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ABSTRACT

A three-dimensional (3D) non-hydrostatic model is presented for the simulation of dam-break flows. The model solves the Reynolds-
averaged Navier–Stokes equations using the projection method. 3D computational grids are constructed from a two-dimensional horizontal
unstructured mesh by adding horizontal layers in the vertical direction. Based on the horizontal unstructured grid system, horizontal advec-
tion terms are discretized by a momentum conservative scheme. The proposed model is validated with several physical experiments. The
agreement between the model results and experimental data is generally good, which demonstrates the capability of the proposed model to
resolve dam-break flows over flat and uneven bottoms with complex geometries. Moreover, the efficiency of the model is evaluated with 3D
dam-break flow experiments. Comparisons between the non-hydrostatic model and the corresponding quasi-3D shallow water model are
also performed, which confirm the role of non-hydrostatic effects in dam-break flows.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0081094

I. INTRODUCTION

It is very important to investigate and predict dam-break flows,
because they can cause catastrophic damage to public facilities and pri-
vate property. Many physical experiments have been carried out in the
past to study dam-break processes (Fraccarollo and Toro, 1995;
Khankandi et al., 2012; LaRocque et al., 2013; and Mohapatra and
Chaudhry, 2004) and dam-break flows against uneven bottoms or
complex geometries (Aureli et al., 2008; Kocaman and Ozmen-
Cagatay, 2012; O’Donoghue et al., 2010; Ozmen-Cagatay and
Kocaman, 2011; Soares-Fraz~ao, 2007; and Testa et al., 2007). Along
with experimental studies, efforts have been focused on establishing
numerical models in the hope that more and accurate details of dam-
break flows can be obtained. Numerical models for dam-break flows
can be classified into two categories depending on whether the hydro-
static pressure distribution is assumed. The first is a class of models
incorporating the hydrostatic pressure distribution. One of the most
famous of such models is the classical two-dimensional (2D) shallow
water equations model (SWM). The other class of models incorporates
non-hydrostatic effects and has the capability of predicting dispersive
waves. Over the past three decades, a large number of 2D SWMs
(Brufau et al., 2002; Chang et al., 2011; Fyhn et al., 2019; Lai et al.,

2005; Mingham and Causon, 1998; Ortiz, 2014; Zhao et al., 2021; and
Zhao et al., 1994) have been developed to examine dam-break flows. It
is generally believed that numerical models with the assumption of
hydrostatic pressure are capable of satisfactorily predicting dam-break
flows and their interaction with uneven bottoms or complex geome-
tries. However, it has been demonstrated by some previous studies
(Biscarini et al., 2010; Cantero-Chinchilla et al., 2016; Ferrari et al.,
2010; Kim and Lynett, 2011; Ozmen-Cagatay and Kocaman, 2011;
and Stansby et al., 1998) that numerical models incorporating non-
hydrostatic effects work better than 2D SWMs in some dam-break
flows. Therefore, to accurately predict dam-break flows, numerical
models incorporating non-hydrostatic effects have attracted increasing
attention.

The Boussinesq-type model is an option for the non-hydrostatic
simulation of dam-break flows. The model can be viewed as an exten-
sion of SWM by including an additional correction term to account
for non-hydrostatic effects. Similar to 2D SWMs, Boussinesq-type
models are usually depth-averaged and are thus computationally effi-
cient with the trade-off of losing depth-related information. Many
Boussinesq-type models (Cantero-Chinchilla et al., 2016; Chang et al.,
2014; Kim and Lynett, 2011; Mignot and Cienfuegos, 2009; and
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Mohapatra and Chaudhry, 2004) have been successfully applied to
simulate dam-break flows. For example, Kim and Lynett (2011)
employed a 2D Boussinesq-type equations model to simulate a 1D
dam-break experiment and dam-break flows against an L-shaped
channel (Soares-Fraz~ao and Zech, 2002). It was found that the model
captures undular bores in two dam-break tests, which may be attrib-
uted to the weakly non-hydrostatic pressure assumption incorporated
in the model. Mohapatra and Chaudhry (2004) utilized a fourth-order
explicit numerical procedure to solve the one-dimensional (1D)
Boussinesq equations for the simulation of dam-break flows. Their
results showed that the water surface profiles of different depth ratios
have undulations near the bore front for depth ratios greater than 0.4.

In addition to Boussinesq-type models, numerical models based
on the Navier–Stokes equations (NSE) are also capable of predicting
non-hydrostatic effects in dam-break flows. NSE models allow vertical
variations in the velocity and pressure distribution and thus may work
better than depth-averaged Boussinesq-type models, because both the
computed and measured horizontal velocity profiles obtained from
idealized dam-break flows indicated that a shear layer is in the near-
bed velocity profiles (LaRocque et al., 2013). However, solving NSE
models usually requires more computational effort, which is due to
the following two reasons. The first is that the NSE models have to
solve the Poisson equation, which is computationally expensive. The
second is that NSE models usually require more computational effort
to numerically capture the moving free surface. The treatment of the
free surface is one of the difficulties in developing NSE-based models.
Many methods have been used to simulate this moving boundary,
such as the volume of fluid (VOF) method (Hirt and Nichols, 1981),
the level-set method (Osher and Sethian, 1988), the coupled level-set/
volume-of-fluid (CLSVOF) method (Duy et al., 2021; Li et al., 2020;
and Ling et al., 2019), and the tangent of hyperbolic interface captur-
ing (THINC) method (Ii et al., 2014 and Xie and Xiao, 2017). Many
VOF-based NSE models (Biscarini et al., 2010; Marsooli and Wu,
2014; Ozmen-Cagatay and Kocaman, 2011; and Xie et al., 2021) have
been developed and successfully applied to simulate dam-break flows.
These models can deal with complicated free surfaces (e.g., overturn-
ing flows), but their application is limited by high computational
expenses. To improve computational efficiency, Mintgen andManhart
(2018) presented a coupled model between a 2D SWM and a VOF-
based NSE model.

To efficiently track the free surface, the so-called free surface
equation can be used in NSE-based models. This equation is obtained
by integrating the continuity equation over the water depth and apply-
ing Leibniz’s rule with kinematic boundary conditions at the imperme-
able bottom and the moving free surface. By discarding depth-related
information, the free-surface equation is converted to the mass conser-
vation equation employed by 2D SWMs or Boussinesq-type models.
Non-hydrostatic models are developed based upon NSE but employ
the free-surface equation to capture the moving free surface. In con-
trast to VOF-based NSE models (Biscarini et al., 2010; Marsooli and
Wu, 2014; Munoz and Constantinescu, 2020; Ozmen-Cagatay and
Kocaman, 2011; and Xie et al., 2021), non-hydrostatic models cannot
simulate overturning flows, but they can predict free-surface flows
with a relatively coarse vertical discretization, in which the free surface
is defined as a single-valued function of the horizontal plane.
Therefore, non-hydrostatic models can be more computationally effi-
cient than VOF-based NSE models.

Three-dimensional (3D) non-hydrostatic models are relative to
3D hydrostatic models, which solve the NSE with the hydrostatic pres-
sure assumption and are usually referred to as quasi-3D SWMs (Lu
et al., 2020). Quasi-3D SWMs can provide 3D flow patterns with
affordable computational expense and are widely applied in river, estu-
arine, and ocean flow simulations. However, they cannot predict flows
involving non-hydrostatic effects. The development of non-
hydrostatic models has evolved for more than twenty years. To date,
non-hydrostatic models have been widely used in predictions of short
surface waves (Ai et al., 2011; Ai et al., 2019a; Ma et al., 2012; Wu
et al., 2010; Young et al., 2009; and Zijlema and Stelling, 2005), inter-
nal waves (Ai and Ding, 2016; Ai et al., 2021, 2021b; Lai et al., 2010;
and Vasarmidis et al., 2019), tsunami waves (Ai et al., 2021a, 2021b;
Oishi et al., 2013; and Pan et al., 2020), and even wave-structure inter-
actions (Ai and Jin, 2010; Ai et al., 2019b; Ma et al., 2019; Ma et al.,
2016; and Rijnsdorp and Zijlema, 2016). In addition, Bristeau et al.
(2011) presented a two-dimensional vertical non-hydrostatic Saint-
Venant model and used it to simulate a dam-break flow over a bump.
Aric�o and Re (2016) proposed a 2D depth-integrated non-hydrostatic
model that successfully simulated partial dam-break flows. However,
to the best of our knowledge, no papers on the simulation of dam-
break flows with 3D non-hydrostatic models that use the free-surface
equation to capture the moving free surface have been published.

In this paper, we will extend our non-hydrostatic model (Ai and
Jin, 2010) to simulate dam-break flows and validate the developed
model for a wide range of test cases. The previous non-hydrostatic
model (Ai and Jin, 2010) utilizes the projection method to solve the
NSE, but it only employs the Smagorinsky model (Smagorinsky, 1963)
to calculate eddy viscosities. Moreover, the horizontal layers are dis-
tributed following a z�coordinate system in the vertical direction.
The extension of the previous model is conducted by incorporating a
boundary-fitted coordinate system in the vertical direction and
employing the Smagorinsky model (Smagorinsky, 1963) and the stan-
dard k� e model (Rodi, 1984) to calculate the horizontal eddy viscos-
ity and the vertical eddy viscosity, respectively. The 3D grid system is
built from a two-dimensional horizontal unstructured mesh by adding
horizontal layers. The developed model is validated using five test
cases, including 2D and 3D dam-break flows over flat and uneven bot-
toms with complex geometries. The efficiency of the model is demon-
strated through 3D dam-break flow experiments. The developed non-
hydrostatic model results are also compared with the corresponding
quasi-3D SWM results to show the importance of non-hydrostatic
effects in dam-break flows.

The remainder of this paper is organized as follows. In Sec. II, the
mathematical formulation together with boundary conditions is pre-
sented. In Sec. III, the numerical methods used to solve the non-
hydrostatic model are described. Validation results are presented in
Sec. IV, and conclusions are provided in Sec. V.

II. MATHEMATICAL FORMULATION

A. Governing equations and boundary conditions

The non-hydrostatic model employs the incompressible
Reynolds-averaged Navier–Stokes (RANS) equations as governing
equations. By splitting the pressure into hydrostatic and non-
hydrostatic ones, p ¼ gðg� zÞ þ q, they can be expressed in the fol-
lowing form:
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 !
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;

(4)

where u, v; and w are the velocity components in the horizontal x, y,
and vertical z directions, respectively; t is the time; p is the normalized
pressure divided by a constant reference density; g is the free surface
elevation; q is the non-hydrostatic pressure component; g is the gravi-
tational acceleration; and �h and �v are the horizontal and vertical
eddy viscosities, respectively. To consider the difference between hori-
zontal and vertical grid resolutions, the horizontal eddy viscosity �h is
determined by the Smagorinsky model (Smagorinsky, 1963), and the
vertical eddy viscosity �v is evaluated with the standard k� e model
(Rodi, 1984).

The free-surface elevation g is determined by the following free-
surface equation, which can be derived from the vertical integration of
the continuity equation (1) plus kinematic boundary conditions at the
impermeable bottom and the moving free surface,

@g

@t
þ

@

@x

ðg

�d

udz þ
@

@y

ðg

�d

vdz ¼ 0; (5)

where z ¼ �dðx; yÞ is the bottom surface.
At the free surface, the zero pressure boundary condition should

be imposed because the atmospheric pressure is exerted there. On the
impermeable bottom z ¼ �dðx; yÞ, the bottom friction is specified by

s0x

q
¼ �v

@u

@z
¼ cbu1;

s0y

q
¼ �v

@v

@z
¼ cbv1; (6)

where s0x and s0y are the shear stress components in the directions x
and y, respectively; u1 and v1 are the velocities at the bottom cell;
cb ¼ cf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u21 þ v21
p

=h, where h ¼ gþ d is the water depth; cf is the
dimensionless friction coefficient and is determined from the
Manning–Strickler formula as cf ¼ 0:015ðks=hÞ

1=3, where ks is a
roughness value and needs to be calibrated.

Finally, at the inflow boundary, velocities normal to the boundary
are specified based on the laboratory measurement of incoming flows.
At the outflow boundary, an open boundary condition is imposed
using a zero gradient condition for the outlet velocities.

B. Governing equations in the vertical boundary-fitted

coordinate system

The presented model solves the governing equations in a vertical
boundary-fitted coordinate system, which automatically fits the bed
and free surface and is illustrated in Fig. 1. In Fig. 1, the physical
domain is divided into Nz horizontal layers in the vertical direction.

The interface between two layers is defined as zkþ1=2ðx; y; tÞ, and uni-
formly distributed layers are employed in this study, so that
zkþ1=2ðx; y; tÞ is computed as follows:

zkþ1=2 x; y; tð Þ ¼ d x; yð Þ þ k � h x; y; tð Þ=Nz; (7)

where k is a layer index.
Notably, the layer level zkþ1=2ðx; y; tÞ varies with time, so the

employed boundary-fitted coordinate system is a moving grid system.
In such vertical grid systems, Eqs. (1)–(4) can be transformed into the
following equations by integrating them over a vertical layer bounded
by zk�1=2ðx; y; tÞ and zkþ1=2ðx; y; tÞ:

@Dzk
@t

þ
@ Dzuð Þk

@x
þ
@ Dzvð Þk

@y
þ xkþ1=2 � xk�1=2 ¼ 0; (8)
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þ
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@x
þ
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@y
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@g

@x
� Dzk

@q

@x
þ Dzk Fuð Þk; (9)

@ Dzvð Þk
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þ
@ Dzuvð Þk

@x
þ
@ Dzvvð Þk

@y
þ xkþ1=2vkþ1=2 � xk�1=2vk�1=2

¼ �gDzk
@g

@y
� Dzk

@q

@y
þ Dzk Fvð Þk; (10)

@ Dzwð Þk
@t

þ
@ Dzuwð Þk

@x
þ
@ Dzvwð Þk

@y
þ xkþ1=2wkþ1=2 � xk�1=2wk�1=2

¼ �Dzk
@q

@z
þ Dzk Fwð Þk; (11)

where Dzk ¼ zkþ1=2 � zk�1=2; Fu, Fv; and Fw represent the momen-
tum diffusion terms; and xkþ1=2 is the vertical velocity relative to the
layer level zkþ1=2. Noting thatx1=2 ¼ xNzþ1=2 ¼ 0.

For the sake of brevity, details about the transformation are not
presented here and can instead be found in Ai et al. (2011) and
Zijlema and Stelling (2005).

III. NUMERICAL APPROXIMATIONS

A. 3D grid system

Before discretizing the governing equations, the computational
domain is covered by a 3D grid system, which is built from a two-
dimensional horizontal triangular mesh by simply adding some hori-
zontal layers. Thus, the grid system is composed of many prisms.

FIG. 1. Schematic sketch of the vertical boundary-fitted coordinate system.
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Figure 2 shows the definition of variables, in which i is the index of a
horizontal triangular grid and the sides of the ith triangle are identified
by an index jði; lÞ, l ¼ 1; 2; 3. In the horizontal triangular grids, kj is
the length of the j th side and dj is the distance between the circumcen-
ters of two adjacent triangles, which share the j th side.

As illustrated in Fig. 2, the variables are defined as follows. The
free surface elevation is located at the circumcenter of a triangle; the
horizontal velocity component normal to each face of a prism is
defined at the point of intersection between the face and the segment
joining the centers of the two neighboring prisms. The vertical velocity
component is defined at the center of a prism. Finally, the non-
hydrostatic pressure and vertical relative velocity are located at the
circumcenter of the ith triangle and the layer level.

B. Treatment of time derivative terms

Considering the definition of the horizontal velocity component
and the invariant property of Eqs. (9)–(11) under solid rotation of the
x and y axes around the z axis, the horizontal momentum equation we
need to solve can be expressed as

@ Dzuð Þj;k
@t

þ
@ Dzuuð Þj;k

@n
þ
@ Dzuvð Þj;k

@f

þ xj;kþ1=2uj;kþ1=2 � xj;k�1=2uj;k�1=2

¼ �gDzj;k
@g

@n

� �

j;k

� Dzj;k
@q

@n

� �

j;k

þ Dzj;k Fuð Þj;k; (12)

where uj;k is the horizontal velocity component normal to the face of a
prism; n is the normal direction defined on the j th side; and f is the
counterclockwise orthogonal direction of n.

Following Kramer and Stelling (2008), the time derivative in Eq.
(12) can be split into following two terms:

@ Dzuð Þj;k

@t
¼ Dzj;k

@uj;k

@t
þ uj;k

@Dzj;k

@t
: (13)

By substituting Eq. (8) into Eq. (13), we can obtain

@ Dzuð Þj;k

@t
¼ Dzj;k

@uj;k

@t
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@ Dzuð Þk
@x

þ
@ Dzvð Þk

@y

" #

� uj;k xkþ1=2 � xk�1=2ð Þ: (14)

Then, by further substituting Eq. (14) into Eq. (12), after which it is
divided by Dzj;k yields
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@t
þAdvH uj;kð Þ þAdvV uj;kð Þ ¼ �g

@g
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�
@q

@n

� �

j;k

þ Fuð Þj;k;

(15)

where

AdvH uj;kð Þ ¼
1

Dzj;k
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�
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þ
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and

AdvV uj;kð Þ ¼
1

Dzj;k
xj;kþ1=2uj;kþ1=2 � xj;k�1=2uj;k�1=2ð Þ

�
uj;k

Dzj;k
xkþ1=2 � xk�1=2ð Þ: (17)

We also apply the above procedure to treat the time derivative in Eq.
(11) and obtain the following expression for wi;k:

FIG. 2. Definition sketch of variables.
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and

AdvV wi;kð Þ ¼
xi;k�1=2

Dzi;k
wi;kþ1=2 � wi;kð Þ �

xi;k�1=2

Dzi;k
wi;k�1=2 � wi;kð Þ:

(20)

C. The projection method

An explicit projection method is applied to solve the governing
equations (1), (15), and (18), which is described as follows.

First, we solve Eqs. (15) and (18) by neglecting the contribution
of the non-hydrostatic pressure to explicitly compute provisional val-
ues u�j;k and w

�
i;k. This gives

u�j;k � unj;k

Dt
þ AdvH unj;k

� �

þ AdvV unj;k
� �

¼ �g
@g

@n

� �n
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þ Fuð Þnj;k;

(21)

w�
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i;k

Dt
þ AdvH wn
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� �

þ AdvV wn
i;k

� �

¼ Fwð Þni;k; (22)

where Dt is the time step.
Second, the provisional values u�j;k and w

�
i;k can be corrected with

unþ1
j;k � u�j;k

Dt
¼ �

@q

@n

� �nþ1

j;k

; (23)

wnþ1
i;k � w�

i;k

Dt
¼ �

@q

@z

� �nþ1

i;k

: (24)

The water surface gradient term in Eq. (21) and the non-hydrostatic
pressure gradient terms in Eqs. (23) and (24) can be easily discretized
by the central difference scheme. Before computing the final values
unþ1
j;k and wnþ1

i;k , non-hydrostatic pressures must be determined by the
Poisson equation, which can be obtained as follows.

Equation (1) can be discretized by a combination of finite differ-
ence and finite volume methods. This gives the following:

For k ¼ 2;…;Nz

1

Pi

X3

l¼1
si;lkj i;lð Þu

nþ1
j i;lð Þ;k�1=2 þ

wnþ1
i;k � wnþ1

i;k�1

Dzn
i;k�1=2

¼ 0; (25)

where unþ1
jði;lÞ;k�1=2 ¼ unþ1

jði;lÞ;k þ unþ1
jði;lÞ;k�1

h i
.

2; Pi is the area of the ith

element; and si;l is a sign function associated with the orientation of

the normal velocity defined on the lth side of the ith element.
Assuming a positive velocity on the lth side, si;l ¼ 1 corresponds to

outflow from the ith element, and si;l ¼ �1 corresponds to inflow into

the ith element.

For k ¼ 1, Eq. (1) is discretized in a half bottom layer.
Consideringwnþ1

i;1=2 ¼ 0, we can obtain the following expression:

1

Pi

X

3

l¼1

si;lkj i;lð Þu
nþ1
j i;lð Þ;1 þ

wnþ1
i;1

Dzni;1=2
¼ 0: (26)

Substituting Eqs. (23) and (24) into Eqs. (25) and (26), we obtain the
Poisson equation, which can be written in the following matrix form:

Aq ¼ b; (27)

where A is a sparse coefficient matrix; q is a vector of the calculated
non-hydrostatic pressure; and b is a known vector related to the provi-
sional velocities. Equation (27) is a symmetric and positive definite
system. Thus, it can be efficiently solved by the preconditioned conju-
gate gradient method. Moreover, it contains 8 nonzero diagonals for
the bottom layer and 12 nonzero diagonals for other layers.

D. Discretization of advection terms

As illustrated in Fig. 2, the variables are defined at staggered loca-
tions in the horizontal plane. Therefore, we can employ Perot’s scheme
(Perot, 2000) to achieve a momentum conservation advection scheme.
Following Perot’s scheme, the horizontal advection term AdvHðuj;kÞ
in Eq. (15) can be calculated as follows:

AdvH unj;k
� �

¼ acLAdvH Un
cL;k

� �

� nj þ acRAdvH Un
cR;k

� �

� nj; (28)

where nj is the normal vector defined at the j th side; cL and cR are the
indices of two adjacent triangles, which share the j th side (see Fig. 2);
Un

cL;k and Un
cR;k denote horizontal velocity vectors stored at triangles

cL and cR, respectively; and acL and acR are the weighting factors of the
j th side and can be determined as follows:

acL ¼
DdcL;j

dj
; acR ¼

DdcR;j

dj
; (29)

where DdcL;j and DdcR;j are the distances from the circumcenters of tri-
angles cL and cR to the center of the j th side, respectively, and thus
DdcL;j þ DdcR;j ¼ dj.

The horizontal advection vectors AdvHðUn
cL;kÞ and AdvHðUn

cR;kÞ
are defined at triangles cL and cR, respectively. Without loss of general-
ity, for AdvHðUn

i;kÞ which is defined at the ith element and kth layer, it
can be expressed in the following finite volume form:

AdvH Un
i;k

� �

¼
1

PiDzi;k

X

3

l¼1

si;lkj i;lð ÞDz
n
j i;lð Þ;kÛ

n

j i;lð Þ;k; (30)

where Û
n

j i;lð Þ;k denotes the horizontal velocity vector on side j i; lð Þ of the
ith element, which is determined by the upwind method in this study.

For the vertical momentum equation (18), its horizontal advec-
tion term AdvHðwi;kÞ can be discretized following Eq. (30) by means
of the finite volume method. The vertical advection terms AdvV uj;kð Þ
in Eq. (15) and AdvV wi;kð Þ in Eq. (18) can be discretized directly by
using the finite difference method because the 3D grid system is struc-
tured in the vertical direction. The horizontal part of the diffusion
term Fuð Þj;k in Eq. (15) is also discretized by Perot’s scheme following
Eq. (28), while the horizontal part of the diffusion term Fwð Þi;k in Eq.
(18) can be directly discretized by the finite volume method. The verti-
cal parts of the diffusion term Fuð Þj;k in Eq. (15) and the diffusion
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term Fwð Þi;k in Eq. (18) are discretized by the finite difference method.
For the sake of brevity, all of the details are not given here and can be
found in Ai and Jin (2010).

E. Solution procedure

Figure 3 shows the flow chart for the overall solution procedure,
which is summarized as follows.

(1) Configure the 3D grid system and the initial values of the vari-
ables at the initialization step.

(2) Implement the wet–dry algorithm proposed by Ai and Jin
(2012) to describe the wet–dry fronts.

(3) Obtain the provisional velocities u�j;k and w�
i;k by solving Eqs.

(21) and (22), respectively.
(4) Solve Poisson equation (27) by using the conjugate gradient

method with a symmetric Gauss–Seidel preconditioner. If
wave breaking occurs, a wave breaking algorithm should be
incorporated before Poisson equation (27) is solved.

(5) Update the provisional velocities using Eqs. (23) and (24) to

obtain the new velocities unþ1
j;k and wnþ1

i;k , respectively.

(6) Calculate the new water surface elevation gnþ1
i by applying a

finite volume discretization to solve Eq. (5).
(7) Calculate the new relative velocity xnþ1

kþ1=2 by also applying a
finite volume discretization to solve Eq. (8). Note that

xnþ1
1=2 ¼ xnþ1

Nzþ1=2 ¼ 0.

(8) Update the layer level zkþ1=2ðx; y; tÞ using Eq. (7).
(9) Compute the horizontal eddy viscosities by solving the

Smagorinsky model (Smagorinsky, 1963).
(10) Compute the vertical eddy viscosities by solving the standard

k� e model (Rodi, 1984). The standard k� e model is discre-
tized by a combination of finite difference and finite volume
methods following Eq. (18).

In addition, a quasi-3D SWM can be obtained by neglecting the
Poisson equation (27) and employing a semi-implicit method (Casulli
and Zanolli, 2002) to discretize the water surface gradient in Eq. (15).
In the quasi-3D SWM, the implicitness factor is set to h ¼ 0:5 for the
sake of stability.

IV. MODEL VALIDATIONS

In this section, five test cases are employed to verify the capability
of the non-hydrostatic model for handling dam-break flows. The first
two test cases concern 2D dam-break flows, while the last three test
cases test the capability of the non-hydrostatic model to resolve 3D
dam-break waves. In all of the test cases, the non-hydrostatic results
are compared with experimental data and moreover the quasi-3D
SWM results are also provided for comparison. The quasi-3D SWM is
reduced from the present non-hydrostatic model as described in the
above section. All computations are carried out on a notebook com-
puter with an Intel(R) Core(TM) i9–9900K central processing unit (CPU).

FIG. 3. Flow chart for the overall solution procedure.

FIG. 4. Schematic sketch of the experiment conducted by Stansby et al. (1998).
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The CPU is an eight-core processor with sixteen threads, a base fre-
quency of 3.6GHz and a peak frequency of 5.0GHz. The proposed
non-hydrostatic model was implemented based on C# parallel class,
which provides library-based data parallel replacements for loops.
Both the non-hydrostatic model results and the quasi-3D SWM
results are obtained by using five horizontal layers in the vertical
direction. Notably, after mesh sensitivity analysis, neither model
results can be improved by increasing the number of horizontal
layers for any of the test cases.

A. Initial stages of dam-break flow

Many research studies (Cantero-Chinchilla et al., 2016; Ozmen-
Cagatay and Kocaman, 2010; and Shigematsu et al., 2004) have shown
that the non-hydrostatic effect plays an important role in the initial
stages of dam-break flows and that 2D SWMs cannot predict this pro-
cess accurately. Stansby et al. (1998) experimentally investigated the
initial stages of dam-break flow in a horizontal channel of a rectangu-
lar section. Experimental data have been used to validate numerical
models, including VOF models (Marsooli and Wu, 2014 and
Shigematsu et al., 2004) and the Boussinesq-type model (Cantero-
Chinchilla et al., 2016). In this study, we will present that the devel-
oped non-hydrostatic model can also accurately resolve the initial
stage of dam-break flows.

As shown in Fig. 4, the experiment of Stansby et al. (1998) was
carried out in a flume 15.24m long, 0.4m wide, and 0.4m high. Both

FIG. 5. Comparisons of the free-surface profile between the quasi-3D SWM
results, the non-hydrostatic model results, and experimental data at (a) t ¼ 0.22 s,
(b) t ¼ 0.32 s, (c) t ¼ 0.52 s, and (d) t ¼ 0.76 s.

FIG. 6. The normalized non-hydrostatic pressure field q (m2/s2) at (a) t ¼ 0.12 s,
(b) t ¼ 0.32 s, (c) t ¼ 0.52 s, and (d) t ¼ 0.76 s. (The vertical scale has been ampli-
fied by a factor of 25.)
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ends of the flume were closed, and the dam was located 9.76m down-
stream of the upper end. This computation was conducted on a hori-
zontal triangular mesh with an average grid size of 0.6 cm. The time
step was set to 0.001 s. The roughness value ks was taken as
2.0� 10�4.

FIG. 7. Comparisons of the free-surface profile between the VOF model results,
the Serre model results, the non-hydrostatic model results, and experimental data
at (a) t ¼ 0.22 s, (b) t ¼ 0.32 s, (c) t ¼ 0.52 s, and (d) t ¼ 0.76 s.

FIG. 8. Schematic sketch of dam-break flows over a triangular bottom sill.

FIG. 9. Comparisons of the time histories of the water depth at four gauging points
between the quasi-3D SWM results, the non-hydrostatic model results and experi-
mental data. (a) Location G4, (b) Location G10, (c) Location G13, and (d) Location
G20.
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Figure 5 shows comparisons of the free-surface profile between
the quasi-3D SWM results, the non-hydrostatic model results, and the
experimental data. The spatial scales are normalized by the upstream
water depth h0 and x=h0 ¼ 0 is the dam location. Both model results
with Nz ¼ 5 and 10 were provided for comparison. Both model results
with five horizontal layers are rather similar to those with ten horizon-
tal layers, indicating grid convergence when Nz � 5. The non-
hydrostatic model predicts free-surface profiles well, while the
quasi-3D SWM shows classical dam-break results, which disagree with
the experimental data. This indicates that the non-hydrostatic effect
plays a very important role in the initial stage of the dam-break flow.
Figure 6 depicts the calculated normalized non-hydrostatic pressure
field under the water surface obtained by Nz ¼ 5. The non-hydrostatic
pressure is very strong in the vicinity of the dam site at time t ¼ 0.12 s.
At other times, under the leading and larger wave crest, the non-
hydrostatic pressure always has a negative value, while stronger and pos-
itive pressure can be observed on both sides of the crest.

Figure 7 compares the proposed non-hydrostatic model results
with the other two sets of numerical results. The proposed model
results were obtained when Nz ¼ 5. The VOF model results are
obtained from Marsooli and Wu (2014), in which the computational
domain is discretized by a grid spacing of 0.5 cm. The Serre model
(Cantero-Chinchilla et al., 2016) solves the depth-averaged conserva-
tion of mass and momentum equations (Castro-Orgaz et al., 2015)
and incorporates a wave breaking model (Hosoda and Tada, 1994).
The horizontal grid size used in the Serre model is 0.75 cm. All of the
numerical models predict reasonable results, when compared with the
experimental data. However, the overall free-surface profiles captured
by the present model are close to those captured by the VOF model.
Both the present model and the VOF model behave better than the
Serre model. However, the present model predicts larger leading wave
crests than the VOF model at t ¼ 0.32, 0.52, and 0.76 s.

B. Dam-break flow over a triangular bottom sill

To assess the ability of numerical models to handle flood propa-
gation over uneven dry beds, the Concerted Action on Dam-break
Modeling project (CADAM) (Soares-Fraz~ao et al., 2000) and the
Investigation of Extreme Flood Processes & Uncertainty project
(IMPACT, 2004) have separately conducted a series of experiments on
dam-break flows over a triangular bottom sill. In this study, we used
the test case selected from the CADAM project to validate the devel-
oped non-hydrostatic model.

Within the frame of the CADAM project, a series of large-scale
experiments of dam-break flows over a triangular bottom sill were car-
ried out. As illustrated in Fig. 8, the experimental setup combined a
reservoir connected to a rectangular channel. The length of the chan-
nel was 22.5m, and the initial water depth in the 15.5m long upstream
reservoir was 0.75m. A symmetric triangular bottom sill of 0.4m
height and 6m length was located 13m downstream of the gate. The
channel was dry upstream of the sill, but the water depth was initially
set to 0.15m downstream of it. The upstream boundary was a solid
wall, and an open outlet boundary was specified at the downstream
end. In this computation, a horizontal triangular mesh with an average
grid size of 0.02m is used to discretize the computational domain. The
time step is chosen to be 0.0016 s. The roughness value ks is also set
to 2.0� 10�4. In this example, to handle wave breaking, a special
numerical technique is necessary for the non-hydrostatic model.

The following relationship presented by Kennedy et al. (2000) is incor-
porated in the present model to detect the beginning of a breaking event:

@g=@t � a
ffiffiffiffiffi

gh
p

; (31)

where a ¼ 0:1 is taken as a constant value in this study.
Equation (31) indicates that wave breaking occurs when

@g=@t is larger than a specified limit value. After a wave breaks, the
hydrostatic pressure distribution is assumed at the breaking loca-
tion. This wave breaking model has been successfully implemented
by nearshore wave models (Shirkavand and Badiei, 2014 and
Tonelli and Petti, 2010).

Figure 9 shows comparisons of the time histories of the water
depth at four gauging points between the two sets of numerical results
and experimental data. At the former three gauging points G4, G10,
and G13, the non-hydrostatic model results are in general good agree-
ment with the quasi-3D SWM results, except that the non-hydrostatic
model predicts undular water surfaces near the front of the bore at the
gauging points G4 and G10. At gauging point G20, very good results
are obtained with the non-hydrostatic model, which reproduces the
oscillating behavior of the measurement. Based on the present results
and the published results obtained from 2D SWMs (Chang et al., 2011
and Kao and Chang, 2012), we can conclude that the non-hydrostatic
effect plays an important role behind the sill in this example, where
models with the hydrostatic assumption cannot predict accurate
results.

C. 3D partial dam-break flow

This example considers the 3D partial dam-break flow experi-
ment carried out by Fraccarollo and Toro (1995). As shown in Fig. 10,
the laboratory setup consists of a reservoir connected to a rectangular
channel by a partially broken dam. The reservoir is 2m wide and 1m
long with an initial water depth of h0 ¼ 0:6m. The rectangular chan-
nel is dry with an open outlet and side boundaries. Data are measured
at seven gauging points to validate the present model. This test case
has been successfully simulated by the VOF-based model developed
by Marsooli and Wu (2014) and a 3D model (Ferrari et al., 2010),
which utilized a smooth particle hydrodynamics method to solve the
weakly compressible NSE.

FIG. 10. Schematic sketch of the partial dam-break flow experiment.
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In this computation, the computational domain is discretized by
a horizontal mesh comprising a total of 16 665 triangles. The smallest
horizontal grid size is near the broken dam and is 0.02m. The time
step is taken as 0.001 s, and the total simulation time is 10 s. The
roughness value ks is chosen as 8.0� 10�3. The total CPU time for the
non-hydrostatic model is approximately 0.18 h.

Comparisons of the time histories of the water depth at gauging
points between the two sets of numerical results and experimental
data are shown in Fig. 11. The quasi-3D SWM predicts an oscillating
water surface during the first 4 s, which deviates from the experimental
data, while the non-hydrostatic results show a better agreement with
the measured data. Figure 12 depicts comparisons of the time histories

FIG. 11. Comparisons of the time histories of the water depth at gauging points between the quasi-3D SWM results, the non-hydrostatic model results and experimental data.
(a) Location �5 A, (b) Location �3 A, (c) Location �2 A, (d) Location 0, (e) Location 1 A, (f) Location 8 A, and (g) Location 4.
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of the bottom pressure at gauging points between the non-hydrostatic
model results and experimental data. The non-hydrostatic model pre-
dicts larger bottom pressures at gauging points 0 and 4. However, at
the other gauging points, the agreement between the present model
results and experimental data is quite good. Figure 13 shows the

comparisons of the time histories of the velocity in the longitudinal
direction at two gauging points between the two sets of numerical
results and the experimental data. Overall, the non-hydrostatic model
behaves better than the quasi-3D SWM and reproduces the longitudi-
nal velocity fairly well when compared with the experimental data.

FIG. 12. Comparisons of the time histories of the bottom pressure at gauging points between the non-hydrostatic model results and experimental data. (a) Location �5 A, (b)
Location �3 A, (c) Location �2 A, (d) Location 0, (e) Location 1 A, (f) Location 8 A, and (g) Location 4.
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D. Dam-break flow in a 45� bend channel

A dam-break flow in a bend channel with a complicated flow
structure has been widely used for validation of numerical models. As
illustrated by previous experiments (Soares-Fraz~ao et al., 2000 and

Soares-Fraz~ao and Zech, 2002) and numerical models (Kao and
Chang, 2012; Kim and Lynett, 2011; Lai et al., 2005; and Ortiz, 2014),
when a dam-break flow encounters a channel bend, part of the flow is
reflected, which results in a bore receding into the upstream reservoir

FIG. 13. Comparisons of the time histories of the velocity in the longitudinal direction at two gauging points between the quasi-3D SWM results, the non-hydrostatic model
results, and experimental data. (a) Location �2 A (z ¼ 35 cm), (b) Location 0 (z ¼ 35 cm), (c) Location �2 A (z ¼ 25 cm), (d) Location 0 (z ¼ 25 cm), (e) Location �2 A
(z ¼ 15 cm), (f) Location 0 (z ¼ 15 cm), (g) Location �2 A (z ¼ 5 cm), and (h) Location 0 (z ¼ 5 cm).
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FIG. 14. Schematic sketch of the dam-break flow in a 45� bend channel.

FIG. 15. Comparisons of the time histories of the water depth at gauging points between the quasi-3D SWM results, the non-hydrostatic model results and experimental data.
(a) Location G1, (b) Location G2, (c) Location G3, (d) Location G4, (e) Location G5, (f) Location G6, (g) Location G7, (h) Location G8, and (i) Location G9.
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and the passing water in the downstream direction flows with multiple
smaller reflections against the channel wall. In this study, we will per-
form a simulation on the experiment of a dam-break flow in a 45�

bend channel (Soares-Fraz~ao et al., 2000). Figure 14 shows a sketch of
the geometry and the size of the experiment. Nine gauging points are
used to measure the time histories of the water depth. Both the reser-
voir and the channel are horizontal. Initially, the water depths are
0.25m in the reservoir and 0.01m in the channel. All of the bound-
aries are solid walls, except at the end of the channel, which is an open
boundary.

In the computation, we use a horizontal mesh comprising a total
of 31 214 triangles to cover the computational domain. The average
grid sizes are 0.05m in the reservoir and 0.02m in the channel. The
time step is taken as 0.0008 s, and the total simulation time is 40 s. The
roughness value ks is taken as 5.0� 10�3. The total CPU time for
the non-hydrostatic model is approximately 1.87 h.

The comparisons of the time histories of the water depth at gaug-
ing points between the two sets of numerical results and experimental
data are displayed in Fig. 15. Overall, both numerical results are in
generally good agreement with the experimental data. However, the
non-hydrostatic model captures the oscillating behavior of the reflec-
tions from the bend, while the quasi-3D SWM predicts relatively
smoother solutions. As a result, the maximum water depth simulated
by the non-hydrostatic model is greater than that predicted by the
quasi-3D SWM at gauging points G2–G8. This indicates that dam-
break flow risk may be underestimated by SWMs.

E. Flash flood flows in a simplified urban district

Within the framework of the IMPACT project (IMPACT, 2014),
Testa et al. (2007) performed a series of experiments on the flooding
of an urban district model, which has been widely used for testing 2D
SWMs (Dottori and Todini, 2013; Jeong et al., 2012; and Kim et al.,
2014). The experiments were performed on a reduced physical model
(scale 1:100) of the Toce River valley, in which flood propagation
experiments within the CADAM project (Soares-Fraz~ao et al., 2000)
were conducted and were studied by numerical models, including the
VOF-based model (Marsooli and Wu, 2014) and 2D SWMs (Chang
et al., 2011 and Kao and Chang, 2012). There are two different layouts
of the city model considered in the experiments. One is called aligned,
in which buildings are placed in rows approximately parallel to the
main axis of the valley, while in the other layout buildings are placed
in a staggered manner. In this final example, flood propagation experi-
ments on the aligned city layout are used to further test the developed
non-hydrostatic model.

The physical model, along with its topography and position of
gauging points, is shown in Fig. 16. More details can be found in Testa
et al. (2007). The domain is initially dry. As shown in Fig. 17, two dif-
ferent inflow hydrographs called low and high are specified at the
upstream boundary. At the downstream end of the domain, the open
boundary condition is specified. In this computation, the horizontal
domain is discretized by 20 820 triangles with grid sizes varying
between 0.1 and 0.03m. As a result, the total number of 3D grids is
104 100. The time step is set to 0.0025 s, and the total simulation time
is 60 s. The roughness value ks is set to 5.0� 10�3. For the non-
hydrostatic model, the CPU times are 0.40 and 0.49 h for the low- and
high-inflow hydrographs, respectively. Notably, Marsooli and Wu
(2014) employed their VOF model to simulate a similar test case on

an Intel Core i7 processor with a base frequency of 3.2GHz, but they
used approximately 3 100 000 grids to cover the computational
domain. Their model was run on a single CPU core, and the CPU
time was approximately 205 h for a 180 s simulation.

Figures 18 and 19 show the time histories of the water depth at
different gauging points for the low- and high-inflow hydrographs,
respectively. The overall agreement between the two model results and
the measured data is acceptable. The non-hydrostatic model results
are quite similar to the quasi-3D SWM results for both the low- and
high-inflow hydrographs. However, for the low-inflow hydrograph,
the non-hydrostatic model captures the water depth with reflected
waves at gauging points P3 and P4.

FIG. 16. The physical model with the topography and the position of gauging
points. Buildings are represented by the squares.

FIG. 17. The two inflow hydrographs.
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V. CONCLUSIONS

This paper presents a 3D non-hydrostatic model to predict dam-
break flows. The model solves the RANS equations with the projection
method and makes use of a boundary-fitted coordinate system in the
vertical direction. Eddy viscosity approximations are incorporated into
the model. The governing equations are discretized by a combination of
finite difference and finite volume methods in a 3D grid system, which is
unstructured in the horizontal plane, but structured in the vertical direc-
tion. Based on the horizontal unstructured grids, Perot’s scheme is used
to achieve a conservative advection scheme for the momentum equation.

In all test cases, the non-hydrostatic model results were com-

pared with experimental data and showed generally good agreement

by using five horizontal layers in the vertical discretization. This indi-

cates that the developed model can accurately consider non-

hydrostatic effects using a relatively coarse vertical discretization.

Moreover, it can reasonably handle 2D and 3D dam-break flows over

flat and uneven bottoms with complex geometries.
To better evaluate the proposed non-hydrostatic model, a quasi-

3D SWM reduced from the non-hydrostatic model is also employed
to predict all the examples. Comparisons of the two model results have

FIG. 18. Comparisons of the time histories of the water depth at gauging points between the quasi-3D SWM results, the non-hydrostatic model results and experimental data
for the low-inflow hydrograph. (a) Location P3, (b) Location P4, (c) Location P5, (d) Location P6, (e) Location P7, (f) Location P8, (g) Location P9, and (h) Location P10.
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shown that non-hydrostatic effects play a certain role in the first four
test cases. In summary, the proposed non-hydrostatic model can pre-
dict dam-break flows involving non-hydrostatic effects and can be
viewed as an attractive alternative to simulating 3D dam-break flows.
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FIG. 19. Comparisons of time histories of the water depth at gauging points between the quasi-3D SWM results, the non-hydrostatic model results and experimental data for
the high-inflow hydrograph. (a) Location P3, (b) Location P4, (c) Location P5, (d) Location P6, (e) Location P7, (f) Location P8, (g) Location P9, and (h) Location P10.
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