Virtual reality in palliative care: a systematic review and meta-analysis

Jiping Mo¹, Victoria Vickerstaff^{2,3}, Ollie Minton⁴, Simon Tavabie⁵, Mark Taubert^{6,7}, Patrick Stone², & Nicola White²

Cite this article as: Mo J, Vickerstaff V, Minton O, et al 7 Virtual reality in palliative care: a systematic review and meta-analysis BMJ Supportive & Palliative Care 2022;12:A3.

Marie Curie Research Conference Improving End of Life for All Sunday 30th January – Friday 4th February 2022

1 UCL Division of Psychiatry, London, UK.

2 Marie Curie Palliative Care Research Department, UCL Division of Psychiatry, London, UK.

3 Priment Clinical Trials Unit. Research Department of Primary Care and Population Health. University College London

(UCL), London, UK. 4 Sussex Cancer Centre University Hospitals Sussex, UK. 5 St Joseph's Hospice, Hackney, UK.

6 Palliative Medicine, Velindre Cancer Centre, Cardiff, UK.

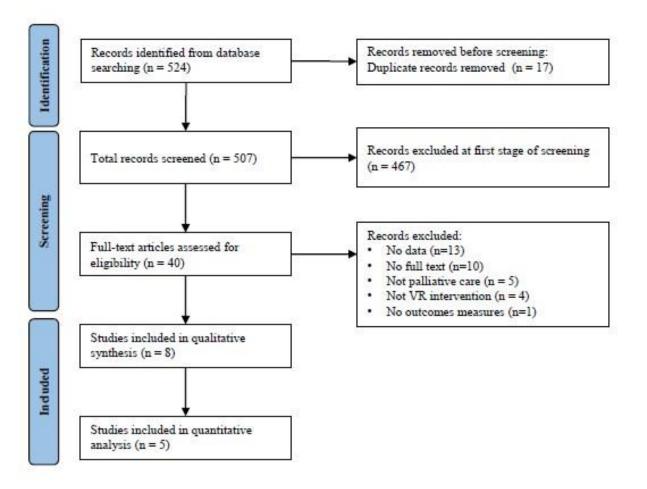
7 Palliative Care, Cardiff University School of Medicine, Cardiff, UK.

Databases: from inception up until 26th March 2021:

- Ovid platform: Medline, Embase, AMED, PsycINFO (OVID)
- CINAHL (EBSCOhost)
- Cochrane Central Register of Controlled Trials (CENTRAL)
- Web of Science
- OpenGrey unpublished work.

Search terms: The search combined two concepts:

1) "Palliative care" and 2) "Virtual reality".


Country: 5 USA, 1 Spain, 1 Japan, 1 UK.

Date: 2012 – 2021 1-38

FULL PROTOCOL

Figure 1. PRISMA flowchart

Setting: 3 hospital inpatient, 1 outpatient, 1 multiple, 3 palliative care (either hospice or ward).

Par	ticipant Chara	cteristics		
Diagnasia	Gend	0		
Diagnosis		Male	Female	Age
	n (%)	n (%	6)	Mean (SD)
Cancer	19 (100)	10 (53)	9 (47)	60.9 (14.5)
Cancer Heart failure End-stage renal	14 (61) 7 (30) 2 (9)	11 (48)	12 (52)	47.7 (17.1)
Cancer	12 (100)	5 (42)	7 (58)	24-65+*
Dementia	25 (100)	3 (12)	22 (88)	85 (8.9)
Heart failure	88 (100)	44 (50)	44 (50)	56 (13.2)
Cancer Heart failure Bronchiectasis Pneumonia	8 (67) 2 (17) 1 (8) 1 (8)	4 (33)	8 (67)	72 (16)
Cancer	20 (100)	14 (70)	6 (30)	72.3 (11.9)
Cancer Other	15 (75) 5 (25)	6 (30)	14 (70)	66*

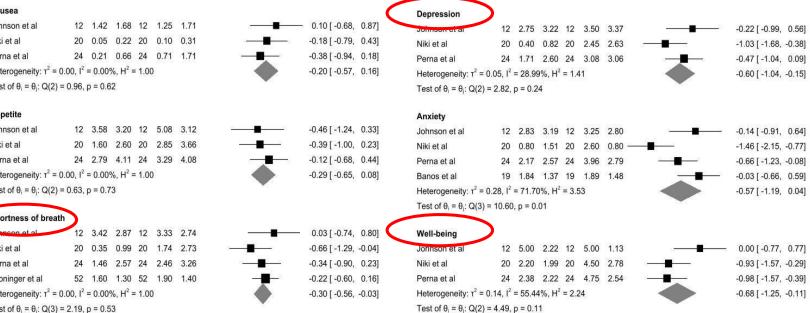
^{*} age range / Perna et al. did not report SD

First Author	Intervention	Comparator	Technology	Duration of treatment	Follow-up	
Randomised Controll	ed Trials					
Groninger	Guided walk-in virtual environment with narration	Active control (guided imagery)	Oculus Go VR headset	One 10-min session	Same day	

Perna	Personalised VR experience based on participants preference	Non- personalised VR experiences	Google Daydream headset; Google Pixel XL smartphone and headphones.	Four 4-min/wk	1 VR session/wk for 4 wks
Non-Randomised C	ontrolled trials			•	
Baños	Navigation through virtual environment to induce joy and relaxation	Pre-post data	LCD screen connected to a computer; headphone, keyboard, mouse	Four 30-min sessions/1 wk	4 times/wk
Brungardt	Virtual-based music therapy with customised soundtrack	None	Oculus Go VR headset	One approx. 30-min session	Same day
Dang	VR-based life review using synchronised personalised avatar	Pre-post data	MoCap (Motion capture device); VocingHan hardware; Logitech wireless headset	One approx. 30-min session	1-month
Ferguson	VR-based 360-degree beach viewing	Pre-post data	Lenovo's Mirage Solo VR headset with business edition	One 30-min session	3-5 hours after invention (behavioural changes only)
Johnson	VR still images /animated videos viewing using 1 or more VR applications in Oculus Library		Samsung Gear VR	One 30-min session	None
Niki	VR travel to the destination according to participants' wishes	Pre-post data	VR headset HTC VIVE and VR software Google Earth VR	One 30-min session (time shortened or extended as needed)	None

	First Authors											
	Brungardt	Dang	Ferguson	Baños	Groninger	Johnson	Niki	Perna				
Domains												
Feasibility	√	√		✓				✓				
Acceptability	√	√	√	✓	√	✓	✓	✓				
Usability	✓	✓	√	√		✓						
Pain		√		√	√	✓	√	✓				
Mood				$\sqrt{1}$								
Anxiety		√		✓		✓	✓	✓				
Depression		√				✓	✓	✓				
Psychological wellbeing		√				√	√	√				
Other physical symptoms		√ 4		√ 2	√3	√4	√ 4	√ 4				
Other ⁴		√	√		√							

¹ Consisted of 7 items: joy, sadness, anxiety, relax, vigor (1 "not at all" to 7 "completely"), general mood (scale of 1-7 where 7 was equivalent to positive mood and well-being), and subjective mood change (from -3 "much worse" to +3 "much better")


² Consisted of fatigue, pain, and physical discomfort (0 "not at all" to 10 "very much so").

³ Subdomains of the FACIT-Pal-14: shortness of breath, distress (0 "not at all" to 4 "very much"). ⁴ As measured by the ESAS-r.

⁴ Dang et al., included measures of Health-related quality of life, symptom burden, and spiritual wellbeing; Ferguson et al., measured behavioural changes after the VR session; Groninger et al. also measured quality of life.

Feasibility and acceptability

		After \			Before			Hedges's g									
Stady	N	Mean	SD	N	Mean	SD		with 95% CI	<u> </u>								
Pain	ノ									Nausea							
Johnson et al	12	1.42	2.02	12	1.75	1.96		0.16 [-0.93, 0	0.61]	Johnson et al	12	1.42	1.68	12	1.25	1.71	
Niki et al	20	1.15	2.03	20	2.35	2.25		-0.55 [-1.17, 0	0.07]	Niki et al	20	0.05	0.22	20	0.10	0.31	-
Perna et al	24	2.04	2.61	24	3.46	2.70		-0.53 [-1.09, 0	0.04]	Perna et al	24	0.21	0.66	24	0.71	1.71	
Groninger et al	52	3.80	2.40	52	6.80	1.60	-	-1.46 [-1.89, -1	.03]	Heterogeneity: T ² =	0.00, I ²	= 0.00	%, H ² =	= 1.00)		
Banos et al	19	2.06	2.94	19	2.33	2.48		-0.10 [-0.72, 0	0.53]	Test of $\theta_i = \theta_i$: Q(2)) = 0.96.	p = 0.6	32				
Heterogeneity: τ ² =	0.31, I ²	= 77.69	9%, H²	= 4.4	48			-0.59 [-1.15, -0	0.04]	and the second second	November to the fo						
Test of $\theta_i = \theta_j$: Q(4)	= 17.93	, p = 0.	.00							Appetite							
										Johnson et al	12	3.58	3.20	12	5.08	3.12	
Tiredness										Niki et al	20	1.60	2.60	20	2.85	3.66	_
Johnson et al	12				5.33	3.47	-	-0.51 [-1.30, 0).27]	Perna et al	24	2.79	4.11	24	3.29	4.08	- 11
Niki et al	20		1.90			2.71	-	-0.65 [-1.27, -0	0.03]	Heterogeneity: T2 =	0.00, 12	= 0.00	%, H ² =	= 1.00)		
Perna et al	24	2.33	2.66	24	4.71	2.80	-	-0.86 [-1.44, -0).27]	Test of $\theta_i = \theta_i$: Q(2)) = 0.63,	p = 0.7	' 3				
Banos et al	19	3.11	3.30	19	3.28	2.15		-0.06 [-0.68, 0).56]	16390E3303101 - 336 - 16163	M GARAGEA	100					
Heterogeneity: τ ² =	0.02, I ²	= 15.37	7%, H ²	= 1.	18			-0.53 [-0.88, -0).18]	Shortness of brea	ath						
Test of $\theta_i = \theta_j$: Q(3)	= 3.54,	p = 0.3	12							Johnson et al	12	3.42	2.87	12	3.33	2.74	
										Niki et al	20	0.35	0.99	20	1.74	2.73	
Drowsiness										Perna et al	24	1.46	2.57	24	2.46	3.26	
Johnson et al	12	2.25				3.03		-0.54 [-1.33, 0		Groninger et al	52	1.60	1.30	52	1.90	1.40	
Niki et al	20	1.35	2.30	20	2.70	2.87		-0.51 [-1.13, 0).11]	Heterogeneity: T ² =	0.00. 12	= 0.00	%. H ² =	= 1.00)		
Perna et al					3.46	2.95	-	-0.54 [-1.10, 0	0.03]	Test of $\theta_i = \theta_i$: Q(3)					2000		
Heterogeneity: τ ² =	0.00, I ²	= 0.00	%, H ² :	= 1.0	0			-0.53 [-0.90, -0).16]	1001 01 0 ₁ 0 ₁ 0 ₁	,,						
Test of $\theta_i = \theta_j$: Q(2)	= 0.01,	p = 1.0	0				₩.										

Conclusions

VR in palliative care is feasible and acceptable.VR could be an adjuvant non-pharmacological therapy for symptoms such as anxiety, pain, or depression.

References

- 1. Pillai AS and Mathew PS. Impact of Virtual Reality in Healthcare: A Review. . In: Guazzaroni G (ed) Virtual and Augmented Reality in Mental Health Treatment IGI Global, 2019, pp.17-31.
- 2. Lee C and Wong GKC. Virtual reality and augmented reality in the management of intracranial tumors: A review. *Journal of Clinical Neuroscience* 2019; 62: 14-20. DOI: https://doi.org/10.1016/j.jocn.2018.12.036.
- 3. Taubert M, Webber L, Hamilton T, et al. Virtual reality videos used in undergraduate palliative and oncology medical teaching: results of a pilot study. *BMJ supportive & palliative care* 2019; 9: 281-285.
- 4. Tieri G, Morone G, Paolucci S, et al. Virtual reality in cognitive and motor rehabilitation: facts, fiction and fallacies. *Expert Review of Medical Devices* 2018; 15: 107-117. DOI: 10.1080/17434440.2018.1425613.
- 5. Lambert V, Boylan P, Boran L, et al. Virtual reality distraction for acute pain in children. *Cochrane Database of Systematic Reviews* 2020. DOI: 10.1002/14651858.CD010686.pub2.
- 6. Laver KE, Lange B, George S, et al. Virtual reality for stroke rehabilitation. *Stroke* 2018; 49: e160-e161.
- 7. Dockx K, Bekkers EM, Van den Bergh V, et al. Virtual reality for rehabilitation in Parkinson's disease. *Cochrane Database of Systematic Reviews* 2016.
- 8. Välimäki M, Hätönen HM, Lahti ME, et al. Virtual reality for treatment compliance for people with serious mental illness. *Cochrane Database of Systematic Reviews* 2014.
- 9. Eijlers R, Utens EMWJ, Staals LM, et al. Systematic Review and Meta-analysis of Virtual Reality in Pediatrics: Effects on Pain and Anxiety. *Anesthesia & Analgesia* 2019; 129: 1344-1353. DOI: 10.1213/ane.00000000000004165.
- 10. Mallari B, Spaeth EK, Goh H, et al. Virtual reality as an analgesic for acute and chronic pain in adults: a systematic review and meta-analysis. *Journal of pain research* 2019; 12: 2053.
- 11. Dascal J, Reid M, IsHak WW, et al. Virtual Reality and Medical Inpatients: A Systematic Review of Randomized, Controlled Trials. *Innovations in clinical neuroscience* 2017; 14: 14-21.

- 12. Scapin S, Echevarría-Guanilo ME, Boeira Fuculo Junior PR, et al. Virtual Reality in the treatment of burn patients: A systematic review. *Burns* 2018; 44: 1403-1416. DOI: https://doi.org/10.1016/j.burns.2017.11.002.
- 13. Chow H, Hon J, Chua W, et al. Effect of Virtual Reality Therapy in Reducing Pain and Anxiety for Cancer-Related Medical Procedures: A Systematic Narrative Review. *Journal of Pain and Symptom Management* 2021; 61: 384-394. DOI: https://doi.org/10.1016/j.jpainsymman.2020.08.016.
- 14. Morris LD, Louw QA and Grimmer-Somers K. The Effectiveness of Virtual Reality on Reducing Pain and Anxiety in Burn Injury Patients: A Systematic Review. *The Clinical Journal of Pain* 2009; 25: 815-826. DOI: 10.1097/AJP.0b013e3181aaa909.
- 15. Ioannou A, Papastavrou E, Avraamides MN, et al. Virtual Reality and Symptoms Management of Anxiety, Depression, Fatigue, and Pain: A Systematic Review. *SAGE Open Nursing* 2020; 6: 2377960820936163. DOI: 10.1177/2377960820936163.
- 16. Maples-Keller JL, Bunnell BE, Kim S-J, et al. The Use of Virtual Reality Technology in the Treatment of Anxiety and Other Psychiatric Disorders. *Harvard Review of Psychiatry* 2017; 25: 103-113. DOI: 10.1097/hrp.0000000000000138.
- 17. Potter J, Hami F, Bryan T, et al. Symptoms in 400 patients referred to palliative care services: prevalence and patterns. *Palliative Medicine* 2003; 17: 310-314. DOI: 10.1191/0269216303pm760oa.
- 18. Finucane AM, Swenson C, MacArtney JI, et al. What makes palliative care needs "complex"? A multisite sequential explanatory mixed methods study of patients referred for specialist palliative care. *BMC Palliative Care* 2021; 20: 18. DOI: 10.1186/s12904-020-00700-3.
- 19. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ* 2021; 372.
- 20. Higgins JPT, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ 2011; 343.
- 21. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. *BMJ* 2016; 355.
- 22. Deeks JJ HJ, Altman DG (editors). Chapter 10: Analysing data and undertaking meta-analyses. In: Higgins JPT TJ, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors) (ed) *Cochrane Handbook for Systematic Reviews of Interventions* Cochrane, 2021.
- 23. Guyatt G, Oxman Ad Fau Akl EA, Akl Ea Fau Kunz R, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables.
- 24. Groninger H, Stewart D, Fisher JM, et al. Virtual reality for pain management in advanced heart failure: A randomized controlled study. *Palliative Medicine* 2021. DOI: 10.1177/02692163211041273.
- 25. Baños RM, Espinoza M, Garcia-Palacios A, et al. A positive psychological intervention using virtual reality for patients with advanced cancer in a hospital setting: a pilot study to assess feasibility. *Support Care Cancer* 2013; 21: 263-270. 2012/06/13. DOI: 10.1007/s00520-012-1520-x.
- 26. Brungardt A, Wibben A, Tompkins AF, et al. Virtual Reality-Based Music Therapy in Palliative Care: A Pilot Implementation Trial. *J Palliat Med* 2021; 24: 736-742. 2020/11/24. DOI: 10.1089/jpm.2020.0403.

- 27. Dang M, Noreika D, Ryu S, et al. Feasibility of Delivering an Avatar-Facilitated Life Review Intervention for Patients with Cancer. *J Palliat Med* 2021; 24: 520-526. 2020/09/09. DOI: 10.1089/jpm.2020.0020.
- Ferguson C, Shade MY, Blaskewicz Boron J, et al. Virtual Reality for Therapeutic Recreation in Dementia Hospice Care: A Feasibility Study. *Am J Hosp Palliat Care* 2020; 37: 809-815. 2020/01/25. DOI: 10.1177/1049909120901525.
- Johnson T, Bauler L, Vos D, et al. Virtual Reality Use for Symptom Management in Palliative Care: A Pilot Study to Assess User Perceptions. *J Palliat Med* 2020; 23: 1233-1238. 2020/01/03. DOI: 10.1089/jpm.2019.0411.
- 30. Niki K, Okamoto Y, Maeda I, et al. A Novel Palliative Care Approach Using Virtual Reality for Improving Various Symptoms of Terminal Cancer Patients: A Preliminary Prospective, Multicenter Study. *J Palliat Med* 2019; 22: 702-707. 2019/01/25. DOI: 10.1089/jpm.2018.0527.
- 31. Perna M, MSW, Letizia, Lund S, White N, et al. The Potential of Personalized Virtual Reality in Palliative Care: A Feasibility Trial. *American Journal of Hospice and Palliative Medicine*® 2021: 1049909121994299.
- 32. Johnson T, Bauler L, Vos D, et al. Virtual reality use for symptom management in palliative care: a pilot study to assess user perceptions. *Journal of palliative medicine* 2020; 23: 1233-1238.
- 33. Niki K, Okamoto Y, Maeda I, et al. A novel palliative care approach using virtual reality for improving various symptoms of terminal cancer patients: a preliminary prospective, multicenter study. *Journal of palliative medicine* 2019; 22: 702-707.
- 34. Bruera E, Kuehn N, Miller MJ, et al. The Edmonton Symptom Assessment System (ESAS): a simple method for the assessment of palliative care patients. *Journal of palliative care* 1991; 7: 6-9.
- 35. Hui D and Bruera E. The Edmonton Symptom Assessment System 25 Years Later: Past, Present, and Future Developments. *Journal of Pain and Symptom Management* 2017; 53: 630-643. DOI: https://doi.org/10.1016/j.jpainsymman.2016.10.370.
- 36. Evans L, Taubert M. State of the science: the doll is dead: simulation in palliative care education. BMJ Support Palliat Care 2019;9:117–9.
- 37. Bredle JM, Salsman JM, Debb SM, et al. Spiritual Well-Being as a Component of Health-Related Quality of Life: The Functional Assessment of Chronic Illness Therapy—Spiritual Well-Being Scale (FACIT-Sp). *Religions* 2011; 2: 77-94.
- Fayers P and Bottomley A. Quality of life research within the EORTC—the EORTC QLQ-C30. *European Journal of Cancer* 2002; 38: 125-133. DOI: https://doi.org/10.1016/S0959-8049(01)00448-8.