism

The inclusion of effective fibre-reinforcement in concrete changes the failure mech-

anism. Grzymski et al. (2019) carried out compression, splitting tension and

bending tests on plain concrete and fibre-reinforced concrete. Both typical hooked-

end steel fibres and recycled steel fibres without anchorage were considered. The

compression and splitting tests were carried out on cubic specimens and the bend-

ing tests were carried out on beams. There was little difference between the failed

specimens containing recycled fibres, which were concluded to be ineffective, and

the plain concrete specimens. However, the conventional fibre-reinforcement sig-

nificantly improved structural integrity. The fibres enabled the cubic specimens

to retain their shape during compression tests in contrast to the plain concrete

specimens which would form an hourglass shape. During the splitting tests, the

fibres prevented the cubes from being completely split. The plain concrete beams
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would suddenly fail with a crack running vertically through the section. But, the

failure of the fibre-reinforced beams was much more ductile and cracks running

through the entire section were not able to form.

2.4 Conclusions

In this chapter it was shown that fracture process in cementitious composites is

highly complex and involves cracking at multiple scales. Numerical models which

aim to capture the entire fracture process should account for the initiation of mi-

crocracking, the formation of macrocracks and the transition from microcracking

to macrocracking. Chapter 3 will discuss different modelling methods that have

been used in the literature to simulate the mechanical and cracking behaviours

of cementitious composites discussed in this chapter.
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Chapter 3

Review of modelling methods

3.1 Introduction

This section details the current methods for modelling the behaviour of concrete

and fibre-reinforced concrete. There is a particular focus on micromechanics based

approaches. First, a background is given of classical modelling approaches that

have been applied to modelling the behaviours of the above-mentioned materials.

Micromechanical models are discussed followed by discussion of the issues related

to strain-softening and approaches to overcome these.

3.2 Classical constitutive modelling approaches

for plain cementitious composites

3.2.1 Fracture mechanics

Fracture mechanics theory describes the progressive failure of structures caused

by initiation and propagation of cracks (Shah et al. 1995). The first fracture

mechanics theories were proposed by Griffith (1921) and Griffith (1924). These

theories were applicable to brittle materials such as glass. The theories were then

developed further to be applicable to elastic-brittle materials such as certain

metals (Shah et al. 1995).

Applications of the early linear elastic fracture mechanics (LEFM) theory to

concrete were unsuccessful (Karihaloo 1995). LEFM requires that the size of the

fracture process zone adjacent to the fracture front is small compared to the cross-

section of the structure, however the large size of aggregate particles in concrete

leads to the fracture process zone being relatively large (Bažant & Oh 1983). The

non-linear behaviour of the fracture process zone in concrete is not accounted for
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Figure 3.1: Size effect on the strength of concrete structures. Adapted from
(Bažant & Planas 1997).

by the brittle description of material behaviour given by LEFM.

Plotting the strength of materials against their size based on strength limits or

failure surfaces in terms of stress or strain gives a horizontal line as shown in

Figure 3.1. Deviation of material strength from this horizontal line is known as

the size effect (Bažant & Planas 1997). The strength criteria of small concrete

structures follows the horizontal line (Bažant & Planas 1997). LEFM predicts

failure along an inclined line with slope -1/2 i.e. geometrically similar structures

exhibit an inverse square root size effect (Bažant & Planas 1997). Bažant &

Planas (1997) analytically derived the inverse square root size effect by setting

up general expressions for fracture energy and stress intensity factors and con-

sidering the implications of limit analysis on the size effect. For large concrete

structures, such as dams, the size of the fracture process zone is relatively very

small so failure follows LEFM (Karihaloo 1995). The behaviour of most concrete

structures fall within a transitional range between the predictions of strength

criteria and LEFM.

Within LEFM, the general stress state can be reduced to a combination of three

states (Karihaloo 1995):

� Mode I, or the opening mode, where there is a planar symmetric stress state

with stresses normal to the plane of the crack.

� Mode II, or the sliding mode, where there is a planar antisymmetric stress

state causing relative displacement of the crack faces in their own plane.

� Mode III, or the tearing mode, where a shear stress causes an out of plane

deformation of the crack faces.
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Non-linear fracture mechanics based models have been developed that describe

the behaviour of concrete. For example, see section 3.3.5 for an example of a

model that combine fracture mechanics and micromechanics.

3.2.2 Total stress-strain

Early modelling efforts focused on using total stress-strain models which describe

algebraic relationships between the total stresses and strains. The algebraic re-

lationships are generally based on curve fitting and can be simple to implement.

However, a single explicit algebraic form cannot capture the complexity of the full

mechanical behaviour and therefore the simplicity of these approaches tends to

be lost when aiming to simulate the behaviour more broadly (Bažant & Tsubaki

1980).

The total stress-strain approach has been applied to concrete e.g. by Cedolin

et al. (1977), Kotsovos & Newman (1979), Palaniswamy & Shah (1974), Bažant

& Tsubaki (1980), He et al. (2006). Application of the approach has also been

made to reinforced concrete by Hofmeyer & Van den Bos (2008).

3.2.3 Plasticity

Plasticity models are widely used for the modelling of non-linear material be-

haviour (Kaneko 1995, Hartmaier 2020) including the behaviour of cementitious

materials (William & Warnke 1975, Dragon & Mróz 1979). Plasticity models

divide strains into an elastic part and a plastic part and make use of a yield

function, flow rule and hardening function.

Yield functions define a surface that bounds the elastic domain in the stress space.

For stress states inside the yield surface, strains are elastic. For stress states on

the yield surface, plastic strains occur. Stress states outside of the yield surface

are not permissible. The condition for yield is typically expressed as:

f(σ, κ) ≤ 0 (3.1)

where σ is the stress tensor and κ is the hardening variable. The state of the

material is such that f > 0 is not admissible and so either f = 0 or f < 0.

According to de Souza Neto et al. (2008), the most used yield functions include

the Tresca criteria (Tresca 1868) and the von Mises criteria (von Mises 1913)

which describe plastic yielding in metals and the Mohr-Coulomb criteria and

Drucker-Prager criteria (Drucker & Prager 1952) which describe plastic yielding

for pressure sensitive materials such as soils, rocks and concrete.
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Figure 3.2: (a) Isotopically hardening yield surface, (b) kinematically hardening
yield surface.

Evolution of the yield surface is based on a hardening function. The two basic

types of hardening functions are isotropic hardening and kinematic hardening.

For isotropically hardening materials, as the plastic deformation increases, the

yield surface remains centred and expands uniformly in all directions as shown

in Figure 3.2a. Alternatively, for kinematically hardening materials, the yield

surface translates in the stress space with plastic deformation but does not expand

(see Figure 3.2b).

The evolution of the plastic strains is controlled by the flow rule. A general flow

rule is shown below:

δεp = λ
∂ψ

∂σ
(3.2)

δεp is the incremental change in the plastic strain and λ is the incremental

plasticity multiplier. The plasticity multiplier is a positive scalar variable which

describes the magnitude of plastic deformation. ψ is the plastic potential which

is used to define the flow vector ∂ψ
∂σ

. The flow vector describes the direction of

plastic deformation. When the yield function is chosen as the plastic potential,

the flow rule is called an associative flow rule and plastic straining occurs in a

direction that is normal to the yield surface. Flow rules based on plastic potentials

other than the yield function are called non-associative flow rules.

Plasticity models have been applied to concrete e.g. by (William & Warnke 1975,

Dragon & Mróz 1979, Feenstra & De Borst 1995, Imran & Pantazopoulou 2001,

Grassl et al. 2002, Mihai & Jefferson 2013a, Piscesa et al. 2017, Durand & da Silva
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2019). Although these models are able to describe the non-linear behaviour of

concrete, the models are not able to describe the state of microcracking and the

related degradation of material stiffness. This issue is addressed by the damage

approach described in the next section.

3.2.4 Damage

Kachanov (1958) was the first to introduce the concept of damage, however the

term continuum damage mechanics was first coined by Hult and used in his

paper (Janson & Hult 1977). The concept of damage models is to represent the

progressive degradation of material stiffness due to the propagation of microcracks

with damage variables. The total stress-strain relation is given as (De Borst &

Verhoosel 2017) as:

σ = D(ω,ω,Ω) : ε (3.3)

where σ is the stress tensor, ε is the strain tensor and D is the secant stiffness

tensor. D depends on internal variables such as scalars ω , second order tensors

ω, and fourth-order tensors Ω that describe the degradation of stiffness due to

cracking.

The simplest damage models are based on isotropic damage. Scalar damage

variables are used to represent degradation of the initial elastic stiffness Del:

σ = (1− ω)Del : ε (3.4)

As ω increases from 0 to 1, the material stiffness decreases until a state of complete

damage is achieved and no more stress can be carried by the material. The

initiation of damage and change in damage is controlled by damage evolution

laws that are typically written in terms of strains, stresses or energy.

Early applications of isotropic damage modelling to describing concrete behaviour

was carried out by Mazars (1986) and Mazars & Pijaudier-Cabot (1989). The

behaviour of concrete is very different when under tensile and compressive loading.

To account for the difference in behaviour, Mazars (1986) and Mazars & Pijaudier-

Cabot (1989) separate the damage parameter into two scalar parameters ωc and

ωt. ωc is controlled by an evolution law for compressive damage whereas ωt is

controlled by an evolution law for tensile damage.

Other models where the damage parameter is separated in tensile and compressive

components include Lubarda et al. (1994), Comi & Perego (2001), Faria et al.
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(1998), Marfia et al. (2004), Lee & Fenves (1998), Cicekli et al. (2007), Voyiadjis

et al. (2008).

The deterioration of stiffness due to the cracking of concrete is an anisotropic

process (Van Mier 1997) and therefore anisotropic damage models that employ

direction dependent damage variables are able to better represent the behaviour

of concrete than isotropic damage models. For the general representation of

anisotropic behaviour, models typically employ a fourth-order tensor as the dam-

age variable (Leckie & Onat 1981, Ortiz 1985, Lubarda et al. 1994). Anisotropic

damage models for concrete are also formulated with second-order tensors as

damage variables (e.g. Desmorat et al. (2007)) although second-order tensors are

limited to describing orthotropic behaviour. Whilst anisotropic damage better

represents the behaviour of concrete, these models have been avoided as they are

complex when coupling to plasticity and application to structural analysis is not

straightforward (Voyiadjis et al. 2008).

3.2.5 Plastic-damage

Plastic-damage models combine the damage and plastic approach. Whilst damage

models can describe stiffness degradation, they are not suitable for describing

inelastic deformation and inelastic volume expansion in compression (Grassl &

Jirásek 2006). On the other hand, models formulated using a plasticity framework

can capture inelastic deformations and volume expansion but cannot describe

stiffness degradation. Plastic-damage models couple damage to plasticity so that

damage and degradation of stiffness is related to deformation (De Borst et al.

2012). As concrete fracture is characterised by both plastic deformations and

stiffness degradation (Lubliner et al. 1989), plastic-damage models are better

able to capture the entirety of the characteristic behaviour.

The stress-strain relation used in these models is typically expressed as:

σ = (1− ω)Del : (ε− εp) (3.5)

where εp is the plastic strain. Examples of plastic-damage models applied to

concrete include Lubliner et al. (1989), Grassl & Jirásek (2006), Cicekli et al.

(2007), Voyiadjis et al. (2008), Xenos & Grassl (2016), Jefferson et al. (2016),

Poliotti & Bairán (2019).

Plastic-damage models for concrete tend to be based on sound thermodynamic

principles, however due to the difficulties in defining a damage dissipation po-

tential some models make use of empirically defined damage criteria in place of
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thermodynamics-based dynamics criteria (Jiao et al. 2019).

3.2.6 Microplane

Microplane models are based on the hardening plasticity model approach pro-

posed by Taylor (1938).These models expressed the material stress-strain rela-

tion based on stress and strain vectors acting on planes of arbitrary orientation

(Caner & Bažant 2013). The beforementioned planes are termed microplanes

(Bažant & Gambarova 1984). Local constitutive relationships are described in-

dependently on microplanes by making use of either a static constraint where

the microplane stresses are resolved components of the macroscopic stress or a

kinematic constraint where the microplane strains are the resolved components of

the macroscopic strain. In the basic formulation of Bažant & Prat (1988), which

used a kinematic constraint, the principle of virtual work was used to calculate

the overall macroscopic stress from the microplane stresses.

Other early microplane models for concrete include Carol et al. (1992) and Hasegawa

& Bažant (1993). More recently, a series of microplane models for models for con-

crete have been developed from an early M1 version by Bažant & Oh (1985) to

a M7 version Caner & Bažant (2013). The models are progressively labelled M1,

M2, ..., M7.

An issue with microplane models is that they are difficult to calibrate as they make

use of a large number of phenomenological material parameters. For example,

according to Qiu (1999), no clear guidance is given by Hasegawa & Bažant (1993)

on how to calibrate the 39 parameters of their proposed model.

3.2.7 Conclusion

The classical constitutive modelling approaches described above are phenomeno-

logical. Predictions of behaviour are prescribed directly such as through functions

for the stress envelope, uniaxial tension and uniaxial compression. The models

are fit to experimental data using parameters that typically have no physical

meaning.
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3.3 Micromechanics modelling approach for plain

cementitious composites

3.3.1 Introduction

In contrast to the phenomenological approach, described in section 3.2, microme-

chanical approaches are mechanistic and use parameters with physical meaning.

Micromechanics involves deriving an overall, macroscopic response or properties

based on knowledge of the response or properties at the micro-scale. To pre-

dict macroscopic behaviour, micromechanical constitutive models combine mech-

anisms that simulate behaviour at the micro-scale.

Phenomenological models use input parameters that tend to be used to calibrate

the overall material response against the experimental data for a particular com-

posite. Typically for micromechanical models the properties of individual mate-

rial phases, determined from experiments, are used as inputs to the model. This

provides motivation for the development of micromechanical models as virtual

testing can be carried out using micromechical models by varying the experimen-

tally determined input parameters for individual material phases.

Examples of the application of micromechanics to the prediction of overall prop-

erties include the work of Bernard et al. (2003), Pichler et al. (2009) that fo-

cuses on estimating the early-age stiffness and strength evolution of cement

paste. Micromechanics has also been recently used to upscale the properties

of calcium-silicate-hydrate (C-S-H) to predict the elastic and poro-elastic proper-

ties of cement paste (Königsberger et al. 2020) and to upscale a failure criterion

at the hydrate level to predict the strength of cement paste, mortar and concrete

(Königsberger et al. 2018). Some other applications of micromechanics include

modelling autogenous shrinkage of hydrating cement paste (Do et al. 2020), mod-

elling the influence of the ITZ on elastic properties of concrete (Sharma & Bishnoi

2020) and predicting the elastic properties and strength of fibre-reinforced con-

crete (Dutra et al. 2010, 2013).

Much work has also been done on developing micromechanical formulations out-

side the field of cementitious composites. Micromechanics based solutions have

been developed for matrix metal composites (Park & Kwon 2013, Ju & Sun 2001,

Sun & Ju 2001), bones (Massarwa et al. 2017, Fritsch & Hellmich 2007, Hellmich

et al. 2004), wood (Qing & Mishnaevsky 2010, Sedighi-Gilani & Navi 2006, Hof-

stetter et al. 2005) and rock (Zhu & Shao 2015, Hazzard et al. 2000).
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The following sections detail micromechanical constitutive models for cementi-

tious composites and fibre reinforced cementitious composites.

3.3.2 Rows and arrays of microcracks

Studies were carried out where the localised deformation of concrete and quasi-

brittle materials was modelled based on the problems of a row (Horri 1989, Ortiz

1988) or array (Huang & Karihaloo 1992) of micro-cracks. The models were able

to predict tensile post-localisation (Horri 1989) behaviour. Transition between

pre-localisation and post-localisation behaviours was not predicted, besides when

assumptions were made that localisation occurs at peak load.

Early work by Horri (1989) and Ortiz (1988) predicted the tension softening

of concrete by applying linear fracture mechanics to the problem of an infinite

row of collinear cracks along the eventual failure plane – see Figure 3.3. The

2D model predicted the steep slope of the tension softening curve in the post-

peak regime near the peak stress. As the deflection of adjacent straight cracks

from each other’s plane was not accounted for, cracks ruptured unstably hence

the characteristic long tail that is observed in experiments was not simulated.

Instead, the inelastic deformation decreases with decreasing stress after a certain

maximum value of the inelastic deformation is achieved. Also, Horri (1989) and

Ortiz (1988) did not predict the onset of localisation and the model required

values of crack density and size at the onset of localisation. As mentioned in

section 2.2.3, the path of macrocracks is tortuous with cracks passing around

aggregates. Representing well the underlying mechanisms of macrocracking would

better capture the overall characteristic behaviour of concrete.

Inclusion of the characteristic long tail in predictions was achieved by Li & Huang

(1990) via a 3D tension softening model that considered the problem of an infinite

row of penny-shaped microcracks separated by the largest aggregate. Further

development of the 3D tension softening model to allow for interactions between

neighbouring cracks was carried out by Huang & Karihaloo (1992). In their

model, macrocracks were modelled as either an infinite row or doubly periodic

array of penny-shaped cracks.
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Figure 3.3: Models of (a) Horri (1989), (b) Karihaloo et al. (1991) and (c) Huang
& Karihaloo (1992). Adapted from the respective papers.

Later, Karihaloo et al. (1991) expanded on the work of Li & Huang (1990) by

allowing interaction between neighbouring cracks in a 2D model. An infinite

row of cracks separated by circular holes and unbroken ligaments was modelled

in a combined damage mechanics and fracture mechanics approach. The initial

damage at the onset of crack localisation was based on experimental values from

Karihaloo & Fu (1989).

3.3.3 Continuum micromechanics

Micromechanical solutions have been implemented within the context of contin-

uum based constitutive models. The following sections give a general theoretical

background for continuum micromechanics and also a review of various models

employing these solutions.
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Eshelby matrix-inhomogeniety problem

According to Böhm (2021), a large proportion of the mean-field homogenization

methods that are used in continuum models are based on the work of Eshelby

(1957). Hence, the matrix-inhomogeniety problem presented in Eshelby (1957) is

briefly covered below.

Consider an infinite homogeneous elastic matrix and an elastic inclusion con-

strained within the matrix shown in Figure 3.4. When the inclusion is “cut”

from the matrix and allowed to relax to a state of zero stress, the resulting strain

is denoted as the “transformation strain” εt. The inclusion is returned to its

original shape by applying a surface traction to the inclusion surface. Next the

inclusion is returned to the matrix and the surface tractions are removed by ap-

plying a cancelling body force. Finally, the resulting strain field of the constrained

inclusion, is denoted as the “constrained strain” εc.

Figure 3.4: The Eshelby solution for determining the strain field of an elastic
inclusion in an infinite elastic matrix. Adapted from Withers et al. (1989).
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Eshelby (1957) showed that for inclusions that are ellipsoidal, the strain field

within the inclusions is uniform and given by

εc = Sεt (3.6)

where S is the interior point Eshelby tensor. Based on this result, it is possible

to define an equivalent homogeneous composite for a matrix with an inclusion

of a different material constrained within the matrix. This approach has been

used to homogenise the elastic properties of a cementitious matrix embedded with

aggregate particles (Jefferson & Bennett 2010, Mihai & Jefferson 2017) and also

to homogenise cracking (Pensée et al. 2002, Zhu et al. 2008).

Homogenization schemes

As mentioned earlier, a large proportion of the mean-field homogenization meth-

ods used in continuum models are based on Eshelby (1957). For example, the

non-interacting, or dilute Eshelby, scheme is a mean field method that can be

used to homogenise a small volume fraction of spherical inhomogenieties in an

elastic matrix (Hill 1965, Benveniste 1987). The Mori-Tanaka scheme is another

example of a mean-field homogenization model. Using the scheme, the elastic

modulii of ellipsoidal inclusions embedded in an unbounded matrix can be de-

rived (Nemat-Nasser & Hori 1999). Whilst the Mori-Tanaka scheme accounts for

the matrix-inclusion interactions, the scheme does not account for the interaction

between inclusions (Zhu et al. 2008). Other multiphase schemes for ellipsoidal

and spherical inclusions are covered in textbooks such as Nemat-Nasser & Hori

(1999).

Averaging schemes do not necessarily consider only spherical or ellipsoidal shaped

inclusions. The scheme of Castañeda & Willis (1995) uses tensors to describe

the shape of inclusions and their spatial distribution separately and, unlike the

previously described Mori-Tanaka scheme, is able to model interactions between

inclusions.

For other homogenization schemes such as variational bounding methods and

those based on studying discrete micro-geometries, the reader may refer to Böhm

(2021).

Solutions for microcracking

Another classical solution used by many continuum micromechanics models is the

crack density parameter of Budiansky & O’Connell (1976). The solution is used

to describe effects of the development of microcracks on the material state. For
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Figure 3.5: Local coordinate system of cracks. Reproduced from Mihai & Jeffer-
son (2017).

example, the added strain tensor εα from a series of penny-shaped microcracks

with the same orientation is given by (Nemat-Nasser & Hori 1999, Budiansky &

O’Connell 1976):

εα = f(θ1, θ2)Cαc : σL (3.7)

where f(θ1, θ2) is the crack density parameter, Cαc is the additional compliance

tensor due to the cracks (see below) and ψ and θ are angles that represent the

orientation of the cracks as shown in Figure 3.5. σL is the crack plane stress

tensor.

Cαc =
16(1− νm2)

3Em


1 0 0

0 4
2−νm 0

0 0 4
2−νm

 (3.8)

Models

A generalised anisotropic damage model for brittle materials was presented by

Pensée et al. (2002). The model extended a 2D model by Andrieux et al. (1986)

to 3D and uses continuum damage mechanics. The model considered a dilute dis-

tribution of non-interacting microcracks. Homogenised properties were derived

using two equivalent approaches: an Eshelby type approach and an approach

based on the free energy of microcracked material (Andrieux et al. 1986). Recov-

ery of stiffness due to the close of microcracks was modelled based on frictionless

crack surfaces. The crack density parameter of Budiansky & O’Connell (1976)

was used as a scalar damage variable, the evolution of which was formulated

based on the free energy of the damaged material. Predictions from the model
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were compared to data from uniaxial compressions test for sandstone. The pre-

dictions agree qualitatively with the experimental data, but lateral strain was

underestimated (Pensée et al. 2002).

Continuing the work of Pensée et al. (2002), an investigation comparing stress-

based and strain-based approaches for anisotropic damage models for brittle ma-

terials was conducted by Pensée & Kondo (2003). The expressions for free energy

from Pensée et al. (2002) were re-established in terms of stress using the Legen-

dre transformation. Both approaches were compared to experimental data for

uniaxial compression of sandstone. The stress-based formulation was not able

to predict a stress peak hence strain-based formulations are suggested for use in

future work.

The next investigation, carried out by Zhu et al. (2008), continued the work by

comparing different schemes for homogenising microcracking. The dilute scheme,

Mori-Tanaka scheme and the scheme of Castañeda & Willis (1995) were consid-

ered. It was shown that only the homogenisation scheme of Castañeda & Willis

(1995) took into account the effects of microcrack spatial distribution. The ho-

mogenisation scheme of Castañeda & Willis (1995) was later implemented in an

anisotropic damage model by Zhu et al. (2009).

Another group of models based on Budiansky and O’Connell’s solution for a body

with penny shaped microcracks, are those developed by Jefferson, Mihai and

co-workers. Initially, Jefferson & Bennett (2007) used a sub-model to simulate

the contact that occurs between the rough surfaces. The crack contact model

allowed for cracks surfaces to regain contact under shear stresses in addition to

normal stresses and so improved upon the work of Pensée et al. (2002) and Pensée

& Kondo (2003) where crack surfaces were assumed to be frictionless. Also, a

damage rule based on local strains is used instead of an energy-based rule. The

Mori-Tanaka averaging scheme was used by Jefferson & Bennett (2010) to derive

homogenised elastic properties assuming that the material is composite consisting

of a matrix (i.e. the cementitious matrix in concrete) embedded with spherical

inclusions (i.e. the aggregate particles in concrete).

The other main developments of the models include the use of the exterior point

Eshelby solution such that microcrack initiation is based on the stresses in the

ITZ (i.e. the zone between the embedded inclusions and the matrix) (Mihai &

Jefferson 2011). Crack bridging by fibres was added to constitutive model by

Mihai & Jefferson (2017) based on the work of Lin & Li (1997) and Li et al.

(1991) – see section 3.4.2. Some work has also been carried out on enhancing the
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robustness of the rough crack closure model (Mihai & Jefferson 2013b, 2015).

The micromechanical sub-models used by Jefferson, Mihai and co-workers have

also been used in the context of plasticity based model (Mihai & Jefferson 2013a)

and plastic-damage models (Jefferson et al. 2016, Mihai et al. 2016).

Recently Dutta & Kishen (2019) formulated a 2D continuum micromechanics

based constitutive model. Using the Eshelby solution and the Mori-Tanaka av-

eraging scheme, the homogenised elastic properties based on the assumption of

a two-phase composite consisting of a matrix phase with embedded ellipsoidal

inclusions. Budiansky and O’Connell’s crack density parameter was used as the

damage variable and the evolution of the damage variable was driven by the

strain energy release rate. Although predictions from the model agreed well with

experimental data from uniaxial tension tests of plain concrete, other load cases

were not analysed.

3.3.4 Crack contact

Approaches where the frictional sliding of cracks is modelled have been used to

model the behaviour of brittle and quasi-brittle materials. The models described

below were mostly compared against experimental data for compressive stress

states.

By considering sets of dilute flat non-interacting microcracks with different ori-

entations and the criteria for their growth and frictional sliding, Gambarotta

& Lagomarsino (1993) formulated an anisotropic damage model for brittle and

quasi-brittle materials. The model used a scalar damage parameter to repre-

sent the relative crack size of an orientation. The predicted cyclic compressive

behaviour for concrete was found to be characteristic for the material.

The above model was simplified by Brencich & Gambarotta (2001) by assuming

isotropic damage and by only using a single scalar damage variable that represents

the overall size of microcracks. Conditions for crack opening and crack closure

were defined using two second order tensors that represent the average compres-

sive stress on closed cracks and frictional tractions that limit sliding respectively.

Biaxial strength envelopes were seen to agree well with the experimental results

for plain concrete and high-strength concrete. However, the triaxial behaviour

predictions underestimated material strength.

The next step in the development of the model, carried out by Gambarotta (2004),

was to couple the frictional sliding and damage mechanisms such that in the

triaxial tensile stress state (i.e. when all cracks are open), only the evolution of
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damage occurs. Limit conditions and flow rules were defined on which damage

and sliding evolution laws were formed.

As described in the previous section, Pensée et al. (2002) and Pensée & Kondo

(2003) developed constitutive models where the normal component of stiffness

could be recovered when microcracks close i.e. smooth crack surfaces were simu-

lated. The micromechanical models developed by Jefferson, Mihai and co-workers

differ from those of Pensée et al. (2002) and Pensée & Kondo (2003) as they are

able to simulate rough crack surfaces regaining contact under both normal and

shear stresses (Jefferson & Bennett 2007, 2010, Mihai & Jefferson 2013b, 2015).

3.3.5 Fracture process zone and cohesive zone

A combined fracture mechanics (see section 3.2.1) and continuum micromechan-

ics approach can be used to model the fracture process zone. Pichler et al. (2007)

developed a 2D model to describe the tension softening inside the fracture process

zone ahead of a macrocrack. Linear elastic fracture mechanics was used to derive

a criterion for the propagation of a single penny shaped microcrack. The mi-

crocrack propagation criteria was combined with micromechanical estimates for

material stiffness to form a damage evolution law. Budiansky and O’Connell’s

crack density parameter was used as a scalar damage variable. Both the dilute

homogenisation scheme (with non-interacting microcracks) and the Mori-Tanaka

homogenisation scheme (with interacting microcracks) was considered. Neglect-

ing crack interactions was found to predict unrealistic material behaviour.

3.4 Constitutive modelling approaches for fibre-

reinforced cementitious composites

3.4.1 Classical constitutive modelling approaches

The classical constitutive modelling approaches described in section 3.2 are also

applicable to fibre-reinforced cementitious composites. For example, the plasticity

approach has been applied to fibre-reinforced concrete slabs by Barros & Figueiras

(2001) and hybrid-fibre-reinforced concrete by Chi et al. (2014). In the two

models, the effects of fibre-reinforcement were captured by using functions that

were calibrated to match experimental data for fibre-reinforced concrete.

Damage models have been formulated to describe the behaviour of fibre-reinforced

concrete and hybrid fibre-reinforced concrete. Such models include Fanella &

Krajcinovic (1985), Li & Li (2001), Peng & Meyer (2000). Fanella & Krajcinovic

(1985) use an an approach based on the parallel bar model which assumes that
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the matrix is brittle and unable to transfer loads once the tensile strength has

been exceeded. Then, fibres alone transfer loads. Li & Li (2001) extended the

work of Fanella & Krajcinovic (1985) by accounting for the quasi-brittle nature

of cementitious composites. However, the model requires the calibration of many

parameters using experimental data. Similarly, the model of Peng & Meyer (2000)

relies on calibration of material parameters with experimental data such that

predictions fit experimental data.

Plastic-damage models have also been applied to fibre-reinforced concrete, for

example by Hameed et al. (2013). Hameed et al. (2013) model the effective

stress transferred across a crack via sliding fibres by fitting a constitutive law to

experimental data for fibre-reinforced composites.

Cedolin & Di Luzio (2004), Beghini et al. (2007), Caner & Bažant (2011), Caner

et al. (2013) extended the M4 - M7 microplane models to fibre-reinforced con-

crete. For terminology refer back to section 3.2.6. The microplane models use a

simplified form of an equation from Kholmyansky (2002) to model the bridging

stress resulting from fibres bridging an opened crack.

As for the plain concrete models in section 3.2, use of classical constitutive mod-

elling approaches for fibre-reinforced composites has the drawback of not linking

to parameters with physical meaning.

3.4.2 Micromechanics modelling approach for fibre-reinforced

plain cementitious composites

Rows and arrays of microcracks

Using the same approach of modelling cracks via rows and arrays of microcracks

covered in section 3.3.2, works were carried out to model localised deformation

in fibre-reinforced cementitious composites. Similarly to the previous models,

localisation of cracking is also assumed to occur at peak loading.

A 2D model for the tensile response of short-fibre-reinforced cementitious com-

posites was developed by Karihaloo et al. (1996). To model pre-peak strain soft-

ening, an infinite doubly periodic array of cracks subjected to bridging forces was

decomposed using a superposition approach. Using the superposition approach

eliminated the divergence associated with a double infinite series encountered in

previous studies of solids containing 2D multiple crack arrays. The predicted ten-

sile response was found to agree with experimental results for a conventional FRC

and cement densified with small particles (DSP cement). However, the tensile

response was only studied prior to the coalescence of cracks.
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Figure 3.6: Cracks (a) prior to coalescence and (b) after coalescence in the model
of Lange-Kornbak & Karihaloo (1997). Adapted from Lange-Kornbak & Kari-
haloo (1997).

To allow for crack coalescence, Lange-Kornbak & Karihaloo (1997) combined the

tension softening model of Karihaloo et al. (1996) with the statistical tension soft-

ening model for a continuous macroflaw by Li et al. (1991) – see Figure 3.6. The

predicted uniaxial tensile strength agreed with results from the rule of mixtures.

Crack bridging by fibres

Micromechanics has been used to model the pull-out of fibres from cementitious

composite. For example, Wang et al. (1988) developed a model to predict the

load-crack opening curve from tests of fibre pull-out from a cement matrix. The

mechanism of two-sided fibre pull-out was modelled assuming that fibres behaved

linear elastically and did not rupture. The distinctive feature of the model was

that it allowed for variation of the frictional bond strength with slippage distance

thus interface slip-hardening (for synthetic fibres) or slip-weakening (for steel

fibres) behaviour could be allowed for. The effects of the fibre elastic bond were

considered to be negligible.

The two-sided fibre pull-out model was incorporated into a tension-softening curve

model for randomly distributed short fibres in a brittle matrix composite by Li

et al. (1991). Statistics were used to account for random fibre embedment depth

and orientation so that only fibres crossing the crack plane were considered. Snub-

bing effects caused by fibre inclination were accounted for using a snubbing fric-

tion coefficient. Examples of more recent micromechanical constitutive models

incorporating the two-sided fibre-pull out model include Mihai et al. (2016) for

fibre-reinforced concrete, Zhang et al. (2019) for hybrid fibre-reinforced cemen-

titious composites under uniaxial compression and Yan et al. (2019) for hybrid
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fibre-reinforced cementitious composites under uniaxial tension.

Later, a phenomenological slip-hardening model (Bao & Song 1993) was added

to the tension-softening curve model by Lin & Li (1997). The model used two

parameters: τ0 , which is frictional sliding shear stress at the tip of the debonding

zone before any slip has occurred, and β a non-dimensional hardening parameter.

The linear slip-hardening model constitutive relation was:

τ = τ0

(
1 + β

S

df

)
(3.9)

where τ is the interfacial shear stress, S is the interfacial slip and df is the fibre

diameter.

Further developments in this line of research by Li et al. (1993) and Yang et al.

(2008) include micromechanical formulations for aggregate bridging, the Cook-

Gordon effect, fibre pre-stress and micro-spalling of the matrix.

3.5 Constitutive modelling of the transition to

localised cracking

This section describes works related to developing a constitutive model that is

able to capture the transition from microcracking to localised macrocracking.

3.5.1 Combined fracture mechanics and continuum mi-

cromechanics model of Jin (2018)

A combined fracture mechanics and continuum micromechanics approach was

used to couple a cohesive zone model (CZM) with continuum damage mechanics

model by Jin (2018). A non-local (see section 3.6.1) micromechanical damage

model was used to describe microcracking behaviour. A potential based cohesive

model by Park et al. (2009) was used to describe pure mode I macrocracking. The

transition from microcracking to localised cracking was initiated when damage

reached a threshold value. The threshold value was set to be the value of dam-

age at which the damaged Young’s modulus from the micromechanical model of

Kachanov (1987), which allows for crack-interactions, and the non-local microme-

chanical damage model, which does not allow for crack-interactions, differed. See

Figure 3.7.
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Figure 3.7: Calculation of the damaged Young’s modulus from Kachanov’s model
and the continuum model. Reproduced from Jin (2018).

3.5.2 Micromechanics frictional sliding model of Zhao et al.

(2018).

Newer developments in micromechanics based frictional sliding models for quasi-

brittle materials, by Zhao et al. (2018), focus on modelling the transition from

diffuse microcracking to localised macrocracking. An isotropic micromechanical

friction-damage model based on Zhu & Shao (2015) and Zhu et al. (2016) was

used to represent the diffuse microcracking behaviour. The transition to localised

cracking based on the damage parameter reaching a critical value at which the

material resistance to propagation of microcracks is at the maximum (see Figure

3.8). A traction-based friction-damage model was used to describe propagation

of a localised crack after the coalescence of microcracks.

Figure 3.8: The transition from diffuse microcracking to localised macrocracking
in the model of Zhao et al. (2018). Adapted from Zhao et al. (2018).
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3.5.3 Rows and arrays of microcracks approach for FRC

To enable simulation of the transition from non-localised to localised behaviour,

studies by Karihaloo & Wang (2000) and Wang & Karihaloo (2000) focused on in-

vestigating conditions for localisation in fibre-reinforced cementitious composites

(FRCCs) and short-fibre-reinforced quasi-brittle composite.

Karihaloo & Wang (2000) investigated crack localisation in FRCCs as an instabil-

ity process caused by perturbations in microcrack size and bridging stiffness. The

superposition procedure and solution techniques of Karihaloo et al. (1996) were

applied to the problem of five dissimilar rows of bridged cracks which represent

the damage zone. It was shown that as the central crack propagates unstably, the

applied load reduces and the cracks in the neighbouring rows close. This agreed

with experimental observations. A small reduction in bridging stiffness of a row

of cracks (caused by reducing the volume fraction of fibres as little as 4%) was

found to cause localisation of damage to that row.

Using the procedures of Karihaloo et al. (1996), Lange-Kornbak & Karihaloo

(1997), Wang et al. (2000a,b), Wang & Karihaloo (2000) developed an analyti-

cal model for the tensile response of short-fibre-reinforced quasi-brittle composite

containing multiple parallel bridged micro-cracks. The classical bifurcation crite-

rion was to examine conditions for localisation in the model.

The findings were as following (Wang & Karihaloo 2000):

� Localisation cannot occur when there is no material damage.

� If fibres remain bonded to the matrix (fibre bridging stiffness > 0 ) whilst

damage has occurred, crack localisation cannot occur even if a continuous

crack has formed.

� Loss of the fibre-bridging stiffness due to fibre pull-out, both when a through-

crack has formed and when a through-crack has not formed, coincides with

crack localisation.

As expected from the discussions in section 2.3.3, the above findings show local-

isation is related to the crack bridging and fibre pull-out mechanisms of fibre-

reinforcement.

3.5.4 Conclusion

From the above sections, it can be seen the the latest constitutive models which

include crack localisation use approaches which are based on parameters, such as

damage, reaching threshold values. These approaches do not explicitly represent
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the fracture process, discussed in chapter 2, that occur during the transition

to localised cracking. Also, numerical investigations, in the context of fibre-

reinforced cementitious composites, have further reinforced the link between the

underlying mechanisms that occur and the crack localisation process.

Sections 3.6, 3.7 and 3.8 which follow will cover computational issues and discrete

modelling methods which explicitly represent the crack localisation process.

3.6 Computational issues

Spurious mesh sensitivity is an issue in strain softening models (Pijaudier-Cabot

et al. 1988, Brekelmans & De Vree 1995). Strain softening leads to loss of elliptic-

ity of the governing equations and ill-posed mathematical descriptions (Peerlings

et al. 1996). Bažant (1976) carried out finite element simulations of concrete with

tension softening damage and observed that results depended on the finite ele-

ment mesh with damage localising to a narrow region. Pijaudier-Cabot & Bažant

(1987) showed mesh refinement would lead to localisation of damage into a single

element and zero dissipated energy at failure.

Approaches were developed to deal with the issues caused by strain softening.

These approaches include the crack band theory (Bažant & Oh 1983), integral

type non-local theories e.g. Pijaudier-Cabot & Bažant (1987), Grassl & Jirásek

(2006), Bobiński & Tejchman (2016) and gradient enhanced type non-local the-

ories e.g. Peerlings et al. (1996), Addessi et al. (2002), Simone et al. (2003).

3.6.1 Regularisation methods

Crack band theory

The crack band theory was developed by Bažant & Oh (1983) to model mode I

fracture in concrete. The theory is based on localisation of damage to a smeared

crack band represented by finite elements. To achieve objectivity of the results,

fracture energy is maintained for different widths of the crack band. For different

band widths, the strength limit is adjusted so that the fracture energy is kept

constant. This also subsequently changes the peak load. Alternatively, fracture

energy is kept constant for different widths of the crack bank by adjusting the

softening curve. The minimum width of the band is commonly believed to be

one-element wide; however Jirásek & Bauer (2012) showed using higher-order

elements that localisation can occur at a sub-element level.

When using the crack bank method, finite element packages commonly estimate

the width of the crack band as the square root of the element area for 2D element
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or as the cube root of the element volume for 3D elements. This is disadvanta-

geous as the simplified estimation of the band width introduces mesh sensitivity

of elements with large aspect ratios (Mathern & Yang 2021). Also, models can

suffer from mesh orientation dependency if the localised band is not aligned with

the mesh lines (Slobbe et al. 2013).

The crack band theory has been applied by many models for concrete behaviour

and to fibre-reinforced concrete behaviour e.g. Xenos & Grassl (2016), Cunha

et al. (2011).

Non-local theory

Pijaudier-Cabot & Bažant (1987) presented the non-local theory in the context

of addressing the numerical issues caused by strain localisation. The non-local

approach consists of replacing a variable with a weighted spatial average of that

variable (Jirásek 2007). The spatial neighbourhood over which an average is

taken is defined by introducing a characteristic length. The characteristic length

lch controls the width of zone into which localisation can occur; hence non-local

models are described as being localisation limiters. The averaging operations

described above can be expressed as (Jirásek 2007):

f̄(ξ) =

∫
V

α(x, ξ)f(ξ)dξ (3.10)

where α(x, ξ) is a weight function depending on the distance between a source

point ξ and a target point x. f(ξ) and f̄(ξ) represent the local and non-local

fields of a volume V respectively. Models that use the above type of formulation

are described as integral type non-local models. A disadvantage of the integral

type non-local approach is that it is difficult to implement (Seupel et al. 2018).

Weakly non-local models or gradient-enhanced non-local models involve enhanc-

ing the local equivalent strain with the Laplacian of the local strain (Jirásek

2007):

ε̄eq = εeq + lch
2∇2εeq (3.11)

where εeq and ε̄eq represent the local and non-local equivalent strain. A drawback

of the above explicit gradient approach is that it requires calculation of the third-

order derivates of the displacements and therefore shape functions must have lch
2

continuity (De Borst et al. 2012). An implicit gradient-enhanced approach can

be derived by differentiating equation 3.11 twice and substituting the result into
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equation 3.11 (De Borst et al. 2012):

ε̄eq − lch2∇2ε̄eq = εeq (3.12)

Integral type and gradient-enhanced models have been applied to concrete and

fibre-reinforced concrete. For example, see Grassl & Jirásek (2006), Peerlings

et al. (1998), Cedolin & Di Luzio (2004), Ahmed et al. (2021).

3.7 Discrete modelling of cracks

3.7.1 Introduction

The work of Ngo & Scordelis (1967) was on of the first to propose a discrete

approach for modelling cracks in concrete. Discrete modelling of cracks involves

representation of cracks as geometric entities (De Borst & Verhoosel 2017). Early

discrete finite element models constrained crack surfaces to the faces of existing

elements leading to mesh bias (Ingraffea & de Borst 2017). For example, Ngo

& Scordelis (1967) modelled cracking by spitting the existing elements through

which a crack passed.

3.7.2 Interface elements

Interface elements with cohesive zone (fracture mechanics) models can be inserted

into the mesh to represent cracking if the path is known in advance (De Borst

& Verhoosel 2017). This avoids the computationally expensive remeshing that is

required if the crack path is not known (Ingraffea & Saouma 1985).

When the crack path is not known a priori, it is possible to consider all element

boundaries as potential paths (Carol et al. 2001). Such an approach was used by

Xu & Needleman (1994). In addition to avoiding remeshing, another advantage

is that results are objective with respect to the mesh size (Carol et al. 2001).

López et al. (2008) have applied this approach to concrete.

An alternate method used by Camacho & Ortiz (1996) is to adaptively insert

the interfacial elements as required. Zhan & Meschke (2017) applied an adaptive

method for modelling concrete and fibre-reinforced concrete where degenerated

solid interfacial elements are inserted into the mesh.

3.7.3 Extended Finite Element Method (XFEM)

The extended finite element method (XFEM) is based on enhancing finite ele-

ments using the partition of unity concept (Belytschko & Black 1999). Regular

finite elements consist of smooth continuous fields in the interior of elements
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hence jumps in fields and the derivatives are restricted to the boundaries of the

elements (Moës et al. 2017). The XFEM models discontinuities within the ele-

ments by introducing enhanced basis terms and additional degrees of freedom for

nodes.

As shape functions form a partition of unity, a displacement field u can be inter-

polated as (De Borst & Verhoosel 2017):

u(x) =
n∑
i=1

(
Ni(x)

(
āi +

m∑
j=1

Ñj(x)ãij

))
(3.13)

where n is the total number of discrete nodes, Ni is the shape function at node

i, Ñj is the enhanced basis term, āi is the regular nodal degrees of freedom and

ãij is the additional degrees of freedom.

3.7.4 Embedded discontinuities

The use of elements embedded with discontinuities is another approach to repre-

senting the fracture process in quasi-brittle materials. The approach is based on

enriching finite elements with additional degrees of freedom so that discontinuities

across cracks can be represented (Feist & Hofstetter 2006).

The discontinuities are the jumps in the strain field (weak discontinuities) or the

displacement field (strong discontinuities). In other words, weak discontinuities

involve jumps in the gradient of the displacement field with the displacement

field remaining continuous whereas strong discontinuities involve jumps across

the displacement field itself (Simo et al. 1993). See Figure 3.9 below. Models

for concrete cracking based on embedded discontinuities tend to use a strong

discontinuity approach e.g. Feist & Hofstetter (2006).
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Figure 3.9: Strain localisation with a strong discontinuity and a weak disconti-
nuity. Adapted from Cervera et al. (2004).

Unlike XFEM methods where additional degrees of freedom are attached to the

nodes of elements which cross the discontinuity path, the additional degrees of

freedom are attached to the elements crossed by the discontinuity path (Oliver

et al. 2005). Whilst XFEM methods tend to be more stable, element enrichment

via embedded discontinuities is easier to implement and is less computationally

expensive (Oliver et al. 2005).

3.8 Multi-scale modelling

3.8.1 Introduction

The multi-scale approach is based on feeding results from smaller scales to larger

scales with an aim to improve computational costs and reliability compared to

single-scale models (Van Mier 2013). The approach involves simultaneous mod-

elling and coupling two different scales of the material. A homogeneous descrip-

tion is used at the higher scale whereas the lower scale is described heteroge-

neously using representative volume elements (RVEs) (Gitman 2006). The RVE

must be solved at every integration point of the higher level and for every time

step for non-linear analysis and so multi-scale models suffer from high computa-

tional costs (Otero et al. 2015).

A RVE can only exist for statistically homogeneous materials, hence for materi-

als which show softening and subsequently localised behaviour a RVE does not

exist (Gitman et al. 2007). For strain softening materials, reference is made to

representative material elements (RMEs) instead of representative volume ele-

ments. The RME represents the smallest region of a specimen which captures
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the entirety of material strength variation (Joseph 2008).

For concrete, the smallest size-scale, the micro-scale, operates at the level of the

cement paste, the intermediate size-scale, the meso-scale, the level of the aggre-

gate structure and the largest size-scale, the macro-scale, the scale of buildings

or structures (Van Mier 2013).

Examples of applications of the multi-scale approach to concrete include Eckardt

& Könke (2008), Unger & Eckardt (2011), Nguyen et al. (2012), Toro et al. (2016).

Application of the approach to fibre-reinforced concrete has been carried out e.g.

by Zhan & Meschke (2017). An alternative adaptive multi-scale method has

been developed by Rodrigues et al. (2018) where, for an initially homogeneous

material, critical regions identified at the macro-scale are enhanced with detailed

meso-scale information.

3.8.2 Lattice modelling

Lattice models involve either spatially mapping material properties to a network

of lattice elements or by representing the interaction of two aggregates via a single

element (Grassl et al. 2012). The elements are typically truss bars or beams

(Nikolić et al. 2018). When modelling concrete, these materials are typically

aggregate particles, cement and the ITZ.

Some examples of applications of lattice modelling to concrete include Cusatis

et al. (2011), Schlangen & Van Mier (1992), Arslan et al. (2002), Kozicki &

Tejchman (2008), Spagnoli (2009), Grassl & Jirásek (2010), Grassl et al. (2012),

Grassl & Antonelli (2019), Karavelić et al. (2019).

Compared to other discontinuous models it is more simple to implement material

heterogeneity in lattice models (Kozicki & Tejchman 2008). This is important

because, as discussed in chapter 2, the fracture process in concrete is linked to the

material heterogeneities such as aggregate particles and the interfacial transition

zone.

In highly non-linear materials, the use of conventional boundary conditions at the

edge of a specimen are known to cause stress concentrations at the boundaries

subsequently introducing bias into fracture patterns (Grassl & Jirásek 2010).
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Figure 3.10: 2D irregular lattice and regular lattice. Adapted from Nikolić et al.
(2018).

Another issue arises when considering the regularity of the lattice. Figure 3.10

above shows the two different types of lattice regularity: irregular and regular.

The use of regular lattices allows for uniform elasticity under uniform straining

however, the structured geometry can introduce bias into the directions of crack

propagation (Nikolić et al. 2018). On the other hand, irregular lattices reduce

the bias in the directions of crack propagation but suffer in terms of producing

uniform straining (Nikolić et al. 2018).

Dual Delaunay and Voronoi tessellation is an approach used for generating an

irregular lattice to reduce the bias in the directions of crack propagation whilst

maintaining a homogeneous response under uniform straining. In this approach,

random points placed are used to construct the tessellations. Lattice elements

are placed along the Delaunay edges and the element properties are based on

the associated Voronoi edges (or cells in 3D) that define the element mid-cross-

sections (Grassl & Antonelli 2019). See Figure 3.11.
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Figure 3.11: Example dual Delaunay and Voronoi tessellation. Adapted from
Grassl & Antonelli (2019).

Discrete modelling methods are computationally expensive because of the high

number of degrees of freedom involved when accurately representing the hetero-

geneous nature of the material directly. As discussed previously in section 3.6,

when models describe strain softening behaviour, there is a loss of the ellipticity of

the governing equations and mathematical descriptions become ill-posed further

slowing computations down. To overcome this computational issue, a length scale

representing the width of the localised band or zone is introduced using a regu-

larisation method. For example, Berton & Bolander (2006) used the approach of

the crack bank method, which involved conserving fracture energy as discussed

in section 3.6.1, to formulate a regularised lattice model. A high discretisation

resolution is needed to model the localised region as the embedded width of the

localised zone is typically very small compared to the domain (Nguyen & Bui

2019).

The introduction of fibres in a lattice model exacerbates the problem of compu-

tational expense. Fibres can be modelled by adding elements that are connected

to the background lattice (i.e. the elements representing the cementitious matrix

and ITZ in the case of fibre-reinforced concrete) via linking elements (Yip et al.

2005). This approach can significantly increase the number of degrees of freedom

involved, especially when modelling high volume fractions of fibres. It is possible

to model fibres without increasing the number of degrees of freedom by using

an alternative approach. Bolander et al. (2008) add the stiffness contributions

of fibres crossing Voronoi facets in parallel to the corresponding lattice elements

that represent the cementitious matrix phase.
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3.9 Conclusions

This chapter detailed various modelling methods used to represent the behaviour

of concrete and fibre-reinforced concrete. The advantages of using a microme-

chanics based modelling approach over a classical phenomenological one were

highlighted. Namely, the parameters used in micromechanical models have phys-

ical meaning and the mechanistic approach used is in line the current understand-

ing that the macroscopic behaviour of cementitious materials is controlled by the

behaviour at the micro-scale. Unlike phenomenological models, micromechan-

ical models rely on experimentally determined input parameters corresponding

to the material properties of individual phases. Rather than having to com-

pletely re-calibrate the model for changes in the composition of a composite (e.g.

volume fraction of material phases) like in phenomenological models, changes are

modelled by adjusting the corresponding material properties and there is reduced

calibration. Also, examples were given of micromechanical models in this chapter.

Discrete models, whilst having disadvantages such as high computational costs,

are able to explicitly represent the mechanism of localised cracks developing.

Lattice models in particular are able to represent well the heterogeneous nature

of cementitious composites that is known to control the fracture process. As will

be shown in the next chapter, these discrete models are valuable in providing an

insight into the crack mechanisms that occur during the localisation process.

The state of the art constitutive models which focus on the crack localisation

process in cementitious composite were seen to be based on approaches where

localisation is triggered once certain parameters reach threshold values - the me-

chanics of the localisation process were not explicitly accounted for. The models

derived and presented later in this thesis address the lack of mechanistic ap-

proaches detailed in the literature.
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Chapter 4

Micromechanical constitutive

model for crack localisation in

quasi-brittle materials

4.1 Introduction

Directly observing fracture in concrete is challenging due to the microscopic scale

of the events within the fracture process. The development of non-destructive

testing and imaging techniques has facilitated the study of crack initiation and

propagation in cementitious composites with some very valuable insights into the

fracture process. However, even these techniques have limitations in capturing

all facets of the crack development process.

One method of gaining an insight into the fracture process is lattice modelling.

Lattice modelling is a discrete method that has been used to model the transi-

tion to localised cracking in concrete (Grassl & Jirásek 2010, Cusatis et al. 2011,

Grassl et al. 2012, Grassl & Bolander 2016, Rezakhani et al. 2017, Karavelić et al.

2019). In lattice models, material properties are mapped to a network of lattice

elements or the interaction of aggregate particles is represented by a single el-

ement (Grassl et al. 2012). An advantage of using lattice models is that they

capture the influence of the meso-structure on macro-scale behaviour by describ-

ing the spatial distribution and properties of the material phases. The failure

process of concrete at the macro-scale is influenced by the material heterogeneity

at the meso-scale e.g. microcracks initiate in the ITZ. Although lattice models

represent the intricate meso-structure and complex macroscopic behaviour well,

lattice models are computationally expensive because of the high number of de-
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grees of freedom involved when accurately representing the heterogeneous nature

of the material directly. Also, a high discretisation resolution is needed to model

the localised region as the embedded width of the localised zone is typically very

small compared to the domain (Nguyen & Bui 2019).

The focus of the work in this chapter is to develop a constitutive model for

concrete and other quasi-brittle materials that captures crack localisation. The

macroscopic behaviour of such materials is controlled by the heterogeneous struc-

ture at the micro and meso-scales. Based on this understanding, this work uses

a micromechanics approach where physical mechanisms at the micro-scale, meso-

scale and macro-scale are combined to give the overall behaviour.

To guide the modelling of the crack localisation mechanisms, numerical experi-

ments are carried out via a lattice model (Grassl & Antonelli 2019). The results

from these discrete analyses are used to verify that the constitutive model gives

the expected localised behaviour.

This work builds on a series of micromechanics based constitutive models devel-

oped by Jefferson, Mihai and co-authors e.g. Jefferson & Bennett (2007), Mihai

& Jefferson (2011, 2017). The two-phase, 3D micromechanical models capture

anisotropic effects via modelling the directional microcracking mechanism. Im-

plementation of this constitutive model in finite element simulations is planned

for future work. To regularise the model, the smeared crack approach with a

non-orthogonal crack band will be used.

The structure of this chapter is as follows: in section 4.2 lattice simulations are

used to describe the transition to localised cracking. Section 4.3 details the com-

ponents of the constitutive model and section 4.4 describes the implementation

of the constitutive model via a staggered solution algorithm. In sections 4.5 to

4.6 the results of simulations are presented and discussed, including comparisons

with experimental data results from lattice model simulations. Finally, section

4.7 summarises the work and gives concluding remarks.

4.2 Lattice simulation of the transition from dif-

fuse to localised cracking

4.2.1 Lattice model

Concrete is a highly heterogeneous material with an intricate meso-structure and

a complex macroscopic behaviour. The failure process of concrete at the macro-

scale is influenced by the material heterogeneity at the meso-scale. For example,
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the ITZ between the mortar and aggregate particles is a weak zone which plays a

role in the localisation of tensile stresses and subsequently crack initiation (Sun

et al. 2019). Meso-scale models (e.g. lattice models) are able to capture the

influence of the meso-structure on the macro-scale behaviour by describing the

spatial distribution and properties of the material phases

The lattice based meso-scale model of Grassl & Antonelli (2019) was employed to

carry out a series of simulations in order to study the transition from diffuse mi-

crocracking to localised macrocracking. The model describes the meso-structure

of concrete by the inclusion of 3 material phases: mortar matrix; coarse aggregate

particles and interfacial transition zone (ITZ). A full description of the model is

given in Grassl & Antonelli (2019) but a summary of the key model components

is given in the following sections for completeness.

4.2.2 Periodic meso-structure generation and network mod-

elling

A representative cell is used to model the meso-structure of concrete. The cell is

an idealised representation of the spatial distribution of the meso-structure con-

stituents (see Figure 4.1) and the macroscopic behaviour of concrete is assumed

to be represented by the behaviour of the cell. Inside the representative cell, the

meso-structure of concrete is modelled as coarse aggregate particles, idealised as

ellipsoids, embedded in a mortar matrix with an ITZ between the aggregate par-

ticles and the matrix. Fuller’s grading curve (Fuller & Thompson 1907) is used to

determine the size distribution of aggregate particles of a given volume fraction.
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Figure 4.1: a) Periodic meso-structure for aggregate particles. b) Structural ele-
ment network representing the mortar matrix (yellow), coarse aggregate particles
(blue) and ITZ (red) material phases.

Figure 4.2: Periodic generation of coarse aggregate particles meso-structure. 5 out
of a total of 26 adjacent cells containing periodic mirror images of the aggregate
particles are shown.



4.2. Lattice simulation of the transition from diffuse to localised cracking 55

The representative cell is generated by periodically arranging the coarse aggregate

particles in the cell as shown in Figure 4.2. The centres of the ellipsoids are placed

in the periodic cell using a random sequential addition approach. Overlapping is

checked for every placed ellipsoid by considering the inner and outer bounding

spheres. If the outer bounding spheres overlap with a previously placed ellipsoid,

the ellipsoids do not overlap and 26 mirror images of the ellipsoid are generated

in the adjacent cells. If the inner bounding spheres overlap, the ellipsoids do

overlap and a new random position and orientation is generated. When the outer

bounding spheres overlap and the inner bounding spheres do overlap, an algebraic

system of equations from Wang et al. (2001) is used to check for overlapping. For

highly non-linear material behaviour, boundary conditions at the boundary of the

representative cell are known to cause stress concentrations near the boundary

which then cause bias in the pattern of localised cracking (Grassl & Jirásek 2010).

Periodicity replaces the boundary conditions and eliminates the undesired bias

in the localisation pattern.

To generate a network of lattice elements within the representative/periodic cell,

points are randomly placed in the cell and used for dual Delaunay (Delaunay et al.

1934) and Voronoi tessellations (Green & Sibson 1978). Discrete lattice elements

are placed along the edges of the resulting tetrahedra with the mid-cross-sections

set to be common facets of the Voronoi cells associated with the nodes of the

elements (see Figure 3.11). The lattice elements that cross the boundaries of the

cell are used to calculate the response of the periodic cell. For the aforementioned

boundary elements, only the response of the nodes inside the periodic cell is

determined. The response of the nodes outside of the periodic cell is based on

the periodic mirror nodes inside the cell and average strain components that are

applied to the cell.

The spatial arrangement of aggregate particles is mapped onto the network of

structural elements. Elements are given the elastic properties of the matrix, ag-

gregate particles or ITZ depending on their position – see Figure 4.1b. Elements

with both nodes within an aggregate particle are given elastic properties repre-

senting aggregate particles. Elements with both nodes in the matrix are given

properties representing the matrix. Elements with one node in an aggregate par-

ticle and the other in the matrix are given properties representing the ITZ. The

stiffness of the ITZ is determined as the harmonic mean of the stiffnesses of the

matrix and aggregate particles i.e. the stiffness is calculated by considering two

springs in series. The use of the harmonic mean captures well the effects of any

extremes in the stiffnesses of the matrix and aggregate particles.
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4.2.3 Constitutive relationships for the lattice model

Figure 4.3: Stress-crack opening curve. Reproduced from Grassl & Antonelli
(2019).

Aggregate particles are considered to have linear elastic behaviour, whereas the

mechanical behaviour of both the matrix and the ITZ is modelled using a scalar

damage model:

σ = (1− ωa)Deε (4.1)

where σ is the stress vector, ε is the strain vector, De is the elastic stiffness

matrix and ωa is a scalar damage variable which increases from 0 at no damage

to 1 at complete damage.

Damage onset is determined by an equivalent strain variable κd governed by a

damage surface based on an ellipsoidal strength envelope in the stress space and

standard loading/unloading conditions (Grassl & Bolander 2016). The ellipsoidal

strength envelope makes use of three input parameters: tensile strength ft, shear

strength fq and compressive strength fc. Based on typical values for concrete, the

shear strength and compressive strength are estimated as fq = 2ft and fc = 10ft

(Grassl & Antonelli 2019).

The evolution of the damage variable ωa is based on the exponential stress-crack

opening curve shown in Figure 4.3. wf is a parameter that controls the slope of

the softening curve, wc is the crack opening and h is the length of the element.

The fracture energy Gf =
wc∫
0

σdw is the area under the stress-crack opening curve.

The exponential stress-crack law for pure tension, shown in Figure 4.3, is ex-
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pressed as:

σn = fte

(
−wn
wf

)
(4.2)

where wn = ωahεn is the crack opening under monotonic tension and εn is the

tensile strain. As the normal stress can also be expressed using the stress-strain

law 4.1, a non-linear equation can be formed and used to determine ωa iteratively:

(1− ωa)Eκd = fte

(
−ωahκd

wf

)
(4.3)

where E is the Young’s modulus and εn has been replaced with κd (a mono-

tonically increasing tensile strain has been assumed). The approach used means

that the resulting load-displacement curves will not be dependent on element

lengths even if inelastic displacements become localised in element length depen-

dent zones.

4.2.4 Lattice element size for convergence

The lattice elements are placed in a random manner and so the spatial arrange-

ment of the elements may influence the crack paths predicted by the lattice model.

However, by ensuring that the lattice elements used are smaller than the size of

the heterogeneities of the meso-structure, the influence of the element spatial

arrangement is not significant (Grassl & Jirásek 2010).

The overall crack patterns should be independent of the background lattice. To

ensure that this is the case, a series of uniaxial tension analyses were carried out.

In all cases, the meso-structure (i.e. the arrangement of the aggregate particles)

was fixed. Different lattice element sizes were trialled. For each lattice element

size, a series of analysis with varying discretisation (i.e. the randomly generated

network of lattice elements) was carried out.

Prismatic periodic cells with dimensions of 50 mm in the x and y directions and

100 mm in the z direction were generated (see the coordinate system in Figure

4.1) and the aggregate particles were distributed in the cells with a fixed random

arrangement. As the aim of the convergence study was to find the dimensions

of the lattice elements that do not cause bias in the overall crack pattern rather

than to replicate the characteristic meso-structure of concrete, a high degree

of heterogeneity was introduced by using 80% total volume fraction of coarse

aggregate.
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Table 4.1: Material parameters used for the lattice simulations.

Em (MPa) Eitz (MPa) EΩ (MPa) ft,m (MPa) ft,itz (MPa) Gf,m (J/m2) Gf,itz (J/m2)

30,000 45,000 90,000 3 1.5 120 60

Table 4.2: The different element sizes and heterogeneity ratios considered.

Heterogeneity/element size ratio Element size (mm) Range of aggregate particle diameters (mm)

2.7 3 8 - 16
4.0 2 8 - 16
5.0 1.6 8 - 16
6.25 1.6 10 - 20

The material properties used for the mortar, aggregate particles and ITZ are

shown in Table 4.1. The stiffness of the ITZ was calculated as the harmonic

mean of the mortar and aggregate particle stiffness. The material properties

used are in the typical range for meso-scale analyses of concrete (Grassl et al.

2012).

The ratio of the heterogeneity size (i.e. diameter of smallest aggregate) to the

element size was increased starting from approximately 3 until the crack pat-

terns were independent of the background lattice and the stress-displacement

response was converged. See Table 4.2 for the different cases considered. Note

that reducing the lattice element size below 1.6 mm significantly increased the

degrees of freedom of the resulting lattice. Hence for expediency requirements, a

higher heterogeneity to element size ratio was achieved by increasing the size of

the smallest heterogeneity. The resulting crack patterns and stress-displacement

plots are shown in figures 4.4 to 4.7. The analyses for an approximate hetero-

geneity to element size ratio of 5 were terminated early for expediency reasons as

it was clear that a converged response had not been achieved.

Note that to better compare the results alternative analyses, e.g. where a notch is

used to control the location where localised cracks form, could have been carried

out. This is an option to consider for future work.

Specimens generated with 1.6mm lattice elements and aggregate particle diam-

eters ranging from 10mm to 20mm, giving a heterogeneity to element ratio of

approximately 6, were found to give mesh convergence. Three of the resulting

crack patterns are shown in Figure 4.8. The selected element sizes were found
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to be adequate as there was no significant difference in the overall crack patterns

and the overall stress-strain curve from analyses where the meso-structure is fixed

but different background lattices are used.

Figure 4.4: Comparison of stress-displacement curves and crack patterns from
analyses with fixed mesostructure and element sizes (heterogeneity/element ratio
= 3) but varying discretisation (tension +ve). Three crack patterns, correspond-
ing to three discretisations, are shown via highlighting mid-cross-sections with
active cracks in green, blue and red.
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Figure 4.5: Comparison of stress-displacement curves and crack patterns from
analyses with fixed mesostructure and element sizes (heterogeneity/element ratio
= 4) but varying discretisation (tension +ve). Three crack patterns, correspond-
ing to three discretisations, are shown via highlighting mid-cross-sections with
active cracks in green, blue and red.

Figure 4.6: Comparison of stress-displacement curves and crack patterns from
analyses with fixed mesostructure and element sizes (heterogeneity/element ratio
= 5) but varying discretisation (tension +ve). Three crack patterns, correspond-
ing to three discretisations, are shown via highlighting mid-cross-sections with
active cracks in green, blue and red.
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Figure 4.7: Comparison of stress-displacement curves and crack patterns from
analyses with fixed mesostructure and element sizes (heterogeneity/element ratio
= 6) but varying discretisation (tension +ve). Three crack patterns, correspond-
ing to three discretisations, are shown via highlighting mid-cross-sections with
active cracks in green, blue and red.

Figure 4.8: Crack patterns from the mesh converged analyses with fixed
mesostructured and element sizes but varying discretisation. The mid-cross-
sections with active cracks are highlighted in red.
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4.2.5 Transition to localised cracking

Figure 4.9: Stress-strain curve from lattice model simulation of uniaxial tension
(tension +ve).

Lattice simulations were carried out using the size of the periodic cell, elements

and aggregate particles described in section 4.2.4 and using the material param-

eters shown in Table 4.1. The results of a typical simulation, with a 40% total

volume fraction of aggregates particles, are shown in Figure 4.9 and Figure 4.10.

The crack patterns at different stages along the stress-strain curve are highlighted.

As seen from Figure 4.10, the lattice simulations capture very well the cracking

mechanisms in cementitious composite materials. Microcracking is initiated at

the interface between the mortar and aggregate particles (stage “a” in Figure

4.10). As the loading increases, the interfacial microcracks continue to form and

grow. Microcracks begin to propagate and grow in the mortar phase leading

to a state of diffuse microcracking associated with pre-peak nonlinearity (see

stages “b” to “d” in Figure 4.10). The results of the lattice simulations are

consistent with previous observations that the growth and propagation of the

microcracks results in pre-peak non-linearity in the typical tensile response of

concrete (Karihaloo 1995), a stage often difficult to capture in standard tensile

experimental tests.

Furthermore, the lattice simulations show that between the pre-peak stage “c”

and the peak stress at stage “d”, microcracks begin to coalesce in the region
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Figure 4.10: Illustration of the progression from diffuse microcracking to localised
cracking. Slices through the zone in which localised cracking occurs are also
included. Note: Only the mid-cross-sections with active cracks are shown. The
different stages a - f correspond to those marked in Figure 4.9.
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where localised macrocracking will eventually occur. The post-peak response is

controlled by localised macrocracking as is shown in stages “e” to “f” in Figure

4.10. Note that in Figure 4.10, mid-cross sections for which cracks are not growing

have been omitted for clarity. Therefore, in Figure 4.10e and Figure 4.10f the

diffuse microcracks that were shown in the previous stages, which are no longer

growing due to crack localisation occurring, are omitted.

The point of transition to localised cracking suggested by the lattice simulations

agrees reasonably well with experiments. Acoustic emission (AE) monitoring

of concrete samples subjected to uniaxial tension showed that most AE events

recorded within a load interval of approximately 80%-100% of the peak load, both

pre and post-peak, were concentrated in a localised region, with a clear increase

in the rate of AE events (Li & Shah 1994, Li 1996). Furthermore, all AE events

logged post peak, when the load fell below 80% of the peak load were recorded

in the localised zone. Li & Shah (1994) attribute the jump in AE events to the

transition to localised cracking.

According to Shah et al. (1995), crack localisation begins in the pre-peak region

between around 80% of the pre-peak load and the post-peak load, with diffuse

microcracks starting to coalesce and form a macrocrack. The growth of this

macrocrack is stable (the crack only propagates with increasing load). In the

post-peak regime, unstable localised macrocracking occurs with unloading of the

material outside of the localised region.

During uniaxial tension tests on plain mortar and mortar with pre-arranged ag-

gregates Maji & Shah (1988) also observed a sharp increase in AE events prior

to the peak load. However, the highest rate of AE events occurred just after the

peak load. This is consistent with the notion that unstable macrocrack growth

occurs after the peak load.

For uniaxial compressive loading, experimental studies employing methods such

as stereophotogrammetry and AE to analyse cracking patterns observed that

crack localisation occurred at the peak compressive stress (Vonk 1992, Torrenti

et al. 1991, 1993).

The lattice simulations have given an insight into the fracture process that occurs

in cementitious composite materials. These insights are used to guide the devel-

opment of the micromechanics constitutive model described in the next section.
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4.3 Micromechanics based constitutive model

4.3.1 Model components

The model proposed here builds on the work of Mihai & Jefferson (2011, 2017)

and aims to simulate directly the transition from diffuse microcrack to localised

macrocracking. Diffuse directional microcracking is modelled based on a mi-

cromechanical formulation that builds on Mihai & Jefferson (2011) and Mihai

& Jefferson (2017). For this, it is assumed that the cementitious composite is a

two-phase material in which series of microcracks with the same orientation are

equivalent to bands of material, or ‘crack-planes’, containing these cracks. The

novel component of the model is a formulation which allows for cracking to be-

come localised to macrocracks. Figure 4.11 shows the main concepts of the model

and Figure 4.12 shows a schematic representation of a crack-plane. The compo-

nents are detailed in the sections which follow. The crack localisation mechanism,

which is the main contribution of the author, is detailed in section 4.3.5. Further

new research such as the solution procedure for the proposed mechanism and the

predictions resulting from implementing the mechanism follow on from section

4.3.5.
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Figure 4.11: The main model concepts. Adapted from Mihai & Jefferson (2017).

Figure 4.12: Schematic representation of a crack-plane containing microcracks.
Adapted from Mihai & Jefferson (2017).
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4.3.2 Two-phase composite

The Mori-Tanaka homogenisation scheme approximates the interactions between

the inclusions by approximating the stress acting on an inclusion by an average

matrix stress (Böhm 2021). The matrix stress and strain fields are disturbed,

by ellipsoidal inclusions embedded in the matrix. i.e. the fields are not uniform.

However, the volume average of the disturbances is zero if inclusions are assumed

to be inside a coaxial domain (Mura 1987). The use of the averaging scheme

which results is based on the assumption that concrete can be idealised as a

two-phase composite comprising of ellipsoidal inclusions embedded in a matrix.

The model represents the heterogeneous structure of concrete by considering the

material as a two-phase composite that consists of a matrix phase m and an

inclusion phase Ω. The elasticity tensor of the composite DmΩ is based on the

Eshelby solution for spherical inclusions embedded in a matrix (Eshelby 1957)

and the Mori-Tanaka homogenisation scheme (Mura 1987):

DmΩ = (fmDm + fΩDΩ · TΩ) ·
(
fmI

4s + fΩTΩ

)−1
(4.4)

where fm and fΩ are the volume fractions of the matrix and inclusion phases

respectively, Dm and DΩ are the elastic stiffness tensors of the matrix and in-

clusion phases respectively and I4s is the fourth order identity tensor. Note that

fm + fΩ = 1. TΩ is defined below, where SΩ is the Eshelby tensor for spherical

inclusions (Nemat-Nasser & Hori 1999):

TΩ = I4s + SΩ · ((DΩ −Dm) · SΩ +Dm)−1 · (Dm −DΩ) (4.5)

4.3.3 Directional microcracking

The added strain due to a dilute series of penny shaped cracks with the same

orientation is given as (Nemat-Nasser & Hori 1999, Budiansky & O’Connell 1976):

εα = Cα(ψ, θ) : σL = f(ψ, θ)Cαc : σL (4.6)

where εα is the added strain tensor for the dilute series of cracks with the same

orientation, ψ and θ are the angles which represent the orientation of the crack

as shown in Figure 4.13, f(ψ, θ) is the crack density parameter of Budiansky &

O’Connell (1976) which describes the progress of cracking and Cαc is the addi-

tional compliance tensor due to the cracks.
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Figure 4.13: Local coordinate system of cracks. Reproduced from Mihai & Jef-
ferson (2017).

σL is the ‘local’, i.e. crack-plane, stress tensor. σL and εα are considered in

reduced vector form (
[
σr σs σt

]T

and
[
εαr εαs εαt

]T

) containing only the

non-zero components. The local crack plane vectors v =
[
vr vs vt

]T

consist of

a normal component vr and two shear components vs and vt. The matrix form

of Cαc which relates the local vectors is (Nemat-Nasser & Hori 1999):

Cαc =
16(1− νm2)

3Em


1 0 0

0 4
2−νm 0

0 0 4
2−νm

 (4.7)

The local stress is related to the average stress σ̄ as:

σL = N (ψ, θ) : σ̄ (4.8)

and the local strain is related to the average strain ε̄ as:

εL = Nε(ψ, θ) : ε̄ (4.9)

where N (ψ, θ) and Nε(ψ, θ) are the stress and strain transformation tensors

respectively and are given in Jefferson (2003). Using the transformation tensors

the stress and strain tensors in Cartesian coordinates (x, y, z) can be related to

the local coordinates (r, s, t) of a crack plane with orientations (ψ, θ).

Jefferson & Bennett (2007) expressed the crack density parameter in terms of a

directional damage parameter ω(ψ, θ) which grows from 0 at no damage to 1 at

complete damage. The directional damage parameter is defined such that:
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f(ψ, θ) =
3

16(1− νm2)

ω(ψ, θ)

1− ω(ψ, θ)
(4.10)

Cα(ψ, θ) = f((ψ, θ))Cαc =
ω(ψ, θ)

1− ω((ψ, θ))
CL (4.11)

CL is the local compliance tensor. The matrix form of the local compliance tensor

which corresponds to local vectors is:

CL =
1

Em


1 0 0

0 4
2−νm 0

0 0 4
2−νm

 (4.12)

The total added strain due to microcracks is obtained by summing the added

strain of series of cracks from every orientation (Nemat-Nasser & Hori 1999,

Budiansky & O’Connell 1976):

εa =
1

2π

∫ 2π

0

∫ π/2

0

Nε(ψ, θ) : εα sin(ψ)dψdθ (4.13)

εa is the total added strain tensor.

The total added strain is superimposed on the composite such that:

σ̄ = DmΩ : (ε̄− εa) = Dmc : ε̄ (4.14)

where ε̄ is the average strain tensor and Dmc is the microcrack damaged stiffness

tensor.

Using equations 4.6, 4.8, 4.11, 4.13 in Equation 4.14, the microcrack damaged

stiffness tensor is given by (Mihai & Jefferson 2017):

Dmc =

(
I4s +

DmΩ

2π
·
∫ 2π

0

∫ π/2

0

Nε(ψ, θ) : Fω(ψ, θ) ·CL : N (ψ, θ) sin(ψ)dψdθ

)−1

·DmΩ

(4.15)

where Fω(ψ, θ) = ω(ψ,θ)
1−ω(ψ,θ)

· I4s.

4.3.4 Damage surface and damage evolution

An effective strain parameter ζ is obtained from the damage surface of Jefferson

& Bennett (2007):
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Figure 4.14: Damage surface. Reproduced from Jefferson & Bennett (2007).

fd(εL, ζ) =
εLr
2

(
1 +

(
µ

q

)2
)

+
1

2q2

√
(q2 − µ2) εLr

2 + 4q2 (εLs
2 + εLt

2)− ζ

(4.16)

where the parameters q and µ are derived from their stress equivalents (q = c
ft
E
G

and µ = µs
E
G

), µs is the angle of friction, c is the shear strength at first damage

and the conditions fd ≤ 0; ζ̇ ≥ 0; fdζ̇ = 0 apply. The damage surface is illustrate

in Figure 4.14.

The local strain of the microcrack planes εL drives microcrack damage and is

given by Equation 4.9.

ζ is used to calculate the evolution of ω via an exponential evolution function:

ω(ζ) = 1− εt
ζ
e
−c1

(
ζ−εt
ε0−εt

)
(4.17)

where c1 is a constant which controls the slope of the tension softening curve. εt is

tensile strain given by εt = ft
Eitz

where ft is the tensile strength of the composite.

4.3.5 Macrocracking

Crack localisation is a key mechanism that governs the post-peak response in

cementitious materials. Diffuse microcracks coalesce to form a macrocrack and

crack growth becomes concentrated to the macrocrack. In the post-peak regime,

macrocrack growth becomes unstable and material outside of the localised region

unloads. Growth of localised cracks leads to structural changes that are in the

order of the specimen size (Van Mier 1997) and to failure (Zhao et al. 2018). As

shown in section 4.2.5, this mechanism is captured well by lattice simulations that

represent the meso-structure and heterogeneous nature of concrete. A mechanism
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is proposed below which is able to model the effects of macrocrack propagation

in the post-peak regime.

The model assumes that macrocracks form when the overall stress reaches its

peak value i.e.:

dσI
dεI

= 0 (4.18)

where σI and εI are the major principal stress and strain respectively. This is

consistent with the findings from the lattice simulations that show that macroc-

rack growth is predominantly concentrated to the post-peak regime and that the

overall crack localisation process occurs between roughly 80% of the pre-peak and

the post-peak load (see section 4.2.5).

Under tensile loading, the normal to the macrocrack plane is based on the ori-

entation of the major principal strain and a maximum of two macrocracks are

allowed to form. When two macrocracks form, the growth of both macrocracks is

initiated in the same increment. Under compressive loading, a macrocrack forms

with the normal to the crack plane given by the direction which maximises the

effective strain parameter at the peak stress. The shear directions are generated

following the method used by Hasegawa & Bažant (1993) to generate consistent

shear directions for micro-planes.

The formation of macrocracks is taken into account in the overall constitutive

relationship by removing the inelastic strain of the macrocracks from the average

strain:

σ̄ = Dmc :

(
ε̄−

nsd∑
i=1

Nε(αi, βi) : ε̂i

)
(4.19)

where nsd is the total number of macrocrack planes and ε̂ is the macrocrack

inelastic strain. α and β are the macrocrack plane orientation angles (defined

similarly to ψ and θ in Figure 4.13).

The local stress σ̃(α, β) of the macrocrack planes is given by the following con-

stitutive relationship:

σ̃(α, β) = (1− ω̃(α, β))ICL
−1 : ε̃(α, β) (4.20)

where ε̃ is the macrocrack local strain, ω̃ is the macrocrack damage parameter

and CL is the local compliance tensor where the matrix form is given by Equation
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4.12. The above equation can be used to write the inelastic strain of macrocracks

ε̂ in terms of the macrocrack local strain. First consider that the inelastic macro-

crack strain can be obtrained by removing the local strain component ε̃Le from

the macrocrack local strain:

ε̂ = ε̃− ε̃Le = ε̃−CL : σ̃ (4.21)

Note that dependencies have been dropped for clarity. Next, substitute σ̃ from

Equation 4.20 into the above:

ε̂ = (I − M̃s) : ε̃ (4.22)

where

M̃s = (1− ω̃)I

The dependencies of ω̃ above, including orientation, have been dropped for clarity.

The same damage surface 4.16 and evolution function 4.17 employed for microc-

racks applies for calculating the effective strain parameter of macrocracks ζ̃ and

the evolution of the macrocrack damage parameter ω̃ respectively.

Once the transition to localised damage has been initiated, there is an inelastic

strain due to macrocracking (the calculation of which is detailed in section 4.4).

Microcracks are assumed to be situated in the band of material outside of the

zone of localised cracking. Subsequently to model the effect of macrocrack growth

on microcrack growth, the inelastic macrocrack strain is removed from the local

macrocrack strains:

εL(ψk, θk) = Nε(ψk, θk) :

(
ε̄−

nsd∑
isd=1

Nε(αisd, βisd) : ε̂(αisd, βisd)

)
(4.23)

4.4 Numerical implementation

The model is implemented in Mathcad. A constitutive driver algorithm and

a Gauss solver with fixities are used. The algorithm allows for mixed stress

and strain paths to be prescribed. Integration over the surface of a sphere is

carried out using McLaren’s 50 point rule for a sphere (Stroud 1971) adapted via

symmetry to use 29 sample points over a hemisphere. Consistent shear directions

for each sample point are generated using the method by Hasegawa & Bažant
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(1993) which eliminates directional bias. The staggered solving method used to

calculate ε̂ is shown in Algorithm 1 and detailed in section 4.4.1.

4.4.1 Staggered solution algorithm

Non-linear coupled equations are formulated, Equation 4.24 and Equation 4.25,

such that the equations represent the requirement that the total stress trans-

formed onto a macrocrack plane is equal to the local stress of the macrocrack. To

determine the inelastic strains of macrocracks, the non-linear coupled equations

must be solved.

Ψαi = N (αi, βi) : Dmc :

(
ε̄−

nsd∑
j=1

Nε(αj, βj) : (I4s − M̃sj) : ε̃j

)
−DL·M̃si : ε̃i = 0

(4.24)

Ψβk = εLk −Nε (ψk, θk) :

(
ε̄−

nsd∑
j=1

Nε(αj, βj) : (I4s − M̃sj) : ε̃j

)
= 0 (4.25)

DL is the local crack-plane elastic stiffness tensor consistent with Equation 4.15,

subscript i denotes the macrocrack plane number, subscript k denotes the micro-

crack plane number and some dependencies have been dropped for clarity.

Equating Ψα to zero and performing a first-order Taylor’s series expansion 4.26

followed by re-arrangement gives the iterative update to the stacked local strain

vector Ẽ 4.27:

0 = Ψ(Ẽ + δẼ) = Ψ(Ẽ) +BEδẼ (4.26)

δẼ = −B−1
E Ψ(Ẽ) (4.27)

where equivalent reduced vector and matrix notation has been adopted, Ẽ =
ε̃1

ε̃2

...

ε̃n

 , Ψ =


Ψα1

Ψα2

...

Ψαn

 , and BE is the matrix of derivatives which is equal to dΨα
dε̃

.

The updated micro-strain vectors ε̃i from solving Equation 4.24 are used to up-

date the inelastic macro-strain ε̂i. The error caused by the difference in εL used
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to calculate Dmc in Equation 4.24 and εL calculated using the updated ε̂ is given

by Equation 4.25.

4.4.2 Matrix of derivatives

For the case where there is a single macrocrack, the incremental change in Ψ is

given by the following:

dΨ = −NDmΩN
T
(
I − M̃s

)
dε̃+NDmΩN

T
dM̃s

dω

dω

dξ

dξ

dε̃
dε̃ε̃

−DLM̃sdε̃−DL

dM̃s

dω

dω

dξ

dξ

dε̃
dε̃ε̃

(4.28)

Note that in the second and third terms on the RHS of Equation 4.28 dξ
dε̃
dε̃ forms

a scalar which can be moved to the end of those terms. Then by also taking note

that dM̃s

dω
= −I, Equation 4.28 is re-arranged such that dε̃ can eliminated from

the RHS and the matrix of derivatives can be formed:

dΨ = −NDmΩN
T
(
I − M̃s

)
dε̃ −NDmΩN

T I
dω

dξ
ε̃
dξ

dε̃
dε̃

−DLM̃sdε̃+DLI
dω

dξ
ε̃
dξ

dε̃
dε̃

(4.29)

The matrix of derivatives BE for a single macrocrack is then given by:

BE =
Ψ

dε̃
= −NDmΩN

T
(
I − M̃s

)
−NDmΩN

T I
dω

dξ
ε̃
dξ

dε̃

−DLM̃s +DLI
dω

dξ
ε̃
dξ

dε̃

(4.30)

In the case where more than one macrocrack forms, calculating the matrix BE

involves additional steps. For example, see the first order Taylor’s series expansion

of Ψ for a system with two macrocracks 4.31:

[
Ψ1

Ψ2

]K+1

=

[
Ψ1

Ψ2

]K
+BK

E

[
dε̃1

dε̃2

]
(4.31)

where
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Algorithm 1: Algorithm to calculate the inelastic strain of macrocrack planes

.Enter with the strain vector and set macrocrack plane parameters to initial

values or those from the previously converged step

ε̄; ε̃i = ε̃prvi

ζ̃i = ζ̃prvi ; ω̃i = ω̃prvi ; M̃si = M̃ prv
si

;

.Enter iteration loop of the staggered solution method

for iter = 1 to itermax do
.Calculate the matrix of derivatives and the stacked local error from the

first coupled equation using Algorithm 2

.Calculate the local crack plane strains and macrocrack plane variables

using Algorithm 3

.Calculate the stacked local error from the second coupled equation

using Algorithm 4

.Check if the error is within the required tolerance and exit if converged

if (|Ψα| < tolα) ∧ (|Ψβ| < tolβ) then
exit

end

.Exit the procedure and reduce the global step size if the maximum

number of iterations has been reached

if i == itermax then
exit

end

end
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Algorithm 2: Algorithm to calculate the matrix of derivatives and the

stacked local error from the first coupled equation

. Enter from Algorithm 1

. Loop over microcrack planes np

for i = 1 to np do

. Compute microcrack plane variables from equations 4.16,4.17 and 4.23

compute ζi, ωi, εLi

. Compute the microcrack based stiffness and the corresponding local

stiffness matrix from Equation 4.15

compute Dmc, DL

end

. Loop over macrocrack planes nsd

for i = 1 to nsd do

. Calculate the stacked local error vector from Equation 4.24

compute Ψαi

end

. Loop over macrocrack planes nsd

for i = 1 to nsd do

for j = 1 to nsd do

. Calculate the matrix of derivatives from Equation 4.33

compute BEi,j

end

end
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Algorithm 3: Algorithm to update the local crack plane strains and macro-

crack plane variables

. Enter from Algorithm 1

. Calculate the stacked local strain vector for macrocrack planes from

Equation 4.27

compute δẼ

. Loop over macrocrack planes nsd

for i = 1 to nsd do

. Update local crack plane strains and calculate the macrocrack plane

variables from equations 4.16 and 4.17

compute ε̃i = ε̃i + δε̃i

compute ζ̃i, ω̃i, M̃si , ε̂i

end

Algorithm 4: Algorithm to calculate the stacked local error from the second

coupled equation

. Enter from Algorithm 1

. Loop over macrocrack planes nsd

for i = 1 to nsd do

. Calculate the stacked local error vector from Equation 4.25

compute Ψβi

end



78
Chapter 4. Micromechanical constitutive model for crack localisation in

quasi-brittle materials

BK
E =

[
dΨ1/dε̃1 dΨ1/dε̃2

dΨ2/dε̃1 dΨ2/dε̃2

]K
(4.32)

and K represents the staggered solution iteration.

BE can be calculated via iterating through the set of macrocracks and stacking

the sets of dΨi/dε̃j . The derivative terms are given by:

dΨi

dε̃j
= −NiDmΩN

T
j

(
I − M̃sj

)
−NiDmΩN

T
j I

dωj
dξj
ε̃j
dξj

dε̃j

−δijDLM̃si + δijDLI
dωi
dξi
ε̃i
dξi

dε̃i

(4.33)

Compare equations 4.30 and 4.33. The Kronecker delta δij is introduced to the

last two terms of Equation 4.33. Those terms are only part of the derivative when

i = j.

4.5 Uniaxial tension simulations

In the following sections, results from comparative analyses carried out with two

versions of the above model are given. The first version included both microc-

rack and macrocrack growth, i.e. the “micro-macro transition model”, whereas

the second version only included microcracking. The purpose of the compar-

ative analyses was to demonstrate that the inclusion of the crack localisation

mechanism better models the cracking mechanisms that occur in concrete and

subsequently gives more realistic results.

4.5.1 Constitutive model simulation compared to lattice

simulations

Predictions from the two versions of the model (only microcracking and both

microcrack and macrocrack growth) were compared to uniaxial tension lattice

simulations of 10 random arrangements of aggregate particles. The intention of

the comparisons was to show how a micromechanics based constitutive model

for concrete which includes a crack localisation mechanism agrees well with more

computationally expensive lattice simulations that discretely model the influence

of the heterogeneous material structure of concrete at the meso-scale.

Table 4.3 shows the parameters used for the numerical simulations. The parame-

ter c1 was adjusted to tune the predictions to the lattice simulation results. The
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lattice simulations were carried out using a 40% total volume fraction of aggre-

gate particles and by maintaining the periodic cell and element, dimensions and

material parameters described in section 4.2.4.

The results are shown in Figure 4.15. From Figure 4.15a the microcracking only

model is excessively ductile to the extent that the predictions fall outside of the

envelope of results from the lattice model analyses. Inclusion of the transition

to localised cracking in the constitutive model give more realistic results with

the predictions agreeing much better with the lattice simulations. From Figure

4.15b and Figure 4.15c, damage can be seen to become localised to a macrocrack

plane after the peak stress in the micro-macro transition model whereas in the

microcracking only model the microcrack planes continue to become damaged.

Table 4.3: Material parameters used for the constitutive model to simulate the
results of lattice model analyses.

Em (MPa) EΩ (MPa) νm νΩ fm fΩ (MPa) c1 q µ ft ε0

30,000 45,000 0.19 0.21 0.6 0.4 10 3.3 4.2 3 0.003
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Figure 4.15: Comparison of predictions from the versions of the constitutive
model with microcracking only and both microcracking and macrocracking with
predictions from the lattice model (tension +ve). The envelope of results from
the lattice model was obtained from 10 simulations with varying meso-structures.

4.5.2 Constitutive model simulation compared to experi-

mental data

To show that inclusion of the transition of localised cracking gives more realistic

predictions, the results from numerical simulations of uniaxial tension from the

constitutive model, with and without the transition to localised cracking, were

compared to experimental data from Reinhardt (1984). The material parameters

used for the simulations are shown below in Table 4.4. The parameter c1 was

adjusted to tune the predictions to the experimental results. The maximum

size of coarse aggregate particles is assumed to be 10mm and is taken to be the

characteristic length from which strains can be related to displacements.
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Table 4.4: Material parameters used for the constitutive model to compare with
experimental data from Reinhardt (1984).

Em (MPa) EΩ (MPa) νm νΩ fm fΩ (MPa) c1 q µ ft ε0

30,000 60,000 0.19 0.21 0.5 0.5 4 3.3 4.2 1.37 0.015

Figure 4.16: Comparison of predictions from the versions of the constitutive
model with microcracking only and both microcracking and macrocracking with
experimental data from Reinhardt (1984) (tension +ve).

The results are shown in Figure 4.16. Immediately after the peak stress, the

predictions from the microcracking only model are excessively ductile. The micro-

macro transition model betters agrees with the experimental data albeit being

slightly too brittle later in the post-peak response.

4.5.3 Comparison of the micro-macro transition model to

the microcracking only model

The third set of uniaxial tension simulations focuses on directly comparing the

micro-macro transition model to the microcracking only model. Table 4.5 shows

the material parameters used for the simulations.
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Table 4.5: Material parameters used for the uniaxial tension numerical simula-
tions

Em (MPa) EΩ (MPa) νm νΩ fm fΩ (MPa) c1 q µ ft ε0

30,000 60,000 0.19 0.21 0.5 0.5 10 3.3 4.2 1.9 0.01

Figure 4.17 shows the results of simulating the uniaxial tension loading path.

The orientation angles α and β of the macrocracks are 90° and 0° (i.e. cracks are

parallel to the direction of the applied strain) respectively.

Figure 4.17c and Figure 4.17d illustrate that the formation of macrocracks causes

a transition where microcracks stop growing and damage is driven by macrocrack

growth. The transition can also be observed through the differences in the damage

surfaces, Figure 4.17e and Figure 4.17f, from analyses with the full model and

analyses with microcracking only. Further, introduction of macrocracks reduces

the predicted ductility of the response in the post peak regime and leads to the

relaxation of the lateral strain, which is the expected characteristic response as

the formation of a macrocrack causes unloading of lateral strain . Experimental

data from uniaxial tests of reinforced concrete panels shows that there is a reversal

in the lateral strains (the incremental lateral strains change from being negative

to positive) immediately after cracking (Vecchio & DeRoo 1995). According

to Vecchio & DeRoo (1995), the lateral strain reversal indicates the occurrence

of a tensile-splitting mechanism. In the present case, the relaxation of lateral

strains after the development of a macrocracking plane is also indicative of tensile-

splitting.
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Figure 4.17: Results from numerical simulation of uniaxial tension (tension +ve).
(a) σxx– εxx response. (b) σxx– εyy response. (c) ω̃- εxx for the full model. (d) ω̃-
εxx for the microcracking only model. (e) ω̃- crack plane normal orientation with
respect to the loading axis (xx direction) for the full model. Macrocrack damage
is indicated on the damage surface plots using markers with stems. (f) ω- crack
plane normal orientation with respect to the loading axis for the microcracking
only model. The stages in (e) and (f) correspond to those marked in (a).
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4.6 Single-point path simulations

4.6.1 Parameters and paths

Simulations of other loading paths were carried out using a single set of param-

eters. The parameters, which relate to plain concrete, that were used are shown

in Table 4.5.

The stress-strain paths considered with the model, included uniaxial tension,

combined uniaxial tension and shear, biaxial tension, combined biaxial tension

and shear, uniaxial compression and biaxial compression. For all biaxial paths,

the ratios between the applied strains εxx and εyy are 1:1. When shearing is

applied to a tensile path, the ratio between the applied strains εxx and εxy is 5:1.

Note that the uniaxial tension path was previously explored in section 4.5.3.

Tensile paths

The results of the tensile path simulations are shown in Figure 4.18 - 4.20. The

biaxial tension case is similar to the uniaxial tension case in that the orientation

angle αis 90° for all macrocracks and a macrocrack forms parallel to the direction

of the applied strain. In the biaxial tension simulation , an additional macrocrack

also forms perpendicular to the applied strain direction (β =90°).
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Figure 4.18: Results from numerical simulation of biaxial tension (tension +ve).
(a) σxx– εxx response. (b) σxx– εyy response. (c) ω̃- εxx for the full model. (d) ω̃-
εxx for the microcracking only model. (e) ω̃- crack plane normal orientation for
the full model. (f) ω- crack plane normal for the microcracking only model.
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Figure 4.19: Results from numerical simulation of uniaxial tension and shear
(tension +ve). (a) σxx– εxx response. (b) ω̃- εxx for the full model. (c) ω̃- εxx for
the microcracking only model. (d) ω̃- crack plane normal orientation for the full
model. (e) ω- crack plane normal for the microcracking only model.
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Figure 4.20: Results from numerical simulation of biaxial tension and shear (ten-
sion +ve). (a) σxx– εxx response. (b) ω̃- εxx for the full model. (c) ω̃- εxx for
the microcracking only model. (d) ω̃- crack plane normal orientation for the full
model. (e) ω- crack plane normal for the microcracking only model.

From the stress-strain curves (figures 4.18a, 4.19a, and 4.20a), the inclusion of

the transition to localised cracking can be seen to reduce the post-peak ductility.

In section 4.5, it was shown that this reduction in post-peak ductility gives more

realistic predictions of material behaviour. Figure 4.18b shows that the tensile-
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splitting mechanism, indicated by relaxation of lateral strain after localisation

to macrocracking, can be captured by the model in multi-axial stress states.

The effects of inclusion of the micro-macro transition can be seen in the damage

evolution profiles (figures 4.18c-f,4.19b-e and 4.20b-e). In all of the simulations,

once macrocracking is initiated in the micro-macro transition model, damage

growth of the microcrack planes in all directions slows down and eventually stops

whilst macrocrack damage continues to increase throughout the post-peak regime.
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Compressive paths

Figure 4.21: Results from numerical simulation of uniaxial compression
(compression+ve). (a) σxx– εxx response. (b) ω̃- εxx for the full model. (c)
ω̃- εxx for the microcracking only model. (d) ω̃- crack plane normal orientation
for the full model. (e) ω- crack plane normal for the microcracking only model.
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Figure 4.22: Results from numerical simulation of biaxial compression
(compression+ve). (a) σxx– εxx response. (b) ω̃- εxx for the full model. (c)
ω̃- εxx for the microcracking only model. (d) ω̃- crack plane normal orientation
for the full model. (e) ω- crack plane normal for the microcracking only model.

Figure 4.21 and Figure 4.22 show numerical simulations of uniaxial and biaxial

compression loading paths. Under uniaxial compression, the orientation angles α

and β of the macrocrack are 45° and 65° respectively. Under biaxial compression,

the orientation angles α and β of the macrocrack are 25° and 45° respectively.
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Figure 4.23: Average angle of the inclined shear bands from the major stress
from uniaxial compression tests by Kupfer et al. (1969) and approximation of the
inclination of the normal to the shear band from the direction of the major stress.

Similar to the tensile simulations, in the damage evolution profiles of compres-

sive paths (figures 4.21b-e and 4.22b-e) a transition to localised cracking upon

formation of macrocracks is also observed. Uniaxial compression tests of concrete

specimens were carried out by Kupfer (1973). Kupfer (1973) measured that the

average angle of the inclined shear bands from the major stress was approximately

30° for uniaxial loading. Based on the aforementioned tests, the orientation an-

gles β of the macrocracks or the orientation of the normal of the shear bands with

respect to the major stress should be approximately 60° (shown in Figure 4.23).

It can be observed from figures 4.21b and 4.21d that the orientation of β given

by the model is reasonable for uniaxial compression and the full model captures

well the characteristic response.

It may be observed that the proposed constitutive model predicts a biaxial/uniaxial

strength ratio significantly less than those observed in experimental tests e.g.

Kupfer et al. (1969). However, it should be noted that rough contact on micro

and macrocrack surfaces, shown to be a key mechanism for an accurate repre-

sentation of the characteristic response in compression (and shear) (Jefferson &

Bennett 2007, Mihai & Jefferson 2017), was not included in this work for expedi-

ency; the aim of this model is to accurately capture the crack localisation process

and the transition from diffuse/ distributed microcracking to localised macroc-

racking. Nevertheless, it is acknowledged that rough contact should be included

in order to capture the characteristic behaviour of cementitious composites in a



92
Chapter 4. Micromechanical constitutive model for crack localisation in

quasi-brittle materials

comprehensive manner and this will be the focus of future work.

4.7 Conclusions

A constitutive model for quasi-brittle materials that can capture the transition

from diffuse microcracking to localised cracking was proposed. Micromechanics

based solutions were used to model the elastic properties of a two-phase com-

posite, directional microcracking and the formation of localised cracks. Based on

lattice model simulations, macrocracks are initiated at the peak stress and their

effect on microcrack growth was modelled. The main findings of this work can

be summarised as following:

� Inclusion of the transition to localised cracking from diffuse microcracking

reduces the post-peak ductility of predictions of under tensile loading paths

when compared to when the transition is not included. The reduced post-

peak ductility is more realistic and agrees well with experimental data for

plain concrete.

� Modelling the transition from diffuse microcracking to localised macrocrack-

ing also significantly improves agreement of predictions from the constitu-

tive model to predictions from a more computationally expensive lattice

analyses.

� By allowing macrocracking planes to develop, the tension-splitting mecha-

nism is captured via relaxation of lateral strains. This mechanism is not

predicted when only microcracking is allowed for.

� The model predicts realistic orientations of the localised cracking plane(s)

under different loading conditions.

The addition of rough contact on microcrack and macrocrack surfaces to the

formulation, which will be the subject of future work, is expected to further

improve the capability of the model to capture the characteristic behaviour of

cementitious materials.
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Chapter 5

Extension of micromechanical

constitutive model to

fibre-reinforced cementitious

composites

5.1 Introduction

The model presented in this chapter is an extension of the constitutive model

presented in chapter 4. The current model aims to capture the crack-bridging

effects of fibre-reinforcement in cementitious composites using a micromechanics

based formulation.

The structure of this chapter is as following: section 5.2 describes the constitutive

model which is then followed by details of the numerical implementation in section

5.3. In section 5.4, the results of simulations of steel fibre-reinforced concrete are

given. The results are discussed in section 5.5 followed by conclusions drawn in

section 5.6.

5.2 Micromechanics based constitutive model

5.2.1 Model components

The micromechanical model presented in 4.3 is extended to include the influence

of randomly distributed short fibre-reinforcement as shown in Figure 5.1. It is

again assumed that the composite is a two-phase material and it is also assumed

that series of microcracks with the same orientation are equivalent to bands of

material, or ‘crack-planes’, containing these cracks. The crack-planes are bridged
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by the fibres as illustrated in Figure 5.2.

For details of the two-phase composite and directional microcracking components

of the model see sections 4.3.2, 4.3.3 and 4.3.4. The following sections detail

the fibre crack-bridging component of the model which is based on the work of

Mihai & Jefferson (2017). Note that some parts of the crack-bridging component

have been briefly described in section 3.4.2 but those details are repeated for

completeness.

The crack localisation mechanism, which is the main contribution of the author, is

detailed in section 5.2.4 for the proposed fibre-reinforced cementitious composite

model. Further new research such as the solution procedure for the proposed

mechanism and the predictions resulting from implementing the mechanism follow

on from section 5.2.4.
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Figure 5.1: The main model concepts. Adapted from Mihai & Jefferson (2017).

Figure 5.2: Schematic representation of a crack-plane containing microcracks.
Adapted from Mihai & Jefferson (2017).
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5.2.2 Fibre crack-bridging stress

Figure 5.3: Illustration of the fibre centroidal distance and the orientation angle.
Adapted from Li et al. (1991).

The stress that is transferred by the pull-out of fibres between two opposing faces

of a crack under normal opening displacements is the crack-bridging stress σcb.

When fibres are randomly distributed and oriented, the crack-bridging stresses

of individual fibres that bridge cracks can be summed to give the overall crack-

bridging stress based on the work of Li et al. (1991). The mathematical expression

is shown below in Equation 5.1.

In terms of the normal opening displacement w, σcb is given by:

σcb(w) =
Vf
Af

∫
φ

(∫
z

P (φ, z,Θ, b, w)p(φ)dφ

)
p(z)dz (5.1)

where Vf is the volume fraction of fibres, Af is the cross-sectional area of fibres,

φ is the orientation angle of fibres relative to the crack-plane and z is the fibre

centroidal distance from the crack-plane. See Figure 5.3.

P (φ, z,Θ, b, w) is the pull-out force of individual fibres. Θ and b are the sets of

properties that relate to the fibre material and geometric properties and the fibre-

matrix bond properties. p(φ) and p(z) are the probability density functions of the

fibre orientation and fibre centroidal distance from the crack-plane respectively.

For a uniform random distribution of fibres, p(φ) = sin(φ) and p(z) = 2/LF (Li

et al. 1991). The use of the probability density functions results in only those

fibres that cross a crack-plane being included in the integration. The limits of

integration account for the orientation and location of fibres such that fibres that

are debonding or slipping can be considered separately.

A choice of different fibre pull-out models (describing P (φ, z,Θ, b, w)) can be

incorporated into Equation 5.1. Following Mihai & Jefferson (2017), the proposed
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formulation of Lin & Li (1997) which incorporates the phenomenological slip-

hardening model of Bao & Song (1993) was used. The slip-hardening model

uses two parameters: τ0, which is frictional sliding shear stress at the tip of the

debonding zone before any slip has occured, and β, a non-dimensional hardening

parameter. The linear slip-hardening constitutive relation between the interfacial

shear stress τ and the interfacial slip S is:

τ = τ0

(
1 + β

S

df

)
(5.2)

where df is the fibre diameter.

In terms of the normal opening displacement w̃, σcb is given by:

σcb(w̃) = σ0f(w̃) (5.3)

where f(w̃) is defined by:

f(w̃) =


2
k

{[
1− 1

k
cosh−1

(
1 + λ w̃

w̃df

)]√(
1 + λ w̃

w̃df

)2

− 1 + λ
k
w̃
w̃df

}
0 ≤ w̃ ≤ w̃df(

1 +
βLf
2df

w̃
)

(1− w̃)2 w̃df < w̃ ≤ 1

0 w̃ > 1

(5.4)

and where:

w̃ =
w

Lf/2
σ0 = 0.5gsτ0Vf (1 + ηf )

Lf
df

k = ω
Lf
2df

λ = cosh(k)− 1 ηf =
VfEf

(1− Vf )E
ω =

√
4 (1 + ηf ) βτ0/Ef

w̃df =
wdf
Lf/2

wdf =
2df
β

(cosh(k)− 1) gs =
2

4 + fs
2

(
1 + eπfs/2

)
The first two cases of Equation 5.4 correspond to the debonding and pull-out

stages respectively. The third case corresponds to complete pullout of fibres from

the matrix. E is the elastic modulus consistent with the two-phase homogeni-

sation scheme, Ef is the Young’s modulus of fibres and LF is the fibre length.

Note that fs is a snubbing coefficient which takes into account the fact that as

the inclination of a fibre from the loading axis increases, the fibre pull-out force
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also increases. ωdf is the opening at the end of the debonding stage.

For the current model, it assumed that the debonding phase is linear elastic

and the pull-out stage is based on the non-linear solution by Lin & Li (1997).

Hence, in term of crack opening parameter ζf , the fibre crack-bridging stress, now

denoted as σB, is calculated by:

σB(ζf ) =


Edfζf 0 ≤ ζf ≤ εdf

σ0

(
1 +

βLf
2df

ζf
εpf

)(
1− ζf

εpf

)2

εdf ≤ ζf ≤ εpf

0 εpf < ζf

(5.5)

εdf and εpf represent the strain measure at the end of the debonding and pull-out

stage respectively and are defined as:

εdf =
ωdf
h

εpf =
Lf/2

h

and Edf is the effective elastic modulus of fibres that is given by:

Edf =
σ0

εdf

(
1 +

βLf
2df

εdf

)
(1− εdf )2 (5.6)

h is the width of the fracture process zone which is taken to be the maximum

size of the aggregate particles dmax.

5.2.3 Influence of fibres on microcrack planes

To capture the influence of crack-bridging by fibres, the local constitutive rela-

tionship is set as (dependencies have been dropped for clarity):

σL = (1− ω)C−1
L εL + ω(1− ωf )DLfεL (5.7)

where DLf is the local elastic stiffness given by the interface bond of fibres

prior to pull-out, assuming that fibres have negligible bending stiffness and that

debonding is a linear behaviour. ωf in the second term is an effective fibre

damage parameter. The effective fibre damage parameter describes the state of

crack-bridging by varying from 0 when no fibre pull-out has occurred to 1 when

pull-out of all fibres has been completed. The evolution of ωf is linked to the
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crack bridging stress via the following:

(1− ωf )Edfζf = σcb (5.8)

The evolution of the crack opening parameter is controlled by the following func-

tion (Mihai & Jefferson 2017):

Fζf (εL, ζf ) =
1

2

(
εLrr

2 +
√
εLrr2 + 4(εLrs2 + εLrt2)

)
− ζf (5.9)

where the conditions Fζf ≤ 0; ζ̇f ≥ 0; Fζf ζ̇f = 0 apply.

The inelastic strain of the microcrack planes εα is derived by removing the local

elastic strain component εLe from the local strain:

εα = εL − εLe = εL −CLσL (5.10)

Next, re-arranging Equation 5.7 for εL and substituting in the above gives:

εα = ([(1− ω)C−1
L + ω(1− ωf )DLf ]−1 −CL)σL (5.11)

To obtain the stiffness tensor Dmcf that takes into account microcrack damage

and crack-bridging by fibres on the microcrack planes, the same procedure that

was used to derive the microcrack damaged stiffness tensor (Equation 4.15 in the

previous chapter) is used. Note that εα from Equation 5.11 is substituted into

Equation 4.13.

Finally, Dmcf is derived as:

Dmcf =

(
I4s +

DmΩ

2π
·
∫ 2π

0

∫ π/2

0

Nε(θ1, θ2) : Cadd(θ1, θ2) : N (θ1, θ2) sin(θ1)dθ1dθ2

)−1

·DmΩ

(5.12)

where

Cadd = [(1− ω)C−1
L + ω(1− ωf )DLf ]−1 −CL (5.13)

5.2.4 Macrocracking

The following constitutive relationship gives the local stress σ̃(α, β) of the macro-

crack planes:
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σ̃(α, β) = (1− ω̃(α, β))CL
−1ε̃(α, β) + ω̃(α, β)(1− ω̃f (α, β))DLf ε̃(α, β) (5.14)

The above equation can be used to write the inelastic strain of macrocracks ε̂ in

terms of the macrocrack local strain. Removing the local elastic strain component

ε̃Le from the macrocrack local strain gives the inelastic macrocrack strain:

ε̂ = ε̃− ε̃Le = ε̃−CLσ̃ (5.15)

Note that dependencies have been dropped for clarity. Substitute σ̃ from Equa-

tion 5.14 into 5.15:

ε̂ = (I − M̃s −CLDLfM̃f ) : ε̃ (5.16)

where

M̃s = (1− ω̃)I M̃f = ω̃(1− ω̃f )I

As with the previous model, macrocrack growth is initiated at the peak stress

and the orientations of macrocracks under tensile loading conditions are based

on the major principal strain direction. Under compressive loading conditions,

the macrocrack orientations are based on the orientations which maximise the

effective strain parameter of macrocrack planes.

Evolution of the effective strain parameter ζ̃ and the damage parameter ω̃ for

macrocrack planes is based on equations 4.16 and 4.17 respectively. The variables

related to fibres are denoted using similar notation and are calculated based on

the equations provided in the preceding sections.

The crack-bridging stress σ̃B of macrocracks is given by the following:

σ̃B(ζ̃fi) =


Edf ζ̃fi 0 ≤ ζ̃fi ≤ εpf

σ0

(
1 +

βLf
2df

ζ̃fi
εpf

)(
1− ζ̃fi

εpf

)2

εdf ≤ ζ̃fi ≤ εpf

0 εpf < ζ̃fi

(5.17)

The effective strain parameter of macrocrack planes is denoted as ζ̃fi and is cal-
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culated according to Equation 5.18.

Fζ̃fi
(ε̃i, ζ̃fi) =

1

2
=

(
ε̃2
irr +

√
ε̃2
irr

+ 4(ε̃2
irs

+ ε̃2
irt

)

)
− ζ̃fi (5.18)

The evolution of the macrocrack effective fibre parameter ω̃f is given by:

(1− ω̃fi)Edf ζ̃fi = σ̃cb (5.19)

In the above three equations, the subscript i refers to the macrocrack plane.

Though the same governing functions have been used to account for crack-bridging

for microcracking and macrocracking, the expected characteristic behaviour is

captured. This is demonstrated and discussed in sections 5.4.2 and 5.5.

5.2.5 Overall constitutive relationship

Similarly to the model in the previous chapter, the overall constitutive relation-

ship is obtained by removing the inelastic strain of macrocracks from the average

strain:

σ̄ = Dmcf :

(
ε̄−

nsd∑
i=1

Nε(αi, βi) : ε̂i

)
(5.20)

the difference being that ε̂ is not given by Equation 4.22 but instead by Equation

5.16 which takes into account the effects of crack-bridging by fibres on the planes

of macrocracks.

5.3 Numerical implementation

The model is implemented in Mathcad following the same methodology that was

used for the plain concrete micromechanical model (described in section 4.4).

Again, McLaren’s 50 point rule for a sphere (Stroud 1971) is adapted for in-

tegrating over the surface of a sphere and the method of Hasegawa & Bažant

(1993) is used to generate consistent shear directions without directional bias.

To calculate ε̂, the staggered solution method shown in Algorithm 5 is used.

5.3.1 Staggered solution algorithm

The non-linear coupled equations that must be solved to calculate the inelastic

strain ε̂ now involve terms accounting for the effects of fibres:
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Algorithm 5: Algorithm to calculate the inelastic strain of macrocrack planes

(with fibres)

.Enter with the strain vector and set macrocrack plane parameters to initial

values or those from the previously converged step

ε̄; ε̃i = ε̃prvi

ζ̃i = ζ̃prvi ; ω̃i = ω̃prvi ; M̃si = M̃ prv
si

ζ̃fi = ζ̃prvfi
; σ̃Bi = σ̃prvBi

; ω̃fi = ω̃prvfi
; M̃fi = M̃ prv

fi
;

.Enter iteration loop of the staggered solution method

for iter = 1 to itermax do
.Calculate the matrix of derivatives and the stacked local error from the

first coupled equation using Algorithm 6

.Calculate the local crack plane strains and macrocrack plane variables

using Algorithm 7

.Calculate the stacked local error from the second coupled equation

using Algorithm 8

.Check if the error is within the required tolerance and exit if converged

if (|Ψα| < tolα) ∧ (|Ψβ| < tolβ) then
exit

end

.Exit the procedure and reduce the global step size if the maximum

number of iterations has been reached

if i == itermax then
exit

end

end
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Algorithm 6: Algorithm to calculate the matrix of derivatives and the

stacked local error from the first coupled equation (with fibres)

. Enter from Algorithm 5

. Loop over microcrack planes np

for i = 1 to np do

. Compute microcrack plane variables from equations 4.16, 4.17, 5.9,

5.5, 5.8 and 4.23

get ζi, ωi, ζfi , σBi , ωfi , εLi

. Compute the microcrack based stiffness and the corresponding local

stiffness matrix from Equation 5.12

get Dmcf , DL

end

. Loop over macrocrack planes nsd

for i = 1 to nsd do

. Calculate the stacked local error vector from Equation 5.21

get Ψαi

end

. Loop over macrocrack planes nsd

for i = 1 to nsd do

for j = 1 to nsd do

. Calculate the matrix of derivatives from Equation A.4

get BEi,j

end

end
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Algorithm 7: Algorithm to update the local crack plane strains and macro-

crack plane variables (with fibres)

. Enter from Algorithm 5

. Calculate the stacked local strain vector for macrocrack planes from

Equation 4.27

get δẼ

. Loop over macrocrack planes nsd

for i = 1 to nsd do

. Update local crack plane strains and calculate the macrocrack plane

variables from equations 4.16, 4.17, 5.18, 5.17 and 5.19

get ε̃i = ε̃i + δε̃i

get ζ̃i, ω̃i, M̃si , ζ̃fi , σ̃Bi , ω̃fi , M̃fi ε̂i

end

Algorithm 8: Algorithm to calculate the stacked local error from the second

coupled equation (with fibres)

. Enter from Algorithm 5

. Loop over macrocrack planes nsd

for i = 1 to nsd do

. Calculate the stacked local error vector from Equation 5.22

get Ψβi

end
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Ψαi = N (αi, βi) : Dmcf :

(
ε̄−

nsd∑
j=1

Nε(αj, βj) : (I4s − M̃sj −CLDLfM̃fj) : ε̃j

)
−DL · M̃si : ε̃i −DLf · M̃fi : ε̃i = 0

(5.21)

Ψβk = εLk−Nε (ψk, θk) :

(
ε̄−

nsd∑
j=1

Nε(αj, βj) : (I4s − M̃sj −CLDLfM̃fj) : ε̃j

)
= 0

(5.22)

Subscript i denotes the macrocrack plane number, subscript k denotes the micro-

crack plane number. See Equation 4.24 and Equation 4.25 for comparison with

the coupled equations for plain concrete. The inelastic strain which satisfied the

coupled equations satisfies the requirement for the total stress transformed onto

a macrocrack plane to be equal to the local stress of the macrocrack plane.

As with the previous formulation, the iterative update to the stacked local strain

vector 5.24 is found by equating the first coupled equation to zero and carrying

out a first-order Taylor’s series expansion 5.23:

0 =

[
Ψ1

Ψ2

]
+BE

[
dε̃1

dε̃2

]
(5.23)

[
dε̃1

dε̃2

]
= −B−1

E

[
Ψ1

Ψ2

]
(5.24)

where Ψ =


Ψα1

Ψα2

...

Ψαn


and the matrix of derivative BE is given by:

BK
E =

[
dΨ1/dε̃1 dΨ1/dε̃2

dΨ2/dε̃1 dΨ2/dε̃2

]K
(5.25)

Note that for the purpose of clarity, the Taylor’s series expansion and the subse-

quent derivations shown above are based on a system with two macrocracks. See

Appendix A for a detailed derivation of the matrix of derivatives.
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5.4 Simulations

5.4.1 Parameters

Table 5.1: Material parameters used for plain concrete in the simulations.

Em (GPa) EΩ (GPa) νm νΩ c1 q µ ε0 dmax (mm)
30 60 0.19 0.21 5 3.3 4.2 0.005 20

Table 5.2: Material parameters used for fibres in the simulations.

Fibre type Lf (mm) df (mm)∗ Ef (GPa) τ0 (MPa) βf fs
F1 30 0.542

200
2.5

0.1 0.75
F3 32 0.580 2.0

∗equivalent diameter.

Single point path simulations were carried out and compared to experimental data

from uniaxial tension tests of fibre-reinforced concrete by Meng et al. (2006). Two

types of steel fibres, denoted as type F1 and F3, from Meng et al. (2006) were

selected for comparison with predictions. F1 fibres are wire cut with a circular

cross-section and F3 fibres are snipped with a rectangular cross-section. Both

fibre types have hooked ends.

The behaviour of fibres in three different concrete mixes, namely C30, C60 and

C80, were investigated. The differences in the strength of the different mixes was

accounted for by setting the tensile strength ft to 1 MPa, 2 MPa and 2.6 MPa

for mixes C30, C60 and C80 respectively.

See Table 5.1 for the material parameters used for plain concrete in the simu-

lations. Parameter c1 was adjusted to tune the predictions from the model to

the experimental results. For the material parameters used for the fibres in the

simulations, see Table 5.2. The cases of F1 fibres in C60 concrete and F3 fibres in

C30 concrete were used for calibration of τ0 and βf . τ0 and βf were tuned using

the procedure described in Lin & Li (1997).

For each of the concrete mixes, the cases studied include plain concrete, rein-

forcement with F1 fibres at a volume fraction Vf= 1% and reinforcement with F3

fibres at volume fraction Vf = 0.5%, 1% and 1.5%.

5.4.2 Results

The results of the simulations are shown in figures 5.4 - 5.9. Figures 5.4, 5.6, 5.8

and 5.10 show the results of simulations of the plain concrete mixes and also of
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the mixes reinforced with F1 fibres. Figures 5.5, 5.7 and 5.9 show the results of

simulations for the concrete mixes reinforced with F3 fibres.

Figure 5.4: σxx − εxx response from numerical simulations compared to experi-
mental data from Meng et al. (2006). (a) Plain C30 concrete. (b) Vf = 1% F1
fibre-reinforced C30 concrete.

Figure 5.5: Comparison of σxx−εxx response of C30 concrete reinforced with dif-
ferent volume fractions of F3 fibres from numerical simulations and experimental
data from Meng et al. (2006).
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Figure 5.6: σxx − εxx response from numerical simulations compared to experi-
mental data from Meng et al. (2006). (a) Plain C60 concrete. (b) Vf = 1% F1
fibre-reinforced C60 concrete.

Figure 5.7: Comparison of σxx−εxx response of C60 concrete reinforced with dif-
ferent volume fractions of F3 fibres from numerical simulations and experimental
data from Meng et al. (2006).
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Figure 5.8: σxx − εxx response from numerical simulations compared to experi-
mental data from Meng et al. (2006). (a) Plain C80 concrete. (b) Vf = 1% F1
fibre-reinforced C80 concrete.

Figure 5.9: Comparison of σxx−εxx response of C80 concrete reinforced with dif-
ferent volume fractions of F3 fibres from numerical simulations and experimental
data from Meng et al. (2006).
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Figure 5.10: Evolution of the crack opening parameter from the simulation with
F1 fibres in C30 concrete. The strain at the end of the debonding phase, or the
start of the pull-out stage, is marked.

5.5 Discussion

The predictions, based on a single set of parameters, from the constitutive model

agree well with the experimental data presented - see Figures 5.4 to 5.9. The

characteristic shape of the experimental curves is captured as well as the the

increase in strength and toughness with the increase in VF . For the majority of

cases the magnitude of the peaks stress also agrees with the data. The deviation

from the experimental results, e.g. for Vf = 1% F1 fibres in C30 concrete, can be

addressed by calibrating τ0 and β to account for the improvement in fibre-matrix

properties with increasing concrete strength. However, for the current study an

emphasis is placed on demonstrating that realistic behaviour can be predicted

using a single set of parameters.

Figure 5.10 shows that prior to crack localisation, the microcracking stage is dom-

inated by fibre debonding rather than fibre pull-out. Once crack localisation has

occurred and a macrocrack has developed, the debonding stage is completed and

fibre pull-out occurs. According to Choi et al. (2016), once a macrocrack forms

in a fibre-reinforced cementitious composite, the tensile behaviour is determined

by the pull-out of fibres. Hence, the predicted behaviour agrees well with the

expected behaviour.
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Figure 5.11: Effect of varying Vf on the predicted stress-strain response of C30
concrete reinforced with F1 fibres.

In addition to being able to predict realistic behaviour, unlike phenomenological

models, the formulation uses parameters with physical meaning to simulate the

effects of fibres. τ0 and β can be determined from an experimental single fibre

pull-out P-δ (pull-out force - pull-out distance) curve using the procedure detailed

in Lin & Li (1997).

Whilst the current chapter is focused on extension of the plain concrete model

with the new mechanism for crack localisation to fibre-reinforced composites, it

should be noted that future work could explore simulation of the strain-hardening

phenomena. The governing functions for crack-bridging by fibres used in the

present work are capable of modelling strain-hardening as demonstrated by Mihai

& Jefferson (2017). A brief parametric study where the volume fraction of F1

fibres in C30 concrete is varied is shown below in Figure 5.11. Strain hardening

behaviour is observed at higher volume fractions of fibres.

Another possible avenue for future work is the implementation of the mechanism

of straightening of the hooked-ends of the fibres. According to Abbas & Khan

(2016), typical fibre pull-out load-end slip curves for hooked end steel fibres show

that after the ultimate pull-out load has been achieved, the pull-out behaviour

can be broken down into three stages. The three stages are: pull-out softening im-

mediately after the ultimate pull-out load, pull-out hardening due to the pull-out

of the hooked-ends which partially straighten and frictional pull-out. Although
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the current model does include a mechanism linked to slip-hardening, the model

does not allow for the partial straightening of hooked-end fibres. Note that the

constitutive relationship for the crack-bridging stress is based on the work of Lin

& Li (1997) which is focused on the behaviour of synthetic fibre/cement matrix

systems.

5.6 Conclusions

A micromechanical constitutive model for fibre-reinforced cementitious compos-

ites was developed by extending the model for plain concrete (or more generally

quasi-brittle materials) described in chapter 4. The underlying crack-bridging

mechanism of short fibres was implemented in the model. The work can be sum-

marised as following:

� Single point path simulations carried out using the proposed model show

that realistic behaviour can be predicted using a single set of material pa-

rameters. The simulated behaviour agreed well with experimental data.

� The model is able to capture the main characteristic behaviour resulting

from the addition of fibre-reinforcement - the characteristic shape of the

stress-strain response, the increase in tensile strength and toughness with

increasing volume fractions of fibres and the pull-out of fibres after the

development of macrocracks.

� Unlike phenomenological models, the current model uses parameters with

physical meanings to model crack bridging by fibres. Two input microme-

chanical parameters which can be determined from experiments are used to

simulate the effects of fibre-reinforcement.

� The behaviour of strain-hardening composites can be modelled.
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Chapter 6

Micromechanical plastic-damage

constitutive model

6.1 Introduction

As mentioned in section 3.2, using a micromechanical damage approach, such as

the models presented and successfully applied in the previous two chapters, is not

suitable for describing inelastic deformation. On the other hand, models based on

plasticity are able to capture inelastic deformations but they lack the capability to

predict the degradation of stiffness. Models based on combining the approaches in

a single formulation address this issue by relating damage to deformation. As the

failure of concrete is characterised by both permanent deformations and stiffness

degradation (Grassl & Jirásek 2006), models formulated using a plastic-damage

approach are better able to capture the characteristic behaviour of concrete than

models formulated using a damage only or plasticity only approach. This chapter

presents a micromechanical plastic-damage model for concrete which simulates

the development of crack-planes.

The structure of this chapter is as follows: section 6.2 describes the components

of the constitutive model and section 6.3 describes the implementation of the

model using the closest point projection (cpp) approach. Section 6.4 focuses on

the sensitivity of the constitutive model to key parameters. In section 6.5 the

results of numerical simulations are given, followed by a discussion of the results

in section 6.6 and conclusions in section 6.7.



114 Chapter 6. Micromechanical plastic-damage constitutive model

Figure 6.1: Split of the crack-plane stress into a damaged and undamaged com-
ponent.

6.2 Model components

The micromechanical plastic-damage model is based on modelling crack-planes,

each represented by a local plastic yield surface. Stresses on the crack-planes s

are divided into undamaged (elastic) su and damaged components sD with the

plastic yield surface being applicable to the damaged stress components. Note

that su and sD are defined later in equations 6.10 and 6.11 respectively. The

micromechanics based effective strain ζ and damage parameter ω, discussed in

chapter 4, are used to control the proportion of undamaged to damaged stress as

shown in Figure 6.1. α is a contact reduction parameter, detailed in section 6.2.7,

which is introduced to take into account the reducing potential for the transfer

of stress between crack faces with increasing crack opening.

In the formulation of the model, the overall strain ε is split into recoverable and

plastic contributions from the crack-planes as shown in Figure 6.2.

The following sections detail the components of the micromechanical plastic-

damage model which are based on the work of Jefferson (2002), Mihai & Jefferson

(2015), Jefferson et al. (2016). Details of the micromechanical damage component

have previously been provided in section 4.3.4. The novel component of the work

is the use of a static constraint which sets the requirement that the total stress

transformed onto a crack-plane is equal to the stress on the crack-plane. The use

of this constraint allows for interactions between the crack-planes. The use of the

static constraint in the stress recovery computations is detailed in Appendix C.

6.2.1 Hoek-Brown failure envelope

A local yield function formulated by Jefferson (2002) is adopted. The yield func-

tion is an approximation of the local form of the Hoek-Brown function:
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Figure 6.2: Split of the total strain into elastic and inelastic components.

(
τ

ru

)3/2

+ σn − ft = 0 (6.1)

where σn and τ are the normal and shear stresses of the local-planes respectively.

The tensile strength is denoted as usual by ft. The yield surface corresponding to

Equation 6.1, and shown in Figure 6.3, can be set to match the Hoek-Brown func-

tion at peak uniaxial compression fc by calculating the cohesion-friction factor

ru as following Jefferson (2002):

ru =
τc

(ft − σnc)
2/3

(6.2)

where:

τc =
fc
2

√
1− cos2(2αc) (6.3)
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Figure 6.3: Local Hoek-Brown yield surface.

σnc =
fc
2

(1 + cos(2αc)) (6.4)

cos(2αc) =
1

1 + 4 ft
fc

(6.5)

The normal to a crack-plane is defined by:

r = Tp

[
cos(α) 0 sin(α)

]T
(6.6)

in the principal plane I-III. Tp is a 3x3 transformation matrix for principal to

Cartesian axes. The rows of the matrix correspond to the eigenvectors of the

principal axes. 2α is the angle of the normal from the direction of the major

principal stress and is given by:

sin(2α) =
−2rf

3

9R
+

√(
2rf 3

9R

)
+ 1 (6.7)

where R = 1
2
(σ1−σ3). See Appendix B for a summary of the Mohr’s circle based

proof of this equation.

6.2.2 Constitutive relationship

The overall constitutive relationship is given by removing the sum of the inelastic

crack-plane strains ε̂ from the total strain ε:
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σ = D

(
ε−

ntotal∑
i=1

Nεi
T ε̂i

)
(6.8)

where ntotal is the total number of crack-planes.

As shown in Figure 6.1, the crack-plane stress s is divided into an undamaged, or

elastic, component su and a damaged component sD giving a crack-plane stress

of the following form:

s = (1− ω)Isu + αωIsD (6.9)

where:

su = DLε̃ (6.10)

sD = DL(ε̃− ep) (6.11)

ep is the plastic strain resulting from application of the plastic yield surface to

sD and ε̃ is used to denote the local strain of the crack-plane.

As the crack-plane strain ε̃ can be divided into an elastic component εe and

in-elastic component ε̂:

ε̃ = εe + ε̂ (6.12)

the inelastic crack-plane strain component can be obtained by removing the elastic

component from the total strain as follows:

ε̂ = ε̃− εe = ε̃−CLs (6.13)

Substituting for s from Equation 6.9 into Equation 6.13 and re-arranging for ε̂

gives:

ε̂ = [I − (1− ω)I − αωI] ε̃+ αωIep (6.14)

Now, by substituting Equation 6.14 into Equation 6.8, the constitutive relation-

ship can be written as shown below.
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σ = D

(
ε−

ntotal∑
i=1

Nεi
T [I − (1− ωi)I − αiωiI] ε̃+Nεi

T [αiωiI] ep

)
(6.15)

6.2.3 Local yield and plastic potential functions

The local yield function and plastic potential apply only to the damaged compo-

nent of the local stress sD. The yield function is given by (Jefferson 2002):

F (sD, rf , fs) = sDr +

(√
sDs

2 + sDt
2

rf

)3/2

− fs = 0 (6.16)

where the conditions ru ≥ rf ≥ ri apply. The variable rf and the parameter ri

are detailed in section 6.2.5. fs is the current tensile strength. See Figure 6.4.

Figure 6.4: Local Hoek-Brown yield surface.

Similarly, the plastic potential is given by (Jefferson 2002):

G(sD, rψ, fs) = sDr +

(√
sDs

2 + sDt
2

rψ

)3/2

− fs = 0 (6.17)

where rψ is a dilatancy variable. Note that rf and rψ have units of the cube root

of stress.
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6.2.4 Tensile strength

Separate directional κD and isotropic κI plastic hardening variables are used in

order to model hardening and softening effects due to tensile and compressive

stress states respectively. Consequently, tensile strength reduction can be im-

plemented using functions that best fit the characteristic behaviour under the

corresponding stress states - see Figure 6.5 generated using the parameters in

Table 6.1. Some of these parameters are defined later in the sections that follow.

To model tensile strength reduction, fs in equations 6.16 and 6.17 is replaced by

fD (Jefferson 2002):

fD = fIe
−ρD

(
κD
κDm

)
(6.18)

where

fI = ft

(
ρf (1− ηI)

(ρf − 1) (1− ηI) + 1

)
(6.19)

and ρf is the roughness hardening factor, ρD is the directional softening factor

and ηI =
κI−κIp
κIm−κIp

. κDm is the value of the directional plastic parameter at the

end of directional hardening. The value of the isotropic plastic parameter at peak

hardening κIp is calculated as κIp = εc − fc
E

where εc is the strain at the peak

uniaxial compressive strength. κIm is the value of the isotropic plastic parameter

at the end of isotropic hardening and is set as 5εcm.

Figure 6.5a, shows that the incorporation of tensile strength reduction is a major

component of the model for simulating tensile behaviour. Under compressive

loading, the hardening softening variable rf plays a more significant role.

Table 6.1: Material parameters used to generate the curves shown in Figure 6.5.

Em (MPa) ν ft (MPa) fc (MPa) εc εcm εtm c1 ρf ρD

37,000 0.18 2.4 30 0.0022 0.01 0.005 12 5 1
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Figure 6.5: (a) Typical uniaxial tension stress-strain curve given by model with
and without tensile strength reduction implemented. (b) The tensile strengths
corresponding to (a). (c) Typical uniaxial compression stress-strain curve given
by model with and without tensile strength reduction implemented. (d) The
tensile strengths corresponding to (c).

6.2.5 Pre-peak hardening and post-peak softening

To model pre-peak hardening and post-peak softening under compressive loading,

rf in the local yield function 6.16 is given by:

rf = ri + (ru − ri)hf (6.20)

where ri = 0.7ru and hf is the hardening softening parameter give by:

hf = ma

(
mr

ma

+ e
−c11

(
κI
κIp

))(
1− e

−c22
(
κI
κIp

))
(6.21)
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The hardening softening function curve is illustrated in the figure below. The

ability of the function, shown in Figure 6.6, to match the characteristic shape of

pre-peak hardening and post-peak softening of concrete under uniaxial compres-

sion loading is demonstrated later in Figure 6.10 in section 6.5. The constants mp

and mr define the peak and residual values of the hardening function respectively.

The constants are fixed as mp = 1 and mr = 0.1.

c11 is a constant that is fixed as 1. The constants c22 and ma are calculated

iteratively as shown in Algorithm 9.

Figure 6.6: Plots showing the evolution of (a) the hardening softening parameter
hf and (b) the hardening softening variable rf .
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Algorithm 9: Iterative process for calculating the constants c22 and ma

. Guess c22 and ma

e.g. c22 = 0.5 ; ma = 1

. Enter iteration loop

while iter = 1 to itermax do

. Calculate γ1

γ1 = c11ma
c22mr+(c11+c22)mae−c11

. Update c22

c22 = c11 − ln(γ1)

. Update ma

ma =
mp−mr(1−γ1e−c11)
e−c11(1−γ1e−c11)

. Exit loop when the change in c22 and ma is less than the tolerance

if δc22 ≤ tol; δma ≤ tol then
exit

end

end

6.2.6 Plastic parameters

Two plastic hardening parameters are used to describe the evolution of the local

yield surfaces. As shown in the previous sections, using two hardening parameters

allows for characteristic hardening and softening effects under tensile and com-

pressive stress states to be captured using separate functions that best represent

the behaviour under that particular stress state.

Compressive stress states contribute to hardening of all local yield surfaces via

the isotropic plastic parameter κI defined by (Jefferson 2002):

κI =

∫
t

κ̇I (6.22)

and

κ̇I =

ntotal∑
i=1

(
1− β(sDi)

χ(sDi)

)√
ėp

T
i ėpi (6.23)

where the subscript i represents the yield surface corresponding to crack-plane i,

β is the directional-isotropic transition function and χ is the ductility function. β
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and χ are described below. For each yield surface i, hardening due to tensile stress

states is captured via the directional plastic parameter κD defined by (Jefferson

2002):

κDi =

∫
t

κ̇Di (6.24)

and

κ̇Di = β(sDi)
√
ėp

T
i ėpi (6.25)

The directional-isotropic transition function β is used to divide the contributions

to yield surface hardening between the isotropic plastic parameter and the direc-

tional plastic parameter. The function is given by:

β = 1−

(
sDr/

√
sDr

2 + sDs
2 + sDt

2

(0.9σnc)/
√
σnc

2 + τc2

)
(6.26)

When in a state of pure tension, β takes the value of 1. In states of pure com-

pression, β takes the value of 0. Between the two extremities of tension and

compression, β transitions between 1 and 0.

To account for the fact that ductility increases with increasing confining pressure,

the ductility function χ, shown in Equation 6.27, is used in Equation 6.23.

χ = −1.75
sDr√

sDs
2 + sDt

2
(6.27)

With overdots denoting derivatives with respect to time, the flow rule is given

by:

ėpi =
∂G

∂sDi
λ̇i (6.28)

6.2.7 Contact reduction

The contact reduction parameter (Mihai & Jefferson 2015), calculated via Equa-

tion 6.29 below, represents the reducing potential for stress transfer between crack

faces with increasing crack opening. Stress transfer across a total nc of 2 material

phases is modelled. Figure 6.7 shows the effect of the contact reduction function

on the ductility of the post-peak response.
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p1 and p2 represent the proportion of stress transfer across two different aggregate

phases (i.e. two asperity heights are considered) and must sum to 1. c1 and c2

are the associated material parameters.

α =
nc∑
i=1

pie
−
(
ε̃r−εk
ciεm

)
(6.29)

From Equation 6.29, the stress transfer across two different aggregate phases

decreases according to an exponential softening function. εk = akεt is the strain

below which there is no loss of contact between crack faces. ak is a constant,

taken to be 1.35 based on typical values from Jefferson et al. (2016). εm is the

effective end of the contact reduction curve and is set to be equal to the effective

end of tension softening.

As explained in Mihai & Jefferson (2015), the parameters pi and ci should ideally

be determined from shear tests on cracked concrete specimens. However, for the

present model, the material parameters are set as p1 = p2 = 0.5, c1 = 1 and

c2 = 2.

Note that in Mihai & Jefferson (2015), stress recovery due to rough crack faces

coming into contact when cracks close and under combinations of shear and open-

ing displacements was modelled. The contact reduction function 6.7 was used in

Mihai & Jefferson (2015) to represent the reducing potential for shear transfer

across a crack-plane as the crack-plane opening increased.

Figure 6.7: The effect of contact reduction on the (a) typical uniaxial tension
stress-strain curve and (b) typical uniaxial compression stress-strain curve.
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6.2.8 Dilatancy

In a compressive stress state, volumetric dilation is observed. To model this

behaviour, rf in the yield function 6.16 is replaced by the dilatancy parameter

rψ giving the plastic potential 6.17. Subsequently, the evolution of plastic strains

is decoupled from the gradient of the yield function and coupled to the gradient

of the plastic potential, i.e. a non-associated flow rule is used. A form of rψ is

chosen such that the evolution of plastic strains simulates volumetric dilation.

The dilatancy parameter is given by (Jefferson 2002):

rψ =

(
ψ0 + (ψm − ψ0)

κI
2κIm

)
ru (6.30)

where the constant ψ0 = 0.25 and ψm = 0.001.

When in a tensile stress state, the dilatancy parameter is equal to the friction-

cohesion constant i.e. rψ = ru. .

6.3 Solution algorithm

This section describes the solution algorithm of the model which is based on

the closest-point projection method. In the following sections, δ will be used to

denote differential quantities and ∆ will be used to denote the total change of

variables since the last converged state. “Active” crack-planes, the total number

of which is given by nactive, refers to the crack-planes for which the stress has

exceeded the elastic limit (∆λ > 0). Likewise, crack-planes for which the stress

has not exceeded the elastic limit are denoted as being “non-active”.

6.3.1 Stress recovery computations

Derivations for the stress recovery procedure are provided in Appendix C. Based

on the derivations, the coupled equations can be solved iteratively via Algorithm

10.

Algorithm 14 is used to carry out the stress recovery procedure. The algorithm

consists of two main parts.

In the first part of the algorithm, all cracks are initially assumed to be plastically

active. A single iterative update of the crack-plane variables is made using Algo-

rithm 10. If the incremental plasticity multiplier is negative this indicates that

a crack-plane initially assumed to be plastically active is not plastically active.

The crack-plane with the smallest value of the incremental plasticity multiplier

is “de-activated” if appropriate. This process is repeated until there is no change
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in the total number of active crack-planes or if there are no active crack-planes.

The second part of the algorithm is dependent on whether there are any active

crack-planes. If there are no active crack-planes, a simple iterative method is

used to solve the static constraint condition. When there are active cracks, Al-

gorithm 10 is used to solve the coupled equations. In addition, there are checks

to determine whether crack-planes were correctly guessed to be active in the first

part of the algorithm.

Algorithm 10: Iterative solution of coupled equations

.Enter from stress recovery algorithm with strain and crack-plane variables

ε, ε̃, εp, κD, κI , ζ, rd, sd, td, nactive

.Initialise total change of variables since the last converged state

∆λ = 0, ∆κI = 0, ∆κD = 0, ∆ep = 0

.Enter iterations loop

for iiter = 1 to limiters do
.Calculate the crack-plane variables, stress and conditions from

Algorithm 11

.Calculate the derivatives matrix and residuals matrix from Algorithm 12

.Solve for local strains and update variables using Algorithm 13

.Calculate the crack-plane variables, stress and conditions from

Algorithm 11

.Exit loop if the conditions are within tolerances

if (F < tol) ∧ (ψ < tol) ∧ (Rε < tol) ∧ (RD < tol) ∧ (Ri < tol) then
. Exit

end

end

Algorithm 11: Calculation of crack-plane variables, stress and conditions

. Enter from Algorithm 10

. Calculate the crack-plane variables, stress and conditions from equations

4.16, 4.17, 6.29, 6.26, 6.27, 6.11, C.1, C.2, C.3, C.5, 6.15, C.4

For all crack-planes calculate: ζ, ω, α, β, χ, sD F , ψ, Rε, RD

Calculate σ , Ri
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Algorithm 12: Calculate derivatives matrix and residuals matrix

. Enter from Algorithm 10

. Calculate derivatives matrix and residuals matrix from equations C.47,

C.37, C.52

Calculate ME, bE, Mλ, bλ2

Calculate Ξ, Γ

Algorithm 13: Solve for local strains and update variables

. Enter from Algorithm 10

. Solve Equation C.52 for local strains

Solve Γ = ΞδΛ for δΛ

Calculate δλ; δε̃

. Update differential quantities from equations C.39, C.31, C.11, C.10, C.6

Calculate δσ, δsD, δep, δκD, δκI

. Update total change of variables

∆ep = ∆ep + δep, ∆κD = ∆κD + δκD, ∆κI = ∆κI + δκI

∆λ = ∆λ+ δλ

. Update crack-plane variables

ε̃ = ε̃+ δε̃, ep = ep + δep, κD = κD + δκD, κI = κI + δκI
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Algorithm 14: Stress recovery algorithm

. Enter algorithm from constitutive driver

. Initially assume all crack-planes to be plastically active (i.e. local yield

function = 0)

. Enter crack formation loop

for iloop = 1 to limlogic do

. Perform 1 iteration of solving the coupled equations

. Check if the smallest value of the plastic incremental multiplier is

negative and if so make the associated crack-plane not active and reset

variables

. Exit if there is no change in the number of active crack-planes or if

there are no active cracks

end

. Enter main loop if there is at least one active crack-plane

if number of active cracks > 0 then

Enter negative incremental placitiy multiplier loop

for inegativecheck = 1 to nactive do

. Iteratively solve the coupled equations

. Check if the smallest value of the plastic incremental multiplier is

negative and if so make the associated crack-plane not active and

reset variables

. Exit if there is no change in the number of active crack-planes or if

there are no active cracks

end

end

. If there are no active cracks, enter if logic

if number of active cracks = 0 then

. Iteratively solve only the static constraint condition

end

. Exit and return to constitutive driver
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6.3.2 Consistent tangent

The derivation of the consistent tangent is detailed in Appenix D. From the

derivation, the consistent tangent can be calculated using Algorithm 15.

Algorithm 15: Calculation of the consistent tangent

. Enter with strain and crack-plane variables and the total change of

variables since the last converged state

ε, ε̃, εp, κD, κI , ζ, rd, sd, td, nactive

∆λ, ∆κI , ∆κD, ∆ep

. Calculate the crack-plane variables and stress from equations 4.16, 4.17,

6.29, 6.26, 6.27, 6.11, 6.15

For all crack-planes get: ζ, ω, α, β, χ, sD

Calculate σ

. Calculate matrices needed for the consistent tangent using equations

D.15, D.12, D.23, D.24

Calculate Ac, B2m, Xm, Ym

. Calculate the consistent tangent from Equation D.26

Calculate

Dtan = AC +AC

[
N1

T · · · Nntotal
T
]

[B2m] [Xm]−1 [Ym]
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6.4 Sensitivity to key parameters

Figure 6.8 shows the sensitivity of the model to key model parameters. The

material parameters in Table 6.1 were used to generate the results. Predictions

from the model are as expected with variations in the key parameters.

In the previous section the sensitivity of the predictions to the various components

of the formulation was demonstrate - see figures 6.5 and 6.7. Note that the effects

the chosen function for pre-peak hardening and post-peak softening (section 6.2.5)

are concentrated in the region of peak load.

Figure 6.8: (a) Uniaxial tension predictions considering variations in the ten-
sile strength (tension + ve). (b) Uniaxial compression predictions considering
variations in the cohesion-friction factor. (c) Normalised σxx-volumetric response
under uniaxial compression considering variations in the dilatancy parameter.
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6.5 Single-point path simulations

6.5.1 Numerical implementation

The current model was implemented in a Mathcad sheet using a constitutive

driver algorithm which allowed for mixed stress/strain paths to be applied. The

driver was based on the Newton-Raphson method.

The maximum allowable iterations for the solution of the coupled equations

(limiters in Algorithm 10) and the Newton-Raphson method was set to be 100.

The maximum number of iterations encountered was significantly less than the

maximum permitted for most cases. The tolerance for the conditions, tol in Al-

gorithm 10, was set as 10−8. 10−6 was set for the maximum value of relative error

of out of balance stress (i.e. the norm of the total applied stress divided by the

norm of the norm of the out of balance stress).

6.5.2 Parameters

To demonstrate the capability of the micromechanical plastic-damage model to

predict the characteristic behaviour of concrete, numerical simulations were car-

ried out. All of the simulations use a single set of input parameters that are shown

below in Table 6.2. The maximum size of coarse aggregate particles dmax is taken

to be 10 mm and is assumed to be the characteristic length. Deformations are

related to the predicted strains via this characteristic length.

Table 6.2: Material parameters used for the micromechanical plastic-damage
model simulations.

Em (MPa) ν ft (MPa) fc (MPa) εc εcm εtm c1 ρf ρD

37,000 0.18 2.4 30 0.0022 0.01 0.008 12 5 1

6.5.3 Results

The results of the numerical simulations are shown in figures 6.9 to 6.11. ftult

is the ultimate (peak) uniaxial tensile strength and is equal to 3.7 MPa. ftri is

consistent with the maximum compressive stress state in a triaxial test i.e. the

minor principal stress in a tension +ve convention.

In Figure 6.9a and 6.9c, uniaxial tension simulation results are compared to ex-

perimental data by Reinhardt (1984) and Hordijk (1991). The corresponding

lateral strain response is shown in Figure 6.9b.



132 Chapter 6. Micromechanical plastic-damage constitutive model

Figure 6.10a compares the results of uniaxial and biaxial compression to ex-

perimental data by Kupfer et al. (1969). The corresponding volumetric strain

response is shown in Figure 6.10b.

The third figure, Figure 6.11, shows a comparison of triaxial behaviour under

varying cell pressures. In Figure 6.11a, the axial stress at varying levels of

cell pressure is plotted against the applied strain. In Figure 6.11b, the triax-

ial strength is plotted for various cell pressures and the results are compared to

those from an empirical function by Newman (1979).

To illustrate that the consistent tangent formulated gives quadratic convergence,

an example convergence history is given in Figure 6.12.
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Figure 6.9: Results from numerical simulation of uniaxial tension (tension +
ve) compared to experimental results from (a) Reinhardt (1984) and (c) Hordijk
(1991). The numerical predictions of the stress-lateral strains are shown in (b).
The convergence history corresponding to the point marked in (a) is shown on
Figure 6.12.
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Figure 6.10: Results from numerical simulation of uniaxial and biaxial compres-
sive paths compared to experimental results from Kupfer et al. (1969). (a) Nor-
malised σxx − εxx response (compression +ve). (b) Normalised σxx− volumetric
strain response (tension +ve).
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Figure 6.11: Results from numerical simulations of triaxial confinement paths
with varying cell pressure. (a) Normalised axial stress −εxx response (compres-
sion +ve). (b) Normalised triaxial confinement strength predictions compared to
Newman (1979) at varying levels of cell pressures.
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Figure 6.12: Example convergence history corresponding to a xx-displacement of
34.8 µm in Figure 6.9a. The corresponding displacement is marked on Figure
6.9a with a black circle.

6.6 Discussion

Generally, the predictions show that the micromechanical plastic-damage model

is able to capture the characteristic behaviour of concrete. Results from simu-

lating uniaxial paths especially agree well with experimental data including the

dilatant behaviour observed under uniaxial compression. Like the previous mi-

cromechanical damage models presented in the earlier two chapters, the current

model also predicts relaxation of lateral strains following the peak uniaxial stress.

Reversal of lateral strains immediately after cracking has been shown by experi-

mental data for uniaxial tests of reinforced concrete panels and is indicative of a

tensile-splitting mechanism (Vecchio & DeRoo 1995).

The biaxial model underestimates the biaxial strength of concrete under compres-

sion. As discussed previously in Chapter 4, rough contact between crack faces

should be included in the model as it is a key mechanism for representing the

characteristic response under compression. The implementation of rough crack

contact will be the focus of future work. However, whilst the biaxial strength is

underestimated, the model improves upon the previous micromechanical damage

model for plain concrete where the ratio of biaxial to uniaxial strength was less

than 1.

Predictions for triaxial confinement paths considerably improve upon those from
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the micromechanical damage only model albeit slightly underestimating the strength.

As discussed previously in the context of the micromechanics based damage mod-

els, the inclusion of rough contract on crack surfaces is necessary to correctly pre-

dict compressive behaviour (Jefferson & Bennett 2007, Mihai & Jefferson 2017).

It is also possible to improve the triaxial strength predictions by adjusting the

slope of the Hoek-Brown yield surface.

6.7 Conclusions

A constitutive model formulated using a micromechanical plastic-damage frame-

work was proposed and was found to successfully predict the characteristic be-

haviour of concrete. The formation of crack-planes subject to local yield surfaces

was modelled using two separate hardening variables for isotropic and directional

behaviour. The conclusions of the work can be summarised as follows:

� Predictions from the model agree well with experimental data - this is es-

pecially true for uniaxial loading paths. The triaxial performance of the

model is considerably better than the microcracking damage only model.

� The model simulates the permanent strains that develop when concrete

cracks and crushes. These strains are not simulated in the previous models.

� Like the models in the previous chapters which were formulated using a

damage only approach, the current model is also able to capture the tensile-

splitting mechanism. This mechanism was not captured using the direc-

tional microcracking only models that this series of work builds on.

Compressive strength is underestimated under biaxial loading and triaxial con-

finement however the predictions are an improvement over previous models and

there are solutions available which can be implemented in future work.
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Chapter 7

Finite element implementation of

the micromechanical

plastic-damage model

7.1 Introduction

The micromechanical plastic-damage model described in chapter 6 was imple-

mented in the commercial finite element package LUSAS. The package contains a

material model interface through which the constitutive model was implemented

using the Fortran programming language. Example finite element simulations

were carried out and the results compared to experimental data.

The structure of this chapter is as follows: section 7.2 gives a summary of the key

theory used to implement the constitutive model. This is followed by example

finite element simulations in sections 7.3 and 7.4. Finally, conclusions are made

in section 7.5.

7.2 Implementation of the constitutive model

7.2.1 General theory

Many textbooks are available which cover the finite element method in detail

e.g. De Borst et al. (2012), Owen & Hinton (1980) and Zienkiewicz et al. (2014).

However, for the sake of completeness, a summary of the key equations of the

finite element method is shown on the pages that follow. An illustration of how

the constitutive model is implemented in a generic formulation of finite element

code is given in Figure 7.1 making references to the key equations and to the

algorithms given in the previous chapter.
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The governing system of equations can be derived using a virtual work approach.

Inside a domain Ω ∈ R2 with boundary Γ the total virtual work δΠ is given as

(Owen & Hinton 1980, Bower 2009):

δΠ =
∫

Ω
δε : σdΩ−

∫
Ω
δu : FBdΩ−

∫
δΩ
δu : FδΩdδΩ = 0 in Ω

u = uD on ΓD

~n · σ = tD on ΓN

(7.1)

ΓD and ΓN denote the boundaries with prescribed displacements uD and tractions

tD respectively. FB and FδΩ denote the external body and surface force vectors.

δ is used to denote virtual quantities.

Equation 7.2 below is the standard non-linear matrix equation which results from

discretising the governing equations (Logan 2016):

Fg = Kg(ug)ug (7.2)

where Fg is the global general force vector and ug is the global nodal displacement

vector. Kg is the global stiffness matrix that is assembled from the stiffness ma-

trices Ke of individual elements. The standard form of Ke is given by (De Borst

et al. 2012):

Ke =

∫
Ω

BTDsBdΩ (7.3)

B is the strain-displacement matrix relating elemental nodal displacements to

elemental strains, Ds is the secant matrix relating stresses to strains.

The incremental elemental nodal displacements ∆ue corresponding to a load

increment are calculated by solving (De Borst et al. 2012):

∆fe = Kt∆u
e (7.4)

where ∆fe is the incremental element force vector and Kt is the elemental tan-

gential stiffness matrix.

When equilibrium has been achieved the global out-of-balance force vector Ψ is

null (Owen & Hinton 1980):
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Ψ =

g∑∫
Ω

BTσedΩ− fλ = 0 (7.5)

In Equation 7.5 above,

g∑
represents the element assembly process, fλ is the

global applied force vector and σe is the elemental nodal stress vector.

Convergence is achieved when the norm of the global out-of-balance force vector

has been reduced to a chosen tolerance tol:

|Ψ|
|fg|
≤ tol (7.6)
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START

Data is input to define the
geometry, boundary condi-

tions and material properties

The equivalent nodal forces
for pressure loading, gravity
loading etc. are evaluated

The accumulative ar-
rays are initialsied

The applied load is incremented

An indicator is set to identify
the type of solution algorithm
e.g. initial stiffness, tangential

stiffness, secant stiffness etc

The elemental stiffness is eval-
uated for elastic and non-linear
behaviour. Algorithm 15 is used
to obtain the tangent matrices.

The system of simultane-
ous equations 7.4 is solved

Algorithm 14 is used to cal-
culate the effective stress

and to update state variables

The out of balance force
vector 7.5 is evaluated

The
criteria

7.6 is used
to check
whether

the
solution
process

has
converged

The results are output for
the current load increment

END

not converged

Iteration loop

converged

Load increment loop

Figure 7.1: Illustration of how the plastic-damage constitutive model is imple-
mented in a generic formulation of non-linear finite element code. Adapted from
Mihai (2012).
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7.2.2 Regularisation using the crack band method

Strain softening models cause mesh sensitivity problems (see section 3.6). Un-

less a regularisation scheme is implemented, damage becomes localised to an

increasingly narrow region as the finite element mesh is refined (Pijaudier-Cabot

& Bažant 1987). To tackle this issue, the crack band theory of Bažant & Oh

(1983) is used to regularise the present model. The approach involves adjusting

the end of the softening curve εtm so that the fracture energy Gf is constant for

different element characteristic lengths lch.

From Bažant & Oh (1983), the standard expression for fracture energy is given

by:

Gf =

∞∫
0

σdu = lch

∞∫
0

σdε (7.7)

Evaluating the above integral leads to:

Gf =
ftlchεtm
fa

(7.8)

and so the end of the softening curve can be obtained via:

εtm =
faGf

ftlch
(7.9)

fa is a constant which arises from evaluating the integral 7.7. Typically, models

use a single evolution function that is derived from the tensile softening curve and

the constant fa would be present in the function. However, the current model is

more complex with tensile strength reduction being modelled with two different

hardening parameters and functions. For expediency, fa can be evaluated by

fitting a simpler 1D stress-strain relationship to the tensile softening curve. Then,

the integral is evaluated for the simpler relationship. See Appendix E.
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7.3 Direct fracture simulation

7.3.1 Test arrangement and parameters

To illustrate the effectiveness of the plastic-damage constitutive model, a direct

fracture simulation was carried out and compared to the results of Petersson

(1981). Displacement control was used to apply direct tension to the un-reinforced

concrete specimen as shown in Figure 7.2. Figure 7.3 shows the restraints applied

to the specimen for the analysis.

Figure 7.2: Test arrangement and specimen dimensions.

Figure 7.3: Restraints (blue) and displacements (red) applied to the specimen.

Simulations were carried out using two different meshes, illustrated in Figure 7.4,
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with the second mesh being finer than the first. The purpose of using two meshes

was to check whether mesh convergence had been achieved. Also, due to the

symmetry of the problem, only half the specimen with a quarter of the thickness

was analysed.

(a) Mesh 1 - 48 elements (b) Mesh 2 - 182 elements

Figure 7.4: Meshes used for the direct fracture simulation.

The parameters used for the simulations are shown in Table 7.1 below.

Table 7.1: Material parameters used for the direct fracture simulation.

Em (MPa) ν ft (MPa) fc (MPa) εc faGf (N/mm) c1 ρf ρD

37,000 0.18 1.85 30 0.0022 0.2 12 5 1

7.3.2 Results

Figure 7.5 shows the stress-displacement curves resulting from the simulations

and data from Petersson (1981). The responses from the meshes are virtually

indistinguishable and so the results are satisfactorily mesh-independent. The

numerical results can also be seen to agree well with the experimental data.
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Figure 7.5: Comparison of the predicted stress-displacement response to exper-
imental data from Petersson (1981). Note that the displacement shown in the
plot is double the displacement resulting from the simulations because only half
of the specimen was analysed.

Figure 7.6: Example convergence histories at different total displacements. See
points marked on Figure 7.5.

For the simulation, the tolerance tol was set to 1.0 (i.e. 1.0%). A total of 75 and

355 steps were used to carry out the analysis of meshes 1 and 2 respectively. The

max number of iterations allowed was 10 and the first iteration was always carried
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out using the elastic stiffness. The next four iterations used the secant stiffness

and the remainder of the iterations followed by using the tangential stiffness

matrix. In order to demonstrate convergence properties of the mode, simulations

were carried out using a tighter tolerance (0.1%) and with the tangential stiffness

used for all iterations besides the first. The results from the study could not be

distinguished from the results presented in this chapter. Example convergence

histories from the study, which show quadratic convergence, are shown in Figure

7.6. Figure 7.6 shows that using the tangential stiffness on the second iteration

reduces error norm by approximately two orders of magnitude. The example

with three steps (mesh 1 with total displacement = 0.00018 mm) shows that a

further iteration again reduces the error norm. In this case by about 3 orders of

magnitude.

The deformation of mesh 2 at the end of the simulation, i.e. at a total displace-

ment of 0.1mm, is shown in Figure 7.7. Contour plots of the major principal

stresses and strains, at the stages marked in Figure 7.5, are shown in Figures 7.8

to 7.11 for mesh 2. Initially at stage a, the stress appears to be concentrated in

the region near the boundaries of the narrowing section of the dog-bone speci-

men (Figure 7.8). This represents the occurrence of microcracking in this zone

prior to the propagation of a macroscopic crack across the specimen. At the peak

load, the strain field shows that a crack is starting to grow across the neck of

the specimen (Figure 7.10). In the post-peak regime, the strains localised in a

band of elements across the neck of the specimen (Figure 7.11). A macrocrack

has formed across the neck of the specimen which is the expected response based

on the tests of Petersson (1981).

Results for mesh 1 are available in Appendix F.
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(a) Undeformed mesh

(b) Deformed mesh (30x exaggeration)

Figure 7.7: Mesh 2 deformation.
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(a) Major principal strains

(b) Major principal stresses

Figure 7.8: Major principal stresses and strains of mesh 2 at stage a in Figure
7.5.
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(a) Major principal strains

(b) Major principal stresses

Figure 7.9: Major principal stresses and strains of mesh 2 at stage b in Figure
7.5.
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Figure 7.10: 3D plot of major principal strains of mesh 2 at stage b in Figure 7.5
showing the through thickness response.
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(a) Major principal strains

(b) Major principal stresses

Figure 7.11: Major principal stresses and strains of mesh 2 at stage c in Figure
7.5.



7.4. Four-point bending simulation 153

7.4 Four-point bending simulation

7.4.1 Test arrangement and parameters

A second example of a finite element simulation using the plastic-damage model

was carried out. An analysis was undertaken of a concrete beam with conven-

tional and shear reinforcement subject to four-point bending as shown in Figure

7.12. Restraints were applied to the beam as shown in 7.13. Experimental data

from tests carried out at Cardiff University was compared to the simulation re-

sults. The conventional reinforcement consisted of a single mild steel �10mm

longitudinal rebar and the shear reinforcement consisted of mild steel �6mm

shear links at 50mm c/c.

Tables 7.2 and 7.3 show the parameters used for the simulation. The finite element

mesh is illustrated in Figure 7.14. Because of the symmetry of the beam, only

half the length of the beam and half of the thickness of the beam was analysed.

Figure 7.12: Test arrangement and specimen dimensions.

Table 7.2: Concrete material parameters used for the simulation of four-point
bending.

Em (MPa) ν ft (MPa) fc (MPa) εc faGf (N/mm) c1 ρf ρD

25,000 0.2 1.2 40 0.0022 0.12 12 5 1
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Table 7.3: Steel reinforcement material parameters used for the simulation of
four-point bending. fy is the yield stress, H is the hardening modulus and εm is
the hardening strain limit.

Reinforcement E (MPa) ν fy (MPa) H (MPa) εm

Longitudinal 205,000 0.3 590 800 0.02
Shear 205,000 0.3 560 800 0.02

(a)

(b)

Figure 7.13: Restraints (blue) and displacements (red) applied to the beam are
shown in (a) with the exception of restrains in the z direction which are shown
separately in (b) for clarity. Note that the restraints in the z direction are applied
to the inner face of the beam.
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Figure 7.14: Finite element mesh of the beam. There are 2082 elements.

7.4.2 Results

Figure 7.15: Force displacement response from the simulation of four-point bend-
ing compared to data from experiments carried out at Cardiff University. Data
from tests on three identical beams is shown.

A comparison of the force-displacement results from the simulation and the ex-

perimental data is made in Figure 7.15. The results were achieved using 279 steps

and tol = 1.0 i.e. 1%. The predicted behaviour agrees reasonably well with the

experimental data.

Figure 7.16 shows the deformation of the mesh and profiles of the major principal

strains, at the stages marked in Figure 7.15, are shown in figures 7.17 to 7.21.
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The plots show that initially the major principal strains were concentrated in the

tension zone of the beam (figures 7.17 and 7.18). As the applied force increased

up to stage b, the strain field became more non-uniform with the major principal

strains concentrated to a crack that developed in tension zone (Figure 7.19). The

strains of the material outside of the crack appears to have relaxed due to the

model capturing strain localisation. A second crack forms as the applied force

increases further to stage c and the original macrocrack also continues to grow

(Figure 7.20). At stage d, a third crack forms (Figure 7.21).

Appendix G contains the xx-strain profiles resulting from the simulation.

(a) Undeformed mesh

(b) Deformed mesh (30x exaggeration)

Figure 7.16: Beam deformation
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Figure 7.17: Major principal strain profile at stage a in Figure 7.15.

Figure 7.18: 3D plot of the major principal strains at stage a in Figure 7.15
showing the through thickness response.
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Figure 7.19: Major principal strain profile at stage b in Figure 7.15.

Figure 7.20: Major principal strain profile at stage c in Figure 7.15.
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Figure 7.21: Major principal strain profile at stage d in Figure 7.15.

7.5 Conclusions

The plastic damage constitutive model was successfully implemented in a com-

mercial finite element package. The simulation of a direct fracture test and a

four-point bending test suggests that the model is capable of giving realistic re-

sults that agree well with experimental data. The model is capable of simulating

localised cracking behaviour. A potential aim for future work would be to improve

upon the numerical performance of the model, for example via more efficient pro-

gramming, so that fewer steps and less computational time is required to carry

out simulations.
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Chapter 8

Conclusions and

recommendations for future work

The objectives of the research presented in this thesis were given in the intro-

ductory chapter, chapter 1. This chapter summarises how these objectives were

achieved via the formulation and implementation of novel constitutive models

and carrying out meso-scale (lattice) simulations. Some recommendations are

also provided on different avenues of research that can be pursued to improve the

models.

8.1 Conclusions

A micromechanics based constitutive model for plain concrete was formulated

that improved upon its predecessors by better describing the evolution of crack-

ing in concrete. The predecessor models simulated microcracking alone whereas

the new model simulated both microcracking and macrocracking behaviour. Di-

rectional microracking and homogenised elastic properties were simulated using

micromechanics based solutions. A novel mechanism to transition to localised

macrocracking was developed by studying the results of lattice simulations that

were carried out along with observations from non-destructive experiments re-

ported in the literature. It was concluded that diffuse microcracks grow and be-

gin to coalesce to form a stable macrocrack between an interval of approximately

80%-100% of the pre-peak and post-peak load and that unstable, localised macro-

crack growth is concentrated to the post-peak regime. Then, the peak stress was

selected to be the point of transition to localised cracking as it was consistent

with both experimental observations and the lattice model simulations.

Implementing the transition to localised cracking was found to give more realistic
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predictions of material behaviour compared to a model in which the transition

was not considered. Validation of the model using experimental data showed

that the reduced post-peak ductility from allowing a macrocrack to develop gave

better agreement with both the experimental data and lattice simulation results

for uniaxial tension loading paths. Single-point path simulations using the consi-

tutive model also showed that the model can predict realistic orientations of the

localised cracking plane(s) under different loading conditions.

The plain concrete micromechanical model was extended to formulate a model ca-

pable of simulating fibre-reinforced concrete behaviour. The fibre-crack bridging

mechanism, which is the main underlying mechanism for the difference in be-

haviour caused by the addition of fibres, was implemented using micromechanics

based solutions.

The new model for fibre-reinforced cementitious composites improved upon its

predecessors by better simulating the cracking process. This was achieved by

inclusion of the crack localisation mechanism. Validation of the model using

experimental data showed that the predicted stress-strain curves were realistic.

The characteristic behaviour of cementitious composites includes the develop-

ment of permanent deformations. However, the damage based approach used

for the above-mentioned constitutive models can not simulate permanent defor-

mations. Hence, a new model for plain cementitious composites was developed

using a micromechanical plastic-damage approach. In the model, crack planes

were represented by local plastic yield surfaces. Tensile stress states lead to the

development of directional macrocracks in cementitious composites. The cracking

behaviour differs when compressive stress states are applied. Under compression,

diffuse micro-cracks develop which have an isotopic effect. Hence, two separate

plastic hardening variables were used for directional (tensile) and isotropic (com-

pressive) effects. The use of two separate hardening variables allowed for separate

functions to be used that best represent the characteristic behaviour under a par-

ticular stress state. To aid robustness of the model, the consistent tangent was

derived.

Validation of the plastic-damage model using experimental data showed good

agreement with experimental data for different loading paths with the exception

of biaxial compression and to a lesser extent triaxial compression. This was also

an issue for the above micromechanics based plain concrete model. The next

section discusses a known remedy that can be implemented in future work.

All of the new constitutive models presented in the thesis were able to capture the
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tensile-splitting that occurs immediately after cracking under tensile loads. The

predecessor micro-mechanical models lacked this capability as they did not model

the formation of macrocracks and the subsequent relaxation of lateral strains.

Whilst other predecessor models could capture the formation of macrocracks,

they could not predict microcracking behaviour. The new models address both

of these issues.

Initially, there was an intention for the research to cover the extension of the

plastic-damage model to account for the effects of fibre-reinforcement and the

implementation of the extended model in a commercial finite element software

package. Instead, research efforts were devoted to finite element implementation

of the plastic-damage model for plain concrete as an initial assessment of the

performance of the model. Nonetheless, the research carried out is a useful first

step and fibre reinforcement can be added in the future.

A direct fracture simulation and a four-point bending simulation were carried

out using the implemented model. The model was implemented in LUSAS and

regularised using the crack band theory. The results were promising with the

model being able to predict the characteristic localised cracking behaviour and

agreeing well with experimental data.

8.2 Recommendations for future work

An issue common to the proposed constitutive models was the under prediction of

the ratio of biaxial to uniaxial compression strength. This was expected as rough

crack contact on crack surfaces, a key mechanisms for simulating the characteristic

response in compression, was not incorporated in the models. The mechanism

was not included for expediency reasons and because the focus of the research was

the new mechanism for the transition to localised cracking. Literature is available

(Jefferson & Bennett 2007, Mihai & Jefferson 2017) which shows that including

the mechanism corrects the low biaxial strength predictions. A recommendation

is made for the rough crack contact mechanism to be added to the plastic-damage

model. It is anticipated that the improved model will then be able to capture the

entire characteristic response of concrete.

Once the plastic-damage model for plain concrete has been improved, attention

can be diverted to extending the model to fibre-reinforced cementitious com-

posites. Additionally, simulation of the strain-hardening phenomena could be

explored.

Finally, once the constitutive model for fibre-reinforced concrete has been devel-
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oped and validated, finite element implementation of the model should be carried

out. Whilst using the crack-band method was shown to give satisfactory results

in the current work, the use of a more rigorous regularisation scheme could be ex-

plored. Also, assessment of the performance of the model should be significantly

more extensive than the initial assessment made in the current work. Future work

will explore industrial applications of the implemented model.
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Appendix A

Derivation of the matrix of

derivatives for the

micromechanical fibre-reinforced

cementitious composites

constitutive model

The incremental change in Ψ is given below:

dΨi = −NiDmcfN
T
j

(
I4s − M̃sj −CLDLfM̃fj

)
Idε̃j

+NiDmcfN
T
j

M̃sj

dε̃j
dε̃j ε̃j +NiDmcfN

T
j CLDLf

M̃fj

dε̃j
dε̃j ε̃j

−δijDLM̃sj ε̃j − δijDL

M̃sj

dε̃j
dε̃j ε̃j

−δijDLM̃fj ε̃j − δijDL

M̃fj

dε̃j
dε̃j ε̃j

(A.1)

M̃s and M̃f from Equation 5.16 are substituted into Equation A.1 and the

associated incremental derivative terms calculated:
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dΨi = −NiDmcfN
T
j

(
I − (1− ω̃j)I −CLDLf ω̃j(1− ω̃fj)I

)
ε̃j

+NiDmcfN
T
j

d(1− ω̃j)
dω̃j

dω̃j

dξ̃j

dξ̃j

dε̃j
Idε̃j ε̃j +NiDmcfN

T
j CLDLf

dω̃j

dξ̃j

dξ̃j

dε̃j
dε̃j(1− ω̃fj)Iε̃j

+NiDmcfN
T
j CLDLf ω̃j

d(1− ω̃fj)
dω̃fj

dω̃fj

dξ̃fj

dξ̃fj
dε̃j

dε̃jIε̃j − δijDL(1− ω̃i)Idε̃j

−δijDL
d(1− ω̃i)
dω̃i

dω̃i

dξ̃i

dξ̃i

dε̃i
Idε̃j ε̃i − δijDLf ω̃i(1− ω̃fi)Idε̃j

−δijDLf
dω̃i

dξ̃i

dξ̃i

dε̃i
dε̃j(1− ω̃fi)Iε̃i − δijDLf ω̃i

d(1− ω̃fi)
dω̃fi

dω̃fi
dξ̃fi

dξ̃i

dε̃i
dε̃jIε̃i

(A.2)

The scalar terms dξ
dε̃
dε̃ in Equation A.2 can be re-arranged to give an equation

where dε̃ can be removed from the RHS:

dΨi = −NiDmcfN
T
j

(
I − (1− ω̃j)I −CLDLf ω̃j(1− ω̃fj)I

)
dε̃j

+NiDmcfN
T
j

d(1− ω̃j)
dω̃j

dω̃j

dξ̃j
Iε̃j

dξ̃j

dε̃j
dε̃j +NiDmcfN

T
j CLDLf

dω̃j

dξ̃j
(1− ω̃fj)Iε̃j

dξ̃j

dε̃j
dε̃j

+NiDmcfN
T
j CLDLf ω̃j

d(1− ω̃fj)
dω̃fj

dω̃fj

dξ̃fj
Iε̃j

dξ̃j

dε̃j
dε̃j

−δijDL(1− ω̃i)Idε̃j − δijDL
d(1− ω̃i)
dω̃i

dω̃i

dξ̃i
Iε̃i

dξ̃i

dε̃i
dε̃j − δijDLf ω̃i(1− ω̃fi)Idε̃j

−δijDLf
dω̃i

dξ̃i
(1− ω̃fi)Iε̃i

dξ̃i

dε̃i
dε̃j − δijDLf ω̃i

d(1− ω̃fi)
dω̃fi

dω̃fi
dξ̃fi

Iε̃i
dξ̃i

dε̃i
dε̃j

(A.3)

Finally, the terms of the matrix of derivates BE 5.25 can be calculated via fol-

lowing:
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dΨi

dε̃j
= −NiDmcfN

T
j

(
I − (1− ω̃j)I −CLDLf ω̃j(1− ω̃fj)I
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+NiDmcfN

T
j

d(1− ω̃j)
dω̃j
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(A.4)
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Appendix B

Summarised proof of the normal

from the direction of the major

principal stress

The local Hoek-Brown yield surface is given by B.1 and the normal to the yield

surface is given by B.2.

F =

(
τ

ru

)3/2

+ σn − ft = 0 (B.1)

Fnormal =
dF

dσn
+
dF

dτ
(B.2)

The terms in B.2 are given by:

dF

dσn
= 1 (B.3)

dF

dτ
=

3

2r
3/2
u

(Rsin(2α))1/2 (B.4)

Next, the derivative components are normalised and algebraic manipulation is

carried out on B.2 giving:

3

2r
3/2
u

(Rsin(2α))1/2 − sin(2α)

cos(2α)
= 0 (B.5)

Further algebraic manipulation are performed giving:
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9

4ru3
R(1− sin(2α)2)− sin(2α) = 0 (B.6)

The above can be re-arranged as a quadratic formula and then solved for the

normal from the direction of the major principal stress:

sin(2α) =
−2rf

3

9R
+

√(
2rf 3

9R

)
+ 1 (B.7)



Appendix C. Stress recovery computations for the micromechanical
plastic-damage constitutive model 171

Appendix C

Stress recovery computations for

the micromechanical

plastic-damage constitutive

model

Conditions

For every crack-plane i , stresses must satisfy the local yield criterion C.1, the

static constraint C.2, the plastic strain error condition C.3 and the directional

plastic parameter error condition C.5. Also, stresses must satisfy the isotropic

plastic parameter error condition C.4. The conditions are shown below:

Fi = F (sDi , κI , κDi) = 0 (C.1)

ψi = Niσ − [DL(1− ωi)Iε̃i +DLαiωiI(ε̃i − epi)] = 0 (C.2)

Rεi = −∆epi +
∂G

∂sDi
∆λi = 0 (C.3)

RI = −∆κI +
ntot∑
j=1

(
1− βj
χj

)√
∂G

∂sDj

T ∂G

∂sDj
∆λj = 0 (C.4)

RDi = −∆κDi + βi

√
∂G

∂sDi

T ∂G

∂sDi
∆λi = 0 (C.5)
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Coupled equations

First expand Equation C.4 such that RI + δRI = 0:

δκI = ak

(
RI +

nactive∑
w=1

KswδsDw +

nactive∑
w=1

ckwδλw

)
(C.6)

where

ak =

1−
nactive∑
w=1

(
1− βw
χw

)
∂

∂κI

√ ∂G

∂sDw

T ∂G

∂sDw

∆λw

−1

(C.7)

Ksw =

√
∂G

∂sDw

T ∂G

∂sDw
∆λw

∂

∂sDw

(
1− βw
χw

)
+

(
1− βw
χw

)
∆λw

∂

∂sDw

√ ∂G

∂sDw

T ∂G

∂sDw


(C.8)

ckw =

(
1− βw
χw

)√
∂G

∂sDw

T ∂G

∂sDw
(C.9)

Similarly, expand Equation C.5 such that RD + δRD = 0 and expand Equation

C.3 such that Rε + δRε = 0:

δκDj = RDIj +

nactive∑
w=1

ekj,wδλw+

nactive∑
w=1

K3sj,wδsDw (C.10)

δepj = RεIj +

nactive∑
w=1

P1j,wδλw +

nactive∑
w=1

P2j,wδsDw (C.11)

where

RDIj = RDj + dkjakRI (C.12)

RεIj = Rεj +
∂

∂κI

(
∂G

∂sDj

)
∆λjakRI (C.13)

ekj,w = δj,wbkj + dkjakckw (C.14)

K3σj,w = δj,wK2σj + dkjakKσw (C.15)
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P1J,W = δj,w
∂G

∂sDj
+

∂

∂κI

(
∂G

∂sDj

)
∆λjakckw (C.16)

P2j,w = δj,w
∂

∂sDj

(
∂G

∂sDj

)
∆λj +

∂

∂κI

(
∂G

∂sDj

)
∆λjakKσw (C.17)

and

bkj = βj

√
∂G

∂sDj

T ∂G

∂sDj
(C.18)

dkj = βj∆λj
∂

∂κI

√ ∂G

∂sDw

T ∂G

∂sDw

 (C.19)

K2σj =

√
∂G

∂sDj

T ∂G

∂σDj
∆λj

∂βj
∂sDj

+ βj∆λj
∂

∂sDj

(√
∂G

∂sDj

T ∂G

∂sDj

)
(C.20)

The yield function consistency condition may be written as:

Fj +
∂Fj
∂sDj

T

δsDj +
∂Fj
∂κI

δκI +
∂Fj
∂κDj

δκDj = 0 (C.21)

Substituting for δκI from Equation C.6 and δκD from Equation C.10 in the yield

function consistency condition gives:

Fj +RID2j +

nactive∑
w=1

fkj,wδsDw +

nactive∑
w=1

hkj,wδλw = 0 (C.22)

where

RID2j =
∂Fj
∂κI

akRI +
∂Fj
∂κDJ

RDIj (C.23)

fkj,w = δj,w
∂Fj
∂sDj

T

+
∂Fj
∂κI

akKσw +
∂Fj
∂κDj

K3σj,w (C.24)

hkj,w =
∂Fj
∂κI

akckw +
∂Fj
∂κDj

ekj,w (C.25)

Expanding the static constraint C.2 such that ψ + δψ = 0 for cracks that are
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plastically active gives:

ψj +Njδσ +Z1jδepj −Z2jδε̃j = 0 (C.26)

and, noting that δep is 0 when a crack-plane is not plastically active, the same

expansion of the static constraint for cracks that are not plastically active gives:

ψj +Njδσ −Z2jδε̃j = 0 (C.27)

where:

Z1j = DLIαjωj (C.28)

Z2j = DLIε̃j
∂

∂ε̃j
(1− ωj)+DLI (1− ωj)+DLI

(
ε̃j − epj

) ∂

∂ε̃j
(αjωj)+DLIαjωj

(C.29)

The iterative change in the damaged stress component for cracks have active

plasticity is:

δsDj = DL

(
δε̃j − δepj

)
(C.30)

Substituting for δep from Equation C.11 in Equation C.30 gives:


δsD1

...

δsDnactive

 = M−1
m



DL 0 0

0
. . . 0

0 0 DL




δε̃1

...

δε̃nactive



−


DL 0 0

0
. . . 0

0 0 DL




RεI1
...

RεInactive



−


DLP11,1 · · · DLP11,nactive

...
. . .

...

DLP1nactive,1
· · · DLP1nactive,nactive




δλ1

...

δλnactive


 (C.31)

where
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Mm = I +


DLP21,1 · · · DLP21,nactive

...
. . .

...

DLP2nactive,1
· · · DLP2nactive,nactive

 (C.32)

Substituting for δsD from Equation C.31 in Equation C.32 gives the first coupled

equation:

Fλ +Mλδλ+ bλ


δε̃1

...

δε̃nactive

 = 0 (C.33)

where

Fλ =


F1

...

Fnactive

+


1 0 0

0
. . . 0

0 0 1




RID21
...

RID2nactive



−


fk1,1 · · · fk1,nactive

...
. . .

...

fknactive,1 · · · fknactive,nactive

Mm
−1


DL 0 0

0
. . . 0

0 0 DL




RεI1
...

RεInactive


(C.34)

Mλ =


hk1,1 · · · hk1,nactive

...
. . .

...

hknactive,1 · · · hknactive,nactive



−


fk1,1 · · · fk1,nactive

...
. . .

...

fknactive,1 · · · fknactive,nactive

Mm
−1


DLP11,1 · · · DLP11,nactive

...
. . .

...

DLP1nactive,1
· · · DLP1nactive,nactive


(C.35)

bλ =


fk1,1 · · · fk1,nactive

...
. . .

...

fknactive,1 · · · fknactive,nactive

Mm
−1


DL 0 0

0
. . . 0

0 0 DL

 (C.36)
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and δλ =


δλ1

...

δλnactive


To write the first of the two coupled equations in terms of the stacked crack-plane

strains vector δε̃ =


δε̃1

...

δε̃ntotal

, zero values are added to bλ to form the matrix

bλ2. The zero values are added such that
[
bλ 0

]
δε̃ = bλ2δε̃. Hence, the first

coupled equation can be written as:

Fλ +Mλδλ+ bλ2δε̃ = 0 (C.37)

The iterative change in the overall stress 6.15 is given by:

δσ = D

(
ε−

ntotal∑
i=1

Nεi
T [I − (1− ωi)I − αiωiI] ε̃+Nεi

T [αiωiI] ep

)
(C.38)

Substituting for δe C.11 and δσD from C.31 into Equation C.38 gives:

δσ = Mx1 +Mx2δλ+Mx3δε̃ (C.39)

where

Mx1 =
[
Q21 · · · Q2nactive

]
RεI1

...

RεInactive



−
[
Q21 · · · Q2nactive

]
P21,1 · · · P21,nactive

...
. . .

...

P2nactive,1
· · · P2nactive,nactive

Mm
−1·


DL 0 0

0
. . . 0

0 0 DL




RεI1
...

RεInactive

 (C.40)
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Mx2 =
[
Q21 · · · Q2nactive

]
P11,1 · · · P11,nactive

...
. . .

...

P1nactive,1
· · · P1nactive,nactive



−
[
Q21 · · · Q2nactive

]
P21,1 · · · P21,nactive

...
. . .

...

P2nactive,1
· · · P2nactive,nactive

Mm
−1·


DLP11,1 · · · DLP11,nactive

...
. . .

...

DLP1nactive,1
· · · DLP1nactive,nactive

 (C.41)

Mx3 =
[
Q11 · · · Q1ntotal

]
+
[
Q31 · · · Q3ntotal

]

+
[
Q21 · · · Q2nactive

]
P21,1 · · · P21,nactive

...
. . .

...

P2nactive,1
· · · P2nactive,nactive

M−1
m ·


DL 0 0 0

0
. . . 0 0

0 0 DL 0

 (C.42)

where

Q1r = −D
(
Nεr

T (I − I (1− ωr)− Iαrωr) +Nεr
T

(
−Iε̃r

∂

∂ε̃r
(1− ωr)− Iε̃r

∂

∂ε̃r
(αrωr)

))
(C.43)

Q2w = −DNεw
T Iαwωw (C.44)

Q3w = −DNεw
TIepw

∂

∂ε̃w
(αwωw) (C.45)

Q4s = −DNεs
TIeps

∂

∂ε̃s
(αsωs) (C.46)

Note that the 0 terms in Equation C.42 are inserted so that δσ can be written

in terms of the stacked crack-plane strains vector (see bλ and bλ2).

For the second coupled equation, substituting for δσ from Equation C.39, δe

from Equation C.11 and δσD from Equation C.31 into equations C.26 and C.27

gives:
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ψE +MEδλ+ bEδε̃ = 0 (C.47)

where

ψE =


ψ1

...

ψntotal

+


N1

...

Nntotal

Mx1+


Z11 0 0 0

0
. . . 0 0

0 0 Z1nactive
0

0 0 0 0




RεI1

...

RεInactive

0



−


Z11 0 0 0

0
. . . 0 0

0 0 Z1nactive
0

0 0 0 0




P21,1 · · · P21,n

active
...

. . .
...

P2nactive,1
· · · P2nactive,nactive

0 0 0

Mm
−1·


DL 0 0

0
. . . 0

0 0 DL




RεI1
...

RεInactive

 (C.48)

ME =


N1

...

Nntotal

Mx2+


Z11 0 0 0

0
. . . 0 0

0 0 Z1nactive
0

0 0 0 0




P11,1 · · · P11,n

active
...

. . .
...

P1nactive,1
· · · P1nactive,nactive

0 0 0



−


Z11 0 0 0

0
. . . 0 0

0 0 Z1nactive
0

0 0 0 0




P21,1 · · · P21,n

active
...

. . .
...

P2nactive,1
· · · P2nactive,nactive

0 0 0

Mm
−1·


DLP11,1 · · · DLP11,nactive

...
. . .

...

DLP1nactive,1
· · · DLP1nactive,nactive

 (C.49)
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bE =


N1

...

Nntotal

Mx3 −


Z11 0 0 0

0
. . . 0 0

0 0 Z1nactive
0

0 0 0 0



+


Z11 0 0 0

0
. . . 0 0

0 0 Z1nactive
0

0 0 0 0




P21,1 · · · P21,n

active
...

. . .
...

P2nactive,1
· · · P2nactive,nactive

0 0 0

M−1
m ·


DL 0 0 0

0
. . . 0 0

0 0 DL 0

 (C.50)

Finally, the coupled equations C.37 and C.47 can be arranged as:

[
ψE

Fλ

]
=

[
ME bE

Mλ bλ2

][
δλ

δε̃

]
(C.51)

or in compact matrix form:

Γ = ΞδΛ (C.52)

where Γ =

[
ψE

Fλ

]
, Ξ =

[
ME bE

Mλ bλ2

]
and δΛ =

[
δλ

δε̃

]
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Appendix D

Consistent tangent derivation for

the micromechanical

plastic-damage constitutive

model

The differential crack-plane stress can be written as:

δsj = −Z1jδepj +Z2jδε̃j (D.1)

where δs =


δs1

...

δsntotal

. Note that 0 terms have been added to Z1 such that the

multiplication of Z1δep is possible (i.e. ensuring that δep = 0 for non plastically

active cracks).

Similarly, by adding 0 terms, the differential plastic strain can be written using

Equation C.11 as:



δe1

...

δenactive

δenactive+1

...

δentotal


=



P11,1 · · · P11,nactive

...
. . .

...

P1nactive,1
· · · P1nactive,nactive

0 0 0
...

...
...

0 0 0




δλ1

...

δλ1nactive


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+



P21,1 · · · P21,nactive

...
. . .

...

P2nactive,1
· · · P2nactive,nactive

0 0 0
...

...
...

0 0 0




δsD1

...

δsDnactive

 (D.2)

Substituting for δsD from Equation C.31 in Equation D.2 gives:

δe = [Am] δλ+ [Bm] δε̃ (D.3)

where

Am =



P11,1 · · · P11,nactive

...
. . .

...

P1nactive,1
· · · P1nactive,nactive

0 0 0
...

...
...

0 0 0



−



P21,1 · · · P21,nactive

...
. . .

...

P2nactive,1
· · · P2nactive,nactive

0 0 0
...

...
...

0 0 0


M−1

m


DLP11,1 · · · DLP11,nactive

...
. . .

...

DLP1nactive,1
· · · DLP1nactive,nactive



(D.4)

Bm =



P21,1 · · · P21,nactive

...
. . .

...

P2nactive,1
· · · P2nactive,nactive

0 0 0
...

...
...

0 0 0


M−1

m


DL 0 0 0

0
. . . 0 0

0 0 DL 0

 (D.5)
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and δe =


δe1

...

δentotal


From Equation D.3, δe can be substituted into Equation D.1 giving:

δs = [Rm] δλ+ [Sm] δε̃ (D.6)

where

Rm = −


Z11 0 0 0

0
. . . 0 0

0 0 Z1nactive
0

0 0 0 0

 [Am] (D.7)

Sm =


Z21 0 0

0
. . . 0

0 0 Z2ntotal

−

Z11 0 0 0

0
. . . 0 0

0 0 Z1nactive
0

0 0 0 0

 [Bm] (D.8)

Subsequently, δε̃ can be found by:

δε̃ = [Sm]−1δσ − [Sm]−1 [Rm] δλ (D.9)

An expression for the inelastic crack-plane strain component can be derived by

substituting δε̃ from above into Equation 6.13:

δε̃ = [A2m] δs+ [B2m] δλ (D.10)

where

A2m = [Sm]−1 − ICL (D.11)

B2m = −[Sm]−1 [Rm] (D.12)

Next substitute δsj = Njδσ into Equation D.10:
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δε̃ = [A2m]


N1

...

Nntotal

 δσ + [B2m] δλ (D.13)

From Equation D.13, substitute δε̃ into the constitutive relationship 6.8 to obtain

the following:

δσ = Ac

(
δε−

[
N1

T · · · Nntotal
T
]

[B2m] δλ
)

(D.14)

with Ac given by

Ac =

I +D
[
NT

1 · · · NT
ntotal

]
[A2m]


N1

...

Nntotal


−1D (D.15)

Substituting δε̃ from Equation D.10 and δsj = Njδσ into Equation C.31 gives

the damaged stress component as:

δσD = [A3m] δσ + [B3m] δλ (D.16)

where

A3m = M−1
m


DL 0 0 0

0
. . . 0 0

0 0 DL 0

 [S−1
m

] 
N1

...

Nntotal

 (D.17)

B3m = −M−1
m


DL 0 0 0

0
. . . 0 0

0 0 DL 0

 [S−1
m

]
[Rm] ·

−


DLP11,1 · · · DLP11,nactive

...
. . .

...

DLP1nactive,1
· · · DLP1nactive,nactive

 (D.18)

Substituting for δsD from D.16, δκI from Equation C.6 and δκD from Equation

C.10 into the yield function consistency condition C.21 and noting that δFj = 0

gives:
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[A4m] = δσ + [B4m] δλ = 0 (D.19)

where

A4m =


∂F1

∂sD1

T
0 0

0
. . . 0

0 0
∂Fnactive
∂sDnactive

T

 [A3m]

+


∂F1

∂κI
...

∂Fnactive
∂κnactive

 ak [ Kσ1 · · · Kσnactive

]
[A3m]


∂F1

∂κD1
0 0

0
. . . 0

0 0 ∂F1

∂κDnactive




K3σ1,1 · · · K3σ1,nactive

...
. . .

...

K3σnactive,1
· · · K3σnactive,nactive

 [A3m]

(D.20)

B4m =


∂F1

∂sD1

T
0 0

0
. . . 0

0 0
∂Fnactive
∂sDnactive

T

 [B3m]

+


∂F1

∂κI
...

∂Fnactive
∂κnactive

(ak [ Kσ1 · · · Kσnactive

]
[B3m] +

[
ck1 · · · cknactive

])

+


∂F1

∂κD1
0 0

0
. . . 0

0 0 ∂F1

∂κDnactive





ek1,1 · · · ek1,nactive
...

. . .
...

eknactive,1 · · · eknactive,nactive



+


K3σ1,1 · · · K3σ1,nactive

...
. . .

...

K3σnactive,1
· · · K3σnactive,nactive

 [B3m]

 (D.21)

Substitute δσ from Equation D.14 into the above to obtain an expression for δλ:

δλ = −[Xm]−1 [Ym] δε (D.22)

where
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Xm = [B4m]− [A4m]Ac

[
N1

T · · · Nntotal
T
]

[B2m] (D.23)

Ym = [A4m]Ac (D.24)

Finally, the consistent tangent is derived by substituting δλ from Equation D.22

into Equation D.14:

δσ = Dtanδε (D.25)

Dtan = AC +AC

[
N1

T · · · Nntotal
T
]

[B2m] [Xm]−1 [Ym] (D.26)
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Appendix E

Fracture energy

The following simple relationship can be fit to the uniaxial tension response of

the plastic-damage model:

σxx = ftulte
−c2

(
εxx−εt
εcm−εt

)
(E.1)

Using a constant c2 = 6.5 gave the best fit to the results from a simulation carried

out with the properties shown in Table E.1. The results are shown in Figure E.1.

Note that κDm was set as 7εcm rather than 5εcm to give better agreement with the

end of the softening curves from the fitted relationship and the plastic-damage

model.

Table E.1: Material parameters used.

Em (MPa) ν ft (MPa) fc (MPa) εc εcm εtm c1 ρf ρD

37,000 0.18 2.4 30 0.0022 0.01 0.008 12 5 1
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Figure E.1: A 1-D relationship fit to uniaxial tension numerical results.

Evaluating the integral 7.7, with ftult = 1.78ft, gives:

ε0 =
c2

1.78
Gf

lchft
=
faGf

lchft
(E.2)

and so in this case fa is equal to 3.7.
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Appendix F

Direction fracture simulation

mesh 1 results
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(a) Undeformed mesh

(b) Deformed mesh (30x exaggeration)

Figure F.1: Mesh 1 deformation.
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(a) Major principal strains

(b) Major principal stresses

Figure F.2: Major principal stresses and strains of mesh 1 at stage a in Figure
7.5.
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(a) Major principal strains

(b) Major principal stresses

Figure F.3: Major principal stresses and strains of mesh 1 at stage b in Figure
7.5.
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Figure F.4: 3d plot of major principal strains of mesh 1 at stage b in Figure 7.5
showing the through thickness response.
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(a) Major principal strains

(b) Major principal stresses

Figure F.5: Major principal stresses and strains of mesh 1 at stage c in Figure
7.5.
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Appendix G

Four-point bending simulation

strain profiles

Figure G.1: Strain profile at stage a in Figure 7.15.
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Figure G.2: 3d plot of the strain at stage a in Figure 7.15 showing the through
thickness response.

Figure G.3: Strain profile at stage b in Figure 7.15.
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Figure G.4: Strain profile at stage c in Figure 7.15.

Figure G.5: Strain profile at stage d in Figure 7.15.
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Bobiński, J. & Tejchman, J. (2016), ‘A coupled constitutive model for fracture

in plain concrete based on continuum theory with non-local softening and ex-

tended finite element method’, Finite Elements in Analysis and Design 114, 1–

21.

Bolander, J., Choi, S. & Duddukuri, S. R. (2008), ‘Fracture of fiber-reinforced

cement composites: effects of fiber dispersion’, International journal of fracture

154(1-2), 73–86.

Bower, A. F. (2009), Applied Mechanics of Solids, CRC press.

Brekelmans, W. & De Vree, J. (1995), ‘Reduction of mesh sensitivity in continuum

damage mechanics’, Acta Mechanica 110(1), 49–56.

Brencich, A. & Gambarotta, L. (2001), ‘Isotropic damage model with differ-

ent tensile–compressive response for brittle materials’, International Journal

of Solids and Structures 38(34-35), 5865–5892.

Budiansky, B. & O’Connell, R. J. (1976), ‘Elastic moduli of a cracked solid’,

International Journal of Solids and Structures 12(2), 81–97.

Camacho, G. T. & Ortiz, M. (1996), ‘Computational modelling of impact dam-

age in brittle materials’, International Journal of solids and structures 33(20-

22), 2899–2938.

Camões, A. & Ferreira, R. (2010), ‘Technological evolution of concrete: from

ancient times to ultra high-performance concrete’, Structures and Architecture

pp. 1571–1578.
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