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“Decide in your heart of hearts

what really excites and

challenges you, and start

moving your life in that

direction. Every decision you

make, from what you eat to

what you do with your time

tonight, turns you into who you

are tomorrow, and the day

after that. Look at who you

want to be, and start sculpting

yourself into that person. You

may not get exactly where you

thought you’d be, but you will

be doing things that suit you in

a profession you believe in.

Don’t let life randomly kick you

into the adult you don’t want to

become.”

Chris Hadfield
NASA Astronaut
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Abstract

This thesis investigates the use of machine learning for analysing the kinematics of

galaxies in a time efficient manner. The application of machine learning in astronomy

is arguably nascent, and very much so in the case of galaxy kinematics. Being able

to extract kinematic information at speed will be important come the advent of

next generation telescopes such as the Square Kilometre Array. Such instruments

will collect raw data on scales too large to store. Therefore, the use of on the fly

modelling techniques, harnessing the power of machine learning, is crucial. I will

show that it is possible and beneficial to use machine learning algorithms to tackle

scientific questions in extragalactic astronomy in this way.

This thesis starts by investigating the use of machine learning algorithms for

rapidly discriminating between disturbed and orderly rotating gas discs in galaxies.

Specifically, cold dense molecular gas discs are embedded onto a latent manifold using

convolutional autoencoders (CAE) which boast powerful automated feature embed-

ding capabilities. Using hydrodynamical simulations to create mock observational

data, the CAE is trained on millions of naturally augmented moment one maps be-

fore testing on observational Hi data from the Local Volume Hi Survey (Koribalski

et al., 2018), as well CO observational data from various surveys using ALMA. Using

a simple binary classifier on the embeddings, it can be shown that disturbed and or-

derly rotating discs are separately classified with high accuracy even in the presence

of injected noise. Such models may be useful as fast filtering tools for identifying

mergers or relaxed discs for further kinematic modelling.

Bearing in mind that transfer learning for next generation survey datasets

holds great risk, a new approach to kinematically characterising gas in galaxies is

studied next. Using self-supervised physics-aware neural networks, the need for a

throw-away training set is removed entirely, and replaced with a model which can

learn physical parameterisations of galaxy rotation curves at rapid speed. With the
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introduction of monte carlo dropout, it is also possible to recover modelling errors

for kinematic parameters, which will be useful in gauging the validity of learned pa-

rameters. These models are tested on simulated data as well as observational CO

data from the WISDOM survey and Hi data from THINGS (Walter et al., 2008).

Learned rotation curves match well with those derived from more analytically mo-

tivated modelling tools (e.g. BBarolo Di Teodoro & Fraternali 2015), but compute

parameterisations in a fraction of the time.

Finally I study the use of the aforementioned self-supervised physics-aware

neural networks, to recover the Hα Tully-Fisher relation (TFR) from largest IFU

dataset to date. To do so, moment maps from both SAMI and MaNGA IFU surveys

are used to derive the rotational velocities of low redshift galaxies. These are then fit

against mass to derive both the forward and reverse TFR. The fits are in agreement

with those found in the wider literature except that my fits have shallower gradients

because a correction for asymmetric drift is applied in this work, but not in the

comparison fits from the literature. Here, I identify and quantify trends between

position along (and perpendicular to) the TFR and galaxy properties, namely: age

and mass-to-light ratio. A clear relation is also discussed between velocity turnover

radius, rturn/re, and stellar mass. The application of models originally designed for

use with millimetre and radio interferometric data, shows the benefits of using self-

supervised physics-aware approaches to circumvent the problems often associated

with transfer learning. Such methods will be useful when applied to next generation

IFU survey data releases, with instruments such as HECTOR.

In summary, in this thesis, I explore the different machine learning approaches

to kinematically characterise galaxies in a time-efficient manner. I conclude with

some remaining questions and avenues for future research.
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Chapter 1

Introduction

Light is the only connection we have with the

Universe beyond our solar system,

and the only connection our ancestors had with

anything beyond Earth.

Follow the light and we can journey from the

confines of our planet to other worlds that orbit

the Sun
without ever dreaming of spacecraft.

Professor Brian Cox, “Wonders of the Universe”

1.1 Extragalactic Astronomy

The Milky Way Galaxy, within which our solar system is but one of many,

was first observed with a telescope in 1610 by none other than Galileo Galilei. It was

then that he discovered the Milky Way is made up of a vast number of stars and is

not simply a pale, cloudy band on the night sky. It wasn’t until 1925, when Edwin

Hubble pointed his telescope at the Andromeda galaxy, that astronomers could prove

the existence of stellar systems definitively beyond our own Galaxy. Upon discover-

ing Cepheid variable stars in M31, Hubble was able to show that M31 must be at

least 300 kpc away and therefore of comparable size to the Milky Way. Thus, Hubble

concluded that it must be stellar system external to the Milky Way (Hubble, 1929).

At the time, galaxies simply were regarded as ‘nebulae’ and astronomers were divided

1



2 Chapter 1. Introduction

on whether they were relatively small objects within the Galaxy or large bodies resid-

ing outside the Milky Way. Hubble’s conclusive evidence ended this so-called ‘Great

Debate’ (also known as the Shapley–Curtis Debate, Shapley & Curtis 1921), and

birthed the beginning of extragalactic astronomy. It is both interesting and ironic to

note that the method used by Hubble to end the Great Debate was the same as that

used by Harlow Shapley (who was at the time, measuring the distances of globular

clusters inside the Galaxy) who was opposed to the idea of galaxies being external to

the Milky Way.

Today, extragalactic astronomy is the study of the formation and evolution of

galaxies from the Big Bang right down to redshift zero. Thanks to advances in instru-

mentation over time, astronomers are now able to study galaxies close to the edge of

the observable Universe. All sky extragalactic surveys are no longer hypothetical and

allow for large statistical samples of multiwavelength galaxy observations. Thanks

to this multiwavelength approach, extragalactic astronomy concerns itself with ev-

erything from active galactic nuclei (AGN) and black hole accretion on light-minute

scales, to the presence of dark matter structures spanning across the entire universe.

These days, extragalactic astronomy is even concerned with studying the effects of

General Relativity, such as gravitational lensing and gravitational waves, which are

virtually impossible to observe on galactic scales.

1.1.1 Galaxy morphology

Our own galaxy, the Milky Way, is known to have spiral substructure, as do

many other galaxies around us. Yet spiral galaxies do not make up the entire popula-

tion of galaxies in the Universe. For example, our closest extragalactic neighbours, the

Magellanic Clouds, are more irregular, and devoid of strong spiral-like substructure,

and if we look a little further out into the Universe we come across elliptical galax-

ies. These are galaxies apparently devoid of substructure and are characterised by

their smooth, regular, form. They are (as the name suggests) ellipsoidal and random

internal motions play a more dominant role in determining their shape.

Spiral galaxies, on the other hand, are characterised by substructures of gas,

dust, and bright star forming regions. As young stars tend to be more blue than

older stars, spirals also tend to be bluer than ellipticals, which must contain more old,

low-mass (and thus red) stars (see Figure 1.1). Upon first inspection, spiral galaxies

appear as flat disks, but do often have a central ‘bulge’ which exhibits similar velocity

dispersion characteristics as elliptical galaxies.



1.1. Extragalactic Astronomy 3

Figure 1.1. A colour-magnitude diagram of the Sloan Great Wall, a collection of
superclusters spanning a redshift range of z = 0.04 - 0.12. Axes show g−i colour versus
i-band magnitude. Spiral galaxies (blue points) tend to be bluer and fainter than the
ellipticals (red points) which lie in a relatively tight “red sequence”. Green points are
described as ‘bulge galaxies’ (Sa-Sb in the Hubble classification scheme). The image
is adapted from Figure 3 of Gavazzi et al. 2010 by Ben Cook for Astrobites. In this
adaption, the physical axes labels have been removed for clarity; in the publication
itself the axes range from 0 to 1.5 in colour, and -16 to -23.5 in magnitude.

Already we have listed several ‘species’ of galaxy shape, including spiral, el-

liptical, and irregular (as exhibited by the Small Magellanic Cloud) which we call

morphological type. John Reynolds made the first attempt at a more granular galaxy

morphological classification in the early 1900s. However, this was before the end of

the ‘Great Debate’ and it was Hubble (again) whose classification system (Hubble,

1936) is still used to this day. This is known as the ‘Hubble tuning fork’ and is shown

in Figure 1.2.

The ‘handle’ of the fork shows the elliptical galaxies which range from circular

to more flattened appearances, when projected on the sky. The two ‘prongs’ of the

tuning fork represent the spiral galaxies separated by whether they exhibit a central

bar emanating from the central bulge or not. Roughly half of all galaxies in the
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Figure 1.2. Hubble’s ‘tuning fork’ diagram of galaxy morphological classification.
Galaxies are subdivided along the tuning fork into ellipticals (‘early-types’), spirals,
and barred spirals (both ‘late types’). Originally, astronomers presumed that galaxies
evolved from left to right in the diagram, however we now know this to be incorrect.
Image from Alladin & Hasan (2007).

Universe appear to be barred (Mihalas & Routly, 1968; Eskridge & Frogel, 1999).

When traversing the two prongs, the classifications change depending on how tightly

wound the spiral arms are. Since its inception, many have built upon the original

tuning fork, adding more physically motivated classifications. Yet, the tuning fork

still remains a starting point for morphological classification to this day.

It was initially believed that galaxies evolved from ellipticals into spirals (i.e.

left to right on the tuning fork). Thus, they are also called ‘early-type’ and ‘late-type’

galaxies respectively. We now have mounting evidence that suggests galaxies actually

evolve in the reverse way, from spirals to ellipticals. In the next section, I will describe

how and why galaxies evolve in this manner.

1.1.2 Galaxy Evolution

The hierarchical Universe

The currently accepted cosmic history of galaxies in the Universe is based on

the Λ–CDM model. This model assumes that the matter in the Universe is domi-

nated by cold dark matter (CDM) and that dark energy (being represented by the

cosmological constant Λ) drives the expansion of the Universe at late times. Primor-

dial fluctuations in the early Universe (Turner, 1999) are thought to have initiated

over-densities, growing by attracting dark matter and gas, leading to the formation
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Figure 1.3. The galaxy distribution uncovered by the 2dF galaxy redshift survey.
221414 galaxies in the final 2dFGRS catalogue are shown as black points. Clearly
visible are the filaments and clusters of galaxies surrounding low density voids. Image
courtesy of (Colless et al., 2003).

of dark matter halos (Springel et al., 2005). The gas collected in these halos is then

thought to have cooled, condensing out into the first stars and galaxies. This process

of accumulating matter and consolidating smaller cosmological objects into larger

ones is known as the ‘hierarchical model’ of the Universe (Kauffmann et al., 1999).

The earliest galaxies known to exist exhibit irregular, clumpy morphologies.

According to our developing theoretical framework of high redshift galaxy formation,

cold gas is thought to inflow into high redshift galaxies along filaments of the larger

cosmic web, constantly replenishing gas and opposing losses of star formation (from

both environmental and secular processes). High gas fractions and high density in

the early Universe lead to perpetual states of violent disc instabilities (characteristi-

cally higher velocity dispersions and more massive perturbations), operating on short

orbital time-scales as opposed to the slow secular evolution of some galaxies observed

in nearby galaxies (Dekel et al., 2009; Cacciato et al., 2012).

The hierarchical model goes beyond the creation of the first galaxies and stars;

galaxies can merge to become more massive galaxies. Similarly, it is thought that

galaxies tend to stick together and form groups which share a common dark mat-

ter halo. When enough groups combine, they can eventually form galaxy clusters,

which can combine to form superclusters. This extension of the ‘hierarchical model’

is known as ‘hierarchical clustering’. Even superclusters are connected, filaments of
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galaxies joining superclusters in the large-scale structure of the Universe run adja-

cent to ‘voids’ –parts of the Universe where galaxy densities are comparatively low.

Together, the voids and filaments form the ‘cosmic web’, shown in Figure 1.3.

The evolution of galaxies over cosmic timescales

The evolution of spiral galaxies into ellipticals coupled with the hierarchical

model of the Universe point to a Universe which is constantly evolving. Slow, steady

evolution of galaxies can either be a result of long-term interactions with surrounding

environments, or induced by the internal actions of e.g. spiral arms or bars. This

secular evolution plays an important role in the appearance and properties of galaxies

but cannot account for the changes in morphology seen between high-z galaxies and

those found in the local Universe. In the local Universe, galaxies merge and evolve

until their star formation halts with elliptical-like morphologies. If this were to con-

tinue, we will end up with a mostly empty Universe, sparsely populated by old dead

galaxies. However, galaxies did not spring into existence with peak star formation

rates. Instead, the star formation rate of the Universe increases until z ≈ 2, where it

peaks and continues its decline today (Madau & Dickinson, 2014). This behaviour is

reflected in the number of quiescent galaxies through cosmic time, found to increase

rapidly as we approach the present (Moustakas et al., 2013). In fact, Kelvin et al.

(2014) found that ∼ 70% of the stellar mass in local Universe is found within elliptical

and lenticular galaxies.

Below, I describe in more detail some of the processes believed to be important

in the ongoing evolution of galaxies.

Galaxy–galaxy mergers

The first process thought to be important in galaxy evolution is an immediately

obvious one.

Due to the hierarchical nature of the ΛCDM model Universe, galaxy–galaxy

mergers are thought to play a key role in the creation of ellipticals and thus contribute

to galaxy evolution as a whole (Beckman et al., 2008).

As higher intrinsic velocity dispersions are prevalent in ellipticals, dissimilar

to their progenitors, it follows that the evolution of spiral galaxies into ellipticals

can (in some cases) be dynamical, rather than a simple evolution of their stellar

populations (Moore et al., 1996; Martinez-Valpuesta et al., 2006). In fact, contrary to

first appearances, when looking closely at ellipticals we begin to uncover a menagerie
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of interesting features ranging from dust lanes and shells (Mancillas et al., 2019), to

tails (Ren et al., 2020) and even double nuclei (Lawrence et al., 2020). All of these

features indicate a dynamical past for some galaxies and to some degree provide

evidence of past merging events and ultimately, a dynamically evolutionary path of

galaxies through time.

It is not fully understood just how significant mergers are in galaxy evolution

in comparison to other evolutionary mechanisms. In addition, merger events can vary

characteristically depending on many factors. For example, differences in mass and

gas content of merging galaxies play a pivotal role in the state of the final merger

product. If one or both of the galaxies is a gas-rich spiral, then the merging may

result in an initial ‘star burst’, where the star formation rate is increased massively

due to the compression of gas over a short period of time. Regardless of the merging

orientation, proximity, or constituent galaxy properties, it may at first seem unlikely

that post-merger galaxies would not leave some evidence of their merging histories

whether in their material abundances or kinematics. Yet relaxing dynamics, and age-

ing populations of stars mean that visibility times for most of this evidence is only

around a gigayear at most (Lotz et al., 2008).

Environment

In the local Universe, with more than 40% of galaxies residing in groups or

clusters (Zabludoff & Mulchaey, 1998; Robotham et al., 2011), it follows that environ-

ment plays an important role in the evolution of galaxies. Overdensities of galaxies

can have an impact on the prevalence of star formation quenching when compared to

that in under-dense regions (also called ‘the field’).

A correlation does exist between galaxy type and environment (Oemler, 1974;

Dressler, 1980). Specifically, in dense environments there are more ‘passive’ galaxies

than in sparser environments (see Figure 1.4). That is, more galaxies which either

currently exhibit a state of minimal star formation, or have undergone ‘passive’ evo-

lution, using up their fuel and leaving a population of old stars (mostly found for

high mass galaxies and those with a particularly large bulge Fang et al. 2013; Bluck

et al. 2014; Bremer et al. 2018). Additionally, the denser the region the greater the

fraction of ellipticals. The number of dwarf galaxies also appears to show a depen-

dence on density (Mistani et al., 2015). From a larger time-scale perspective, galaxy

clusters at higher redshifts have been shown to have more blue galaxies compared to

low-redshift clusters. This is the ‘Butcher-Oemler effect’ (Butcher & Oemler, 1978).

It implies that most of the star formation occurs in clusters at higher redshifts and
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Figure 1.4. From Dressler (1980): the morphology-density relation. This figure
shows the relationship between galaxy type abundance as a function of the projected
density of galaxies per Mpc−2. As the projected density of galaxies increases, the
fraction of spiral and irregular galaxies decreases, while the fraction of ellipticals
increases. A histogram for the total population of galaxies in this sample is shown in
the upper region of the figure. This work was one of the first highlighting the clear
correlation between morphology and galaxy density.

so SFR quenching is relatively recent. Each of these relationships between environ-

mental density and galaxy morphology must arise due to either ‘nature or nurture’.

i.e. either different formation mechanisms or different evolutionary paths for galaxies

in different environments.

Interestingly, the relative velocities of galaxies in groups clusters are much

higher than in the field. Contrary to premature logic (in which one might relate over-

densities to higher merger rates), despite the overdense nature of groups and clusters,

mergers (one of the main ways in which spiral galaxies evolve into ellipticals in the

field) are in fact rare here. The relative velocities of galaxies in clusters are simply

too high to allow them to become gravitationally bound to one another. Instead,

when two galaxies meet in clusters, they usually fly by tidally disrupting either one

or both members’ morphology and content.
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A lack of galaxy mergers is not to say that dynamical evolution of galaxies does

not occur in groups and clusters. Some of the more extreme events, such as ram pres-

sure stripping (Gunn & Gott, 1972) and strangulation (Vaughan et al., 2020), occur

when galaxies fall into the high density intracluster medium (ICM) present in clusters.

Feedback

Galaxies can be thought of as closed systems for most of their lives, regulating

their star formation and evolution in a feedback loop. Feedback processes which

impede star formation mainly come from stellar winds, supernovae, and active galactic

nuclei (AGN). When star formation rates are high, stellar winds and supernovae

are powerful enough to directly heat and propel cold gas out of galaxies into their

halos. Both stellar winds and supernovae influence the efficiency of star formation in

galaxies too. Stellar winds can disperse self-gravitating dense clouds of gas and can be

responsible for supplying half the total gas mass returned to the ISM (Leitherer et al.,

1992). Supernovae (one of the first mechanisms thought to regulate star formation)

shock the surrounding gas, increasing its temperature and significantly slowing down

star formation. Some supernovae are even capable of generating galactic-scale winds

capable of removing material from galaxies. Some of this gas will escape and enrich

the IGM, while the rest will eventually fall back onto the galaxy. When material

is accreted onto super-massive black holes at the centres of galaxies, energy and

radiation are released into the surrounding ISM. These AGN were first discovered

in 1943 and can play a significant role in galaxy evolution. There are two types of

known AGN feedback modes: radiative and kinetic (Qiu et al., 2019). In radiative

feedback, cold gas is displaced from (typically) disc galaxies. In kinetic feedback,

powerful jets can be seen extending out from what are typically bulge-dominated

galaxies into their hot halos. The expanding cocoons driven by these jets shock heat

the halo, stopping this material from cooling onto the galaxy and going on to form

new stars. Importantly, the energy produced by accretion of material onto the black

hole, exceeds the energy needed to bind material to the galaxy. This, when coupled

with also heating the surrounding ISM, points to AGN having a direct impact on the

material available for star formation.

1.1.3 The ISM and its phases

When describing galaxy evolution, above, almost all of the important processes

concern the gas in galaxies, which provide the future fuel for star formation. This
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gas is part of the material between stars, yet still bound to galaxies. We call this

collection of gas, the interstellar medium.

The interstellar medium of galaxies exhibit a variety of different states, or

‘phases’, of matter. This matter can be ionised, atomic, or molecular gas, as well

as dust (the sub-micron, solid-particulate kind, not the kind you find covering your

long-lost lecture notes!) and cosmic rays. These phases have different densities and

temperatures ranging from 10−4 → 106 particles per cm3 and 10 → 107K respec-

tively, and are thus visible at different wavelengths/frequencies. Studying the differ-

ent phases of the ISM is driven by different science cases and goals. In the following

section I will outline the phases of the ISM most relevant to the work described in

this thesis. Figure 1.5, shows the approximate structure of the galactic ISM phases

and can be used as a reference throughout the following sections.

Figure 1.5. A pictorial representation of the ISM phases of a galaxy, as seen edge
on. Phases are in descending temperature and ascending scale height: the hot ionised
medium (HIM), warm ionised medium (WIM), warm neutral medium (WNM), and
cold neutral medium (CNM). Temperatures and scale heights shown are approximate
bounds on the ISM phases in equilibrium. Circular ionised regions in the CNM
represent Hii regions. Note: scale heights are provided for each phase in this pictorial
representation, but the image itself is not to scale.

Atomic Hydrogen (Hi)

Hydrogen is the most abundant element in the Universe. Atomic hydrogen

(Hi, belonging to both the warm and cold neutral medium) constitutes one of the
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(a) NGC 2841 (b) NGC 628

Figure 1.6. VLA observations of the 21 cm Hi emission line, from The HI Nearby
Galaxy Survey (THINGS, Walter et al. 2008). Featured are NGC 2841, and NGC
628. Both are archetypal spiral galaxies rich in Hi.

most useful ISM states to observe when investigating galaxy kinematics and environ-

mental interactions. This is in part due to the fact that for field galaxies, Hi tends

to reside in a disk extending far beyond all other ISM phases. Coupled with its rel-

atively low density (less than a few hundred per cm3), Hi is easily influenced by the

surrounding environment and thus lends itself as a useful tracer of dynamical events

and interactions. Example observations of Hi in galaxies are shown in Figure 1.6.

In 1944 Henk van de Hulst predicted that neutral hydrogen would emit in the

radio waveband at 21.1 cm (1.4GHz) due to a hyperfine transition (Oort, 1997). The

proton and electron in a hydrogen atom have charges which, along with their spin

motions, creates a dipolar magnetic field -a ‘magnetic moment’. Besides the quantum

numbers representing the allowed electron orbits in a hydrogen atom, the electron has

a ‘spin’ quantum number. If the electron spin is aligned with the proton spin then

the energy differs from if they are aligned in the opposite directions. If the electron

‘flips’ from an aligned state (where the magnetic moments add together) to antipar-

allel, energy is released as a 21 cm photon. Although the transition is very unlikely

(a given electron is likely to flip only once every 3.5× 1014s), there is so much neutral

hydrogen in galaxies that it is easily and widely detected. For example, the neutral

hydrogen mass of our the Milky Way Galaxy is ∼ 6 × 109M⊙(Licquia & Newman,

2015), which corresponds to 1066 hydrogen atoms and therefore ∼ 3×1051 transitions
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a second. In addition, exchanges of electrons between colliding hydrogen atoms in

the ISM can lead to adopting electrons leading to antiparallel spin alignments and

thus leads to even further transitions. Despite the huge amounts of Hi in galaxies,

it still generally remains optically thin. As such, it is possible to use the intensity

of the 21 cm line to infer the column density and hence the total hydrogen masses

of galaxies. However, it is worth noting, it has been shown that self-absorption can

become severe for highly inclined galaxies, in which case a correction factor is suffi-

cient for converting the observed 21 cm line flux to the correct Hi mass (Dickey, 1990).

Molecular gas

Molecular gas clouds in the ISM can have temperatures as low as ∼ 10K, and

densities as high as ∼ 1012 molecules/cm3. Stars typically form in ‘giant molecular

clouds’ (GMCs) and as cold molecular gas is an intermediate stage between the Hi

phase and stars, it is extremely likely that molecular gas is the direct fuel for star

formation in all but the most metal poor regions of the universe (Glover & Clark,

2016).

Molecules radiate energy via rotational and vibrational transitions of the whole

molecule. Given that hydrogen is the most abundant material in the ISM, it follows

that molecular hydrogen (H2) should be the most abundant molecule. However, H2

has no dipole moment and therefore observational tracers of its presence are hard

to come by. Vibrational transitions of H2 do exist, however these only occur at

temperatures > 1000K and are therefore inappropriate as tracers of the cold dense

gas of the ISM. Instead, astronomers observe the rarer but more easily detected carbon

monoxide (CO) molecule as a tracer of where H2 resides. It is worth noting that this

method of tracing the H2 content induces the need for a conversion factor between CO

and H2 abundances. The validity of this conversion factor (known as XCO) remains

a controversial topic to this day (Bolatto et al., 2013) and is (thankfully) not used

in the work presented in this thesis. Rotational transitions of CO (more specifically

the molecular isotope 12CO are particularly strong, given high enough densities, even

at temperatures between 10 → 20K. The most commonly observed rotational lines

of CO are the CO(1-0) and CO(2-1) lines, at ∼ 115GHz (1.3mm) and ∼ 230GHz

(2.6mm) respectively.

Thanks to the improvement of observational capabilities in the last decade

with instruments like ALMA (see §1.2), it is now possible to extract exquisite kine-

matics of molecular gas in galaxies beyond the Milky Way. in this thesis I make use

of such data in order to test novel machine learning models on high resolution data
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throughout.

Ionised Hydrogen

Besides the atomic and molecular hydrogen found in the ISM, hydrogen is not

only found in the outer extremities of galaxies but also in the more central regions

of the disc and typically in the so-called ‘Hii regions’, alongside other ions such as

oxygen, nitrogen, and sulphur. Typically ionised gas is found in a “skin” around the

colder atomic and molecular material, where the clouds meet the ambient interstellar

radiation field. In Hii regions, on the other hand, are regions around massive hot

O and B type stars. In these regions, luminous young stars emit ionising ultraviolet

photons which, under recombination, result in line spectra. In the case of hydrogen,

the capturing of electrons into the n=2 orbital or higher state, result in further non-

ionising photons being released as they drop to the lower energy levels. A significant

number of these produce the characteristic Balmer lines, notably: Hα where λ =

656.3 nm. Other important lines in ionised regions include O[ii] and O[iii] at λ =

372.9 and λ = 495.9 nm respectively, N[ii] at λ = 373.9 nm, and S[ii] found at both

λ = 671.7 and λ = 673.3 nm.

1.1.4 Galaxy kinematics

At it’s simplest, studying the kinematics of galaxies means observing the mo-

tions of a galaxy’s internal components (typically the gas and stars)in order to answer

basic questions such as how galactic discs form and evolve. In practice, this usually

means inferring the distribution of dynamical mass within galaxies, which in turn

leads to understanding the shape of their gravitational potentials.

One of the large benefits of observing emission lines is that they encode in-

formation on the kinematics of the gas. In an ideal world, emission lines would look

like delta functions. However, in reality they often have Gaussian like profiles with

widths caused by different broadening effects. Intrinsic broadening arises due to the

Heisenberg uncertainty principle which states that we cannot know the velocities of

gas particles with perfect certainty. Further broadening can arise due to the actual

motions of gas, this includes turbulent broadening as well as thermal broadening (or

thermal Doppler broadening, Draine 2011).

The dominant source of motions for gas in external galaxies is actually due to

gravitational interactions of gas clouds with their surroundings- often dominated by

rotation (and sometimes by non-circular motions). For rotation dominated gas, their
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rotational velocities are dictated by their internal mass distributions and can have

velocities of up to ±600 km s−1 (Davis et al., 2015).

Observations probing the interstellar gas of galaxies allow us to measure the

rotational properties of galaxies far beyond the limits of their relatively centrally

concentrated stellar components. Measuring the dynamics of gas at the farthest

reaches of galaxies allows us to put constraints on gravitational interactions between

galaxies but it also allows us to begin probing the dynamics of the dark matter halos

within which galaxies reside.

Deep HI observations show that even beyond the stellar disc, the rotational

velocity of galaxies tends to fail to fall in the expected Keplerian fashion. Flat rotation

curves out to the limits of observations tell us that the masses enclosed within the

farthest reaches of observed discs must be much greater than the constituent matter

seen by astronomical instruments (Bosma, 1978). This provided the main impetus

behind the serious theoretical consideration of dark matter in the 1980s and feeds

into the components of the hierarchical ΛCDM Universe.

Deviations from purely circular motions of gas in galaxies, on the other hand,

can arise from different mechanisms, including chaotic non-circular motions induced

by star formation, systematic non-circular motions related to secular processes such as

spiral arms and bars removing gas from circular orbits (e.g. Trachternach et al. 2008;

Galloway et al. 2015), or more dynamical events such as mergers, tidal interaction,

and gas accretion (e.g. Bournaud et al. 2004; Polletta et al. 2011; Ho et al. 2019).

1.1.5 Big data in extragalactic astronomy

Astronomy is currently undergoing a rapid acceleration in data collection with

next generation instruments poised to image enormous portions of the sky. The

advantages of collecting data at faster rates and in more detail are obvious but remain

key. Higher instrument sensitivities will lead to the detection of previously unseen

sources, faster data collection rates means a higher chance of detecting transient

events, larger datasets means greater homogeneity in large-scale studies... the list

goes on.

The study of Hi requires the use of interferometers which collect data of enor-

mous scale per-source already, and next generation interferometers are only going to

get more powerful. The Square Kilometre Array (SKA, which will be the world’s

largest radio telescope) will generate more than an Exabyte of data every day, dwarf-

ing internet usage of the entire globe, squarely seating astronomy in the petabyte era

(Dewdney et al., 2009). Even the current (and operational) SKA pathfinder telescope,
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MeerKAT (Jonas & MeerKAT Team, 2016), has an input data rate of hundreds of

gigabytes per second and ASKAP (the Australian SKA pathfinder telescope, Duffy

et al. 2012) with its advanced phased array feeds generates tens of terrabytes per

second.

It’s not only radio astronomy that is making the push into the big data era. For

example the Legacy Survey of Space and Time (LSST), is a ten year optical survey in

which the entire night sky will be images every few nights, generating 500 petabytes

of data over the survey lifetime (Jurić et al., 2017). Across all of astronomy, yearly

advances in electronics bring instruments that vastly increase data collection size,

and with them astronomers have had to update data reduction and analysis pipelines

to keep delivering valuable scientific output. Yet, typical sky surveys can archive

hundreds of terrabytes of data with billions of detected sources and hundreds of

attributes per source. The vast size and dimensionality of these datasets calls for a new

way of working. With these new instruments, gone are the days where astronomers

analyse sources by hand. In their place automated pipelines, statistics, and machine

learning are emerging or are already securely rooted as part of the astronomical

scientific method accompanied by high performance computing hardware to support

them.

In this thesis I will present my work applying machine learning techniques

to try and maximise the scientific return from future emission line surveys carried

out using e.g. the SKA. In order to do this, I use gas kinematic data products to

identify and study circular and non-circular motions in the ISM of galaxies. In the

next section I will discuss the facilities that provide the data used throughout the

thesis, before going on to introduce the machine learning techniques used, in section

1.3.

1.2 Telescopes & Instruments

For the work presented in this thesis, data from several astronomical telescopes

and instruments are used. As such, it is useful to discuss these telescopes and instru-

ments, in order to better understand the properties of their resultant datasets and

the link between operational wavelength and the science that they produce.

1.2.1 Interferometery

A single radio telescope dish acts like a bucket, collecting radio-waves and

reflecting them onto a receiver at its focus. The radio receiver translates the incoming
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Figure 1.7. IRAM located in the Sierra Nevada, Spain, close to the Pico Veleta
peak, with me posing nearby while very chilly. Image credit: me.

radio waves into a voltage that can be measured and recorded. Depending on the

onboard instrument, the measurements can be used to create a radio intensity map, or

spectral line profile of a source. Single-dish long-wavelength telescopes have been in

operation around the globe for many decades. Notably among them are (in ascending

size), IRAM (30m, see Figure 1.7), Jodrell Bank (76m), Arecibo (300m), and FAST

(500m). Some of these telescopes are shown in Figure 1.8 around the globe.

The resolving power of a telescope is dependent on the wavelength being ob-

served and the diameter of the telescope due to the physics of diffraction. Specifically,

θmin = 1.22
λ

D
≈ λ

D
, (1.1)

where θmin is the angular resolution, λ is the observed wavelength, and D is the

diameter of the telescope.

However, millimetre to radio waves have much longer wavelengths than visible

light. So if an optical telescope and a radio telescope had the same diameter, the

radio telescope would have much weaker resolving power. For example, for a 5m

optical telescope (such as the Hale optical telescope), in order to achieve the same



1.2. Telescopes & Instruments 17

Figure 1.8. Some of the single-dish, long-wavelength, telescopes from around the
world. Observed wavelengths for these features telescopes range from ∼ 1mm up to
just over ∼ 1m. This image was taken from the 2017 ATCA radio astronomy summer
school and was created by Jennifer West (University of Toronto).

theoretical resolving power, a radio telescope would have to have a diameter on the

order of around 500 km. A telescope like this is of course, practically impossible to

construct on Earth. Therefore astronomers who wish to resolve small sources (such

as external galaxies) use interferometry instead.

Radio interferometry first emerged in 1946, when Martin Ryle, Joseph Lade

Pawsey, and Ruby Payne-Scott observed radio emission from space using sea-cliff

interferometry. It is worth noting that they weren’t the first to image the sky in the

radio domain, this milestone belongs to Karl Jansky, who identified the Milky Way’s

radio emission in the 1930s (Brittain, 1984) and Grote Reber, who made detailed

maps of the radio sky by the 1940s (Reber, 1940). World war II forced technical

developments in the radio and radar work which led to the discovery of the Sun being

a strong radio emitter. After the war, radio astronomy continued in groups in Britain,

the Netherlands, and Australia and eventually became a key part of astronomy in all
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areas of the globe.

Imagine two radio telescopes placed a distance b apart (see Figure 1.9), where

b is also called the baseline. If an observed source is directly overhead (equidistant

from the two receivers), the light waves will arrive at the telescopes in phase and at the

same time. When the signals from the two telescope are combined, they constructively

combine to give a strong signal. If the source has moved across the sky, parallel to an

imaginary line connecting the two telescopes, then the path length of the light waves

to the receivers will differ. If the path lengths differ by λ/2, they will arrive 180◦

out of phase and destructively interfere. So when observing the night sky, a two dish

interferometer would observe a series of peaks and troughs –an interference pattern

exactly like that as seen in Young’s famous double slit experiment.

A key principle of interferometry is that the Fourier transform of the signal

from a distant, incoherent source is equal to its complex visibility. This is called the

Van Cittert-Zernike theorem (van Cittert, 1934):

T (x, y) =

∫ ∫
V (u, v)e−2πi(ux+vy)dudv, (1.2)

where T is is the 2-dimensional mutual coherence function between two points in

the observation plane, V is the intensity of the source, and u and v are the x and y

distances respectively, between the two observation points on the observation plane

in units of wavelength.

Thus, an interferometer measures the Fourier transform of the light distribu-

tion of a source on the sky. The ‘visibility function’ V (u, v), is measured as a collection

of discrete points, where each baseline (and therefore pair of dishes) provides such a

point. In order to build up the desired Fourier transform, many baselines are needed.

Building up the Fourier transform corresponds to increasing the ‘uv plane’ sampling

and coverage, where increasing the sampling requires increasing the number of base-

lines in an array and increasing the coverage depends on the array configuration (the

arrangement of the dishes themselves). The greater the coverage, the better the qual-

ity of the resulting images. Because the Earth rotates with time, a point on the

Earth’s surface will appear to move over time from the point of view of the source.

It is therefore possible to use the Earth’s rotation as a way to fill the uv plane.



1.2. Telescopes & Instruments 19

Figure 1.9. The geometry of a two dish interferometer, with antennas spaced
at a distance b apart and aimed at a source in the direction s. Source signals
are combined at a correlator and changed into a machine readable signal. Im-
age taken from the NRAO course on interferometers: Section 3.7.1 at https:

//www.cv.nrao.edu/~sransom/web/Ch3.html.

If we consider a single baseline pair of antennas separated by a distance B (see

Figure 1.9), each dish measures a voltage V of a point source as

V1 = Ecos(ωt) (1.3)

V2 = Ecos[ω(t− τg)], (1.4)

where V1 and V2 are the voltages measured by each antenna, E is the electromagnetic

field strength of the source, ω = 2πv, where v corresponds to the observing frequency,

t the time of signal arrival, and τg the geometric time delay between source detection

at both receivers. τg depends on the position of the source relative to the array, as

well as the baseline distance and is described by τg = b·s
c
, where b is the baseline

distance, s is a unit vector in the direction of the source from a receiver, and c is the

https://www.cv.nrao.edu/~sransom/web/Ch3.html
https://www.cv.nrao.edu/~sransom/web/Ch3.html


20 Chapter 1. Introduction

speed of light. Both signals are then combined in a ‘correlator’ which cross-correlates

the two signals from the same E field to obtain a response

R = V1 ⊗ V2 =
1

2
E2[cos(ωτg) + cos(2ωt− ωτg)]. (1.5)

For extended astronomical sources (i.e. not point sources), Equation 1.5

changes to

R =

∫ ∫
Iv cos

(
ω
b · s
c

)
dΩ, (1.6)

where Iv is the source intensity at frequency v, and dΩ is the solid angle observed by

the telescope.

It is worth noting that the interferometer described above assumes that the ob-

served interference pattern is described by a cosine function. Being an even function,

this means that the response R goes to zero for observed odd brightness distribu-

tions. In order to rectify this behaviour, we often use a second correlation using a

sine function so that we minimise the loss of observed emission. Therefore, we can

finally define the complex visibility, from passing through a ‘complex correlator’ as:

V = Rc − iRs = Ae−iϕ =

∫ ∫
Iv(s)e

−2πiv b·s
c dΩ, (1.7)

where A =
√

R2
c +R2

s (the cosine and sine responses combined) and ϕ = arctan
(

Rs

Rc

)
.

It is easy to recognise the resulting equation as a two-dimensional Fourier transform.

A modified version of Equation 1.1

θmin ≈
λ

bmax

, (1.8)

where bmax is the maximum baseline distance in an array, gives us not only the

maximum resolving power of an interferometer, but also a minimum resolving power

(given instead by bmin, typically referred to as the lowest angular scale). Since two

dishes can never be infinitely close to one another, in interferometer is always “blind”

to extended structures beyond this maximum size. The emission of the source in these

regions is ‘resolved out’. Therefore, it has become popular in recent years to combine

single dish with interferometric observations and, in some cases, utilise different array

configurations/sizes to fill in the gaps.

Below I will discuss the two interferometers used in this thesis.
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1.2.2 ALMA

Figure 1.10. The Atacama Large Millimeter/submillimeter Array (ALMA), located
5000m above sea level in the Chilean Andes. To date it is the most expensive ground-
based telescope ever built. Image credit: ESO.

The Atacama Large Millimeter/submillimeter Array (ALMA, see Figure 1.10)

is located on the Chajnantor plateau, roughly 500m above sea level in the Chilean

Andes. ALMA is an array of 66 12m dishes spread out over distances of up to 16 km.

In order to overcome the problem of ‘resolving out’ source emission (see § 1.2.1),

ALMA also includes the ‘Atacama Compact Array’ (ACA or Morita Array). The

ACA is comprised of twelve 7m and four 12m antennas at the heart of the larger

array, the latter often being referred to as the ‘Total Power (TP) Array’. Observations

with both ACA and TP arrays are often carried out in addition to observations using

the 12m array.

ALMA was conceptualised in 1997 when the National Radio Astronomy Ob-

servatory (NRAO) and European Southern Observatory (ESO) agreed to combine

the predecessors: the Millimeter Array (MMA, in the United States) and the Large

Southern Array (LSA, in Europe), into one project with superior sensitivity and res-

olution. Later in the project, Japanese, Taiwanese, and Chilean partners joined,

contributing to the construction of the ACA and additional receiver bands. At a cost
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of $1.4 billion US dollars, ALMA is the most expensive ground-based telescope in

operation (ESO 2017, until construction of the SKA completes at an estimated cost

of 1.9 billion Euros).

With its unprecedented resolution and sensitivity in the millimetre regime,

ALMA is sensitive to the coldest parts of the Universe i.e. dense molecular gas

and dust. The science goals of ALMA include studying protoplanetary discs, star

formation, spectral line emission in galaxies, and even the chemistry and structure

of solar system bodies (Wootten & Thompson, 2009). In the work presented in this

thesis, ALMA observations of CO in nearby galaxies helps in evaluating the use of

machine learning models across a variety of instruments with variable spectral and

spatial resolutions�.

1.2.3 VLA

The Karl G. Jansky Very Large Array (VLA, Kellermann et al. 2020, see Figure

1.11) is another interferometer; this time, located on the plains of San Agustin in

central New Mexico, at an altitude of 2124m above sea level. The VLA is made up of

twenty-eight 25m dishes deployed in a Y-shaped array. This is in contrast to ALMA

which can distribute its antennas freely. The antennas of the VLA are on tracks

though, allowing the radius and density of the array to be changed in accordance

with desired angular resolution and sensitivity requirements. The lengths of each of

these tracks are 21 km (13 miles). As a centimetre-wavelength radio telescope, one of

the primary missions of the VLA is to observe neutral hydrogen in galaxies beyond

the Milky Way. A number of surveys, observing 21 cm line emission in galaxies have

been conducted and proposed, including the Local Volume Hi Survey (LVHIS) and

THe Hi Nearby Galaxy Survey (THINGS), both of which feature in Chapters 2 and

3 respectively.

The VLA is a component of the National Radio Astronomy Observatory

(NRAO, NRAO 2022), which is itself a funded research center of the United States

National Science Foundation. Construction of the array was completed in 1980, and

at the time was the largest radio telescope in the world. The array underwent a

major upgrade in 2011, enhancing the instrument’s sensitivity, observable frequency

range, and effective angular resolution. In the future, the Next Generation VLA

�It is worth noting that the term ‘spatial resolution’ is often rejected in interferometry. Instead
astronomers commonly refer to terms related to the restoring beam calculated for the observation
in question. The beam effectively acts as a quantified PSF, and more appropriately represents the
resolving power of an interferometer at a given time.
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Figure 1.11. The Karl G. Jansky Very Large Array, located around 80 km (50 miles)
west of Socorro in New Mexico. The array is distinctive for its Y-shape configuration
of antennas. Image credit: NRAO.

(ngVLA) is set to supersede the VLA. ngVLA will comprise 244 dishes of 18m diam-

eter, with baselines of up to 1000 km across the United States and extended baselines

to continental scales of up to 8860 km. An additional 19 dishes of 6m diameter will

be included to make up a short baseline array (SBA) for the same purposes as the

ACA. The ngVLA will complement SKA by observing at higher (with some overlap)

frequencies, but with much higher spatial resolution (ngVLA, 2022).

As mentioned previously, data collected from the VLA is used in the work

presented throughout this thesis. These are strictly Hi 21 cm line observations, and

play a critical role in evaluating the performance of machine learning models on data

at the same frequency range the SKA will cover.
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1.2.4 IFU instruments

Integral field spectroscopy (IFS) is the process of obtaining spatially resolved

spectra in astronomy and other fields of research (including, but not limited to, med-

ical imaging and earth observation). In astronomy we usually refer to integral field

units (IFUs), which are combined with a spectrograph to make a multiplexed optical

instrument capable of spectrographic and imaging capabilities.

IFS is an important area of astronomy (Gunn et al., 2006), owing to the need

to study the optical spectra of extended objects as a function of spatial location, or

of clusters of many sources distributed in a small field. In the past, such observations

were carried out using long-slit spectrographs, where spectra are dispersed perpen-

dicular to the slit. The spatially resolved component of the image is in the dimension

along the slit, and a total image can be obtained by stepping the position of the slit

along the extended object on the sky. This process is slow and fraught with uncer-

tainties due to e.g. changing sky conditions during the observations. Hence the field

has moved towards the use of integral field spectrographs, which can obtain spectra

in a 2-dimensional field with a single pointing.

Both MaNGA and SAMI instruments, outlined in §1.2.5 and §1.2.6 respec-

tively, use hexabundles of fibres as their IFUs. This is a grouping of optical fibres,

which form the spectrograph’s entrance. For each projected fibre on the sky source,

a spectrum is obtained.

1.2.5 MaNGA

The Mapping Nearby Galaxies at APO (MaNGA) survey, is one of the surveys

carried out as part of the larger Sloan Digital Sky Survey (SDSS) project, aimed at

measuring spectra across the face of ∼ 10 000 galaxies in the local Universe (Gunn

et al., 2006). The MaNGA instrument comprises 29 fibre IFUs hexabundles, with

fiber numbers ranging from 19 to 127, delivering a field of view ranging from 12′′to

32′′respectively. With 17 dedicated object IFUs, the MaNGA instrument can observe

17 sources at any one time, with 12 additional ‘mini-bundles’ used for calibration

purposes. The IFUs are used to spectroscopically map sources in the wavelength

range of 360→ 1040nm, at a resolution of ∼ 2000 (λ/δλ). The MaNGA instrument

is one of several used by the SDSS 2.5-m wide-angle optical telescope situated at

Apache Point Observatory, in New Mexico (see Figure 1.12).

At a rest frame of 656 nm, the Hα emission line, along with many other optical

lines (such as Hβ, O[ii], O[iii], N[ii] and S[ii]), are captured by MaNGA and therefore

the survey offers thousands of spatially and spectroscopically resolved velocity maps
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Figure 1.12. The SDSS 2.5-m wide-angle optical telescope situated at Apache
Point Observatory, in New Mexico. The MaNGA IFU spectrograph is one of several
instruments used by the telescope as part of SDSS. Image credit: SDSS.

to use. In the work presented in this thesis, we use MaNGA data in order to demon-

strate the generalisation power of our machine learning models, which were originally

targeted at interferometric data products. We use the data in combination with our

models to recover known physical relationships with the largest sample sizes available

and at the fastest speed to date (see §4).

1.2.6 SAMI

The Sydney-AAO Multi-object Integral-field unit (SAMI) is the IFU instru-

ment that feeds the AAOmega spectrograph. SAMI is situated at the Anglo-Australian

Telescope (AAT, see Figure 1.13) at the Australian Astronomical Observatory (AAO)

in suburban Sydney, Australia. It is comprised of thirteen 16-fibre hexabundle IFUs.

Each hexabundle has a 15′′ field of view on the sky, and can be deployed by plates

within a 1◦ field of view. Unlike MaNGA (see §1.2.5), SAMI has a set of three

resolution gratings (labelled low, medium, and high), providing resolutions of R

∼ 1000, R ∼ 5000, and R ∼ 10000 (λ/δλ) across the instrument’s wavelength range

of 330→ 900nm.

Within the observable wavelength range, Hα line emission is captured at a

greater resolution with SAMI than with MaNGA (and lines in the blue, such as
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Figure 1.13. The Anglo-Australian Telescope (AAT) in suburban Sydney. Attached
is the SAMI IFU instrument, used observe nearby galaxies as part of the SAMI survey.
Image credit: AAO.

Hβ/O[iii are even higher resolution still). For the work presented in this thesis, the

overlap of targets in the SAMI and MaNGA surveys is large enough to allow for a

comparison of novel machine learning model performance on the same sources. The

overlap is also low enough (as a fraction of the survey size) to also boost the total

IFU dataset size (used in the work presented in §4) allowing a direct comparison of

model performance when using datasets of differing spectroscopic resolution.
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1.3 Machine Learning

The field of machine learning pertains to the use of algorithms that can improve

through experience and exposure to data; computers discovering how to perform tasks

without explicit programming to do so. For simple tasks it’s possible to tell a program

how to execute all the steps needed to solve a problem. For more complex tasks it

can be more difficult for humans to cover the necessary logic and programmatic steps

to solve problems. In practice it can be more effective to help machines develop

their own algorithms. Employing various methods of teaching computers to develop

algorithms encompasses the field of machine learning.

The term machine learning has been popular since the 1950s, born out of

an era in which pattern recognition was of major interest. Modern day machine

learning applications primarily focus on classification and future prediction and are

often mentioned along with artificial intelligence and data mining.

Machine learning grew out of the quest for artificial intelligence (AI), i.e. in-

telligence demonstrated by a machine as opposed to humans or animals. Machine

learning only really began to flourish in the 1990s, when the field changed from its

initial goal of achieving artificial intelligence to tackling practical, solvable, problems.

Focus shifted away from approaches inherited in pure AI, to models and methods

found in statistics, pattern recognition, and probability theory. Whether machine

learning is still considered a branch of AI or a completely separate field is widely

debated even today.

While machine learning focuses on making predictions based on information

learned from data, data mining purely focuses on the discovery of unknown properties

of data. In the modern world, data mining uses many machine learning methods but

usually with different goals in mind. Conversely, machine learning also employs data

mining methods as ‘unsupervised learning’ (these days, referred to as self-supervised

learning), as a preprocessing step for classification or for complex data exploration.

While machine learning inherits from data mining, and vice versa, they remain dis-

tinct due to their performance evaluation styles. A task aimed at reproducing known

knowledge and predicting consequential future observations is well suited to super-

vised learning. Meanwhile, for typical data mining tasks, supervised methods cannot

be used due to the unavailability of training data and instead, unsupervised learning

methods are more favourable.

1.3.1 Machine learning approaches

Supervised learning



28 Chapter 1. Introduction

A supervised learning task is that of learning a function which maps an input

vector to an output based on training input-output pairs. A supervised learning model

learns feature representations of input vectors X necessary for mapping inputs into

desired output values Y . The inferred function from training ideally can be used to

correctly determine the class, label, or value for unseen input instances. This requires

the model to generalise in a reasonable manner. Supervised learning problems can be

grouped into regression and classification problems.

Many supervised learning algorithms exist, each with their own strengths and

weaknesses. Factors to consider when choosing an appropriate algorithm for a learning

task depend on the complexity of the target function and both the size and complexity

of the training data. An obvious drawback of supervised learning is that it requires

prior knowledge of the output space limits or number of target classes. Consequently,

there is often a trade-off between predictive accuracy and induced bias when using

supervised learning algorithms.

In a classification problem, output variables are categorical (e.g. object colour).

Whereas, in a regression problem, the output variables Y have real continuous values

(e.g. object height). An example supervised classification model might be a support

vector machine (SVM, Cortes & Vapnik 1995) and an example supervised regression

model might be a linear regression model. However, there do exist algorithms capable

of performing both, such as random forest (Breiman, 2001) and neural networks (see

§1.3.2).

Unsupervised (self-supervised) learning

In contrast to supervised learning, unsupervised learning algorithms are not

provided labelled targets and as such must self-discover patterns in training set data.

The removal of explicit target variables allows some unsupervised algorithms to find

unknown patterns and relationships within datasets, with reduced workload in prepar-

ing the training data. However, disadvantages include overly-complex mappings of

input data (making results difficult to interpret), increased computational load during

training, and the unknown effects of bias due to erroneous or irrelevant training data.

Common families of unsupervised learning include: clustering, neural net-

works, anomaly detection, and latent variable models. All of these families have

a degree of overlap which tie into the overarching goal of unsupervised learning –

uncovering patterns and internal relationships within datasets with minimal oversight.

The Kohonen self-organising map, or SOM (Kohonen, 1990), is one such example of
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unsupervised learning techniques, which first emerged in 1990 and is often seen as an

entry level algorithm into the world of unsupervised learning. An exemplar use-case

of Kohonen SOMs in astronomy is their application to variable star classification with

the Next Generation Transit Survey (Armstrong et al., 2017). It primarily serves as

a data visualisation tool at the time of writing but has been shown to work well with

supervised learning techniques, boosting classification accuracy in machine learning

models. Naturally, the combined use of supervised and unsupervised learning has

been dubbed semi-supervised learning and shows great potential for improving the

power of classification problems. Due to the entry level nature of the SOM and its

past use in astronomy (e.g. Armstrong et al. 2016), is is worth dissecting the algo-

rithm here to give a better understanding of the differences between more familiar

supervised learning problems and unsupervised learning tasks.

The premise. Imagine we have a collection of feature vectors. These could be vec-

tors of length 3, where each dimension represents a different feature such as colour, or

shape. The motivation behind using a Kohonen SOM, is to train a 2D grid to group

input vectors which share similar features, and consequently displace feature vectors

which are very dissimilar away from one another. Each point on the grid therefore

represents a vector with the same number of dimensions as the input feature vectors

used to train the map.

The algorithm. To begin, a Kohonen layer is initialised, this is simply a randomised

2-dimensional grid of weights wij. Each weight has a topological position in the

Kohonen layer and is a vector of the same number of dimensions as each input vector.

An input vector of features xn is chosen at random from the input array list of

length N and presented to the Kohonen layer. The best matching unit (BMU) in the

Kohonen layer is found using a user specified distance metric. A popular metric is

the Euclidean distance (see equation 1.9).

Dist =

√√√√n=N∑
n=1

(xn − wij)
2 (1.9)

The weights wij of the Kohonen layer within a defined proximity of the BMU

are updated at a time t+ 1, as in equation 1.10.

wij(t+ 1) = wij(t) + α(t)β(t)[x(t)− wij(t)] (1.10)

α(t) is known as the learning rate and usually takes values: 0 < α(t) < 1.
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β(t) is known as the neighbourhood function, which controls the influence the BMU

has on neighbouring weights, depending on their proximity to the BMU. Usually

β(t) is chosen to be some radially decaying function such as a Gaussian or decaying

exponential. Together. α(t) and β(t) make up what is known as the adaption gain,

controlling the total decay of influence over a node’s weight adjustment at each time

step. This process is then repeated for T iterations until a user specified convergence

condition is fulfilled.

These equations above show the underlying mathematical processes used in

the SOM algorithm. The pseudo-code for algorithm itself is outlined in Algorithm 1.

Algorithm 1: Kohonen SOM

Data: Training inputs X = {x1,x2, . . . ,xN}
Input: Kohonen map with randomly initialised weights mij

Input: Number of training epochs T

Input: Learning rate α

Input: Neighbourhood function β

Input: Convergence criterion η

Result: Trained SOM Mopt(x)

/* Iterate over all epochs */

1 for t ∈ {1, 2, . . . ,T} do

/* Do until number of trainsamples is reached */

2 for n ∈ {1, 2, . . . ,N} do

/* Choose current trainsample */

3 xn ← choose random elements(X)

/* Calculate best matching unit for input */

4 bij ← BMU(xn)

/* Update neighbouring weights */

5 mij(t+ 1) = mij(t) + α(t)βij[xn,t − bij(t)]

/* Current model has converged */

6 if η = True then

7 Mopt ← M

8 end

9 end

10 end
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The result of training an SOM is a clustering of locally-similar weights and,

once completed, test inputs are shown on an SOM by highlighting the test inputs’

BMUs on the converged Kohonen layer. In Figure 1.14 we can see an exemplar

SOM where the training inputs are normalised RGB vectors. It should be noted

that although Figure 1.14 shows a 2-dimensional Kohonen layer, most applications of

SOMs use a 1-dimensional adaption for speed while 2D Kohonen layers are used for

visualisation purposes.

Figure 1.14. An example use of a Kohonen layer before (left) after (right) training
on RGB pixels.

Deep learning

Deep learning is part of machine learning based on a special use case of artificial

neural networks (see §1.3.2). The adjective ‘deep’ in deep learning refers to the use of

more than one layer in the neural network. Whereas a single layered, linear perceptron

(defined in §1.3.2) cannot be a universal classifier (i.e. a model capable of performing

classification tasks perfectly regardless of the complexity of the task), a network with

non-linear activation functions and a hidden layer of unbounded width can. Deep

learning is a modern variation concerned with an unbounded number of hidden layers

of bounded size. The limited layer sizes offer practicality and implementation while

moving towards the power of a universal classifier. In deep learning, the layers are

also permitted to deviate from connectionist models.

It is widely accepted that the deep learning revolution occurred in 2012, when

fast implementations of convolutional neural networks (see §1.3.2) progressed the

field of pattern recognition. Around this time, convolutional neural networks began
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to supersede human performance in pattern recognition tasks (Krizhevsky et al.,

2017) and deep learning would go on to play significant roles in advancing computer

vision, image analysis, speech recognition, natural language processing, and even

game design.

1.3.2 Artificial neural networks

An artificial neural network (ANN) is a collection of connected nodes, which

are loosely derived from the neurons found in a biological brain. Each connection

between nodes models the transmission of information like synapses in the brain. Al-

though often compared to the hypothesised function and architecture of the brain,

the true similarity between neural networks and the biological brain remains heavily

debated and unsolved.

Perceptron

The perceptron (Rosenblatt, 1958) is a single layer artificial neural network

(ANN). As such it can be used exclusively for linear regression or classification prob-

lems. A schematic for the perceptron is shown in Fig. 1.15.

Figure 1.15. Diagram of a perceptron featuring: inputs, weights, summation func-
tion, and activation function.

When training a perceptron, inputs (x1, x2...xN), are presented to the model.

These input vectors are multiplied by weights (w1, w2...wN) and summed with a bias
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weight w0. The summed value is then passed to an activation function which maps

the result to some desire range such (e.g. 0→ 1 or −1→ 1). A likelihood function is

used to quantify the error in predicted output, based on X-Y input-output pairs, and

minimised by updating the weights through the gradient descent method. In practice

perceptrons are rarely used and therefore, for an outline of the training algorithm for

a perceptron, one can simply use a single-hidden-layer adaption of Algorithm ??.

In the early days (1950s) when the perceptron was first created, computers

were deemed too unsophisticated to handle the long runtime required by larger neu-

ral networks. Coupled with the perceptron’s inability to solve the exclusive-or problem

(XOR), neural network development did not become popular again until advances in

computation power and the backpropogation algorithm (Rumelhart et al., 1988) in

the 1970s. And it wasn’t until the development of advanced graphics processing units

in the turn of the century that we began to witness the emergence of trainable deep

learning algorithms, as perceptrons grew into deep neural networks.

Convolutional neural networks

Convolutional neural networks (CNNs) are a special class of deep neural net-

work used primarily with multi-channel input matrices, or images, rather than 1D

vectors. Information is derived from raw pixels, negating the need for a separate

feature extraction stage; this results in latent models with increased empirical accu-

racy. Today, they are used for a range of problems from image classification, remote

sensing, and self-driving cars.

Figure 1.16. Architecture of the CNN LeNet-5 featuring convolutional layers, max-
pooling, and fully connected layers (Lecun et al., 1998).

A conventional CNN will have a series of layers often including: input, convo-

lutions, max-pooling, activations, fully connected layers, and output (see Fig. 1.16)

as well as regularisation techniques to improve generalisation.
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In deep learning, many convolutions are applied where consecutive convo-

lutions draw higher level features. These networks are only trainable (through back

propagation) thanks to the use of advanced graphics processing units (GPUs, Steinkraus

et al. 2005). Arguably, the most notable CNN to utilise GPU capabilities in the his-

tory of machine learning is AlexNet (Krizhevsky et al., 2017). This network achieved

a 15.3% top-5 error rate (a performance metric measuring the number of times the

true target variable appears in the top-5 most likely predicted variables by a network

for a given input) when trained on the ImageNet LSVRC-2010 dataset� which was

a huge step forward from previous approaches to the classification problem. The

contest involved training on 1.2 million images with 1000 different classes. Since

then, there have been various network architectures outperforming AlexNet includ-

ing: GoogleNet, VGGNet, ZFNet and ResNet. ResNet boasts the current best top-5

error rate of 3.57% (He et al., 2015) which surpasses the Human top-5 error rate,

reported to be 5.1% (Russakovsky et al., 2014; Bhandare et al., 2016).

A CNN will undergo training in similar fashion to a standard neural network

(consisting of multiple hidden layers to differentiate it from the perceptron), with the

slight difference of backpropogating errors through the convolution kernels.

A number of mathematical processes, data handling techniques, and general

machine learning training terms are often associated with using CNNs. Here they

are outlined in order to better understand some of the nuances, goals, and difficulties

associated with training a CNN model.

Overfitting is a term used when a modelling function is too closely aligned to a

limited set of datapoints as to cause the model to only be useful in reference to its

initial data set. Another way to describe an overfitting model, is one which has more

parameters (and therefore higher complexity) than can be justified by the data. In

essence, overfitting is to have unknowingly modelled the variation (i.e. noise) in the

dataset as if it represents the underlying model structure. In extreme cases, models

can memorise data in its entirety, if the number of model parameters is the same or

greater than the number of observations. Such models will typically fail to make new

predictions and thus have low generalisation power. A number of approaches exist

to minimise overfitting; in the case of neural networks, which can often have millions

of parameters, these approaches are often labelled as regularisation procedures which

are described further on in this section.

�The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is a contest in which algo-
rithms are evaluated on object detection and image classification at large scale. A key motivation
for the challenge is to allow researchers to compare progress in detection across a wider variety of
objects – taking advantage of the quite expensive labelling effort.
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Max pooling is often used after or between convolutional layers. It acts to reduce

the spatial sizes of layer outputs and therefore decreases the number of parameters of

need to be optimised. This has the added benefit of reducing overfitting. A max pool-

ing layer will record the maximum values in a matrix grid-wise striding. The stride

parameter controls whether the pooling is general or overlapping, where general pool-

ing will have a filter size equal to the stride length whereas overlapping pooling will

have stride lengths shorter than the filter size. Pooling with a stride length larger

than the filter size is considered too destructive and is rarely employed. There are

other types of pooling, namely average and L2-norm pooling, however none have

been shown to work as effectively as max pooling.

Activation functions map the output of CNN layers to lie between a desired range,

depending on the function. Activation functions generally come in two types: linear

and non-linear. Non-linear functions are popular in CNN architectures thanks to

their ability to allow easier generalisation of models. The most popular activation

functions are: sigmoid, tanh, softmax, and the Rectified Linear Unit (ReLU). ReLU

stands as the most used activation function at the time of writing thanks to its success

in CNNs (see Fig. 1.17) and maps outputs to lie between 0→∞.

Figure 1.17. ReLU activation function. For a given unit-less input (x-axis), the
mapped unit-less result (y-axis) is always real and positive.

Despite its status as the most used activation funtcion, ReLU functions suffer
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from aggressive zeroing of negative values, depending on the input dataset. ReLU is

still considered a state of the art activation function, but as such, is gradually being

replaced by leaky ReLU whose zeroed negative values become a variable gradient

function.

Regularisation is the process of reducing the generalising error of an algorithm while

not affecting the training error rate. The problem of overfitting to training data is all

too common in machine learning, where a dataset is considerably smaller than the

number of trainable parameters in an algorithm. A deep learning image classifier can

have millions of such parameters, therefore several tricks are commonly employed to

regularise networks, forcing them to have greater generalisation power.

Data Augmentation. A very popular technique for regularisation is to alter the

dataset in such a way that a network will see the same input differently through each

augmentation and therefore has the effect of pseudo-dataset-enlargement. Augmen-

tation can include convolving the image, applying noise, rotating or transforming the

image, and more.

Dropout regularisation. A brute force method for encouraging generalisation,

dropout layers will randomly assign node weights to have a value of zero with some

predefined probability. This minimises the co-adaption of nodes and one can think

of dropout regularisation as a way of generating many thinned networks which share

parameters, closer resembling an ensemble method (Srivastava et al., 2014). Several

machine learning models, including CNNs, suffer from misclassifying adversarial ex-

amples. Minor perturbations to input images, with no discernible difference to the

human eye, are perceived differently by models posing a large trust issue when clas-

sifying unseen data. This resulted in the rise of adversarial training, where networks

are exposed to adversarial examples and corrected accordingly. Such training is said

to outperform dropout regularisation (Goodfellow et al., 2014) in some cases.

Early stopping. If one can find the moment at which a network undergoing training

begins to overfit, it is possible to mark this point as the network’s best generalising

epoch. This is often found by evaluating a validation set (which the network never

trains on) and looking for the turning point of the validation accuracy. The turning

point is indicative of the network fitting to noise in the dataset. Halting the network

training procedure at this point results in the best generalising hyper-parameter op-

timisation without employing any other regularisation techniques.
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Deep learning in practice

There are many pretrained deep learning architectures, written using different

Application Programming Interfaces (APIs), and trained on different data available

for anyone to access and manipulate for free on the internet. As will become evident in

the following chapters, the work presented in this thesis makes use of neural networks

developed from scratch and written using the PyTorch API. In this short section I

will outline the reasons for this and the benefits from doing so.

The choice of deep learning API isn’t a hugely important one when creating

and using neural networks, but some are easier to get started with than others. For

a complete novice, it can be argued that TensorFlow (and by extension Keras, it’s

baby relative) is the most beginner-friendly API tool for creating and training deep

neural networks. This is due to TensorFlow being one of the first scalable APIs for

neural network creation, meaning it has a long history of community support and

development. Conversely, PyTorch is relatively nascent in comparison, so why would

one elect to use PyTorch over its more developed predecessor? I made the conscious

choice to use PyTorch throughout this thesis because it is far more flexible in neural

network creation and more efficient in memory usage. The former point is thanks

to PyTorch’s use of dynamic computational graphs, i.e. the internal mathematics

of the network (as inputs are passed through them) are calculated in the moment

–from layer to layer. This makes pinpointing errors in your network fast and also

allows for breaking up and building branched networks with relative ease. Despite

the longer learning curve of getting up and running with PyTorch, once complete it

quickly becomes clear just how much more pythonic and flexible it is.

With regard to PyTorch’s community forum and documentation, it used to be

(at the beginning of the PhD certainly) that the level of detail in PyTorch’s official

documentation and the activity on the community forums was in a word... lacking.

However, since then PyTorch has exploded in popularity thanks to the flexibility

mentioned above, and now has much more comprehensive documentation and an

active community user base with licensed administrators on hand to answer questions

quickly.

For the majority of this thesis, I go on to talk about the use of GPU accelerated

neural network creation. An important factor of deep learning APIs is that they

are designed to make use of the computational speed-up from performing tensor

operations on GPUs. All APIs designed for deep learning can operate in CPU or GPU

mode, with the former being strongly discouraged if significant image task results are
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needed within human lifetimes. Casting data to GPUs and training neural networks

is easy in all modern deep learning APIs, yet PyTorch does so in a way which is much

less memory intensive than other APIs. This makes prototyping new networks more

energy efficient, and scalable for future use on high performance computing stacks.

When data volumes increase in the future and tasks requiring automated, high-

dimensional feature extraction and/or inference must cope with vastly increased data

collection rates, then it makes sense to use the most efficient tools for the jobs at hand.

Throughout my PhD, automated image classification tasks using deep convolutional

neural networks fit the bill for solving the problems described in the following chapters,

and the PyTorch API allowed for that progress to be made.

1.3.3 Applications of machine learning in astronomy

With astronomy pushing into the big data era, machine learning is now begin-

ning to permeate into most fields within astronomy. Gaia (Gaia Collaboration et al.,

2021) is charting a 3-dimensional map of the Galaxy and local group, providing ac-

curate positional information for billions of stars, the perfect stomping ground for

applying machine learning. In exoplanet studies, machine learning has been used to

recover hidden transit signals in surveys of millions of stars since the Kepler (and K2)

mission, through to the current TESS mission and even the future ARIEL mission

(Nikolaou et al., 2020). Even the detection of gravitational waves (which only truly

became a proven practical field in the last decade) is now aided by machine learning

(Shen et al., 2017; George & Huerta, 2018; Gabbard et al., 2018; Zevin et al., 2017).

It could be argued that extragalactic astronomy entered the big data era

around 2007 with sky surveys such as the Sloan Digital Sky Survey (SDSS), which

provided the astronomical community with multi-colour images of ∼1/3 of the sky as

well as high resolution spectra of millions of Galactic and extra-galactic sources. This

lead to the Galaxy Zoo project (Schawinski et al., 2007) –a citizen science project.

Hundreds of thousands of public participants took part in labelling galaxies for the

project, classifying them visually by morphology. This was a great success, and did re-

duce the near impossible task of an individual classifying the sources alone. However,

it also highlighted the need for revolutionising data analysis techniques, even back in

2007-2009. Since then, the Galaxy Zoo project has used those early public classifi-

cations as information to evaluate machine learning models attempting the same job

(Walmsley et al., 2019). This marks the beginning of machine learning being applied

to such large, observational, extragalactic datasets. In time, citizen science will not

be able to support the data influx from the multiple next generation telescopes and
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thus the evolution of data handling/filtering to machine learning approaches instead,

seems rather logical.

However, the use of interferometers, for studying galaxies beyond the Milky

Way, is still a recent and evolving technology in itself. No extragalactic surveys,

of substantial size to compare to those expected from instruments like SKA, exist,

and those large enough for machine learning studies are very recent. Traditionally

interferometers have been point and shoot instruments, limited to observing single

sources and producing raw data products of enormous size. This may explain why

the application of machine learning to interferometric, extragalactic data is a nascent

area of research, limited to only a handful of published works (e.g. Scaife & Porter

2021; Wu et al. 2019; Alger et al. 2018; Lukic et al. 2018; Tang et al. 2019).

1.4 Thesis outline

This thesis presents an in-depth study of applying machine learning to solve

big data era problems in extragalactic astronomy. In particular, the work focuses on

exploring an area of extragalactic astronomy previously untouched by machine learn-

ing techniques –fast kinematic analysis of galaxies observed using interferometers.

This includes the use of mock observational data synthesised from hydrodynamical

simulations, observations of cold molecular gas, as well as Hi. The latter is the main

driver of the thesis, as the overarching motivation behind the work presented here is

to better prepare for next-generation interferometric surveys using instruments such

as the SKA.

The key questions addressed in this thesis are “Is it possible to use machine

learning to filter observations of cold molecular gas in galaxies into ordered versus

disordered classifications?”, which is then built upon by asking “can machine learn-

ing be used to predict kinematic properties while reducing problems associated with

self-contained training datasets?”. The latter then goes on to inspire the final ques-

tion, “can these models be used to derive known physical relationships on larger scales

than previously achieved using non machine learning approaches?”. While this final

question takes us away from interferometric data, and into the realm of IFU surveys,

it plays off the aims of answering the second question. Specifically, in solving the

‘transfer learning problem’ (using pretrained models on unseen datasets, often with

very different characteristics e.g. noise) it opens another question: “can these models

be used with data products from non-interferometric surveys too?” These questions

are addressed by the following chapters:
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Chapter 2: “Using machine learning to study the kinematics of cold gas in galaxies”

(an adaption of Dawson et al. 2019)

Chapter 3: “A self-supervised, physics-aware, Bayesian neural network architecture

for modelling galaxy emission-line kinematics” (an adaption of Dawson et al. 2021a)

Chapter 4: “The stellar mass Tully-Fisher relation with SAMI & MaNGA using

self-supervised, physics-aware, Bayesian neural networks” (an adaption of Dawson et

al. in prep)

Chapter 5: A summary of how this thesis fits into the bigger scientific picture of

today’s knowledge of machine learning in extra-galactic astronomy, as well as related,

ongoing, and proposed work.



Chapter 2

Using machine learning to study the

kinematics of cold gas in galaxies

“As with most of life’s problems, this one can be
solved by a box of pure radiation.”

Andy Weir, “The Martian”

In this chapter I introduce the first steps in applying deep learning to interferometric

dataproducts, in an attempt to begin addressing their suitability as techniques in

the future of extragalactic astronomy. Next generation interferometers, such as the

Square Kilometre Array, are set to obtain vast quantities of information about the

kinematics of cold gas in galaxies. Given the volume of data produced by such

facilities astronomers will need fast, reliable, tools to informatively filter and classify

incoming data in real time. In this chapter, I use machine learning techniques with

a hydrodynamical simulation training set to predict the kinematic behaviour of cold

gas in galaxies and test these models on both simulated and real interferometric

data. Using the power of a convolutional autoencoder I embed kinematic features,

unattainable by the human eye or standard tools, into a three-dimensional space

and discriminate between disturbed and regularly rotating cold gas structures. My

simple binary classifier predicts the circularity of noiseless, simulated, galaxies with

a recall of 85% and performs as expected on observational CO and HI velocity maps,

with a heuristic accuracy of 95%. The model output exhibits predictable behaviour

when varying the level of noise added to the input data and I am able to explain the

roles of all dimensions of my mapped space. My models also allow fast predictions

of input galaxies’ position angles with a 1σ uncertainty range of ±17◦ to ±23◦ (for

41
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galaxies with inclinations of 82.5◦ to 32.5◦, respectively), which may be useful for

initial parameterisation in kinematic modelling samplers. Machine learning models,

such as the one outlined in this chapter, may be adapted for SKA science usage in

the near future.

2.1 Introduction

The age of Big Data is now upon us; with the Square Kilometre Array (SKA)

and Large Synoptic Survey Telescope (LSST) both set to see first light in the mid-

2020’s.

A key area for big data in the next decades will be the studying of the kine-

matics of cold gas in galaxies beyond our own. This field will rely on interferometers,

such as the SKA, thanks to their ability to reveal the morphology and kinematics

of the cold gas at high spatial and spectral resolution. Current instruments like the

Atacama Large Millimeter/submillimeter Array (ALMA) have revolutionised the

study of gas in galaxies with their sensitive, high resolution, observations of gas kine-

matics. However, this field lacks the benefits afforded by fast survey instruments,

having long been in an era of point and shoot astronomy. As such, large datasets

capable of containing global statistics in this research domain have yet to emerge and

studies are plagued by slow analytical methods with high user-involvement.

At the time of writing, large-scale radio interferometric surveys such as WAL-

LABY (Duffy et al. 2012) and APERTIF (Oosterloo et al. 2010) are set to begin and

will motivate the creation of tools that are scalable to survey requirements. However,

these tools will be insufficient for screening objects come the advent of next-generation

instruments which are set to receive enormous quantities of data, so large in fact that

storing raw data becomes impossible.

In recent times, disc instabilities, feedback, and major/minor mergers have

become favoured mechanisms for morphological evolution of galaxies (e.g. Parry

et al. 2009; Bournaud et al. 2011; Sales et al. 2012), the effects of which are visible

in their gas kinematics. Therefore, gas kinematics could be used to rapidly identify

interesting structures and events suitable for understanding drivers of galaxy evolution

(e.g. Diaz et al. 2019). If the kinematics of galaxies can accurately yield information

on feedback processes and major/minor merger rates, then astronomers using next

generation instruments could develop a better understanding of which mechanisms

dominate changes in star formation properties and morphology of galaxies. In order

to do this we must develop fast, robust, kinematic classifiers.

Recently, machine learning (ML) has been used successfully in astronomy for
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a range of tasks including gravitational wave detection (e.g. Shen et al. 2017; George

& Huerta 2018; Gabbard et al. 2018; Zevin et al. 2017), exoplanet detection (e.g.

Shallue & Vanderburg 2018), analysing photometric light curve image sequences

(e.g. Carrasco-Davis et al. 2018), and used extensively in studies of galaxies (e.g.

Domı́nguez Sánchez et al. 2018a,b; Dieleman et al. 2015; Ackermann et al. 2018,

Bekki 2019).

While using ML requires large data acquisition, training time, resources and

the possibility of results that are difficult to interpret, the advantages of using ML

techniques over standard tools include (but are not limited to) increased test speed,

higher empirical accuracy, and the removal of user-bias. These are all ideal quali-

ties which suit tool-kits for tackling hyper-large datasets. However, the use of ML

on longer wavelength millimetre and radio galaxy sources has been absent, with the

exception of a few test cases (e.g. Alger et al. 2018; Ma et al. 2018; Andrianomena

et al. 2019), with the use of such tests to study the gas kinematics of galaxies being

non-existent. It is therefore possible that, in the age of big data, studying gas kine-

matics with ML could stand as a tool for improving interferometric survey pipelines

and encouraging research into this field before the advent of the SKA.

Cold gas in galaxies that is unperturbed by environmental or internal effects

will relax in a few dynamical times. In this state, the gas forms a flat disc, rotating

in circular orbits about some centre of potential, to conserve angular momentum.

Any disturbance to the gas causes a deviation from this relaxed state and can be

observed in the galaxy’s kinematics. Ideally therefore, one would like to be able

to determine the amount of kinetic energy of the gas invested in circular rotation

(the so called circularity of the gas; Sales et al. 2012). Unfortunately this cannot be

done empirically from observations because an exact calculation of circularity requires

full six-dimensional information pertaining to the three-dimensional positions and

velocities of a galaxy’s constituent components. Instead, in the past, astronomers

have used approaches such as radial and Fourier fitting routines (e.g. Spekkens &

Sellwood 2007, Krajnović et al. 2006, Bloom et al. 2017a) or 2D power spectrum

analyses (e.g. Grand et al. 2015) to determine the kinematic regularity of gas velocity

fields.

In this work I use a ML model, called a convolutional autoencoder, and a

hydrodynamical simulation training set to predict the circularity of the cold interstel-

lar medium in galaxies. I test my resulting model on both simulated test data and

real interferometric observations. I use the power of convolutional neural networks to

identify features unattainable by the human eye or standard tools and discriminate

between levels of kinematic disorder of galaxies. With this in mind, I create a binary
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classifier to predict whether the cold gas in galaxies exhibit dispersion dominated or

disk dominated rotation in order to maximise the recall of rare galaxies with disturbed

cold gas.

In §2.1.1 I provide the necessary background information for understanding

what ML models I use throughout this chapter. In §2.2.1 I describe the measuring

of kinematic regularity of gas in galaxies and how it motivates the use of ML in my

work. In §2.2 I outline my preparation of simulated galaxies into a learnable training

set as well as the ML methods used to predict corresponding gas kinematics. In

§2.3 the results of the training process are presented and discussed with a variety

observational test cases. Finally, in §2.4 I explain my conclusions and propose further

avenues of research.

2.1.1 Background to convolutional autoencoders

Convolutional neural networks (CNNs), originally named neocognitrons during

their infancy (Fukushima 1980), are a special class of neural network (NN) used pri-

marily for classifying multi-channel input matrices, or images. Information is derived

from raw pixels, negating the need for a user-involved feature extraction stage; the

result being a hyperparametric model with high empirical accuracy. Today, they are

used for a range of problems from medical imaging to driverless cars.

A conventional CNN can have any number of layers (and costly operations)

including convolutions, max-pooling, activations, fully connected layers, and outputs

and often utilise regularisation techniques to reduce overfitting. For a more in depth

background to the internal operations of CNNs I refer the reader to Krizhevsky et al.

(2012). These networks are only trainable (through back propagation) thanks to the

use of modern graphics processing units (GPUs; Steinkraus et al. 2005). It is because

of access to technology such as GPUs that I am able to explore the use of ML in a

preparatory fashion for instrument science with the SKA in this chapter.

A CNN will train on data by minimising the loss between sampled input images

and target variables. Should training require sampling from a very large dataset,

training on batches of inputs (also called mini-batches) can help speed up training

times by averaging the loss between input and target over a larger sample of inputs.

Should the network stagnate in minimising the loss, reducing the learning rate can

help the network explore a minimum over the parameter space of learnable weights

and thus increase the training accuracy. Both of the aforementioned changes to the

standard CNN training procedure are used in my models throughout this chapter.
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An autoencoder is a model composed of two subnets, an encoder and a de-

coder. Unlike a standard CNN, during training, an autoencoder learns to reduce the

difference between input and output vectors rather than the difference between out-

put vector and target label (whether this be a continuous or categorical set of target

classes). In an undercomplete autoencoder the encoder subnet extracts features and

reduces input images to a constrained number of nodes. This so-called bottleneck

forces the network to embed useful information about the input images into a non-

linear manifold from which the decoder subnet reconstructs the input images and is

scored against the input image using a loss function. With this in mind, the autoen-

coder works similar to a powerful nonlinear generalisation of principle component

analysis (PCA), but rather than attempting to find a lower dimensional hyperplane,

the model finds a continuous nonlinear latent surface on which the data best lies.

Autoencoders have been used, recently, in extra-galactic astronomy for de-

blending sources (Reiman & Göhre 2019) and image generation of active galactic

nuclei (AGN; Ma et al. 2018).

A convolutional autoencoder (CAE) is very similar to a standard autoencoder

but the encoder is replaced with a CNN feature extraction subnet and the decoder is

replaced with a transposed convolution subnet. This allows images to be passed to the

CAE rather than 1D vectors and can help interpret extracted features through direct

2D visualisation of the convolution filters. For an intuitive explanation of transposed

convolutions I direct the reader to Dumoulin & Visin (2016) but for this chapter I

simply describe a transpose convolution as a reverse, one-to-many, convolution.

2.2 Methodology

2.2.1 Circularity parameter

As described previously, in order to find and classify kinematic disturbances

one would like to measure the circularity of a galaxy’s gas disc. For an object com-

posed of point sources (e.g. molecular clouds, stars, etc.), with known positions,

masses, and velocities, the circularity measure

κ =
Krot

K
where Krot =

N∑
i=1

1

2
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(
jz,i
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2
miv

2
i , (2.1)

analyses the fraction of kinetic energy invested in circular, ordered, rotation (Sales

et al. 2012). Here, Krot is a measure of the rotational kinetic energy about some axis

and K is the total kinetic energy of the object. m, j, R, and v represent the mass,
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specific angular momentum, radius from the centre of rotation, and velocity of each

point in an object respectively. Objects with perfectly circular, disk like, rotation

have κ = 1, while objects with either entirely random motion or no motion at all

have κ = 0.

As κ can only be calculated empirically from simulated galaxies, combining

ML techniques with simulations will allow us to explore their abilities to learn features

that can be used to recover κ in observations faster, and more robustly, than by human

eye. In fact, κ has been used in previous studies to infer the origin of galaxy stellar

morphologies (Sales et al. 2012) and, more recently, to investigate the kinematics of

gas in post starburst galaxies (Davis et al. 2019).

2.2.2 EAGLE

The Evolution and Assembly of GaLaxies and their Environments (EAGLE)

project1 is a collection of cosmological hydrodynamical simulations which follow the

evolution of galaxies and black holes in a closed volume Λ cold dark matter (ΛCDM)

universe. The simulations boast subgrid models which account for physical processes

below a known resolution limit (Schaye et al. 2015; Crain et al. 2015; The EAGLE

team 2017). These simulations are able to reproduce high levels of agreement with

a range of galaxy properties which take place below their resolution limits (see e.g.

Schaye et al. 2015). Each simulation was conducted using smooth particle hydro-

dynamics, meaning users can directly work with the simulated data in the form of

particles, whose properties are stored in output files and a database that can be

queried.

In this chapter I make use of these simulations, in conjunction with kinematic

modelling tools, to generate a learnable training set. I then probe the use of this

training set for transfer learning with the primary goal being to recover kinematic

features from generated velocity maps. Using simulations has certain advantages

over collecting real data including accessibility, larger sample sizes, and the ability to

calculate empirical truths from the data. However, there are drawbacks, including:

unproven model assumptions, imperfect physics, and trade-off between resolution and

sample size due to computational constraints.

The scripts for reading in data, from the EAGLE project database, were

adapted versions of the EAGLE team’s pre-written scripts2. The original simula-

tions are saved into twenty-nine snapshots for redshifts z = 0-20 and for this work

1http://icc.dur.ac.uk/Eagle/
2https://github.com/jchelly/read eagle

http://icc.dur.ac.uk/Eagle/
https://github.com/jchelly/read_eagle
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I utilise snapshot 28 for RefL0025N0376 and RefL050N0752 and snapshots 28, 27,

26, and 25 for RefL0100N1504 (i.e. redshifts z = 0-0.27). When selecting galaxies

from these snapshots, I set lower limits on the total gas mass (> 1 × 109 M⊙) and

stellar mass (> 5 × 109 M⊙) within an aperture size of 30 kpc around each galaxy’s

centre of potential (i.e. the position of the most bound particle considering all mass

components), in order to exclude dwarf galaxies. In order to select particles which

are representative of cold, dense, molecular gas capable of star formation, I only ac-

cepted particles with a SFR > 0 for pre-processing (as described in §2.2.3). There

are many ways to select cold gas in the EAGLE simulations (Lagos et al. 2015) but

I use this method for its simplicity as my primary goal is to create a model that

is capable of learning low-level kinematic features so as to generalise well in trans-

fer learning tests. The upper radial limit for particle selection of 30 kpc, from the

centre of potential, is in keeping with the scales over which interferometers, such as

ALMA, typically observe low-redshift galaxies. It is important that I replicate these

scales in order to test my model performance with real data as described in §2.3.3.
One should note that for future survey instruments, such as the SKA, an alternative

scaling via consideration of noise thresholds would be more appropriate. However, as

I am particularly interested in the performance of my models with ALMA observa-

tions, I instead impose a radial limit for this work. At this stage I also set a lower

limit on the number of particles within the 30 kpc aperture to > 200. This was to

ensure I had enough particles to calculate statistically valid kinematic properties of

the galaxies and reduce scaling issues caused by clipping pixels with low brightness

when generating velocity maps. With these selection criteria, I work with a set of

14, 846 simulated galaxies.

2.2.3 Data preparation

Each galaxy was rotated so that their total angular momentum vector was

aligned with the positive z-axis using the centre of potential (as defined in the EA-

GLE Database, see The EAGLE team 2017) as the origin. I then made use of the

Python based kinematic simulator KinMS3 (KINematic Molecular Simulation) from

Davis et al. (2013) to turn EAGLE data into mock interferometric observations.

KinMS has flexibility in outputting astronomical data cubes (with position, position,

and frequency dimensions) and moment maps from various physical parameterisa-

tions and has been used for CO molecular gas modelling in previous work (e.g. Davis

et al. 2013) and for observational predictions from EAGLE (Davis et al. 2019). Using

3https://github.com/TimothyADavis/KinMSpy

https://github.com/TimothyADavis/KinMSpy
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KinMS I generate simulated interferometric observations of galaxies directly from their

3D particle distributions.

Thanks to the controllable nature of the EAGLE data, I have the ability to

generate millions of images from just a handful of simulations by using combina-

tions of rotations and displacements of thousands of simulated galaxies per snapshot.

This flexibility also has the added benefit of naturally introducing data augmenta-

tion for boosting the generalising power of an ML algorithm. For any given dis-

tance projection, galaxies were given 8 random integer rotations in position-angle

(0◦ ≤ θpos < 360◦) and inclination (5◦ ≤ ϕinc ≤ 85◦). Each galaxy is displaced such

that they fill a 64′′×64′′ mock velocity map image in order to closely reflect the field of

view (FOV) when observing CO(1-0) line emission with ALMA. I define the displace-

ment of each simulated galaxy in terms of physical size and desired angular extent.

Each galaxy’s radius is given as the 98th percentile particle distance from its center

of potential in kpc. I use this measurement, rather than the true maximum particle

radius, to reduce the chance of selecting sparsely populated particles for calculating

displacement distances, as they can artificially scale down galaxies.

The EAGLE galaxies were passed to KinMS to create cubes of stacked velocity

maps, with fixed mock beam sizes of bmaj = 3′′, ready for labelling. Each cube

measured 64× 64× 8 where 64× 64 corresponds to the image dimensions (in pixels)

and 8 corresponds to snapshots during position-angle and inclination rotations. The

median physical scale covered by each pixel across all image cubes in a representative

sample of my training set is 0.87 kpc. It should be noted that I set all non-numerical

values or infinities to a constant value, as passing such values to an ML algorithm

will break its training. I adopt 0 km s−1 as my constant (similarly to Diaz et al.

2019) to minimise the the background influencing feature extraction. My training

set has a range in blank fraction (i.e. the fraction of pixels in images with blank

values set to 0 km s−1) of 0.14 to 0.98, with a median blank fraction of 0.52. Figure

2.1 shows simulated ALMA observations of galaxies when using KinMS in conjunction

with particle data from the EAGLE simulation RefL0025N0376.

2.2.4 Simulating noise

Often it is useful to observe the performance of ML models when adding noise

to the input data, in order to test their robustness and their behavioural predictabil-

ity. In one of my tests, I seeded the mock-EAGLE-interferometric-datacubes with
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Gaussian distributed noise of mean µ = 0 and standard deviation

σ =
1

S/N

(
1

N

c=N∑
c=0

Imax,c

)
, (2.2)

i.e. some fraction, 1
S/N

, of the mean maximum intensity, Imax, of each cube-channel,

c, containing line emission. The resulting noisy data cubes are then masked using

smooth masking, a method that is representative of how one would treat a real data

cube (Dame 2011). An intensity weighted moment one map is then generated in

KinMS from the masked cube as

M1 =

∫
(v)Ivdv∫
Ivdv

=

∑
(v)Iv∑
Iv

, (2.3)

where Iv is the observed intensity in a channel with known velocity v, before being

normalised into the range of −1 to 1.

Noise presents a problem when normalising images into the preferred range.

Rescaling, using velocities beyond the range of real values in a velocity map (i.e.

scaling based on noise), will artificially scale down the true values and thus galaxies

will appear to exhibit velocities characteristic of lower inclinations. I clip all noisy

moment 1 maps at a fixed 96th percentile level, before normalising, in order to combat

this effect. Note that this choice of clipping at the 96th percentile level is arbitrarily

based on a handful of test cases and represents no specific parameter optimisation.

Although simple, this likely reflects the conditions of a next generation survey in

which clipping on the fly will be done using a predetermined method globally rather

than optimising on a case by case basis.

2.2.5 Labelling the training set

Each galaxy, and therefore every cube, is assigned a label in the continuous

range of 0 to 1 corresponding to the level of ordered rotation, κ, of that galaxy.

In Figure 2.1, the difference between levels of κ is clear in both structure and

velocity characteristics, with low κ galaxies exhibiting less regular structures and

more disturbed velocity fields than high κ galaxies.

Figure 2.2 shows the distribution of κ in my training set. It is clear that my

training set is heavily imbalanced with a bias towards the presence of high κ galaxies.

Additionally, as κ approaches one, the possible variation in velocity fields decreases

as there are limited ways in which one can create orderly rotating disk-like structures.

However, my dataset contains a surplus of galaxies as κ approaches one. Therefore,
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Figure 2.1. Random exemplar velocity maps for the noiseless EAGLE dataset.
Rows of increasing order, starting from the bottom of the figure, show galaxies of
increasing κ. The κ for each galaxy is shown in the bottom right of the frame in a
grey box. Each galaxy has randomly selected position angle and inclination and the
colourbar indicates the line of sight velocities, which have been normalised into the
range −1 to 1 and subsequently denoted as pixel values. The images have dimensions
of 64×64 pixels in keeping with the size of input images to my models in this chapter,
as described in §2.2.6. One can easily see the changes in velocity field from κ ∼ 1 to
κ ∼ 0 as galaxies appear less disk-like with more random velocities.

if one were to randomly sample from my dataset, for training an ML model, then

the model would undoubtedly overfit to high κ images. This is a common problem in

ML particularly with outlier detection models whose objectives are to highlight the

existence of rare occurrences. In §2.2.6 I describe my solution for this problem with

the use of weighted sampling throughout training to balance the number of galaxies

with underrepresented κ values seen at each training epoch.

2.2.6 Model training: Rotationally invariant case

In this section I describe the creation and training of a convolutional autoen-

coder to embed κ into latent space and build a binary classifier to separate galaxies

with κ above and below 0.5. Note that 0.5 is an arbitrarily chosen threshold for my
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Figure 2.2. A histogram of κ labelled galaxies in the noiseless EAGLE training
set. Galaxies have been binned in steps of δκ = 0.1 for visualisation purposes but
remain continuous throughout training and testing. The distribution of κ is heavily
imbalanced, showing that more galaxies exhibit a κ closer to 1 than 0.

classification boundary but is motivated by the notion of separating ordered from

disturbed gas structures in galaxies.

In order to construct my ML model, I make use of PyTorch4 0.4.1, an open

source ML library capable of GPU accelerated tensor computation and automatic

differentiation (Paszke et al. 2017). Being grounded in Python, PyTorch is designed

to be linear and intuitive for researchers with a C99 API backend for competitive

computation speeds. I use PyTorch due to its flexible and user friendly nature for

native Python users.

A visual illustration of the CAE architecture is shown in Figure 2.3 and de-

scribed in Table A.1 in more detail.

The model follows no hard structural rules and is an adaption of standard CNN

models. The decoder structure is simply a reflection of the encoder for simplicity. This

means my CAE is unlikely to have the most optimised architecture and I propose this

as a possible avenue for improving on the work presented in this chapter. The code

developed for this chapter is available on GitHub5 as well as an ongoing development

4http://pytorch.org/
5https://github.com/SpaceMeerkat/CAE/releases/tag/v1.0.0

http://pytorch.org/
https://github.com/SpaceMeerkat/CAE/releases/tag/v1.0.0
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(a) Encoder subnet

(b) Decoder subnet

Figure 2.3. Illustration of the CAE architecture used in this chapter. The encoder
subnet (top) makes use of a series of convolutions and max-pooling operations to em-
bed input image information into 3 latent dimensions. The decoder subnet (bottom)
recovers the input image using transposed convolutions and up-sampling layers. The
output of the encoder is passed to the decoder during training but throughout testing
only the encoder is used map velocity maps into latent space.

version6.

The CAE is trained for 300 epochs (with a batch size of 32) where one epoch

comprises a throughput of 6400 images sampled from the training set. I do this to

reduce the memory load throughout training given such a large training set. Images

are selected for each mini-batch using a weighted sampler which aims to balance

the number of images in each κ bin of width δκ = 0.1. Inputs are sampled with

replacement allowing multiple sampling of objects to prevent under-filled bins. The

model uses a mean squared error (MSE) loss,

L =
1

N

N∑
i=0

(f (xi)− yi)
2 , (2.4)

for evaluating the error between input and output images and weights are updated

through gradient descent. N, f(x), and y denote the batch size, model output for

an input x, and target respectively. I use an adaptive Adam learning rate optimiser

6https://github.com/SpaceMeerkat/CAE

https://github.com/SpaceMeerkat/CAE
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Figure 2.4. Training the CAE on noiseless EAGLE velocity maps. Solid lines show
the natural log mean MSE loss and solid colour regions show 1σ spread at any given
epoch. In order to reduce computational time, the test accuracy is evaluated every
10th epoch. I see smooth convergence of my CAE throughout training with no turn
over of the test accuracy indicating that my model did not overfit to the training
data.

(Kingma & Ba 2014), starting with a learning rate of 0.001 which halves every 30

epochs; this helps to reduce stagnation in the model accuracy from oversized weight

updates. In Figure 2.4 I see that the model has converged well before the 300th epoch

and observe no turn-over of the test MSE loss, which would indicate overfitting.

The CAE learned to encode input images to 3 dimensional latent vectors

(chosen for the ease of visualising resulting latent vectors, rather than physical mo-

tivation). Further testing showed that any higher compression, to lower dimensions,

resulted in poor performance for the analyses described in §2.3 and compression to

higher dimensions impaired my ability to directly observe correlations between fea-

tures and latent positions with no improvement to the model’s performance. I use

scikit-learn’s7 principal component analysis (PCA) function on these vectors to

rotate the latent space so that it aligns with one dominant latent axis, in this case

the z axis. As seen in Figure 2.5, the 3 dimensional latent space contains structural

symmetries which are not needed when attempting to recover κ (but are still astro-

physically useful; see §2.3.5). Because of this, the data is folded around the z and x

7https://scikit-learn.org
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axes consecutively to leave a 2-dimensional latent space devoid of structural symme-

tries with dimensions |z| and
√

x2 + y2 from from which I could build my classifier

(see §2.3.3).

Figure 2.5. Noiseless eagle test data in 3D latent space. All subplots show the same
latent structure but coloured differently by: true κ (left), true position angle (θpos,
middle), and true inclination (ϕinc, right). It is clear from the left subplot that low
κ galaxies lie close to the z = 0 region. θpos is very neatly encoded in the clockwise
angle around the latent z-axis. The red dashed line indicates the positive latent x
axis from which θpos is measured. ϕinc appears to be encoded in a much more complex
fashion than κ and θpos.

Having tested multiple classifiers on the 2D latent space (such as high order

polynomial and regional boundary approaches), I find that a simple vertical boundary

line is best at separating the galaxies whose κ are greater than or less than 0.5. This

is highlighted in Figure 2.6, where I see the spread on latent positions taken up by

different κ galaxies makes a regression to recover κ too difficult. The exclusion of

the z-axis in using a decision boundary is due to κ seemingly having no correlation

with the latent encoding along this axis upon visual inspection and further testing.

A discussion of the possible physical characteristics of galaxies encoded in the latent

z-axis is explored later in this chapter.

In order to optimise the boundary line location, I measure the true positive

(TP), true negative (TN), false positive (FP) and false negative (FN) scores when

progressively increasing the boundary line’s x location. The intersection of TP and

TN lines (and therefore the FP and FN lines) in Figure 2.7 indicates the optimal

position for my boundary, which is at
√
x2 + y2 = 2.961 ± 0.002, when equalising

the importance of correctly identifying both orderly and disorderly rotating classes.

The smoothness of the lines in Figure 2.7 show how the two κ populations are well

structured. If the two populations were clumpy and overlapping, one would observe
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Figure 2.6. 2D histogram of κ against latent position for noiseless EAGLE test
data. Pixels are coloured by point density normalised such that the point density
in each row lies in the range 0 to 1. I see a very clear relationship between κ and
latent position but also a high spread of latent positions occupied by high κ galaxies,
making a regression task to recover κ from my encoding difficult.

unstable lines as the ratio of positive and negatively labelled galaxies constantly shifts

in an unpredictable manner.

2.3 Results and discussion

2.3.1 Test case I: Noiseless EAGLE data

The number of high and low κ labelled images, in both the training and test

sets, for the noiseless EAGLE dataset are shown in Table 2.1.

Table 2.1 Proportions of high and low κ labelled images in both training and test
sets for the noiseless EAGLE dataset.

Number of images
Dataset κ > 0.5 κ < 0.5 Total
Training 88840 (94%) 6144 (6%) 94984
Test 22224 (93%) 1560 (7%) 23784

Figure 2.8a shows the classification accuracy on the noiseless EAGLE training

set. The TP and TN accuracy scores are unsurprisingly identical given the method
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Figure 2.7. The observed change in all four components of a confusion matrix when
changing the boundary line x-location. The optimal position for a binary classification
is chosen as the intersection of TP and TN lines, which is identical to the location
at the intersection of FP and FN lines. I observe smooth changes to the TN, TP,
FP, and FN lines as the boundary line location changes, showing that both target
populations are well clustered.

used to find the optimal boundary in §2.2.6 was designed to achieve this (see intersec-

tion points in Figure 2.7). The classifier has a mean training recall of 84% for both

classes.

Figure 2.8b shows the confusion matrix when testing the noiseless EAGLE

test set using my boundary classifier. I see that the model performs slightly better

than when tested on the training set, suggesting that the model did not overfit to the

training data and is still able to encode information on κ for unseen images.

2.3.2 Test case II: Noisy EAGLE data

Figure 2.8c shows the results of classifying noisy EAGLE test data with S/N =

10 and masking at 3 times the RMS level (see §2.2.4 for details). Note that this is a

simple test case and places no major significance on the particular level of S/N used.

It is also a test meant purely for further understanding and verifying the expected

behaviour of the model under different conditions, in a transfer learning style task.

In reality, for maximising the predictive performance of the model in the presence
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Figure 2.8. Normalised confusion matrix showing the performance of the classifier
when testing the 2.8a noiseless EAGLE training set, 2.8b noiseless EAGLE test set
(seeded with Gaussian noise with 1

S/N
= 1

10
and masking at 3 times the RMS level of

line free regions), and 2.8c noisy EAGLE test set. The mean recall scores are 84%,
85%, and 82.5% respectively.

of noise, one should ideally be training on the noisy data itself. The introduction of

noise has a clear and logical, yet arguably minor, impact on the classifier’s accuracy.

The combination of adding noise followed by using an arbitrary clipping level causes

test objects to gravitate towards the low κ region in latent space. This should come

as no surprise as κ correlates with ordered motion; therefore, any left over noise from

the clipping procedure, which itself appears as disorderly motions and structures in

velocity maps, anti-correlates with κ causing a systematic shift towards the low κ

region in latent space.

One could reduce this shifting to low κ regions in several ways. (1) Removing

low S/N galaxies from the classification sample. (2) For my test cases I used a single

absolute percentile level for smooth clipping noise; using levels optimised for cases on

a one-by-one basis will prevent over-clipping. (3) If one were to directly sample the

noise properties from a specific instrument, seeding the simulated training data with

this noise before retraining an CAE would cause a systematic shift in the boundary

line, mitigating a loss in accuracy. It should also be noted that I have not tested the

lower limit of S/N for which it is appropriate to use my classifier but instead I focus

on demonstrating the effects of applying noise clipping globally across my test set

under the influence of modest noise.

2.3.3 Test case III: ALMA data

I tested 30 velocity maps of galaxies observed with ALMA to evaluate the

performance of the classifier on real observations. Given that I used KinMS to tailor
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the simulated velocity maps to closely resemble observations with ALMA I expect

similar behaviour as seen when testing the simulated data. For my test sample I

use an aggregated selection of 15 velocity maps from the mm-Wave Interferometric

Survey of Dark Object Masses (WISDOM) CO(1-0, 2-1, and 3-2) and 15 CO(1-0)

velocity maps from the ALMA Fornax Cluster Survey (AlFoCS, Zabel et al. 2019). I

classify each galaxy, by eye, as either disturbed or regularly rotating (see Table A.2)

in order to heuristically evaluate the classifier’s performance.

Figure 2.9 shows the positions of all ALMA galaxies (round markers) in my

folded latent space, once passed through the CAE. Of the 30 galaxies, 6 (20%) are

classified as κ < 0.5; this higher fraction, when compared to the fraction of low κ

galaxies in the simulated test set, is likely due to the high number of dwarf galaxies,

with irregular H2 gas, targeted in AlFoCS.

I find one false positive classification (as determined by eye, yet distinctly

belonging to the negative class) close to the classification boundary and one false

positive classification far from the classification boundary. The false negative clas-

sification of NGC1351A can be explained by its disconnected structure and edge-on

orientation (see Zabel et al. 2019; Figure B1). Since low κ objects appear disconnected

and widely distributed among their velocity map fields of view, it is understandable

why NGC1351A has been misclassified as a disturbed object. It should be noted

that upon inspection the false positive classification of FCC282 can be attributed

to the appearance of marginal rotation in the galaxy. I see evidence of patchy high

κ galaxies residing closer to the classification boundary than non-patchy examples.

This may indicate a relationship between patchiness and latent positioning. The clas-

sifier performs with an accuracy of 90% when compared to the predictions by human

eye. Of the 30 galaxies observed with ALMA, 6 (20%) are classified as low κ and of

the 23 (77%) galaxies identified by eye as likely to be high κ galaxies, only one was

misclassified as low κ.
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2.3.4 Test case IV: LVHIS data

In order to test the robust nature of the classifier, I used it to classify velocity

maps of HI velocity fields from the the Local Volume HI Survey (LVHIS; Koribalski

et al. 2018). This is an important test as it determines the applicability of the classifier

to HI line emission observations, the same emission that the SKA will observe. As

described in §2.2.3, the EAGLE training set was designed to reflect observations with

ALMA, making this transfer learning test a good opportunity to evaluate the model’s

ability to generalise to unseen data containing different systematic characteristics.

Rather than moment masking the data cubes, like in §2.3.2, each cube is

clipped at some fraction of the RMS (calculated in line free channels) to mimic the

noise removal processes used in generating velocity maps in the LVHIS database. All

galaxies whose positions could not be found using the Python package astroquery8

(searching the SIMBAD Astronomical Database9), or whose HI structures were clearly

misaligned with the true galaxy centres, were omitted from further testing. This was

to prevent misclassification based on pointing error which correlates with features

of disorderly rotation to the CAE and would artificially increase the FN rate. This

left 61 galaxies (see Table A.3) from which velocity maps were made and passed

through the CAE. Finally, where images were not 64 × 64 pixels, I used PyTorch’s

torch.nn.functional.interpolation function (in bilinear mode) to rescale them

up or down to the required dimensions prior to clipping.

The latent positions of all HI galaxies are shown in Figure 2.9 (triangular

markers). Of the 61 galaxies, 8 (13%) are classified as low κ. By eye, I identified 10

galaxies in the LVHIS which are likely to be definitively classified as κ < 0.5 (see Table

A.3). Of these 10 candidates, 8 were correctly identified as κ < 0.5, 1 is observed as

very close to the classification boundary and 1 is unquestionably misclassified.

2.3.5 Recovering position angle

Scientists who wish to model the kinematics of galaxies often require initial

estimates for parameters such as position angle, inclination, mass components, radial

velocity profiles etc. Given that position angle is clearly encoded in my latent xy

plane (see Figure 2.5), it is possible to return predicted position angles with associated

errors. This could prove useful for fast initial estimates of θpos for scientists requiring

them for kinematic modelling. I define the predicted position angle, θlatent, as the

clockwise angle between the positive latent x-axis and the position of data points

8https://astroquery.readthedocs.io/en/latest/
9http://simbad.u-strasbg.fr/simbad/

https://astroquery.readthedocs.io/en/latest/
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Figure 2.10. 2D histogram showing the predicted position angles for the noiseless
EAGLE test set against their true position angles. The red dashed line shows the 1:1
line along which all data would lie for a perfect predictor of position angle.

in the latent xy plane. I removed the systematic angular offset, δθ, between the

positive latent x-axis and the true position angle (θpos) = 0◦ line by rotating the

latent positions by the median offset, found to be δθ ∼ 36.6◦, and subtracting an

additional 180◦. In the now rotated frame, θlatent is defined as tan−1
(
y
x

)
, where x and

y are the latent x and y positions of each galaxy (see Figure 2.10). I calculated errors

on the resulting predictions of θlatent by taking the standard deviation of residuals

between θlatent and θpos.

I repeated this procedure for the noisy EAGLE data, with S/N = 10, the

results of which are also shown in Figure 2.11 with red error bars. I can see that

the recovery of θpos is still well constrained at higher inclinations with only a slight

increase in the error most notably at lower inclinations (see Figure 2.11. I see that

at higher inclinations the error in predicted θpos is better constrained than for lower

inclinations. This should come as no surprise as the ellipticity of galaxies and the

characteristic shape of their isovels are gradually lost as a galaxy approaches lower

inclinations thus making it more difficult to calculate θpos. During further testing I

also observe reduced errors on position angles when limiting to higher κ test galaxies.

It should be noted that my method for recovering θpos is not the only one.

Other kinematic fitting routines exist for this purpose including fit kinematic pa
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Figure 2.11. Kernel density estimation of error in θpos against inclination for noise-
less EAGLE test data (yellow error bars) and noisy EAGLE test data (red error bars).
Coloured contours show the 2D probability density, central horizontal line markers
show the mean error in θpos in bins of width δθpos = 5◦. The error bars show the
standard error in each bin.

(Krajnović et al. 2006) and the radon transform method (Stark et al. 2018). These

methods likely have higher accuracy than seen here, as my network was not optimised

for the recovery of θpos. Bench marking an ML model against existing ones, as a

dedicated standalone mechanism for recovering θpos, is an avenue for future research.

Given that there is such a strong overlap in z-positions occupied by different

galaxy inclinations, I were unable to recover the inclinations of galaxies in the simple

manner as for θpos. However, from visualising the distribution of inclinations against

latent-z position, I am confident that inclination plays a part in latent positioning of

galaxies. Because of this I am confident in my understanding of all 3 latent dimensions

that the CAE has learned.

2.4 Conclusions

I have shown that it is possible to use ML to encode high dimensional (64 ×
64 pixels) velocity maps into 3 dimensions, while retaining information on galaxy

kinematics, using convolutional autoencoders. I have successfully recovered the level

of ordered rotation of galaxies using a simple binary classifier, from a multitude of
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test sets including simulated EAGLE velocity maps, ALMA velocity maps, and HI

survey velocity maps. When testing real observational data, I see a clustering of low

κ galaxies towards the origin and around the classification boundary, in line with my

understanding of my folded two dimensional latent space. My tests on simulated data

show a mean recall of 85% when attempting to recover the circularity parameter as

well as 90% and 97% heuristic accuracy when recovering the circularity parameter for

galaxies observed with ALMA and as part of LVHIS respectively. I have managed to

mitigate the problems associated with a heavily imbalanced training set by using both

weighted sampling during training and balancing the true positive and true negative

accuracy scores when constructing my classifier. In addition to recovering information

on the ordered rotation characteristics of galaxies, I have also been successful in

providing estimates on position angle from the full 3D latent positions of velocity maps

with associated errors. These will be useful for initial guesses at θpos for kinematic

modelling routines in related work.

I were able to show my classifier’s positive performance when testing LVHIS

data. This outcome is important for two reasons: (1) it shows the robustness of the

classifier when making the transition from simulated to real data of different origins

and (2) it shows that using machine learning to study the kinematics of HI sources

is likely possible and therefore applicable to SKA science.

Recovering inclinations, ϕinc, of galaxies was not possible using my CAE due

to the high overlap in latent z positions for the entire range of ϕinc. However, the

spread of z positions occupied by galaxies at mid-range inclinations was considerably

less than at lower inclinations, indicating that while ϕinc is not recoverable, I am

confident that it is partly responsible for the positions of galaxies in the latent z-

axis. Therefore, I have a rational understanding of what information all three latent

dimensions are encoding from the input images. This makes my model predictable

and logical in how it behaves when seeing input data. This understanding is often

missing in CNN style networks, and especially in deep learning models.

The main caveat with this work pertains to the use of percentages in my

maximum likelihood function when calculating the optimal boundary line for the

binary classifier. This makes my classifier independent of the underlying distribution

of high and low κ galaxies in an attempt to maximise the recall of both classes.

The means my classifier will work well in situations where both classes are more

equally distributed (such as galaxy clusters). However, one should take care when

testing heavily imbalanced datasets where, although the dataset has been drastically

thinned of high κ galaxies, it is likely that the user will still need to examine the low

κ classification set for contaminants.
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As demonstrated by Diaz et al. (2019), using a combination of morphology

and kinematics for classification purposes improves performance over using only one

attribute. Therefore, a logical improvement on my work would be using a branched

network or an ensemble of networks which use both moment zero and moment one

maps to make predictions on kinematic properties. My models rely on using maps of

galaxies which are centred on their centres of potential (i.e. the position of the most

bound particle); therefore, my classifier is sensitive to the choice of centre of potential

proxy. This is undeniably an issue for on-the-fly surveys where the centre of poten-

tial of a target is estimated rather than empirically calculable. Therefore, including

information such as intensity maps may allow re-centring based on observed charac-

teristics rather than archived pointings for improving the classifiers performance. I

see this as the most lucrative avenue for improving my models in the future.

Performing operations on a velocity map, as I have done in this work, means

I am working several levels of abstraction away from the raw datacubes that future

instruments, such as the SKA, will create. Therefore improvements could be made

on my methods to analyse the effects of encoding datacubes into latent space rather

than velocity maps. CNNs have long been capable of performing operations on multi-

channel images, making this avenue of research possible and useful in reducing the

need for heavy processing of raw datacubes before processing with ML algorithms as

I have done in the work.



Chapter 3

A self-supervised, physics-aware,

Bayesian neural network architecture

for modelling galaxy emission-line

kinematics

“You only have one life.
You have to spend it doing something that
matters.”

Mike Massimino, “Spaceman: An Astronaut’s
Unlikely Journey to Unlock the Secrets of the

Universe”

In this chapter, I present my work in building upon the knowledge gained in Chapter

2. With this in mind, the techniques discussed in this Chapter are more suited to next

generation survey styles as will be explained. In the upcoming decades large facilities,

such as the SKA, will provide resolved observations of the kinematics of millions of

galaxies. In order to assist in the timely exploitation of these vast datasets I explore

the use of a self-supervised, physics aware neural network capable of Bayesian kine-

matic modelling of galaxies. I demonstrate the network’s ability to model the kine-

matics of cold gas in galaxies with an emphasis on recovering physical parameters and

accompanying modelling errors. The model is able to recover rotation curves, incli-

nations and disc scale lengths for both CO and Hi data which match well with those

found in the literature. The model is also able to provide modelling errors over learned

65
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parameters thanks to the application of quasi-Bayesian Monte-Carlo dropout. This

work shows the promising use of machine learning, and in particular self-supervised

neural networks, in the context of kinematically modelling galaxies. This work rep-

resents the first steps in applying such models for kinematic fitting and I propose

that variants of our model would seem especially suitable for enabling emission-line

science from upcoming surveys with e.g. the SKA, allowing fast exploitation of these

large datasets.

3.1 Introduction

In studying galaxy evolution, astronomers often use the atomic Hydrogen (Hi)

21-cm line to trace the outermost regions of galactic discs (e.g. Warren et al. 2004;

Begum et al. 2005; Sancisi et al. 2008; Heald et al. 2011; Koribalski et al. 2018). This

region can mark the continuous boundary between galaxies and their surrounding

environments, including the dark matter halos within which galaxies are thought to

reside. The rotation curves of extended Hi discs can be used to begin probing the

properties of dark matter halos as well as allow the detailed modelling of galaxies’

mass distributions when coupled with ancillary observations (e.g. van Albada et al.

1985; de Blok et al. 2008). In the local Universe, Hi discs are useful in determining

the gaseous content of a galaxy as well as allowing astronomers to probe kinematic

properties ranging from substructures such as bars, warps, counter-rotating discs,

and spiral arms (e.g. Józsa et al. 2007; Spekkens & Sellwood 2007; Kamphuis et al.

2015; Di Teodoro & Fraternali 2015). Molecular gas observations (typically of the

CO molecule) can provide a complimentary view of these regions at high resolution,

revealing the interplay between these gas phases. Hi is typically more extended

than molecular gas, however, allowing it to trace environmental properties such as

extended tidal features and the existence of dwarf companions (Hibbard et al. 2001;

Sancisi et al. 2008; Heald et al. 2011; Serra et al. 2013; Bosma 2016; Koribalski et al.

2018).

The evolution of Hi gives astronomers insight into the method by which galax-

ies accrete material from surrounding environments and how the mass of galaxies

builds and evolves through star formation. The next generation of Hi survey instru-

ments (e.g. the Square Kilometre Array, Dewdney et al. 2009, Australian Square

Kilometre Array Pathfinder, Johnston et al. 2007, 2008, the South African Meer-

Karoo Array Telescope, Jonas & MeerKAT Team 2016, the Chinese Five-hundred

metre Aperture Spherical Telescope, Li & Pan 2016) are poised to collect observa-

tions spanning a large look-back time, advancing our Hi driven science as well as
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pushing this field of astronomy firmly into the Big Data era.

Currently it is estimated that the Square Kilometre Array (SKA) will collect

data on the order of hundreds of petabytes per year. Given that amount of data is

not only too much to fully exploit by hand but also too large to store, astronomers

should be looking to develop real-time models that can perform efficient science on

incoming data. In an ideal world, physical information would be extracted from

incoming data automatically, leaving the work of unravelling the prevailing science to

astronomers. However, with such large data volumes and time-intensive techniques

how are astronomers to begin moving in a direction in which we can fully exploit the

data quality promised by the SKA?

In previous work I sought to begin addressing this challenge via the application

of machine learning (see §2 and Dawson et al. 2019), and in particular neural networks,

to extract kinematic properties of cold gas in galaxies. Models and tools exist to do

this kind of work already. With the upcoming data releases from surveys such as the

Widefield ASKAP L-Band Legacy All-Sky Blind Survey (WALLABY), it comes as

no surprise that kinematic modelling tools (e.g. 3D-BAROLO1 Di Teodoro & Fraternali

2015, 2DBAT2 Oh et al. 2017), FAT3 Kamphuis et al. 2015, and KinMS4 Davis et al. 2013;

Davis et al. 2020) have been in use and ongoing development for some time. Yet these

models typically require several minutes or more to provide a full kinematic model

of a single object, and longer if errors are required, which may prove problematic for

kinematic analyses at SKA survey speeds (terrabytes per second, where data storage

is not feasible).

In the past decade machine learning (ML) has become a popular solution to

many Big Data challenges in galaxy evolution studies (e.g. Dieleman et al. 2015;

Domı́nguez Sánchez et al. 2018a,b; Ackermann et al. 2018, Bekki 2019), but remains

an under-utilised resource among the galaxy kinematics community. Computer vi-

sion, which often utilises ML techniques, has been successfully applied to kinematic

characterisation (e.g. Stark et al. 2018). Yet, there is a distinct absence of directly

exploiting ML (with the notable exception of a few recent works, e.g. Shen & Bekki

2020). Recently our group has made attempts to exploit the use of ML in this field,

featuring the use of convolutional autoencoders to identify disturbed cold gas in galax-

ies using data from both simulations and observations (see Dawson et al. 2019). We

still have a long way to go in fully exploring the application of ML to galaxy kinematic

characterisation but it appears to be a promising avenue of research and one which I

1https://editeodoro.github.io/BBarolo/
2https://github.com/seheonoh/2dbat
3https://github.com/PeterKamphuis/FAT
4https://github.com/TimothyADavis/KinMSpy

https://wallaby-survey.org/
https://editeodoro.github.io/BBarolo/
https://github.com/seheonoh/2dbat
https://github.com/PeterKamphuis/FAT
https://github.com/TimothyADavis/KinMSpy
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explore further in this work.

While conventional ML models are capable of high empirical accuracy and low

testing time (e.g. Breiman 2001; Krizhevsky et al. 2012), they are often highlighted for

their slow training times (Lim et al. 2000) in comparison to testing times and data

inflow rates and, in some cases, reluctance to generalise to unseen datasets (Dinh

et al., 2017; Kawaguchi et al., 2017). These qualities are unsuitable for survey tasks

proposed for the SKA and therefore we are required to look at alternative methods

that incorporate the benefits of ML, without the drawbacks associated with standard

ML practice.

Such an approach may exist in the form of self-supervised learning (Liu et al.,

2020), whereby models train themselves without the need for an isolated training set.

This has huge benefits in that one does not require long training times on a throw-

away-dataset, essentially eliminating data wastage. As with all machine learning

approaches, self-supervised learning does have its disadvantages including requiring

fixed analytical functions to perform training, as well as results which change de-

pending on when one wishes to evaluate test data throughout the model training

procedure. Few pilot tests of these networks exist in astronomy (and even fewer util-

ising physics-aware capabilities, e.g. Aragon-Calvo & Carvajal 2020) and none exist

in the modelling of galaxy kinematics. In this chapter I present the current results

from our first attempts at creating a self-supervised neural network with the primary

goal of inferring the kinematic properties of gas discs in galaxies and an emphasis on

extracting (simplistic) characteristics of their rotation curves.

The chapter is divided into 3 main sections. §3.2 gives an in depth description

of the model architecture used throughout this work, with emphasis lying on the

decoder subnet described in §3.2.4. §3.3 presents the results from testing the network

using synthetic and real interferometric observations, and §3.4 summarises the main

outcomes of the work presented in this chapter as well as proposed avenues for future

work.

3.2 The model

3.2.1 Input data

A typical interferometric observation returns visibilities in a complex plane

from which one can obtain a 3D datacube consisting of 2D spatial flux observations

separated into discrete channels which correspond to observed frequency. It is this
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channelisation that allows astronomers to measure the line of sight velocities and

hence the kinematic properties of galaxies’ gas reservoirs. In practice, one can collapse

these datacubes further to create 2D maps that reflect the mean properties of the gas

in galaxies. A moment zero (integrated intensity) map is simply a summation along

a cube’s frequency/velocity dimension:

Moment zero =

∫
Ivdv = ∆v

∑
Iv, (3.1)

and a moment one (velocity) map is an intensity weighted averaging of the line of

sight velocities

Moment one =

∫
vIvdv∫
Ivdv

=

∑
vIv∑
Iv

. (3.2)

Working directly with the datacubes, or in fact the complex visibilities, would

be optimal for any fast pipeline kinematic modelling tool. However, I have chosen

to work with moment maps in this work as a first step and to avoid the problems

associated with channelised inputs as explained further in §3.4. It should be noted

that, because of our choice to use moment maps, the models described in this work

are also suitable to analyse optical IFU maps, as they will be handled similarly by the

model described in this work and have been shown to encode kinematic information

which can be extracted using both analytical and ML approaches (e.g. Stark et al.

2018; Hansen et al. 2020). This will be explored further in future work (Dawson et

al., in prep).

It should be noted that in this work, I am not making attempts to mitigate

the effects of “beam smearing” (Swaters, 1999; Blais-Ouellette et al., 1999). During

the recovery of datacubes from complex visibilities, the raw observational datacubes

are convolved with a restoring beam which effectively encodes the complex visibility

plane coverage and is, in some ways, analogous to resolution. It is this convolution

step which gives rise to “beam smearing”, the effects of which are discussed further

in §3.3.1 along with implications for interpreting the model results discussed in this

work. Counteracting “beam smearing” will need to be tackled in future work to

maximise the effectiveness of models of this type.

3.2.2 Model aim

An autoencoder (Rumelhart et al., 1986) is a model composed of two subnets,

an encoder and a decoder. In an undercomplete autoencoder the encoder subnet

extracts features and reduces input images to a constrained number of nodes. This
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so-called bottleneck forces the network to embed useful information about the input

images into a nonlinear manifold from which the decoder subnet reconstructs the

input images and is scored against the input image using a loss function.

The aim of the model used in this work is to extract semantically meaningful

information from observational data. Typical approaches using a convolutional au-

toencoder (CAE, Masci et al. 2011) (such as that presented in §2) are powerful for

extracting arbitrary (hyperparametric) features that define dataset characteristics.

During training, a CAE learns to minimise the difference between input and output

tensors rather than the difference between an output and target label (whether this

be a continuous or categorical set of target classes). A CAE works similarly to a

powerful nonlinear generalisation of principle component analysis (PCA, Plaut 2018)

whereby it finds a continuous nonlinear latent surface on which input data best lies.

In this work, however, I would like to extract semantically meaningful parameters of

observed systems. In order to achieve this I have combined a convolutional autoen-

coder with a set of analytical, gradient trackable functions (i.e. the differential of the

operation with respect to network weights and biases is a tractable process) which

approximate the functional forms of observed kinematics of galaxies.

The model, known as a semantic autoencoder (SAE, Kodirov et al. 2017), is

a modified CAE created using PyTorch5 0.4.1, an open source ML library capable

of GPU accelerated tensor computation and automatic differentiation (Paszke et al.,

2017). The model has a neural network architecture suited to self-supervised learn-

ing, with additional Bayesian capabilities. Figure 3.1 shows a simplified pictorial

representation of the model architecture.

The encoder subnets extract lower dimensional feature representations from

input images (here the integrated intensity and mean velocity maps as described in

§3.2.1) using a combination of convolutional and linearly connected layers; the de-

coder then reconstructs the input images from the learned feature representations.

In a standard convolutional autoencoder, the decoder would make use of transposed

convolution operations, however in this network the decoder is composed of analyt-

ical functions written using native PyTorch. This imposes a constraint on the CAE

by forcing the network to generate a semantic encoding of the input images. As

highlighted by Aragon-Calvo & Carvajal (2020), the decoder function can take any

possible form, no matter how representative of the true underlying functions being

modelled. In this way, we can be assured that the encoders are learning semanti-

cally meaningful properties of the input images and are no longer tied to traditional

5http://pytorch.org/

http://pytorch.org/
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Figure 3.1. A simplified pictorial representation of the neural network used through-
out this work. The model features two convolutional encoder subnets which concate-
nate learned features before passing them to a decoder subnet. The model receives
moment maps as inputs and minimises the loss between decoder-generated moment
map outputs and the inputs throughout training. In the diagram grey squares in-
dicate convolutional layers, blue rectangles depict linearly connected layers, and the
grey cube represents the auxiliary 3D cube containing the coordinate axes passed into
the network.

training methods, instead allowing the network to train on all available data (in-

cluding test data) in a self-supervised manner. An SAE becomes physics-aware once

the assumption is made that the decoder function can be used to reveal physically

meaningful information about the input. In this chapter, the physics-awareness of

the model refers to our main focus of approximating parameterisations for rotation

curves, intensity profiles and recovering galaxy inclinations (see §3.2.4).

For a more in-depth background to the use of autoencoders I refer the reader to

Bourlard & Kamp (1988) and Hinton & Salakhutdinov (2006). For both a concise and

thorough introduction to the use of self-supervised, physics aware, neural networks

in astronomy I recommend Aragon-Calvo & Carvajal (2020).

3.2.3 The encoder subnets

Within the network, the encoders are two convolutional-classifier-like subnets.

Each comprises a series of 4 convolutional and 2 fully connected layers, interspersed

with pooling layers and activation functions. The encoders are used to extract and

dimensionally reduce features from input images. The two subnets independently
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Table 3.1 The SAE encoder subnet architecture used throughout this chapter. The
first column lists the name of each layer/operation, the second column describes the
type of layer/operation, the third column shows the dimensions of each layer’s
output tensors (hence the input shape to the next layer). The dimensions follow the
PyTorch convention (batch size, number of channels, height, width). The filter
column shows the dimensions (height, width) of kernels used to perform the
convolution and pooling operations. The convolutional and linearly connected layer
groups are separated by a blank row for clarity.

Name Layer/Operation Dimensions Filter

Input – (64,1,64,64) –
Conv 2D Convolution (64,16,64,64) (3,3)
Pool 2D Max Pooling (64,16,32,32) (2,2)
Conv 2D Convolution (64,32,32,32) (3,3)
ReLU ReLU – –
Pool 2D Max Pooling (64,32,16,16) (2,2)
Conv 2D Convolution (64,64,16,16) (3,3)
ReLU ReLU – –
Pool 2D Max Pooling (64,64,8,8) (2,2)
Conv 2D Convolution (64,128,8,8) (3,3)
ReLU ReLU – –
Pool 2D Max Pooling (64,128,4,4) (2,2)

Lc1 Linear (64,1,1,2048) –
ReLU ReLU – –
Drop Dropout (p=0.1) – –
Lc2 Linear (64,1,1,256) –
Htanh Hard tanh activation – –
Output – (64,1,1,2) –

receive a moment zero map (a 2D intensity profile, normalized in the range 0–1)

and a moment one map (a 2D velocity profile, normalized into the range -1–1) re-

spectively. Throughout this work, I ensure that the input maps have size of 64×64
pixels. All input maps whose sizes are larger or smaller, like those discussed in §3.3.2

and §3.3.3, are subsequently up/down-sampled to a size of 64×64 using PyTorch’s

torch.nn.Upsample class, in bilinear mode. Each moment map carries valuable in-

formation for the decoder functions as described in §3.2.4. With this in mind, the

output of the encoders are two vectors which are concatenated before passing to the

decoder subnet. For an in depth look at the encoder subnet structure see Table 3.1.

The encoders learn the following properties: subnet 1 : observed galaxy incli-

nation (i) and free parameters of the intensity profile which make up ξ1 in Figure 3.1;

subnet 2 : the parameters of the velocity profile of the galaxy which make up ξ2 in
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Figure 3.1.

3.2.4 The decoder subnet

Here I detail the functions required for reconstructing the moment zero and

moment one input maps from the concatenated feature representations ξ1 and ξ2 as

shown in Figure 3.1. In recovering the moment maps, I am primarily interested in

modelling two profiles. Firstly, the intensity:

I(r) = I0 exp

(
− rx,y
rscale

)
exp

(
− z

rz-scale

)
, (3.3)

where I0 is the intensity normalisation factor (set to 1 throughout, due to the global

normalisation described above), rx,y is the radius in the xy plane, in arcseconds, rscale

is the intensity scale length in the xy plane, z is the position in the z axis, and rz-scale is

the intensity scale length in the z axis set to a value of 1 spaxel throughout this work,

to emulate a thin disk. Intensity values are determined by combining the integrals of

Equation 3.3 across each spaxel in the xy and z planes.

Secondly, the rotational velocity:

V(r) =
2Vmax

π
arctan

(
− r

rturn

)
, (3.4)

where Vmax is the asymptotic line of sight velocity, r is the radius in arcseconds, and

rturn is the velocity profile scale length.

Explicitly, in this work, i and rscale are the parameters learned as ξ1, with Vmax

and rturn being the parameters learned as ξ2 in Fig 3.1.

Here, our choice of exponential intensity profile and arctan velocity profile are

entirely arbitrary (i.e. not driven by any physical theory), but are choices motivated

by some of the simplest forms that can approximately fit the typical disks and rotation

curves found in the Universe. Clearly objects that do not follow these functional

forms will not be appropriately fit by this network and I discuss this further in §3.3.5.

However, it should be noted that this analytical-style decoder implementation would

be equally valid for other functional forms. For example, one could choose to fit

bulge-disk models with such an architecture, or include the influence of central point

masses or the effects of dark matter halos. These more realistic networks will be

explored in future works.

An auxiliary 3D tensor of radii (labelled r in Figure 3.1) is passed into the

network, cloned, and evaluated using Equations 3.3 and 3.4. The 2D moment maps

are then created using Equations 3.1 and 3.2. The velocity profile is later converted
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into a line of sight velocity map via an inclination projection and velocity weighting

based on the pixel angles about the line of sight axis.

3.2.5 Model training procedure

The network is trained with minimal optimisation of hyperparameters in order

to demonstrate the simple nature of this architecture. At all times the network utilises

a PyTorch’s MSELoss function which computes the mean squared error:

L =
1

N

N∑
i=0

(f (xi)− yi)
2 , (3.5)

between the model outputs, yi, and inputs, xi, for every forward pass of a batch of size

N. In this case, this is the squared difference between the moment zero and moment

one inputs and decoder generated outputs. It is worth noting here that all synthet-

ically generated moment maps have the same position angle and consequently any

observational data used for training and testing have been de-rotated using published

position angle measurements. I do this as position angle is a non-physical parameter

which we can easily account for in preprocessing (with e.g. the fit kinematic pa

routine of Krajnović et al. 2006).

I use an adaptive Adam learning rate optimiser (Kingma & Ba, 2014) which

begins with a value of 10−4 and reduces via multiplication of 0.975 every 2 epochs. I

find that the model converges well after 300 epochs for all training runs presented in

this chapter.

Where synthetic training data is used, the network receives batches of 64 input

moment map pairs. Initial tests showed the network to be largely unaffected by batch

size and so 64 is arbitrarily chosen to increase training speed.

The models and Python training scripts used for the work presented in this

chapter are publicly available on GitHub6.

3.2.6 Model testing procedure

Testing the network can be done in three distinct ways, depending on the

situation at hand. In order to test data, one can choose whether to train the network

on the test data alone (I call this testing procedure solo testing), to train on the test

data alongside other examples (I call this testing procedure combined), or to use the

6https://github.com/SpaceMeerkat/Corellia/

https://github.com/SpaceMeerkat/Corellia/
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network in full test mode having only trained on examples not including those data

that I wish to test (called blind testing).

One can imagine the case where sufficient training data has been passed

through the network in a survey, such that in order to return rapid kinematic mod-

elling of new observations one simply passes the new observations through the network

with no prior exposure to the training procedure. This blind testing has the advan-

tage of rapid testing speed but at the potential cost of lowered predictive accuracy, in

an epistemic uncertainty dominated regime. One can also imagine the case whereby

initial survey data has been collected and some sample of the dataset the network

used to train is also in need of testing. As the network has seen these data during the

training procedure, combined testing has the advantage of potentially higher accu-

racy at the expense of time needed to train the model. It should come as no surprise

that the ideal testing scenario for this network is combined, with a sufficiently large

training set in an aleatoric uncertainty dominated regime. However, there are cases

(such as at first light of a survey) where the only test data available is that which

the network was trained on. It is in this scenario that solo testing will occur and

although this testing regime lacks the benefits afforded by combined testing, it has

the potential advantage of predictions not being influenced by anomalous data whose

population increases with training set size.

3.2.7 Monte Carlo dropout

In this section I summarise the use of Monte Carlo dropout (henceforth MC

dropout; Gal & Ghahramani 2016) to provide quasi-statistical modelling uncertainties

over learned parameters within the model.

In conventional neural network training circumstances dropout may be inter-

preted as permuting a trained model (Srivastava et al., 2014) via the probabilistic

zeroing of weights in linearly connected layers. Traditionally, dropout layers are used

throughout training in order to force the network to behave as an ensemble of ar-

chitectures, increasing testing accuracy and generalisation power. In the case of MC

dropout, after training, dropout is reapplied to the network in evaluation mode and

inputs are passed through the model many times, effectively sampling a posterior

where the model architecture is marginalised out. Gal (2016) first proposed the idea

of approximating distributions over parameters learned in neural networks in this way

and has since been used in astronomy (e.g. for the probabilistic labelling of galaxy

morphologies, Walmsley et al. 2019).

For an input x (comprised of a moment 0 and moment one map), training
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data D, model weights w, T forward-pass evaluations, and encoder output k, the

predicted parameter means and standard deviations are given by Equations 3.6 and

3.7 respectively.

k̂ =
1

T

T∑
t=1

P (k|x,wt) (3.6)

σ =

√∑T
t=0 (k− kt)

2

T
(3.7)

For a comprehensive derivation of Equations 3.6 and 3.7, as well as the impli-

cations for using an arbitrary dropout probability, I refer the reader to Walmsley et al.

(2019). Examples of the posterior distributions, p(k|w,D), over learned parameters

using MC dropout for a randomly selected synthesised galaxy are described further

in §3.3.1.

It should be noted that, as the network does not use dropout to zero weights

in the convolutional layers, σ does not represent a complete error over learned pa-

rameters. Instead one should consider σ as a lower limit error over parameters whose

use becomes immediately obvious for pipeline flagging purposes or to generate rela-

tive errors within a test set. The errors produced through this technique are strictly

errors due to the modelling technique, and will underestimate the true error in any

parameter, which arises due to both modelling and observational uncertainties.

3.3 Results and discussion

In this section I present exemplar test results for highly spatially resolved

galaxy observations. In each case I have trained new networks using the procedures

described in §3.2.5.

3.3.1 Synthesised examples

Input-output

In order to explore the limitations of the network, I tested the model using synthetic

galaxies generated using the Python based kinematic simulator KinMS7 (KINematic

Molecular Simulation, Davis et al. 2013; Davis et al. 2020).

Figure 3.2 shows the inputs and outputs as well as both known and predicted

profiles for a galaxy generated using the same analytical functions described in §3.2.4

7https://github.com/TimothyADavis/KinMSpy

https://github.com/TimothyADavis/KinMSpy
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Figure 3.2. A randomly selected synthesised galaxy, created using KinMS and evalu-
ated using the network in blind testing mode. The black dashed lines and grey areas
show the mean and 1σ modelling uncertainties respectively for profiles predicted by
the neural network model. The blue dashed lines show the target profiles which were
used to create the input maps. The galaxy was created with the following known
parameters: i= 37.2◦, rscale = 10.0′′, rturn = 1.6′′, and Vmax sin(i) = 173.6 km s−1. The
network predicted parameters are shown as text in the upper-middle, upper-right,
and lower-right subplots.

with inclination, maximum velocity, and scale lengths drawn randomly in the ranges

shown in Table 3.2, and a fixed beam size of 2 resolution elements.

Table 3.2 Parameter values and ranges for all synthetically generated galaxies
using the KinMS package. The units for rscale and rturn are absent due to both
quantities being fractions of the input map size. The position angle of each galaxy is
fixed at 0 as it is not a physically meaningful parameter. Throughout model
training, parameters are drawn uniformly in the ranges listed.

Parameter Size/range Units

Position angle 0 deg
Inclination 10–90 deg
rscale 0.1–0.35 –
rturn 0.01–0.8 –
Vmax sin(i) 50–500 km s−1

It is clear that the model is able to recover the galaxy’s rotation curve (and

other parameters) well in blind testing mode, whereby the model has not yet trained

on the test data. The quasi-probabilistic distributions for each learned parameter
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for this galaxy are shown in Figure 3.3, highlighting the Gaussian-like nature of the

learned parameter distributions as well as an expected covariance between rturn and

Vmax sin(i). For a discussion of the population accuracy, please see Figure 3.4 and

associated text.
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Figure 3.3. Corner plot showing the level of covariance between learned parameters
for one randomly generated, synthesised galaxy (discussed further in §3.3.1). The ac-
companying histograms represent quasi-probabilistic distributions thanks to the use
of Monte Carlo dropout. This galaxy was passed through the network in test mode
10 000 times in order to build the distributions. I observe well constrained learned
parameters with Gaussian like profiles, allowing for quasi-probabilistic modelling er-
rors for the parameters. The only strong covariance observed is that between the
maximum line of sight velocity and the velocity profile scale length, which is entirely
expected and present in traditional kinematic analyses.

As seen in Figure 3.4 the model is able to recover the desired physical param-

eters of synthesised galaxies well, heuristically. For the 1739 test galaxies shown in

Figure 3.4 I measure the average deviation of parameters: i, rscale, rturn, and Vmaxsin(i),

from the 1:1 line as σi = 0.98◦, σrscale = 0.003, σVmaxsin(i) = 3.48 km s−1, and σrturn =

0.017 respectively.
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Figure 3.4. True versus predicted plots for each learnable parameter in the network.
Black markers and error bars pertain to the tested galaxies and the red dashed line
indicates the 1:1 line on which perfect predictions should ideally lie. This model was
trained using purely synthetic data with a restoring beamsize of 2 resolution elements
and only including well resolved examples as discussed in §3.3.1. Those galaxies whose
projected rturn fell below 1.5 times the restoring beamsize were removed in order to
mimic the automated flagging of poorly resolved galaxies at high inclination in a
survey. Of the 2000 synthesised galaxies tested, 261 (13%) were removed using this
cut.

It is clear from Figure 3.4 that the generated error estimates for a population

of test galaxies do not represent the total errors over the parameters and only encode

the modelling errors, i.e. a fraction of the total error comprised of observational

and modelling errors. This makes the presented errors strictly lower limit estimates,

and mostly useful for comparing reliability within the dataset, rather than external

use. This can be seen by the fact that on average only ∼35% of the data points in

Figure 3.4 have errorbars which overlap with the 1:1 true-versus-predicted line. For

the presented dataset these errors likely underestimate the total error by a factor of

∼2.5. Including errors in the observations themselves will help to narrow this gap

and will be explored further in future work. Note that the systematic increase in

modelling errors at lower inclinations is fully expected due to loss of line of sight
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information as i approaches 0◦.

The effect of resolution

One expects rscale,pred to artificially increase with beam size for a fixed rscale. How-

ever, rscale is not known for observations of galaxies whose values rscale fall below some

fraction of the beamsize. I see this effect happening as shown in Figure B.1 (removed

from the main text here due to the use of a fixed beamsize throughout this chapter)

in a non-complex manner. Therefore, I recommend enforcing flagging based on incli-

nation which appears to be strongly linked with those galaxies whose rscale is under

predicted (along the minor axis). In the edge-on galaxy case, the minor axis is no

longer well resolved resulting in a poor recovery of the intensity profile. However, this

is a well-known issue in moment based kinematic modelling, in which the intensity

profiles and kinematics can never be fully derived in edge-on galaxies due to line of

sight effects.

As I have included no method for mitigating the changes induced by varying

beam size, it comes as no surprise that the network will behave differently given a

sufficiently large ratio of beam size to galaxy extent. Given that I do not have a

mechanism for dealing with “beam smearing” in the current network architecture, I

expect to see its influence, lowering the apparent line of sight velocities close to the

center of galaxies where the iso-velocity contours are closest together. For minimising

the effects of varying beam size I recommend convolving the 3D spatial cube r (see

Figure 3.1), evaluated using Equation 3.3, with the restoring beam before creating

the output maps. The advantage of this approach being that the restoring beam is

often included in data-product header units, and so should be readily available for

creating kernels with which to perform the aforementioned convolution. I consider

this approach as beyond the scope of the work presented in this chapter, but will be

included in future work focusing on retrieving the properties of marginally resolved

galaxies.

Fill factor

In previous work I showed that the fill factor (i.e. the number of zeroed pixels) in a

velocity map’s field of view, impacts the behaviour of NN models which take them

as inputs (Dawson et al., 2019). With the NN model presented in this work, I have

seen little evidence that this has an effect on the galaxies’ predicted parameters. I

attribute this behaviour to the nature of the training procedure, whereby in combined

and solo testing, the network does not rely solely upon inference of unseen data.
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3.3.2 Hi examples

The primary goal of developing a network like that presented in this chapter is

to demonstrate the applicability of machine learning to SKA science. As such, in this

section I show the network performs well when training and testing on self-contained

Hi observational data. In order to do this I present two example test galaxies, NGC

2403 and NGC 3198, observed using the Very Large Array (VLA) as part of The Hi

Nearby Galaxy Survey (THINGS) (Walter et al., 2008), and showing a diversity of

rotation curve shapes. These galaxies are two of 17 THINGS galaxies used for mixed

training and testing using the network and chosen heuristically for the appearance

of their well defined rotating Hi disks. The names and publications for the galaxies

used in this sample are shown in Table A.4.
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Figure 3.5. An example galaxy, NGC 2403, observed in Hi and evaluated using the
network in combined testing mode. Maps in the left and middle columns share x and
y axis sizes of 64×64 pixels. In this way I am directly observing the input and output
maps of the model. The right column has undergone an x-axis rescaling to match
observational scales found in the literature. The black dashed lines and grey areas
show the mean and 1σ modelling errors respectively for profiles predicted by the neu-
ral network. The blue dashed line shows a major axis cut of the input intensity map.
The red dashed line and filled area show the best fit and associated errors modelled
using BBarolo on the datacube. In order to make a direct comparison between the
network’s and BBarolo’s derived rotation curves, the network’s velocity profile has
been corrected for by the predicted inclination term. The network predicted param-
eters are shown as text in the upper-middle, upper-right, and lower-right subplots. I
see that this galaxy has a velocity profile which can be roughly approximated by an
arctan function meaning the kinematic parameters are well recovered by the model.



82 Chapter 3. Self-Supervised Kinematic Modelling

Figure 3.5 shows the derived intensity profile and rotation curve for NGC

2403. I include the rotation curve modelled using BBarolo (Di Teodoro & Fraternali,

2015) on the datacube (Di Teodoro & Lelli, private communication). In comparison,

I see that the neural network’s predicted rotation curve matches closely and so I am

convinced that the network is able to recover physical information well. Although the

galaxy’s intensity profile does not strictly exhibit an exponential form, this has little

impact in the recovery of the rotation curve which is the networks primary objective.

20 0 20
X (pixels)

30

20

10

0

10

20

30

Y 
(p

ix
el

s)

Inputs

20 0 20
X (pixels)

30

20

10

0

10

20

30

Y 
(p

ix
el

s)

i = 67.2 ± 0.6

Outputs

0 100 200 300 400 500
Radius ( )

0.0

0.2

0.4

0.6

0.8

1.0

In
te

ns
ity

rscale = 203.91 ± 2.38

Predicted profiles

20 0 20
X (pixels)

30

20

10

0

10

20

30

Y 
(p

ix
el

s)

20 0 20
X (pixels)

30

20

10

0

10

20

30

Y 
(p

ix
el

s)

0 100 200 300 400 500
Radius ( )

0

25

50

75

100

125

150
V r

ot
 (k

m
s

1 )

rturn = 15.69 ± 9.71
Vmax = 149.9 ± 4.7 km s 1

NN
BBarolo

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ise

d 
in

te
ns

ity

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ise

d 
in

te
ns

ity

150

100

50

0

50

100

150

V l
os

(k
m

s
1 )

150

100

50

0

50

100

150
V l

os
(k

m
s

1 )

Figure 3.6. An example galaxy, NGC 3198, observed in Hi and evaluated using the
network in combined testing mode. Maps in the left and middle columns share x and
y axis sizes of 64×64 pixels. In this way I am directly observing the input and output
maps of the model. The right column has undergone an x-axis rescaling to match
observational scales found in the literature. The black dashed lines and grey areas
show the mean and 1σ modelling errors respectively for profiles predicted by the neu-
ral network. The blue dashed line shows a major axis cut of the input intensity map.
The red dashed line and filled area show the best fit and associated errors modelled
using BBarolo on the datacube. In order to make a direct comparison between the
network’s and BBarolo’s derived rotation curves, the network’s velocity profile has
been corrected for by the predicted inclination term. The network predicted param-
eters are shown as text in the upper-middle, upper-right, and lower-right subplots. I
see that this galaxy has a velocity profile which can be roughly approximated by an
arctan function meaning the kinematic parameters are well recovered by the model.

Figure 3.6 shows the derived intensity profile and rotation curve for NGC

3198. This galaxy exhibits a mild warp and a flat rotation curve (Gentile et al.,

2013) with a slight rise at ∼ 200′′. Warped Hi discs are not uncommon in the outer

regions of galaxies. At present our network architecture is not set up to model these

(however one could easily extend the model in order to do so). Again, I include
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the rotation curve modelled using BBarolo on the datacube (Di Teodoro & Lelli,

private communication) in Figure 3.6. Crucially, although this warping behaviour is

not included in our model, in this case the network still returns reasonable parameter

estimations, showing that it could still be usable for parameter estimations across a

broadly diverse population of galaxies.

3.3.3 CO examples

In order to demonstrate the flexibility of this network architecture, I trained

a model to recover the kinematic properties of galaxies observed in the CO line us-

ing the Atacama Large Millimeter/submillimeter Array (ALMA). My samples are

drawn from the mm-Wave Interferometric Survey of Dark Object Masses (WIS-

DOM) project (see Table A.5 for more information) and have high spatial resolution.

Due to the nature of these objects being targeted for their evidence of black hole influ-

ence on the gas kinematics, I expect to see small values of aV for the sample. As seen

in Figure 3.7, this effect is clearly visible, highlighting the predictable behavioural

nature of the network. It is also clear in Figure 3.7, that NGC 1387 (FCC184, Zabel

et al. 2020, Boyce et al., in prep), an exemplar galaxy from the WISDOM sample,

exhibits an exponential intensity profile which the network can easily recover. It is

worth noting the low inclination returned by the network for this example galaxy.

This is not unexpected given the very circular appearance of NGC 1387. In fact, 10◦

is the lower limit of permitted inclinations provided by the network and provides the

first inclination estimate for NGC 1387’s CO gas disc.

Such an example demonstrates the transferable nature of this network archi-

tecture and training style but without the difficulties often associated with traditional

transfer learning tasks. This means that such architectures and training styles can be

applied to a multitude of different datasets with the possibility of architectural mod-

ifications suiting other types of data outside of interferometry and even astronomy.

3.3.4 Testing speed

The network can retrieve a mean field approximation for all learnable param-

eters, of a single galaxy observation, in 0.0025 seconds on a single Intel(R) Core(TM)

i7-6700 CPU core. This time scales linearly with the number of MC dropout samples

one wishes to collect (i.e. for a set of 1000 MC dropout samples, a typical test on an

individual galaxy would take 2.5 seconds) to generate pseudo-probabilistic distribu-

tions. However as the batch throughput size is limited only by the available device
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Figure 3.7. An example WISDOM galaxy, NGC 1387, observed in CO and evaluated
using the network in combined testing mode. The left and middle columns share x
and y axis sizes of 64×64 pixels. In this way I am directly observing the input and
output maps of the model. The right column has undergone an x-axis rescaling to
match observational scales found in the literature. The black dashed lines and grey
areas show the mean and standard deviation respectively for profiles predicted by
the neural network model. The blue dashed line shows a major axis cut of the input
intensity map. The red dashed line shows the KinMS reconstructed rotation curve.
The network predicted parameters are shown as text in the upper-middle, upper-
right, and lower-right subplots. I easily see that this galaxy has an intensity profile
and velocity profile which can be roughly approximated by an exponential and an
arctan function respectively, meaning the kinematic parameters are well recovered by
the model.

memory, it is possible to retrieve values for learnable parameters, and hence MC

dropout samples, in the same time frames as listed above for multiple observations.

This means that one could potentially return hundreds to thousands of parameteri-

sations and associated pseudo-errors in a matter of seconds.

3.3.5 Caveats

There are a few caveats pertaining to the use of the model described in this

work. These caveats may impact the way in which users handle the network and the

confidence levels associated with parameter estimations.

A key factor in recovering sensible parameterisations using the network is the

choice of decoder functions (see §3.2.4). In this work I have used simple, general, func-

tions in the form of an exponential (see Equation 3.3) and an arctan (see Equation
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3.4). However, should one wish to model specific emission line components of galax-

ies, it would be prudent to adopt more tailored functional forms. For example, it has

been shown that Hi discs can display depressions in their intensities in their central

regions, typically filled by molecular gas (Wong & Blitz, 2002), for which a trun-

cated Gaussian intensity profile (Martinsson et al., 2013) would be more appropriate

when reconstructing the intensity maps. Additionally, when modelling the very outer

regions of Hi discs, one might consider adopting a more complex multi-parameter

function capable of encoding the sharpness of the turnover at rturn and the behaviour

of the curve after this point (e.g. Rix et al. 1997), or even declining velocities in the

central regions (Lelli et al., 2016). A declining rotation curve would be challenging

for the current model to fit (and impossible to fully retrieve). However, due to the

nature of the loss function chosen in this work (see Equation 3.5), the network will

prioritise fitting to the higher velocity regions of galaxies.

As described in §3.3.1, the resolution of input images impacts the ability of the

network to correctly predict ascale, particularly in the high inclination regime. This

places constraints on the user’s confidence in parameter estimations when working in

both the large-beam and high inclination cases combined. Additionally, we can see

in Figure 3.4 that the network struggles to accurately recover inclinations at the very

low inclination range. This is a predictable effect caused by the loss of line of sight

velocity information for face on disks but again, in the case of survey pipelines, these

low inclined galaxies will require additional flagging. In both the aforementioned

caveat cases it is worth noting that traditional kinematic modelling methods also

struggle to accurately estimate parameters, in particular when working with moment

maps. Extensions of the network’s framework presented here to kinematically model

datacubes may alleviate these issues and will be explored in future work.

3.4 Conclusions

I have demonstrated the performance of a neural network model architecture

which can be used to recover rotation curves of galaxies from their kinematics. The

model was tested on synthetically generated galaxies as well as observations using

both Hi and CO emission lines.

Testing on synthetically generated galaxies has highlighted the powerful per-

formance of the network as well as areas where the network’s performance is sub

optimal. For the latter areas I have discussed solutions including: an additional con-

volution with the restoring beam to counteract the effects of “beam smearing”, and
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flagging high inclination data in a large beam and high inclination regime.

Testing observational Hi data from THINGS has shown that this style of net-

work is well suited to work with data like that expected from the SKA in the near

future. I have shown that the network is capable of estimating velocity curves for

discs exhibiting a variety of profiles. In order to do this, I have directly compared the

rotation curves estimated by the network to those modelled directly from the cubes

using kinematic modelling tools. The network is able to perform adequate recovery

of parameters even in cases where it would not be possible to reproduce the true ro-

tation curves. These promising results give us confidence that adopting more flexible

decoder functions will extend the applicability of the model for more specific use cases

should one wish to model Hi discs exclusively.

Testing observational CO data from the WISDOM project has shown that the

network is suitable for a range of emission line observations. Unlike traditional ML

models, the network architecture and training styles outlined in this work prevent the

need for transfer learning which is often time consuming and fraught with ungainly

challenges associated with systematic properties of training sets. I have shown that

the model outlined in this work can recover rotation curves which heuristically match

rotation curves extracted from ALMA observations using more time-consuming ap-

proaches.

As previously stated, improvements to the model architecture in this work

include but are not limited to: adapting the model to use more complex intensity

and velocity profiles in the decoder subnet, automatically accounting for large beam

effects such as beam smearing and information loss either via systematic offsets in

model predictions or via the incorporation of an extra convolutional layer in the

decoder subnet, and reintroducing a position angle estimation step. An idealised

improvement on the model would be to work directly with interferometric datacubes

themselves, or even visibilities, without the need to generate moment maps prior to

training and testing. However, I have found that the discretised nature of channels

in interferometric datacubes presents a non-gradient-trackable step in the decoder’s

reconstruction of datacube inputs. This discontinuity in the gradient tree prevents

back propagation via gradient descent and consequently halts model training. I pro-

pose adapting this self-supervised approach to work with datacubes as a lucrative

avenue of research for challenging current kinematic modelling tools in preparation

for the SKA and other upcoming large facilities.



Chapter 4

The stellar mass Tully-Fisher

relation with SAMI & MaNGA

using self-supervised, physics-aware,

Bayesian neural networks

“Too many dots,” Miller said.
“Not enough lines.”

James S.A. Corey, “Leviathan Wakes”

In this chapter, I adopt the use of self-supervised physics-aware Bayesian neural net-

work models, to retrieve the kinematic properties of galaxies, observed with IFU in-

struments in a time-efficient manner. In doing so, I combine SAMI DR2 and MaNGA

DR16 IFU survey data to subsequently recover the Hα Tully-Fisher relation (TFR)

for 1834 low redshift galaxies. My best fit stellar mass Tully-Fisher relation has the

form log(M∗/M⊙) = 3.013± 0.037× (Vmax/km s−1− 2.256) + 10.054± 0.008. My fits

are found to be in agreement with those presented in the wider literature, with the ex-

ception of a somewhat shallower slope, which arises because I here include corrections

for asymmetric drift. I identify and quantify trends between position along (and per-

pendicular to) the TFR and galaxy properties, namely: age and mass-to-light ratio.

I also quantify a clear relation between velocity turnover radius, rturn/re, and stellar

mass. This work represents the first time the Hα TFR has been recovered on such

a large collection of IFU data-products, and using machine learning. Such methods

are efficient, and will be powerful when applied to next generation IFU survey data

87
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releases, with instruments such as HECTOR.

4.1 Introduction

The Tully-Fisher relation (TFR, Tully & Fisher 1977) is a fundamental scal-

ing relation between luminosity (McGaugh et al., 2000) and the rotational velocity

of galaxies. In the dark matter paradigm, the rotational motion in the outer parts of

galaxies is primarily determined by the mass of the dark matter halo within which

the galaxies reside. Therefore, the TFR can be considered as displaying a connec-

tion between the visible-baryonic and dark matter masses (Douglass et al., 2019).

In the nearby Universe, the TFR has been well studied (e.g. Tully & Pierce 2000;

Bell & de Jong 2001; Kassin et al. 2007; Masters et al. 2008; Lagattuta et al. 2013).

The TFR has been widely used as a distance indicator, relating distance-independent

velocity measurements of galaxies to absolute magnitude (e.g. Opik 1922; Roberts

1969; Bottinelli 1971; Balkowski et al. 1974; Shostak 1975). The TFR exists in sev-

eral different forms, depending on which measures of mass, luminosity, or rotational

velocity one chooses to use. Originally, Tully and Fisher used optical luminosity,

but subsequent work showed the relation to be tighter when defined using longer

wavelength radiation and even tighter when replacing luminosity by a galaxy’s total

baryonic mass (McGaugh et al., 2000). The latter form of the relation is known as

the baryonic Tully-Fisher relation (BTFR). The TFR has traditionally been derived

using observations of Hi, however in recent decades, the use of optical spectroscopy

has also played a role in constraining the TFR at different wavelengths.

In the past, spectroscopic measurements of rotational velocity and velocity

line widths, were mostly taken using a single fibre or slit (e.g. York et al. 2000;

Percival et al. 2001; Driver et al. 2009). However, single fibre, and slit-based, mea-

surements are vulnerable to induced errors based on slit placement and aperture

effects (Spekkens et al., 2005; Oh et al., 2011; Simons et al., 2015; Bloom et al.,

2017b). Measuring spatial variations across an extended source is also challenging

with a single slit. Therefore, 2-dimensional, spatially resolved, kinematics provide a

better approach to circumvent this problem. Integral field spectrographs are one of

several instruments capable of observing 2-dimensional, spatially resolved kinematics

of extended sources. Example instruments leading the charge are the Sydney–AAO

Multi-object Integral field spectrograph (SAMI), and the Mapping Nearby Galaxies

at APO (MaNGA) spectrograph. Both instruments allow spatially resolved observa-

tions of multiple galaxies in a single pointing, drastically decreasing the timescale of

survey coverage when compared with single fibre integral field spectrographs (Croom
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et al., 2012).

The TFR has been explored using 2-dimensional spatially resolved spectroscopy

in a variety of ways. At low redshifts, the ATLAS3D survey has been used to show

the carbon monoxide (CO) TFR for early type galaxies (Davis et al., 2011). The Hα

stellar mass TFR was studied in the K-band Multi-Object Spectrograph (KMOS)

Redshift One Spectroscopic Survey (KROSS), with galaxies out to redshifts of z ∼ 1

(Tiley et al., 2016). Recently, the CALIFA Survey have produced a low redshift

TFR using rotation curve fitting to stellar velocity fields (Bekeraité et al., 2016).

Bloom et al. (2017b) studied the stellar mass TFR using a sample of galaxies from

the SAMI galaxy survey, investigating the relationship between stellar mass and kine-

matic asymmetry and demonstrating the use of 2D spatially resolved kinematics for

accurate TFR studies. The HI TFR has also been studied to great extent using

kinematic maps from Hi interferometric surveys (e.g. Begum et al. 2008; Stark et al.

2009; Trachternach et al. 2009; Oh et al. 2011).

In this chapter I make attempts to recover the Hα TFR, using big data era

approaches for the first time. Combining datasets from multiple IFU surveys, I at-

tempt to recover the TFR for the largest IFU sample to date, with the goal in mind

of preparing for the next generation of IFU instruments. In the near future, IFU in-

struments (e.g. HECTOR-I and HECTOR-II, Bryant & Bland-Hawthorn 2016) will

collect 2-dimensional, spatially resolved, spectroscopic observations for more galax-

ies than any other IFU survey to date. I therefore begin the process of building on

the domain of existing machine learning applications for exploring the kinematics of

IFU survey objects (e.g. Sarmiento et al. 2021). I adopt machine learning meth-

ods originally intended for use with resolved millimetre and radio observations, using

radio interferometers, and explore their use with IFU measured kinematics. Specifi-

cally, I will use Hα integrated intensity and velocity maps of galaxies from SAMI and

MaNGA surveys, to recover kinematic parameter estimations for more galaxies than

achieved to date.

This chapter is divided into 3 main sections. §4.2 details the astronomical data

used throughout the chapter and how that data is used to recover the Hα TFR. This

includes the quality control measures applied to the chosen samples as well as the

techniques used to model kinematic characteristics of galaxies. Emphasis is placed

on recovering the TFR using machine learning approaches in a time-efficient manner.

The results of this work are then discussed in §4.3, showing the TFR alongside com-

parisons to those calculated in the wider literature. Here I also discuss some model

behaviour and relevant correlations between derived parameters. Finally, in §4.4 I
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summarise the main outcomes of the work presented in this chapter and propose

future work.

4.2 Sample and Methods

4.2.1 The SAMI instrument and SAMI Galaxy Survey DR2

sample

The SAMI Galaxy Survey (Bryant et al., 2015) is a spatially resolved survey

of nearby (z ≲ 0.1) galaxies. The SAMI instrument is a multi-object Integral Field

Spectrograph (IFS) installed at the prime focus of the Anglo-Australian Telescope

(AAT) feeding the double-beamed AAOmega spectrograph (Croom et al., 2012; Sharp

et al., 2006). The SAMI instrument uses 13 fused optical imaging fibre bundles, or

hexabundles (Bland-Hawthorn et al., 2011; Bryant et al., 2013), with each 61 fibre core

subtending ∼ 1.6′′ on the sky. Together, this gives SAMI a total bundle diameter of

15′′ which can be deployed over a 1◦ field of view to simultaneously image 12 galaxies

and 1 standard star at a time. An additional 26 fibres provide simultaneous blank

sky observations.

Throughout the work presented in this chapter, I make use of resolved 2D Hα

maps, from the SAMI survey. SAMI IFU observations of Hα line emission make use of

the AAOmega spectrograph’s 1000R grating. This red arm has a central wavelength

of 680nm and a spectral range from 625 to 735 nm. The spectral resolution in the

red arm is R = 4500 (λ/δλ). For a full description of the SAMI Galaxy Survey data

reduction pipeline, I refer the reader to Allen et al. (2015); Sharp et al. (2015), and

Scott et al. (2018).

The SAMI Galaxy Survey consists of two complementary samples of galaxies,

with matched selection criteria. In total, 3400 galaxies make up SAMI data release

2 (DR2). The selection of galaxies for SAMI DR2 is described in detail in Bryant

et al. (2015) and Owers et al. (2017). The two samples consist of a SAMI-GAMA

sample drawn from the Galaxy And Mass Assembly (GAMA) survey (Driver et al.,

2011) and an additional sample drawn from 8 galaxy clusters (Owers et al., 2017)

for completeness. The SAMI-GAMA sample consists of a series of volume-limited

samples, with galaxies drawn from the three 4 × 12 degree fields of the GAMA-I

survey. Galaxies in these regions reside in a variety of environments from isolated up

to massive groups, but do not include any galaxy cluster members within z ≲ 0.1.

The cluster sample galaxies used to supplement the total SAMI sample adhere to the

same mass selection and redshift limits as the GAMA sample but, in practice, cluster
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galaxies of different masses are targeted based on their redshifts (e.g. Scott et al.

2018).

Observations for the SAMI Galaxy Survey (up to DR2) began in March 2013

and were completed in May 2018. At the completion of the survey, ∼ 3000 galaxies

have been observed to a completeness of 80% and 84% for the GAMA and cluster

samples respectively (Scott et al., 2018), with 1930 and 724 unique primary targets

in each of the samples. Of those 3400 observations, data for 1559 targets has been

released as the DR2 sample, comprising roughly 50% of the full survey.

It is worth noting that an additional sample of secondary targets with slightly

lower mass cuts in each redshift bin were also included in the SAMI Galaxy Survey

observing run. These targets were observed when a hexabundle could not be allocated

to a primary target. In the final block of observations, an extra set of ancillary targets,

primarily drawn from GAMA galaxies, was needed in order to fill all hexabundles.

These targets did not meet the stellar mass cuts of the original selection criteria and

are not included in DR2 and are therefore not included in this work either.

4.2.2 The MaNGA instrument and SDSS-IV MaNGA sam-

ple

MaNGA operates on the Sloan Digital Sky Survey (SDSS) 2.5m telescope

(Gunn et al., 2006) at Apache Point Observatory (APO). The instrument itself has

seventeen science IFU hexabundles, ranging in size from 19 to 127 fibres, with twelve

7-fibre minibundles used for calibration purposes (Yan et al., 2016) and 92 single

fibres used for sky subtraction with diameters between 12.5′′ and 32.5′′ on the sky

respectively (Drory et al., 2015; Law et al., 2015).

Optical fibres from the MaNGA instrument feed the twin Baryonic Oscillation

Spectroscopic Survey (BOSS, Dawson et al. 2013; Smee et al. 2013) spectrographs,

rebuilt from the original SDSS spectrographs, which were used for the SDSS Legacy

and SEGUE surveys (York et al., 2000; Yanny et al., 2009). The spectral resolution

ranges from R = λ/δλ ∼ 1800 at 60 nm to R ∼ 2200 at 1030 nm, in the red channel,

encompassing Hα line emission (see Fig. 36 of Smee et al. 2013). The spectral

resolution increases linearly towards longer wavelengths. Spectra are processed and

reconstructed into 3-dimensional datacubes using a software pipeline (Law et al),

adapted from the pipelines previously used for BOSS (idlspec2d, Bolton et al. 2012).

The goal of the SDSS target selection is to observe a sample of ∼ 10, 000

galaxies over a period of 6 years. SDSS is up to its sixteenth data release (DR16,

Ahumada et al. 2020), the fourth data release of SDSS-IV. The proposed total sample
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is divided into ‘primary’, ‘secondary’, and ‘ancillary’ groups, based on radial coverage

goals. The primary selection, accounting for ∼ 5000 of the ∼ 10, 000 target galax-

ies, have radial coverage of out to 1.5 effective radii (Re) for ∼ 80% of the sample.

The secondary selection accounting for ∼ 3300 galaxies, have radial coverage out to

2.5Re for ∼ 80% of the sample. MaNGA targets have a fairly flat distribution of

stellar masses with M > 109M⊙, out to a redshift range of 0.03 < z < 0.1. The

remaining 10% of the total MaNGA sample is comprised of ancillary targets of high

value (Bundy et al., 2015). Having observed more than one-third of the entire sky,

there are currently 4824 3-dimensional spectroscopic cubes from observing galaxies

with MaNGA as part of DR16.

4.2.3 Parameter estimations using machine learning

I aim to recover kinematic parameters directly from Hα integrated intensity

and velocity maps of galaxies from SAMI and MaNGA surveys combined. In order

to do so in a time-efficient manner, I make use of machine learning models which can

perform physics-aware, self-supervised learning via receiving moment maps as model

inputs.

In order to construct the TFR (see §4.3), we must first recover the asymptotic value

of the velocity profile, Vmax , from the combined SAMI and MaNGA datasets. In

order to retrieve Vmax in a time-efficient manner, I employ the use of a self-supervised

physics-aware neural network as described in Dawson et al. (2021b). The model

builds on similar approaches by Aragon-Calvo & Carvajal (2020), where covolutional

autoencoders (Masci et al., 2011) are used as semantic autoencoders, thanks to the

use of physically motivated decoder subnets. The model used in this work is identical

to that used by Dawson et al. (2021a), including the use of two decoder functions to

perform input map reconstruction from the embeddings in the neural network model.

Firstly, I assume that the ionised gas discs in galaxies can be described by a 3D

exponential disc profile:

I(r) = I0 exp

(
− rx,y
rscale

)
exp

(
− z

rz-scale

)
, (4.1)

where I0 is the intensity normalisation factor (set to 1 throughout). The intensity

profile is applied to a 3-dimensional xyz spatial cube for which: rx,y is the radius in

the xy plane, in arcseconds, rscale is the intensity scale length in the xy plane, z is the

position in the z axis, and rz-scale is the intensity scale length in the z axis set to a

value of 1 cube-spaxel throughout this work, to emulate a thin disk. Intensity values
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are determined by combining the integrals of Equation 4.1 across each cube-spaxel in

the xy and z planes, with this 3-dimensional distribution being rotated and projected

based on the fitted inclination and position angle of the galaxy to compare with the

Hα integrated line intensity map.

Secondly I assume the rotation curves of my sample galaxies can be described

by a simple velocity profile:

V(r) =
2Vmax

π
arctan

(
− r

rturn

)
, (4.2)

where Vmax is the asymptotic line of sight velocity, r is the radius in arcseconds, and

rturn is the velocity profile scale length.

The choice of exponential intensity profile and arctan velocity profile are not

driven by any physical theory. Instead, they are choices motivated by some of the

simplest forms that can approximately fit the typical disks and rotation curves found

in the Universe. Objects that do not follow these functional forms will not be appro-

priately fit by this network and as such, I make attempts to remove the effects of such

poorly-fitting cases before constructing my results, as described in §4.2.4. Given that

Bloom et al. (2017b) used arctan functions of similar form to Equation 4.2 (Courteau,

1997) for rotation curve fitting to SAMI galaxies, this approach allows us to make

directly comparable results.

As a branched neural network (as presented in Chapter 3), the two encoder

subnets independently receive a 2D intensity map (normalized in the range 0–1) and

a line of sight velocity map (normalized into the range -1–1) respectively. Throughout

this work, I ensure that the input maps have size of 64 × 64 pixels. All input maps

whose sizes are larger or smaller, are subsequently up/down-sampled to a size of

64 × 64 using PyTorch1’s torch.nn.Upsample class, in bilinear mode, before being

passed as input to the model.

4.2.4 Data preparation and model training

Prior to using moment maps as inputs to the machine learning models, I

perform data quality control cuts, to ensure that the chosen datasets are suitably

homogenised and the maps contain enough information for the models to learn robust

physical parameterisations. As such, in this section, I detail the various quality

control cuts applied to SAMI and MaNGA datasets before and after model training

and testing respectively.

1http://pytorch.org/

http://pytorch.org/
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SAMI

Initially I use a stellar mass cut in which all galaxies with a stellar mass M*/M⊙ <

107.5 are removed. Additionally, galaxies with a maximum spaxel value in the Hα

velocity field of < 10 km s−1 are removed.

Galaxies are removed from the training set if they have a catalogued ‘FLAG’

value entry greater than zero, indicating the Lick index measurements (Faber, 1973;

Worthey et al., 1994) for each aperture may be unreliable, predominantly due to

low signal to noise. At the spaxel level, a signal to noise (SNR) cut is employed

in which spaxels with SNR< 10 are masked. Those galaxies with activated spaxel

numbers < 200 are then further removed. I employ a fixed cut here due to the IFU

hexabundles having the same spaxel coverage per galaxy, unlike MaNGA which has

varying coverage based on the hexabundle size.

An additional cut is performed when attempting to normalise the Hα maps to

have one consistent value of position angle. I use the PaFit python package (Krajnović

et al., 2006) with 1◦ angular precision to fit the position angle of each Hα velocity

map, and rotate each map such that each is presented to the network with the same

orientation. Where fitting of the position angle fails due to highly disordered or low

coverage velocity fields, these galaxies are removed from the dataset.

These cuts left a total of 1075 galaxies from the original SAMI DR2 sample

for model training and testing.

MaNGA

All MaNGA maps and physical properties are extracted from MaNGA SDSS-IV dat-

acubes using Pipe3D (as described in Sánchez et al. 2016a,b). An accumulation of

quality controls and cuts are used to filter the dataset, of Hα maps, into one con-

sidered suitable for use with the machine learning model described in §4.2.3. Firstly,
all galaxies with a FLAG provided in the quality control catalogue were excluded

from the training set. The quality control catalogue is produced as a result of visual

inspection of central spectrum fitting, the generated 2D maps, and comparison with

NASA-Sloan Atlas (NSA) results.

I also perform dataset quality control cuts on a spaxel level using the Marvin

API (Cherinka et al., 2019). Throughout this work intensity, velocity, and velocity

dispersion maps are all masked using one mask per galaxy. Each galaxy’s mask is a

consolidation of instrumental and post processing flags, marking spaxels that Marvin

advises as ‘do not use for science’. Additionally, spaxels are removed using the same

SNR threshold as described in §4.2.4 for SAMI galaxies. All galaxies with a resulting
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Figure 4.1. Histograms showing various galaxy properties for SAMI (red bins) and
MaNGA (cyan bins) galaxies in the remaining samples after quality control cuts.
From top left to bottom right: galaxy mass, age, effective radius, specific star forma-
tion, star formation, and redshift. In the bottom-left plot, the sSFR peaks at a value
of 10−10 due to sources with catalogued sSFR’s lower than the detection threshold
(including negative values) being set to a control value of 10−10. The total number
of galaxies shown in each subplot is 1834, after pre-training and post-testing quality
control cuts being applied to both datasets. The 1834 sources are comprised of 697
from the SAMI dataset and 1137 from the MaNGA dataset.

fill factor, after the aforementioned cuts, of less than 10% are removed from the

dataset as well as those that do not meet the same minimum velocity requirement as

for SAMI galaxies. An additional cut is performed when attempting to normalise the

Hα maps to have one consistent value of position angle in the same way as described

for the SAMI sample in §4.2.4.

These cuts left a total of 2645 galaxies from the original MaNGA DR16 sample

for model training and testing, as described in §4.2.3. It is worth noting that these

cuts inevitably induce certain biases. For example, making dataset cuts based on field

of view coverage will bias the sample to nearby and bright sources which may limit the

velocity profile characteristics for the network to learn from. However, this increase

in sample bias is in direct opposition to the benefits of a sample which contains less

controllable noise characteristics (due to e.g. sources being of low S/N). This balance

between degraded model performance, due to spurious data quality, and unbiased
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sample characteristics is a common problem in applying machine learning to real

world tasks. In this work it is clear that we are leaning heavily more into the model

performance at the expense of sample bias through the use of rather stringent cuts.

Model training & testing

Due to the different stellar mass ranges of SAMI and MaNGA samples, I trained a

separate model on each dataset. This was to reduce the likelihood of over-densities

in stellar mass bins from one sample biasing the parameter estimations of another

sample due to physical properties being correlated with stellar mass. For example, if

stellar mass were to be correlated with Vmax (an expected relationship underpinning

the TFR), then a more populous group of MaNGA galaxies in a high stellar mass bin

could bias the estimated Vmax of SAMI galaxies with stellar mass lower than the lower

limit of the MaNGA sample. This could cause a systematic over-prediction of Vmax

at lower stellar mass ranges. An approach for avoiding this problem would be to train

a single model with weighted sampling (Byrd & Lipton, 2018) of the training data,

however thanks to the stellar mass distributions of both datasets being relatively flat,

I instead avoid the problem entirely by simply training two separate models.

The models are trained in the same manner as in Chapter 3; for the purpose

of clarity, I reiterate the important points of that procedure here. Each model is

trained for 300 epochs (where 1 epoch comprises presentation of the entire dataset

set to the model for parameter training), with input batches of size 16, during which

time I observe clear plateauing of the reconstruction loss, marking convergence of the

model. I use an adaptive Adam learning rate optimiser (Kingma & Ba, 2014) which

begins with a value of 10−4 and reduces via multiplication by 0.975 every 10 epochs.

The batch size, initial learning rate, and learning rate decay, were chosen arbitrarily

in order to maximise training speed in the case of the batch size, and promote model

convergence in the case of learning rate decay. I use the mean squared error (MSE)

loss to train the models throughout (see Equation 4.3).

L =
1

N

N∑
i=0

(f (xi)− yi)
2 (4.3)

During testing, the SAMI and MaNGA datasets are passed through the net-

work again, in order to retrieve parameter estimations directly from the encoder

subnet. Thanks to the use of monte carlo dropout (Gal, 2016; Gal & Ghahramani,

2016; Walmsley et al., 2019; Dawson et al., 2021a), modelling errors are found by

passing each galaxy through the network 100 times, in order to build up distributions
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over parameter estimations. Given that dropout is not used to zero the weights of the

convolutional kernels, these errors are strictly modelling errors and are therefore not

complete errors. One should consider these as lower limit errors over parameters; use-

ful for pipeline flagging or generating relative errors within a self-contained dataset.

The true, complete, errors will be a mixture of both modelling and observational

errors.

The models and Python training scripts used for the work presented in this

chapter are publicly available on GitHub2.

Further quality control cuts

After testing, galaxies were further removed based on physical and model-behaviour

motivated properties. Firstly, all galaxies passed through the trained model in test-

ing mode, with a predicted inclination of i < 30◦ were excluded from the final result

datasets. Low inclination can create systematic line of sight problems when attempt-

ing to model the velocity profile of a galaxy. As galaxies approach inclinations of

i→ 0◦, velocity information is gradually hidden from the observer, until at 0◦, when

all line of sight velocity information is destroyed. Additionally, as the apparent el-

lipticity of a galaxy disc reduces with lower inclination, it also follows that fitting

the inclination itself becomes more challenging for the model (see Fig. 4 of Daw-

son et al. 2021a). I therefore know that the model will have limited performance as

galaxy inclinations approach 0◦. During testing, a second population of galaxies with

systematically higher predicted Vmax due to low predicted values of inclination was

found and removed via the chosen inclination cut described.

During testing, although I recover estimated parameters from the encoder sub-

net, I also pass these variable mean values on, to the decoder for image reconstruction.

In doing so I can measure the mean squared error (MSE) loss between the true and

reconstructed maps. In order to ensure I am not including galaxies with spurious

reconstructed velocity fields, I first normalise MSE loss values for each galaxy recon-

struction by Vmax. I then proceed to remove galaxies whose normalised MSE values

are > 1σ, where σ is the standard deviation of MSE values for each sample dataset.

This is, of course, a rather strict cut with the resulting velocity profile parameterisa-

tions being sensitive to MSE threshold. As mentioned in §4.2.4, this imposes a focus

on model performance versus sample bias.

After these post-testing cuts, I am left with two samples of size: 697 for

the SAMI dataset and 1137 for the MaNGA dataset, which comprise my full results

2https://github.com/SpaceMeerkat

https://github.com/SpaceMeerkat


98 Chapter 4. Machine Learning With SAMI & MaNGA

dataset of 1834 galaxies. A selection of properties for the combined dataset are shown

in Figure 4.1.

Asymmetric drift correction

Due to non-perfect circular motions within galactic discs induced by turbulence the

measured rotational velocities are lower than the circular velocities due to the grav-

itational potentials alone. As the TFR is a direct relation between galaxy mass and

Vmax , in order to reconstruct the TFR using my network I need to trace circular

velocities as a function of the disc potential. Therefore, I need to correct the values of

Vmax by performing an asymmetric drift correction (Strömberg, 1946). i.e. increasing

Vmax as a function of the measured velocity dispersion. Asymmetric drift is defined

as the difference between the mean stellar tangential velocities and the velocity as

a result of the stellar density and velocity dispersion gradient (Binney & Tremaine,

2008).

I calculate the correction factor of Vmax using an approximation of the Evans

model (Binney & Tremaine, 2008; Weijmans et al., 2008) assuming a thin disc isotropic

rotator (Neistein et al., 1999):

V2
max, new = V2

max +V2
disp

(
2

(
rmax

rscale

)
− 1

)
, (4.4)

where Vmax and rscale are the mean predicted values of the maximum rotational ve-

locity and intensity profile scale length, and Vdisp (calculated from maps provided

by the respective surveys) is the average measured velocity dispersion of each galaxy

from 2 re out to the maximum radius at which Hα is detected, rmax. In the case where

rmax < 2re, Vdisp is instead measured from rmax/2 out to rmax. Corrections are applied

to both SAMI and MaNGA datasets prior to constructing the TFR shown in §4.3,
with typical corrections peaking at ∼ 50km s−1.

It is worth noting that the instrumental spectral line-spread function (LSF)

values of Hα for MaNGA targets are systematically lower than in upcoming SDSS data

releases (2021, private communication with Dr Federico Lelli). I therefore perform

a correction to the average velocity dispersion measurements of MaNGA samples by

increasing their LSF values by a factor of 1.045 (assuming LSF values are ∼ 95.5%

of those in updated data pipelines at Hα wavelength –see Fig. 13 in Law et al. 2021)

prior to calculating the asymmetric drift corrections.
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Figure 4.2. (Left) the stellar mass Tully-Fisher relation using all 1834 galaxies of
my combined SAMI DR2 and MaNGA DR16 dataset. Velocities (Vmax on the y-axes)
are the estimates provided by the neural network model during testing. Masses are
taken from their respective survey data-analysis-pipeline catalogues and velocities
are estimated using the machine learning models described in §4.2.3. SAMI and
MaNGA datapoints are shown with red and cyan markers respectively, complete with
modelling errors thanks to the use of monte carlo dropout. Each galaxy is sampled
100 times to generate modelling errors. The green solid line shows the best fit, with
green shaded regions showing the 1σ and 3σ confidence levels. (Right) the TFR with
comparison fits from the literature and 1σ confidence levels. Data points matching
those found in the left subplot are shown with grey markers. My best-fit TFR is
systematically higher than the literature relation at low masses. This is because in
this work I performed an asymmetric drift correction, which causes greater shifts in
Vmax at lower masses.

4.3 Results and Discussion

In this section I present the results of fitting the Tully-Fisher relation using

Vmax predictions from the models outlined in §4.2.3, and integrated stellar mass

estimates from the survey catalogues. Parameter estimations for the entire dataset

of 1834 galaxies sampling each galaxy 100 times using monte carlo dropout, took

< 3minutes on a single NVIDIA GTX TITAN Xp.

4.3.1 The reverse Hα TFR for combined SAMI and MaNGA

samples

I create the ‘reverse’ Hα TFR using all 1834 galaxies from combined SAMI

and MaNGA datasets described in §4.2.4 and §4.2.4. The reverse TFR consists of
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fitting the predicted Vmax based on known galaxy mass. In order to fit the pre-

dicted velocities from known masses, I use the python based least-squares fitting

algorithm LtsFit (presented in §3.2 of Cappellari et al. 2013). The approach uses

Least Trimmed Squares (LTS) robust technique (Rousseeuw & Driessen, 2006), which

allows for intrinsic scatter and errors in all coordinates while converging to the cor-

rect solution even in the presence of significant outliers, which are excluded in the

calculation of scatter around fits.

Performing a linear fit of the slope and intercept for a fixed pivot in the

form y = m(x − p) + c, where m, p, and c are the gradient, pivot, and y-intercept

respectively, I fit the reverse TFR:

Vmax/km s−1 = 0.258± 0.003× (log(M∗/M⊙)− 10.09) + 2.265± 0.002, (4.5)

using a pivot value of p = 10.09 –the median log10 (M⊙) of the combined sample.

The results of fitting the reverse TFR to my combined dataset are shown in

Figure 4.2. The observed rms scatter in Vmax is 0.089 dex which I show in Figure 4.2

with shaded areas representing the 1σ and 3σ confidence levels on the fit.

In Figure 4.2 I display comparison fits for the reverse TFR from the wider

literature. Namely I include fits from: Bloom et al. (2017b) who performed fits to

729 SAMI observations of galaxies drawn from the GAMA DR2 sample, Bekeraité

et al. (2016), whose reverse TFR fit was calculated in Bloom et al. (2017b) and

converted from a fit to the stellar kinematics of 199 Calar Alto Legacy Integral Field

Area Survey (CALIFA) galaxies, and finally Reyes et al. (2011) who performed TFR

fits to 189 SDSS DR7 disc galaxies, observed using long-slit spectroscopy. I summarise

the derived fit parameters for my sample and for those found in the aforementioned

publications in Table 4.1.

In Figure 4.2, I also show a comparison of my reverse Hα TFR fit to those found

in the wider literature. I show the 1σ confidence levels for all fits, for comparison.

It can be seen that at all times, my fit overlaps with another found in the literature

within the examined mass range. My fit clearly has the highest y-intercept of all the

fits shown, and a clean systematic offset across the entire mass range. This is due to

my data being corrected for asymmetric drift (see §4.4), which when removed brings

the fit back into agreement with the ancillary fits presented from the wider literature.

None of the comparison fits from the wider literature, shown, perform a correction

for asymmetric drift in this way. However, it is worth noting that my asymmetric

drift corrections are approximate in nature and more meticulous calculations of the
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Author/Paper Sample Sample size Slope log(km s−1)/log(M∗/M⊙) Intercept log(km s−1)
Dawson et al. 2021 SAMI DR2 & MaNGA DR16 1834 0.258 ± 0.003 2.265 ± 0.002
Bloom et al. (2017b) SAMI DR1 729 0.310 ± 0.009 2.198 ± 0.100
Bekeraité et al. (2016) CALIFA 199 0.260 ± 0.017 2.123 ± 0.130
Reyes et al. (2011) SDSS DR7 189 0.278 ± 0.010 2.164 ± 0.004

Table 4.1 This table shows information regarding the fit parameters for a linear
regression fit to the TFR for my combined sample and for those shown in the wider
literature for comparison. All fits have been normalised to share the same pivot
p = 10.09 as used in my TFR fit. Columns show (from left to right): The
author/paper from which fit parameters were sourced, the sample from which
galaxies were drawn for those corresponding studies, the size of those samples, the
gradient of the reverse TFR fit for those samples, and the y-intercept for of the
reverse TFR fit for those samples.

correction value are recommended as a way to improve the validity of the derived fit

parameters.

4.3.2 The forward Hα TFR for combined SAMI and MaNGA

samples

I create the ‘forward’ Hα TFR using all 1834 galaxies from combined SAMI

and MaNGA datasets described in §4.2.4 and §4.2.4. This is a useful exercise as in

practice, astronomers may have access to either galaxy mass or Vmax and must infer

the other. As such it is worth performing both forward and reverse fits. The forward

TFR consists of fitting the predicted baryonic mass based on known Vmax values for

my combined sample. To perform the fit, I again use the python based least-squares

fitting algorithm LtsFit (presented in §3.2 of Cappellari et al. 2013).

Performing a linear fit of the form y = m(x−p)+ c, where m, p, and c are the

gradient, pivot, and y-intercept respectively, I fit the reverse TFR for my sample:

log(M∗/M⊙) = 3.013± 0.037× (log(Vmax/km s−1)− 2.256) + 10.054± 0.008, (4.6)

using a pivot value of p = 2.256 –the median log(Vmax) of the combined sample.

The results of fitting the forward TFR to my combined dataset are shown in

Figure 4.3. The observed rms scatter is 0.31M⊙ which I show with shaded areas

representing the 1σ and 3σ confidence levels on the fit.

In Figure 4.3, I show comparison fits from the wider literature against my

derived fit. As reverse TFR fits were exclusively calculated in those taken from the

literature, I simply invert the parameters for the reverse TFR fits for display in Figure

4.3. As with the reverse TFR (see §4.2) I see good agreement between my fit and those
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Figure 4.3. (Left) the stellar mass Tully-Fisher relation using all 1834 galaxies of my
combined SAMI DR2 and MaNGA DR16 dataset. Values of Vmax are estimated using
the machine learning models described in §4.2.3 and stellar masses are taken from their
respective survey data-analysis-pipeline catalogues. SAMI and MaNGA datapoints
are shown with red and cyan markers respectively, complete with modelling errors
thanks to the use ofmonte carlo dropout. Each galaxy is sampled 100 times to generate
modelling errors. The green solid line shows the best fit, with green shaded regions
showing the 1σ and 3σ confidence levels. (Right) the TFR with comparison fits from
the literature and 1σ confidence levels. These fits are annotated with an asterisk to
show that I have simply inverted the function parameters and uncertainties in Table
4.1 to display them in this figure. My best-fit TFR is lower than the literature
relations displayed. This is because in this work I performed an asymmetric drift
correction, which causes systematic shifts in Vmax .

presented in the literature when working within a 1σ confidence region. I summarise

the derived fit parameters for my sample and for those found in the aforementioned

publications in Table 4.2.
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Author/Paper Sample Sample size Slope log(M∗/M⊙)/log(km s−1) Intercept log(M∗/M⊙)
Dawson et al. (2021) SAMI DR2 & MaNGA DR16 1834 3.013± 0.037 10.054± 0.008
Dawson et al. (2021)∗ SAMI DR2 & MaNGA DR16 1834 3.876+0.046

−0.045 10.054+0.012
−0.123

Bloom et al. (2017b)∗ SAMI DR1 729 3.226+0.099
−0.093 10.278+0.518

−0.549

Bekeraité et al. (2016)∗ CALIFA 199 3.846+0.269
−0.236 10.602+0.516

−0.588

Reyes et al. (2011)∗ SDSS DR7 189 3.597+0.134
−0.284 10.421+0.284

−0.305

Table 4.2 This table shows information regarding the fit parameters for a linear
regression fit to the TFR for my combined sample and for those shown in the wider
literature for comparison. Columns show (from left to right): The author/paper
from which fit parameters were sourced, the sample from which galaxies were drawn
for those corresponding studies, the size of those samples, the gradient of the reverse
TFR fit for those samples, and the y-intercept for of the reverse TFR fit for those
samples. All fits have been normalised to share the same pivot p = 2.256 as used in
my fit. Author/paper information highlighted with an asterisk, indicates that the fit
parameters and errors are calculated by inverting the ‘reverse’ TFR fit parameters
for comparison. This is due to the fact that fits to the forward TFR are not
presented in the literature examples chosen for comparison.

4.3.3 r-band magnitude TFR

Figure 4.4 shows the r-band magnitude TFR with Vmax values taken from my

neural network model. I fit the TFR using the same methods as in §4.3.1 and 4.3.2,

giving:

MR = −5.290± 0.100× (log(Vmax/km s−1)− 2.256) + 19.708± 0.022, (4.7)

where MR is the predicted r-band absolute magnitude. The rms scatter is found to

be 0.92mag. The r-band magnitude TFR serves the same purpose as the stellar mass

TFR but is included in this work due to the convenience of r-band magnitude being

readily available in the data reduction pipeline database. Should one wish to infer

galaxy distances, rather than masses, based on measurements of Vmax, then using

this r-band TFR would be the ideal starting point.

4.3.4 Correlations along the stellar mass TFR

Thanks to the samples used throughout this chapter being from large surveys includ-

ing data reduction and data analysis pipelines, we are able to explore various known

(and unknown) corellations between parameters derived using my ML models and

those from the pipelines themselves. This represents a good opportunity to further

validate that the models are performing as we expect and to also search for new

relationships which may impact future observing stratergies.
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Figure 4.4. The r-band magnitude Tully-Fisher relation using all 1834 galaxies of
my combined SAMI DR2 and MaNGA DR16 dataset. Values of Vmax are estimated
using the machine learning models described in §4.2.3 and absolute r-band magnitudes
are taken from their respective survey data-analysis-pipeline catalogues. SAMI and
MaNGA datapoints are shown with red and cyan markers respectively, complete with
modelling errors thanks to the use of monte carlo dropout. Each galaxy is sampled
100 times to generate modelling errors. The green solid line shows the best fit, with
green shaded regions showing the 1σ and 3σ confidence levels.

Figure 4.5. The distribution of galaxy ages as a function of Vmax for the MaNGA
sample tested in this work. I see a positive trend, in which higher mass galaxies tend
to have older ages. I omit the SAMI sample from this plot as ages was fit in a manner
which does not allow for suitable comparison between the two datasets. A running
median and associated errors are shown as cyan squares connected by a black line.
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Figure 4.6. Mass to light ratios against Vmax for all 1834 galaxies in the MaNGA
(cyan) and SAMI (red) datasets after quality control cuts. Running medians for both
datasets and associated errors are shown with square markers connected by black
lines. I see that there is a positive trend in the mass to light ratios with increasing
Vmax. It is worth noting that the choice of using a running median is arbitrary and
can be improved upon prior to publication by using more suitably chosen adaptive
fitting routines which can account for sparsity in individual bins.

Figure 4.5 shows the distribution of galaxy ages (retrieved from the MaNGA

database and calculated using SED fitting in the MaNGA data-reduction pipeline)

against Vmax, for the MaNGA sample. We see a clear positive trend between the two

properties with spearman rank correlation coefficient and p value of rs = 0.605, p <

0.001. In this case I have omitted the SAMI galaxies due to varying fitting models

being used to recover ages between the two samples making comparisons unsuitable.

It therefore follows that a trend exists between position along the TFR and galaxy age.

We see that the galaxies with older stellar populations lie at the higher stellar mass

and Vmax range of the TFR. This makes sense given that we expect massive galaxies

to be older, and therefore to be dominated by older stars (Gallazzi et al., 2005). This

is consistent with hierarchical assembly due to ‘assembly bias ’, the theory that larger

dark matter halos in the early Universe resulted in higher mass galaxies which then

evolved through cosmic time hierarchically but with much older stellar populations

(Neistein et al., 2006). Therefore, the trend of increased stellar population age with

higher Vmax agrees with prior studies.

The relationship between Vmax and galaxy age, complements a visible trend

between position along the TFR and the mass-to-light ratio (M/L) shown in Figure
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4.6. Here we see that both datasets exhibit positive correlations between Vmax and

M∗/L with spearman rank correlation coefficients and p values of rs = 0.168, p < 0.001

and rs = 0.693, p < 0.001 for MaNGA and SAMI datasets respectively. It again

follows that this relationship is present in the stellar mass TFR. Older, more massive

galaxies are dominated by low mass populations of stars (Gallazzi et al., 2005), which

increase the overall M/L of a galaxy; whereas younger, lower mass galaxies have

luminosities dominated by brighter more massive stars, leading to lower global M/L’s.

Figure 4.7. The velocity turn over radius rturn, normalised by re, as a function
of galaxy mass. I see a negative trend for both MaNGA (cyan) and SAMI (red)
datasets. Running medians for both datasets and associated errors are shown with
square markers connected by black lines. reviseAgain the choice of using a running
median is arbitrary and can be improved upon in the future by using more suitably
chosen adaptive fitting routines which can account for sparsity in individual bins A
visible offset between the two populations is visible and requires further investigation,
as explained in the main text.

In Figure 4.7, we can also see evidence of a negative trend between rturn and

Vmax after normalising rturn by re. This is an expected trend to arise during testing as

higher mass galaxies have been shown to have their mass more centrally concentrated

than lower mass galaxies (Caon et al., 1993; Yoon, 2017), which leads to a smaller

turn over radius. I measure spearman rank correlation coefficients and p values of

rs = −0.37, p < 0.001 and rs = −0.69, p < 0.001 for MaNGA and SAMI datasets

respectively. If a relationship between rturn and Vmax can be modelled to a reason-

able degree of accuracy, this could have implications for future target selection for

kinematic analysis, by circumventing the need to explicitly model rturn if one can
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measure Vmax alone, or having a priori knowledge of how far out to probe galaxies (to

explore beyond rturn) given known galaxy masses. It is clear in Figure 4.7 that the

distributions of rturn/re, of MaNGA and SAMI datasets, are offset from one another.

Why this behaviour arises is currently unknown and must be fully addressed before

such relationships can be modelled robustly.

It is also worth noting a few other factors which may effect the relationship we

see between rturn/re and Vmax in Figure 4.7. Changes in the expected velocity profile

due to “beam smearing”, and the optically thick nature of Hα emission will play some

role in the observed relationship. Additionally the known covariance between rturn

and Vmax must influence this relationship in an as-of-yet unknown manner.

An investigation of the aforementioned behaviours and possible influences in

the relationship seen in Figure 4.7 will be the next logical step in validating a strong

relationship between rturn/re and Vmax. Unfortunately this could not be completed

in the timescales required for this thesis. As such I leave work quantifying the true

strength of this relationship as a promising avenue for future work.

Figure 4.8. The residual r-band magnitudes of each galaxy plotted against the pre-
dicted velocity turn over radius rturn, normalised by re. MaNGA galaxies are shown
with cyan markers, while SAMI galaxies are shown with red markers. Running medi-
ans for both datasets and associated errors are shown with square markers connected
by black lines. I observe a positive trend, with galaxies with lower values of rturn
having systematically more luminous than expected by my predictions of Vmax. This
is discussed in greater detail in §4.3.5.

In Figure 4.8, we see a clear trend between predicted rturn/re and the residuals

from my best fit TFR in magnitude space shown in Figure 4.4. Both SAMI and
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Figure 4.9. The residual masses of each galaxy plotted against the predicted ve-
locity turn over radius rturn, normalised by re. MaNGA galaxies are shown with
cyan markers, while SAMI galaxies are shown with red markers. Running medians
for both datasets and associated errors are shown with square markers connected
by black lines. I observe a negative trend, with galaxies with lower values of rturn
having systematically higher mass than expected by my predictions of Vmax. This is
discussed in greater detail in §4.3.5.

MaNGA have spearman rank correlation coefficients and p values of rs = 0.39, p <

0.001 and rs = 0.36, p < 0.001 respectively. The negative offset of magnitudes at

lower rturn/re is unexpected and suggests that galaxies with low measured rturn/re are

more massive than expected given their rotation velocity.

We can make attempts to explain this behaviour by looking at the residuals

of predicted mass as shown in Figure 4.9. Here we observe a negative trend, corre-

sponding to an under-prediction of mass, and therefore of Vmax also, for lower values

of rturn/re.

4.3.5 Uncertainties on the TFR

As I am determining the TFRs with a new technique, it is important that

we search for any underlying uncertainties that could affect the results. I did this

by checking for the presence of residual correlations between the position of galaxies

on the TFR and their properties. In Figure 4.10, we see that the galaxies which

have negative residual magnitude values (where rturn/re ≲ 0.2), can exhibit much

lower values of rmax. This is particularly prevalent for the SAMI sample. This may

suggest that the trends seen in Figures 4.8 and 4.9 arise from the model’s inability
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Figure 4.10. The predicted velocity turn over radius rturn for each galaxy, normalised
by re, against Hα extent normalised by re. MaNGA galaxies are shown with cyan
markers, while SAMI galaxies are shown with red markers. Running medians for
both datasets and associated errors are shown with square markers connected by
black lines. I observe a sharp drop in the ratio of Hα extent for low values of rturn
for the SAMI sample. I discuss this issue in greater detail in §4.3.5 along with the
implications for rturn, and Vmax predictions.

to appropriately fit either rturn or Vmax in cases where the galaxies are very compact.

Given that the two parameters co-vary, the reduced ability to fit could be due to

underpredictions of Vmax which directly lead to lower estimations of rturn in order

to offset the MSE reconstruction loss, which dominates at higher velocity regions.

Alternatively, an overprediction of rturn leads to the opposite effect in which Vmax is

lowered in order to reduce the overall MSE reconstruction loss. Which of these two

possible behaviours occurs is currently unknown and requires further investigation,

however it is clear that the ratio of Hα extent and rturn plays a significant role in

the residual trends seen in Figures 4.8 and 4.9. Given that galaxies with a range of

rturn are present at all stellar masses, and my best fit TFRs are fully consistent with

those in the literature, we expect this uncertainty to be increasing the scatter seen in

my relations, rather than biasing them significantly. Further work will be required in

order to fully understand the extent of this behaviour.
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4.4 Conclusions

I have trained two self-supervised physics-aware neural networks to recover

parameter estimations from 2-dimensional spatially resolved kinematic maps from

IFU surveys. Using a combined dataset from observations using SAMI and MaNGA

IFUs, I modelled the Hα stellar mass Tully-Fisher relation using the largest sample to

date. My forward and reverse fits agree well with those found in the literature, with

the exception of a notably shallower slope in my fits. I attribute this discrepancy to

galaxies in my sample having higher values of Vmax as I have performed asymmetric

drift corrections to my dataset throughout. Both my forward and reverse TFR fits,

overlap (within 1σ) with at least one other fit found in the literature within the mass

range studied in this chapter.

I also observe some possible trends with position along the TFR and physical

properties, taken from the respective survey data-analysis pipeline catalogues. In

particular, I see trends in galaxy age and mass-to-light ratios with Vmax, which agree

with my expectations from the literature.

Although systematic uncertainties are currently present which I was not able to

resolve on the timescales required for this thesis, a possible trend has been observed

between position along the TFR and rturn/re. Measuring the strength of this trend

is beyond the scope of this work, but promises interesting implications for the future

of kinematic studies of galaxies. Should one already know the masses of galaxies in a

sample, then it may be possible to know, prior to observing, how far out to observe

galaxies in order to target regions beyond rturn. Alternatively, if one is able to build

a robust relationship between Vmax and rturn/re, then it may be possible to use new

survey target selection approaches based purely on known values of Vmax . This

could boost observing efficiency and help build more representative survey samples.

I propose the analysis of this relationship as a promising avenue of future work.

I have investigated and discussed the trends seen when measuring residuals be-

tween TFR fits and combined SAMI and MaNGA datapoints. Of particular note

is the increased discrepancy between expected and measured r-band magnitude. I

see an increase in brightness for galaxies for values of rturn/re ≲ 0.2. I posit that

this arises in cases where objects are very compact. Further investigation is required

so solidify this hypothesis and differentiate the behaviour from other possible rea-

sons, such as insufficient noise removal which could could exacerbate fitting issues if

rturn/rmax approaches 0.
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From a machine learning perspective, I have demonstrated that it is possible to

reuse model architectures to solve problems and uncover physical properties of galax-

ies, observed with IFU instruments, in a time-efficient manner. Given that the models

used were designed for use with millimetre/radio observations, the results outlined

in this work demonstrate the generalised nature of the models. This gives us greater

confidence in the use of such models moving into the future in order to prepare for

next generation IFU surveys.
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Chapter 5

Thesis Conclusions

“Just use an LSTM...”

Hardie Pienaar, The answer to all of life’s problems

5.1 Conclusions

In this thesis I studied the use of modern machine learning approaches in tackling

challenges for kinematically characterising galaxies beyond the Milky Way. These

pieces of work focused on preparing for next generation millimetre and radio inter-

ferometers, such as ALMA and the SKA, by specifically targeting applications to

large-scale emission line surveys of galaxies. A variety of emission lines were stud-

ied throughout the thesis, including cold dense molecular gas (CO), warm neutral

hydrogen (Hi), and hotter ionised hydrogen (Hα). Each are important for different

scientific purposes; but the applicability of the approaches studied in this thesis to

different emission lines, using different telescopes, indicates that this work is based

on a more generalised approach to tackling big data era challenges in astronomy than

previously attempted.

As a quick-look reference, Figure 5.1 shows a rough guide to the path taken in

this thesis from the broad topic of extragalactic astronomy, through to the machine

learning approaches utilised to solve specific problems.

In order to understand the compatibility of machine learning with charac-

terising kinematic properties of galaxies, I first used hydrodynamical simulations to

113
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Figure 5.1. A generalised view of the research-path described in this thesis. Topics
move from the overarching extragalactic astronomy, through to the specific machine
learning approaches used to tackle problems.

evaluate machine learning models in an empirical fashion. Using unsupervised learn-

ing I embedded kinematic features from simulated moment one maps of galaxies onto

a 3-dimensional latent manifold. This structure was then used to discriminate be-

tween disturbed and regularly rotating cold gas structures. By using moment one

maps I was working at a very high level in the data reduction pipeline. At this stage

the data is lower dimensional which therefore made it easier to develop and evaluate

novel data-handling techniques. Using unsupervised learning while being able to em-

pirically calculate kinematic features of the simulated data allowed for even greater

power in in assessing the performance of machine learning models. The simulated

nature of the training data also granted complete flexibility in augmenting the data

presented to the model for training. With nearly infinite augmentations available,

this was an exercise in evaluating machine learning models with spectacular param-

eter coverage and an opportunity to discover the limitations of using vast quantities

of simulated data to produce models with high generalisation power.
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The model had one clear goal from the outset: to embed kinematic features

from moment one maps in a minimal time-frame, while maintaining high generalisa-

tion power. The model was trained and tested on millions of simulated cold molec-

ular gas disc observations. The moment maps were embedded onto a 3-dimensional

spheroidal-like manifold where a correlation between level of ordered rotation and

position was clearly visible. Using a maximum-likelihood boundary line, disordered

and ordered rotators were separated into two distinct categories based on an empirical

measure of (dis)orderly rotation κ. The performance of the model was then dictated

by its performance as both an embedding network and binary classifier.

During testing on simulated data, the model showed a mean accuracy of 85%

when attempting to categorise the circularity κ, with minimal degradation in this

performance when injecting noise. The model was also tested on real Hi observations

using the VLA, from the Local Volume Hi Survey (LVHIS, Koribalski et al. 2018).

The outcome of testing on Hi observations is important because it shows the general-

isation power of using a model such as this, and it shows that using machine learning

to study the kinematics of Hi is possible and therefore applicable to SKA science. The

accuracy of testing on Hi data was found to be 97%. This is obviously a heuristic

accuracy as we have no handle on the true circularity of galaxies from direct obser-

vation alone. Additionally, the model was tested on CO observations from surveys

using ALMA. Given that CO is generally found in much more centrally concentrated

regions of galactic discs than Hi , and the ALMA observations had greater spatial

and spectroscopic resolution when compared with the LVHIS data, this presented the

opportunity to test the generalisation power of the model. With the ALMA data,

again the model performed well, with a mean accuracy of 90%.

Despite the positive results from this work, some caveats could not be ignored

and dictated the progression of this line of research away from more traditional un-

supervised learning approaches, and into the realm of self-supervised, physics-aware

machine learning.

I then went on to build models which were capable of learning physical pa-

rameters without the need for a throw-away training set. This presented two major

positive steps in developing machine learning models for next generation instruments.

The ability to learn physically meaningful results directly from input data removes

the need for secondary steps such as the binary classifier presented in the first project.

Secondly, removing the need for a throw-away training set circumvents transfer learn-

ing issues when using a simulated backend, increases the fraction of ‘testable’ data

(by removing the need for train-test split approaches), and eliminates the need for
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separate training data storage.

In order to accomplish these feats, a new type of machine learning architecture

was needed. Building upon similar approaches used with simulated optical images

of galaxies (Aragon-Calvo & Carvajal, 2020), I created a novel convolutional au-

toencoder architecture in which the decoder had been replaced with native PyTorch

(Paszke et al., 2017) functions. These functions forced the network to learn phys-

ically motivated parameters in the embedding layer prior to image reconstruction.

Again inputs to the network were moment zero and moment one maps, but this

time, all training data consisted of observational survey data. Simulated data was

used; however, only to check for spurious model behaviour. During both training

and testing, the inputs were moment one maps from the mm-Wave Interferometric

Survey of Dark Object Masses (WISDOM) survey and The Hi Nearby Galaxy Survey

(THINGS, Walter et al. 2008).

I trained networks to recover the intensity and rotational velocity curves from

resolved velocity maps for both CO and Hi data. The modelling of these galaxies

assumed simple decaying exponential intensity profiles and arctan velocity profiles

throughout. The recovered velocity profiles matched well with those found in the

literature, using modelling tools such as KinMS (Davis et al., 2013; Davis et al., 2020)

and BBarolo (Di Teodoro & Fraternali, 2015). The significance of these comparison

tests lie in a comparison of the testing speed itself. The trained self-supervised model

is able to recover rotation curves of galaxies in a fraction of a second, limited only

by the quantity of available GPU memory for batch loading. In comparison, current

state of the art modelling tools (e.g. BBarolo) take at least several minutes per target

to recover rotation curves. Therefore, this shows a major improvement in physical

parameterisation speed.

In addition to learning physical parameters, I also employed the use of monte

carlo dropout to transform a network, which would otherwise calculate mean field

approximations of parameters, into one capable of producing modelling errors. Using

synthesised moment one maps I show that the network learns physical parameterisa-

tions with associated modelling errors without evidence of learned parameters covary-

ing. This is with the exception of the velocity turn over radius and the asymptotic

velocity whose covarying nature is fully expected. In order to show the ability of the

model in fitting rotation curves to a variety of observations I present 3 galaxies and

their fit results. NGC2403 and NGC3198 are both Hi observations from THINGS

(Walter et al., 2008; de Blok et al., 2008). In both cases the fits agree with those

using other more analytically motivated methods, even for NGC3198 which exhibits

a slight rise in velocity at high radii and has a warped Hi disc. The CO observation
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of NGC1387 from the WISDOM survey (Zabel et al. 2020, Boyce et al. in prep), is

included in order to show that the network is capable of fitting galaxies whose rota-

tion curves asymptote at very small radii as well as demonstrating the ability of the

network to handle observations of different emission lines, with different instruments.

The effects of instrument resolution on direct learnable physical properties,

from moment maps, was also discussed in this work. No attempts were made to

mitigate the effects of “beam smearing” as it was beyond the scope of the project,

yet it is of vital importance to do so before these methods can be used on large scale

interferometric surveys in the future. Other artificial errors in predicted parameters

due to beam size and inclination were also discussed and resulted in advised flagging

and/or cuts, at the post testing stages of the project.

Finally, in Chapter 4, I go on to use self-supervised physics-aware algorithms

to retrieve Vmax for 1834 galaxies observed in Hα line emission. Using a combination

of SAMI survey DR2 and MaNGA DR16 IFU data, Vmax is calculated and used to

fit the stellar mass Tully-Fisher relation (TFR). This represents the largest Hα TFR

study at the time of writing, and delivers interesting results. Firstly, the ability to

use the same models as those used on mm-radio interferometric data products high-

lights their generalisation power, one of the key goals of developing such models as

mentioned previously. With upcoming instruments like Hector-I, which will double

the number of galaxies observed with IFUs, when compared with the SAMI survey,

it is reassuring to see that previous work shown in this thesis can be adapted for

use with very different instruments and observations at different wavelengths. The

derived TFR matched well with those found in the wider literature. Notable was the

behaviour of my fit having a more shallow gradient. This was attributed to the fact

that I performed an asymmetric drift correction to the model’s predicted values of

Vmax unlike the comparison fits shown alongside. Using galaxy properties from the

respective data analysis pipeline catalogues, expected physical correlations were visi-

ble on along the TFR. This includes the relationship between Vmax and age, as well

as mass to light ratio. Interestingly, we find that the strength of these relationships

differ between the two surveys.

In summary, in this thesis I have shown that it is possible, and in fact sci-

entifically beneficial, to use machine learning in order to derive kinematic properties

from extragalactic line emission surveys. I have shown that galaxies can be broadly

categorised based on their kinematics using simulated backends in conjunction with

unsupervised learning models. Improvements on these models have shown that it is
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also possible to create physics-aware machine learning models which have comparable

power to existing kinematic fitting routines, but with far less required computational

costs. These models have been used to fit the velocity profiles of cold molecular, warm

neutral, and singly ionised gas, the latter being useful in recovering the Hα TFR using

the largest IFU sample to date. Consequently, expected correlations between galaxy

mass (and rotational velocity) and derived physical properties from Hα observations

have been measured on a large scale basis.

From a more data science oriented perspective, throughout this thesis I have

demonstrated the successful use of ML and AI techniques to create proof-of-concept

models. These models have shown great promise for use with future observational

data but also have been shown to deliver new scientific results in the present, in

particular in Chapter 4.

5.2 Ongoing & future work

Throughout this thesis, I have focused on applying machine learning to high

level interferometric data products. Moment maps are highly abstracted from the

raw visibilities that are captured by mm-radio interferometers. Therefore, it stands

to reason that in order to maximise the efficiency of kinematic characterisation with

upcoming surveys, one must begin investigating the performance of such methods

lower in the data reduction pipeline. Ideally, an investigation of machine learning

applications in the uv-plane would be optimal. However it makes more sense to

progressively solve the challenges faced when working with higher dimensional and

more complex data as we move away from moment maps, through to clean datacubes,

dirty data cubes, and back to the raw visibilities. I have already begun investigating

the use of self-supervised physics-aware learning on clean datacubes. The challenges

faced in doing this involve accounting for changes in both brightness and velocity

across voxels of 4-dimensional hypercubes, and memory issues when using larger

input-output products.

In the near future, large surveys of galaxy clusters imaged at 21 cm with

ASKAP (Koribalski et al., 2020) and MeerKAT (Jonas & MeerKAT Team, 2016)

will be made available (Serra et al., 2016). These images will provide the perfect

testing ground for overcoming modelling issues mentioned throughout the thesis. For

example, given the low spatial and spectroscopic resolution of MeerKAT images, the

effects of ‘beam smearing’ and heavily downsampled data products will have to be

tackled in order for the models to return physically meaningful results. Therefore, the

most logical step in developing self-supervised physics-aware models is to introduce
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ways to convolve reconstructed images (or at least model the convolution operation)

prior to the final output layer of the neural network. This approach could force the

network to model the underlying, pre-convolved, physics –harbouring scientifically

useful information.

A common theme among the later chapters of this thesis, is the use of simple

generalised descriptions of galaxy profiles. The use of exponential intensity profiles

and arctan velocity profiles was deliberate in order to reduce the complexity of the

neural network models and avoid inducing parameter degeneracies (a fast way to

break neural network training). In the future, it may possible to use these simple

functions in a way that allows the networks to behave as outlier detection models.

Those galaxies whose profiles cannot be modelled well with these simple functions

will exhibit different reconstruction losses which may also exhibit spatial dependence.

One can imagine a ram pressure stripped dwarf galaxy may not be modelled well by

an arctan velocity profile or exponential intensity profile; such an example should have

a very large reconstruction error. However, a symmetrically warped disc may have

reasonably low reconstruction error due to the choice of a loss function which bal-

ances discrepancies (between input and reconstructed output) across the field of view.

Therefore, using these models as outlier detection algorithms clearly requires further

investigation in order to gauge whether they deliver performant and interpretable re-

sults. Alternatively, one could upgrade the network’s ability to model galaxy profiles

by investigating the use of different decoder profiles altogether. Adopting the use

of funcitons only slightly more complex than an arctan (e.g. Rix et al. 1997) are a

possible route to take. Or complete overhauls in an attempt to model complex warps

and asymmetries may provide fruitful results. The degree to which we parameterise

profiles depends on the science case, yet it offers many avenues for research moving

into the future.

5.3 Concluding remarks

With the advent of next generation radio interferometers such as SKA on

the near horizon, astronomers are poised to receive vast quantities of extra galactic

observations. The scientific gain from such datasets promises interesting insights into

the interactions and evolution of galaxies through time. The challenges of extracting

robust science in a fast efficient manner will be tackled in many different ways and

at different stages in data reduction pipelines. Here we have touched upon just a few

approaches, focused on a few aspects of extragalactic galaxy studies, among many.

The application of machine learning to kinematically characterise galaxies is a nascent
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area of research, demonstrated by the simplicity of models discussed in this thesis

and near-endless paths to take in adapting such models. With the ever increasing

uptake of machine learning to solve problems in astronomy, I am excited to see how

developments progress in machine learning assisted studies of galaxy kinematics going

in the future. And I am pleased to have done my part in advancing the field.
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Ancillary tables

Layer Layer Type Units/number of filters Size Padding Stride
Encoder Input Input (64,64)

Conv1 Convolutional 8 (3,3) 1 1
ReLU Activation
Conv2 Convolutional 8 (3,3) 1 1
ReLU Activation
MaxPool Max-pooling (2,2) 1
Conv3 Convolutional 16 (3,3) 1 1
ReLU Activation
Conv4 Convolutional 16 (3,3) 1 1
ReLU Activation
MaxPool Max-pooling (2,2) 1
Linear Fully-connected 3

Decoder Linear Fully-connected 3
Up Partial inverse max-pool (2,2) 1
ReLU Activation
Trans1 Transposed Convolution 16 (3,3) 1 1
ReLU Activation
Trans2 Transposed Convolution 16 (3,3) 1 1
Up Partial inverse max-pool (2,2) 1
ReLU Activation
Trans3 Transposed Convolution 8 (3,3) 1 1
ReLU Activation
Trans4 Transposed Convolution 8 (3,3) 1 1
Ouput Output (64,64)

Table A.1 Architecture for our autoencoder, featuring both encoder and decoder
subnets. The decoder is a direct reflection of the encoder’s structure.
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OBJECT ID SURVEY
Author Prediction

(disturbed=0, regular=1)
Model Prediction

(κ < 0.5=0, κ > 0.5=1)

Heuristic Result
(TP=true positive, FP=false positive
TN=true negative, FN=false negative)

ESO358-G063 AlFoCS 1 1 TP
ESO359-G002 AlFoCS 0 0 TN

FCC207 AlFoCS 1 1 TP
FCC261 AlFoCS 0 0 TN
FCC282 AlFoCS 0 1 FP
FCC332 AlFoCS 0 0 TN

MCG-06-08-024 AlFoCS 0 0 TN
NGC1351A AlFoCS 1 0 TN
NGC1365 AlFoCS 1 1 TP
NGC1380 AlFoCS 1 1 TP
NGC1386 AlFoCS 1 1 TP
NGC1387 AlFoCS 1 1 TP
NGC1436 AlFoCS 1 1 TP

NGC1437B AlFoCS 1 1 TP
PGC013571 AlFoCS 0 1 FP
NGC0383 WISDOM 1 1 TP
NGC0404 WISDOM 0 0 TN
NGC0449 WISDOM 1 1 TP
NGC0524 WISDOM 1 1 TP
NGC0612 WISDOM 1 1 TP
NGC1194 WISDOM 1 1 TP
NGC1574 WISDOM 1 1 TP
NGC3368 WISDOM 1 1 TP
NGC3393 WISDOM 1 1 TP
NGC4429 WISDOM 1 1 TP
NGC4501 WISDOM 1 1 TP
NGC4697 WISDOM 1 1 TP
NGC4826 WISDOM 1 1 TP
NGC5064 WISDOM 1 1 TP
NGC7052 WISDOM 1 1 TP

Table A.2 ALMA galaxies selected from the WISDOM and AlFoCS surveys.
WISDOM targets have beam major axes ranging from 2.4′′ to 6.7′′ with a mean of
4.4′′ and pixels/beam values ranging from 2.42 to 6.68 with a median value of 4.46.
ALL WISDOM targets have channel widths of 2 km s−1 bar one target which has a
channel width of 3 km s−1. AlFoCS targets have beam major axes ranging from 2.4′′

to 3.3′′ with a mean of 2.9′′ and pixels/beam values ranging from 5.25 to 7.85 with a
median value of 6.46. AlFoCS targets have channel widths ranging from 9.5 to 940
km s−1, with a median channel width of 50 km s−1. Of all 30 galaxies in the test set,
7 were identified by eye as most likely to be classified as κ < 0.5 and their
associated model predictions are shown. 27 (90%) of the galaxies are classified as
predicted by human eye. NGC1351A is the only false negative classification owing
to its disconnected structure and edge on orientation.
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LVHIS ID OBJECT ID
Author Prediction

(disturbed=0, regular=1)
Model Prediction

(κ < 0.5=0, κ > 0.5=1)

Heuristic Result
(TP=true positive, FP=false positive
TN=true negative, FN=false negative)

LVHIS 001 ESO 349-G031 1 1 TP
LVHIS 003 ESO 410-G005 0 1 FP
LVHIS 004 NGC 55 1 1 TP
LVHIS 005 NGC 300 1 1 TP
LVHIS 007 NGC 247 1 1 TP
LVHIS 008 NGC 625 1 1 TP
LVHIS 009 ESO 245-G005 1 1 TP
LVHIS 010 ESO 245-G007 0 0 TN
LVHIS 011 ESO 115-G021 1 1 TP
LVHIS 012 ESO 154-G023 1 1 TP
LVHIS 013 ESO 199-G007 1 1 TP
LVHIS 015 NGC 1311 1 1 TP
LVHIS 017 IC 1959 1 1 TP
LVHIS 018 NGC 1705 1 1 TP
LVHIS 019 ESO 252-IG001 1 1 TP
LVHIS 020 ESO 364-G?029 1 1 TP
LVHIS 021 AM 0605-341 1 1 TP
LVHIS 022 NGC 2188 1 1 TP
LVHIS 023 ESO 121-G020 1 1 TP
LVHIS 024 ESO 308-G022 1 1 TP
LVHIS 025 AM 0704-582 1 1 TP
LVHIS 026 ESO 059-G001 1 1 TP
LVHIS 027 NGC 2915 1 1 TP
LVHIS 028 ESO 376-G016 1 1 TP
LVHIS 029 ESO 318-G013 1 1 TP
LVHIS 030 ESO 215-G?009 1 1 TP
LVHIS 031 NGC 3621 1 1 TP
LVHIS 034 ESO 320-G014 1 1 TP
LVHIS 035 ESO 379-G007 1 1 TP
LVHIS 036 ESO 379-G024 0 0 TN
LVHIS 037 ESO 321-G014 1 1 TP
LVHIS 039 ESO 381-G018 1 1 TP
LVHIS 043 NGC 4945 1 1 TP
LVHIS 044 ESO 269-G058 1 1 TP
LVHIS 046 NGC 5102 1 1 TP
LVHIS 047 AM 1321-304 0 0 TN
LVHIS 049 IC 4247 0 1 FP
LVHIS 050 ESO 324-G024 1 1 TP
LVHIS 051 ESO 270-G017 1 1 TP
LVHIS 053 NGC 5236 1 1 TP
LVHIS 055 NGC 5237 1 1 TP
LVHIS 056 ESO 444-G084 1 1 TP
LVHIS 057 NGC 5253 0 0 TP
LVHIS 058 IC 4316 0 0 TP
LVHIS 060 ESO 325-G?011 1 1 TP
LVHIS 063 ESO 383-G087 0 0 TN
LVHIS 065 NGC 5408 1 1 TP
LVHIS 066 Circinus Galaxy 1 1 TP
LVHIS 067 UKS 1424-460 1 1 TP
LVHIS 068 ESO 222-G010 1 1 TP
LVHIS 070 ESO 272-G025 0 0 TN
LVHIS 071 ESO 223-G009 1 1 TP
LVHIS 072 ESO 274-G001 1 1 TP
LVHIS 075 IC 4662 1 1 TP
LVHIS 076 ESO 461-G036 1 1 TP
LVHIS 077 IC 5052 1 1 TP
LVHIS 078 IC 5152 1 1 TP
LVHIS 079 UGCA 438 0 0 TN
LVHIS 080 UGCA 442 1 1 TP
LVHIS 081 ESO 149-G003 1 1 TP
LVHIS 082 NGC 7793 1 1 TP

Table A.3 LVHIS galaxies chosen from the LVHIS database as suitable for testing.
The targets have beam major axes ranging from 5.3′′ to 34.7′′ with a mean of 13.2′′

and have pixels/beam values ranging from 5.25 to 34.74 with a median value of
12.78. The channel widths are 4 km s−1 bar one target which has a channel width of
8 km s−1. Of all 61 galaxies in the test set, 10 (16%) were identified by eye as most
likely to be classified as κ < 0.5 and their associated model predictions are shown.
Of these 10 galaxies 8 were correctly identified as low κ by the binary classifier with
no false negative predictions.
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Table A.4 Information regarding the THINGS sample galaxies used throughout his
work. Columns give the following information: Object, the target name as given in
THINGS project publications, Publication, records the relevant publication in which
the THINGS targets appear.

Object Publication

DDO 53 NGC 3621

All from Walter et al. (2008); de Blok et al. (2008)

NGC 925 NGC 4736
NGC 2403 NGC 4826
NGC 2841 NGC 5055
NGC 2903 NGC 5236
NGC 3184 NGC 6946
NGC 3198 NGC 7331
NGC 3351 NGC 7793
NGC 3521

Table A.5 Information regarding the WISDOM project sample used throughout
this work. Table columns give the following information: Object, the target name as
given in WISDOM project publications, Observation type, gives the emission line
ALMA observed for the target, Publication, records the relevant publication in
which ALMA observations of the targets appear.

Object Observation type Publication

NGC 3665 12CO(2-1) Onishi et al. (2017)
NGC 0383 12CO(2-1) North et al. (2019)
NGC 0524 12CO(2-1) Smith et al. (2019)
NGC 1387 12CO(2-0) Zabel et al. (2020), Boyce et al. (in prep)
NGC 4429 12CO(3-2) Davis et al. (2017b)
NGC 4697 12CO(2-1) Davis et al. (2017a)
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Figure B.1. The effects of varying the ratio of beam size to galaxy extent. It is clear
to see that an increased beam size results in an artificial lengthening of the intensity
profile scale length. It can also be seen that the spread in median offset increases
with rscale, which occurs due to information loss as the convolved flux is “smeared”
out beyond the field of view. The value of rscale at which this effect begins to take
hold is clearly inversely proportional to the beamsize.
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