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1. Introduction

In an era where large and massive datasets are becoming the norm, one of the
biggest challenges for researchers is to propose efficient procedures that address
the ‘small n, large p’ problem, where n denotes the available sample size and
p denotes the number of unknown parameters. The main difficulty with a large
number of the existing methods is the need to estimate the inverse of a variance-
covariance matrix Σ which might not per se be invertible.

The Sufficient Dimension Reduction (SDR) framework contains a class of fea-
ture extraction procedures used mainly in regression and classification settings.
These procedures are most frequently used as a first step for feature extraction,
in order to reduce the dimensionality of a problem before any other statistical
procedure is applied. They have been developed in a number of different di-
rections in recent years and became more popular the last decades due to the
reduced cost of data collection which lead to an increase in the complexity of
the data.

In a regression setting one has a response variable Y (which we assume uni-
variate without loss of generality) and a p-dimensional predictor vector X. Our
efforts in SDR are concentrated in finding D functions of the predictors which
contain all the information for the conditional distribution of Y |X. In other
words, under the linear conditional independence model

Y ⊥ X|BTX (1.1)

where the matrix B is a p × D matrix of unknown parameters, with D � p.
Under (1.1) we extract linear functions of the predictors X. The space spanned
by the column vectors of B is known as the Dimension Reduction Subspace
(DRS). Since there exists a large class of matrices B that satisfy (1.1), it implies
as well that there exists a large number of DRSs that can be estimated. Almost
always, one is interested in the one with minimum dimensionD for which (1.1) is
satisfied. This subspace is known as the Central Dimension Reduction Subspace
(CDRS) and is denoted by SY |X . Although the CDRS does not always exist, the
conditions for its existence are mild (Yin et al., 2008) and therefore, throughout
this work we assume it exists. If the CDRS exists, then it is also unique. There is
an abundance of methods used to estimate the CDRS under model (1.1) and a
very short list of references includes Li (1991, 1992), Cook and Weisberg (1991),
Li et al. (2005), Li and Wang (2007), Zhu et al. (2010) and many more.

Recently, there was an interest in extracting nonlinear features of the predic-
tors and therefore, researchers introduced SDR under the nonlinear conditional



1806 E. Pircalabelu and A. Artemiou

independence model:

Y ⊥ X|φ(X) (1.2)

where φ : Rp → R
D. Model (1.2) is more general as it allows for the extrac-

tion of both linear and nonlinear functions of the predictors. Again, there is an
abundance of literature for SDR under model (1.2) including Cook (2007), Wu
(2008), Fukumizu et al. (2009) and Li et al. (2011) among them. The latter in-
troduced Support Vector Machines (SVM) in the SDR framework. This method
provides a unified framework for linear and nonlinear feature extraction for
SDR, among other advantages. The SVM-based SDR methodology has been ex-
tended recently by the works of Artemiou and Shu (2014), Artemiou and Dong
(2016), Shin et al. (2017), Shin and Artemiou (2017), Randall et al. (2021) and
Artemiou et al. (2021).

All the procedures mentioned above work only in low-dimensional settings
where n � p. The literature on how to achieve SDR in ‘small n, large p’ set-
tings, or as it is more generally known as the high-dimensional low sample
size (HDLSS) setting is relatively thin. One of the first efforts to achieve di-
mension reduction without matrix inversion in the SDR framework, was the
work of Cook and Li (2002) where an iterative approach is proposed to avoid
the use of the inverse matrix in the iterative Hessian transformations (IHT),
a method which finds directions in the Central Mean Subspace, i.e. the space
estimated under the model Y ⊥ E(Y |X)|BTX where E(Y |X) denotes the con-
ditional expectation of Y given X. Recently, Lin et al. (2019) proposed the use
of Lasso with the SIR algorithm and Lin et al. (2018) proposed the use of Di-
agonal Thresholding with SIR. In this paper we propose the use of Lasso in an
SVM-based algorithm for SDR. As will be shown, our method utilizes principal
projections of the covariance matrix Σ = var(X) to establish an equivalence
relationship between high and lower dimensional SVM problems, after which an
�1 penalized procedure is applied to obtain sparse estimators of the underlying
directions.

The paper is structured as follows: in Section 2 we introduce the background
literature by revisiting the Principal Support Vector Machine (PSVM) frame-
work and its estimation procedure. In Section 3 we motivate an �1 regular-
ized approach to address high-dimensional problems through a novel procedure
coined ‘LassoPSVM’ and show that by using principal component projections,
one can avoid the use of the inverse of the covariance matrix. In Section 4 we
present the computational algorithm used to obtain the LassoPSVM solution.
In Section 5 we discuss theoretical properties of the proposed method, while
in Section 6 we present a high-dimensional inferential procedure based on a
desparsified estimator for LassoPSVM. In Section 7 we present numerical stud-
ies using both a controlled simulation example, as well as real data to show the
performance of the method. Finally, we close with a discussion on the method
and future possible extensions in Section 8.
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2. Principal support vector machine (PSVM)

The SDR approach we propose in this manuscript uses the multiple index model
with additive error of the form

Y = g(βT

1X,βT

2X, . . . ,βT

DX) + ε (2.1)

where X = (X1, . . . , Xp)
T ∈ R

p with var(X) = Σ, β1, . . . ,βD ∈ R
p, ε ⊥

Xj ∀ j = 1, . . . , p with ε ∼ N(0, σ2) and g : RD → R. The link function g is
an unknown many-to-one function, the vectors β1, . . . ,βD are unknown vectors
of coefficients and for simplicity we assume throughout that the dimension D is
fixed and known. We concatenate the vectors β1, . . . ,βD to obtain the matrix
of unknown coefficients as B = [β1,β2, . . . ,βD] of dimension p×D.

In this section we give a brief overview of the low-dimensional PSVM and in
the next section we present our high-dimensional proposal. We assume without
loss of generality that E(X) = 0. In the population version, PSVM minimizes
the following objective function:

L(ψ, t) = ψTΣψ + cE(1− Ỹ (ψTX − t))+ (2.2)

where Ỹ ∈ {−1, 1} is a discretized version of the response Y , Σ is the covariance
matrix of the vector X, c is a positive regularization constant, t is a slack
variable, ψ is a vector of unknown coefficients and a+ = max{0, a}. It has
been shown in Li et al. (2011) that under mild conditions, if the pair (ψ∗, t∗)
minimizes the objective function (2.2) then ψ∗ ∈ SY |X which motivates the
SVM approach for low-dimensional problems.

Considering H−1 different discretized versions of the response Y , dimension
reduction is achieved by performing an eigenvalue decomposition of V defined

as V =
∑H−1

h=1 ψ∗h(ψ∗h)T where ψ∗h are the minimizers of equation (2.2) for
each h = 1, . . . , H−1, and selecting the eigenvectors corresponding to its largest
D eigenvalues, due to the fact that the column space of V is the same as the
column space of B, denoted as col(V ) = col(B) in light of Proposition 1.

Proposition 1. Under the specification of model (1.1) and assuming E(X|BT

X) is a linear function of BTX then col(V ) = col(B).

The proof follows directly by applying Theorem 1 from Li et al. (2011) which
showed that the minimizer ψ∗ ∈ SY |X . Thus, constructing the candidate matrix

V using minimizers ψh’s (h = 1, . . . , H − 1) ensures that the eigenvectors of V
will span SY |X . Proposition 1 justifies why performing an eigenvalue decompo-
sition of V is beneficial for SDR.

Estimation under (2.2) proceeds as follows. Let (Yi,X
T

i )
T, i = 1, . . . , n be an

independent sample of n observations. Divide first the data into H equal-sized
slices, where H is a fixed number of slices. Let qh, h = 1, . . . , H − 1 denote the
cut-off points between the H slices in the range of Y . Let Y = (Y1, . . . , Yn)

T

and, for each h, we create the discretized version of the vector Y denoted as

Ỹ
h
which has entries:

Ỹ h
i = I(Yi > qh)− I(Yi ≤ qh),
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where I(·) denotes the indicator function attributing the value 1 if the condition
is satisfied and 0, otherwise. Then, for each h, in the low-dimensional setting
for PSVMs one minimizes the objective function:

min
ψ,t,ξh

ψTΣψ + (c/n)1T

nξ
h (2.3)

under the constraints

Ỹ
h � (Xψ − tn) ≥ 1n − ξh, ξh ≥ 0n,

where X = [X1,X2, . . . ,Xn]
T is an n × p predictor matrix and � denotes the

elementwise multiplication of two vectors. The vector ξh = (ξh1 , . . . , ξ
h
n)

T where
ξhi is the misclassification distance for each data point (set to 0 if the point is
correctly classified) when qh is used as a cut-off point, while tn = (t, . . . , t)T ∈
R

n, 0n = (0, . . . , 0)T ∈ R
n and 1n = (1, . . . , 1)T ∈ R

n. Optimizing (2.3) gives

rise to H − 1 minimizers ψ̂
h
, h = 1, . . . , H − 1 used next to create the candidate

matrix V̂ =
∑H−1

h=1 ψ̂
h
(ψ̂

h
)T.

To solve the quadratic programming problem in (2.3) one can use the La-
grangian approach. This is done by creating first the Lagrangian function L(ψ, t,
ξh) defined as

L(ψ, t, ξh) = ψTΣψ + (c/n)1T

nξ
h −αT(1n − ξh − Ỹ

h � (Xψ − tn))− γTξh

(2.4)

where α = (α1, . . . , αn)
T and γ = (γ1, . . . , γn)

T are vectors of Lagrangian mul-
tipliers. The Karush-Kuhn-Tucker (KKT) conditions imply that an optimal so-
lution exists when the partial derivatives of (2.4) are set to 0. Therefore:

∂L(ψ, t, ξh)/∂ψ =2Σψ −X T(Ỹ
h �α) = 0p

∂L(ψ, t, ξh)/∂t =αTỸ
h
= 0

∂L(ψ, t, ξh)/∂ξh =(c/n)1n +α− γ = 0n,

which implies two very important properties needed later in Section 3. The first
is that the minimizer of the objective function specified by (2.3) is given by:

ψ̂
h
= (1/2)Σ̂

−1X T(Ỹ
h �α) (2.5)

where Σ̂ is an estimator of Σ and the second is that

αTỸ
h
= 0. (2.6)

Note that the same quadratic programme is solved for each cut-off point

qh, the only difference being that only the values of Ỹ
h
change (as they are a

function of qh). Note also that ψ̂
h
in (2.5) depends directly on the inverse of

the estimator for the covariance matrix Σ̂. For low-dimensional problems this
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generally does not pose problems, but for cases where p � n, this is problematic
as the inverse might not always exist since the covariance matrix might not be
full rank. As will be illustrated in the following section, our proposed procedure
will eliminate completely the dependence on an estimator whose inverse does
not exist. See Section 3 for details.

For ease of exposition, we avoid here the details on how one can use the dual
problem to estimateα (details on the estimation are offered in Cortes and Vapnik,
1995 and Li et al., 2011 among others) and focus on the fact that once one has

the vectors ψ̂
h
for h = 1, . . . , H − 1 one can perform an eigenvalue decompo-

sition of the estimated candidate matrix V̂ =
∑H−1

h=1 ψ̂
h
(ψ̂

h
)T in order to get

the vectors that span the central subspace. This is done by selecting the first D
eigenvectors v̂1, . . . , v̂D associated with the largest D eigenvalues of V̂ as the
vectors that span the CDRS.

3. Using principal projections for LassoPSVM

In this section we propose a procedure coined as ‘LassoPSVM’, that bypasses
the need of inverting the covariance matrix in order to obtain estimators in the
high-dimensional setting.

Our procedure uses first the fact that one can construct an optimization
problem with a solution contained within the space that is spanned by the
eigenvectors associated with the non-zero eigenvalues of Σ. As such, solving
this new optimization problem is equivalent to solving the original problem in
R

p. Due to the equivalence between the two problems, in a second step we use
a principal component projection (Mardia et al., 1979; Zafeiriou et al., 2007) to
solve the reduced problem in a lower dimensional space and project back to the
original dimensional problem.

Theorem 1. Let Σ = var(X) be a p × p matrix of rank r < p and let A be
the space spanned by the eigenvectors corresponding to the non-zero eigenvalues
of Σ. The minimizer of the constrained objective function specified in (2.3), is
equivalent to the minimizer of

min
u,t,ξh

uTΣu+ (c/n)1T

nξ
h

with u ∈ A and under the constraints

Ỹ
h � (Xu− tn) ≥ 1n − ξh, ξh ≥ 0n.

Proof. As Σ is a real, symmetric and positive semidefinite matrix in R
p×p, its

eigenvectors form an orthogonal basis of Rp. Therefore every vector ψ ∈ R
p can

be written as a linear combination of the eigenvectors of Σ, as they form a basis
in R

p.
Let A be the space spanned by the eigenvectors corresponding to non-zero

eigenvalues of Σ and A⊥ to be the space spanned by the eigenvectors corre-
sponding to the zero eigenvalues of Σ. Taking vectors u ∈ A and s ∈ A⊥, one
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can write ψ ∈ R
p as ψ = u+ s. To show the equivalence, note that:

ψTΣψ =(u+ s)TΣ(u+ s) = uTΣu

since Σs = 0p due to the fact that s ∈ A⊥ (i.e. the null space of Σ).
Moreover, var(sTX) = sTΣs = 0 which implies that under the projection

of s, all points xi ∈ R
p project on the same point and therefore for any pair

(i, i′) where i = 1, . . . , n, i′ = 1, . . . , n and i = i′, we have sTxi = sTxi′ = κ.
Therefore, the constraints of (2.3) are equivalent to:

Ỹ
h � (Xψ − tn) ≥ 1n − ξh ⇔

Ỹ
h � (Xu+ Xs− tn) ≥ 1n − ξh.

Using the above equivalence, one also has that the Lagrangian in (2.4) is
equivalent to the following Lagrangian:

uTΣu+ c1T

nξ
h −αT(1n − ξh − Ỹ

h � (Xu+ Xs− tn))− γTξh ⇔

uTΣu+ c1T

nξ
h −αT(1n − ξh − Ỹ

h � (Xu− tn))− (α� Ỹ
h
)TXs− γTξh ⇔

uTΣu+ c1T

nξ
h −αT(1n − ξh − Ỹ

h � (Xu− tn))− (α� Ỹ
h
)Tκn − γTξh,

where κn = (κ, . . . , κ)T ∈ R
n is a constant vector. Due to equation (2.6), this

implies that

(α� Ỹ
h
)Tκn = καTỸ

h
= 0.

Therefore, we have shown that the Lagrangian in (2.4) is equivalent to:

uTΣu+ (c/n)1T

nξ
h −αT(1n − ξh − Ỹ

h � (Xu− tn))− γTξh,

which implies that the optimal hyperplane ψ depends only on u and not on
s. It also implies that s can be any arbitrary vector from A⊥. We have thus
shown that the original problem formulated in (2.3) can be solved in the space
A, rather than in the entire space R

p.

Assume now that r, the rank ofΣ, is such that r ≥ D and r < n. We construct
next the matrix P of dimension p × r. The columns of P are formed by the r
non-null eigenvectors of Σ, that is, the eigenvectors corresponding to the non-
zero eigenvalues. The columns of P are an orthogonal basis in R

r therefore, one
can create the mapping m : Rr → A which is a one-to-one mapping from R

r

to A and where for any w ∈ R
r we have that m(w) = Pw = u. Using next

the mapping m(w) and replacing u in Theorem 1 by Pw, one can show the
following corollary holds.

Corollary 1. The minimizer of the objective function specified in (2.3), is equiv-
alent to the minimizer of

min
w,t,ξh

wTΣ†w + (c/n)1T

nξ
h (3.1)
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under the constraints

Ỹ
h � (X †w − tn) ≥ 1n − ξh, ξh ≥ 0n,

where X † = XP = [X†
1, . . . ,X

†
n]

T is the matrix of dimension n× r, formed by

the projected vectors of observations, i.e. X†
i = P TXi and Σ† = P TΣP is the

covariance matrix of dimension r × r, of the projected vectors X† ∈ R
r.

Rather than optimizing (3.1), we propose to optimize

min
w,t,ξh

nwTΣ†w + c1T

nξ
h.

which coupled with the constraints in Corolloary 1 leads to the Lagrangian:

nwTΣ†w + c1T

nξ
h −αT(1n − ξh − Ỹ

h � (X †w − tn))− γTξh,

where α and γ are the Lagrangian multipliers. Using KKT conditions as in
Section 2, one can show that for each h, the estimator for w is:

ŵh =
1

2n
(Σ̂

†
)−1(X †)TỸ

h �α, (3.2)

where Σ̂
†
is an estimator for the covariance matrix of the projected vectors.

In light of Theorem 1, LassoPSVM uses the candidate matrix V̂ u defined as

V̂ u =

H−1∑
h=1

ûh(ûh)T =

H−1∑
h=1

Pŵh(ŵh)TP T

where the second equality comes from using Corollary 1. Plugging in the ex-
pression for V̂ u the estimator ŵh defined in (3.2), one obtains

V̂ u =
1

4n2
P (Σ̂

†
)−1(X †)T

H−1∑
h=1

(Ỹ
h �α)(Ỹ

h �α)TX †(Σ̂
†
)−1P T. (3.3)

The advantage of the estimator expressed in (3.3) is the fact that Σ̂
−1

is not

needed, as it is replaced by the inverse of Σ̂
†
which always exists. We have thus

removed the major hurdle one has encountered in the development presented in
Section 2.

Let now λ̂1 ≥ . . . ≥ λ̂D > 0 be the ordered eigenvalues of V̂ u and let
η̂1, . . . , η̂D be the associated eigenvectors. For any couple (λ̂d, η̂d) with d =
1, . . . , D, one now has that:

λ̂dη̂d =V̂ uη̂d

=
1

4n2
P (Σ̂

†
)−1(X †)T

H−1∑
h=1

(Ỹ
h �α)(Ỹ

h �α)TX †(Σ̂
†
)−1P Tη̂d
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=
1

4
P ((X †)TX †)−1(X †)T

H−1∑
h=1

(Ỹ
h �α)(Ỹ

h �α)TX †((X †)TX †)−1P Tη̂d

where the third equality used Σ̂
†
= 1

n (X †)TX †.
We set now

ỹ†d =
1

4λ̂d

H−1∑
h=1

(Ỹ
h �α)(Ỹ

h �α)TX †((X †)TX †)−1P Tη̂d

and as such, by substituting ỹ†d in the above equation, one now has that

η̂d = P ((X †)TX †)−1(X †)Tỹ†d.

As shown in Section 2 in Proposition 1, with PSVM the basic identity is that
the column space of V is the same as the column space of B. As such, and
with ηd denoting the population version of η̂d which corresponds to the d-th

eigenvector of V u =
∑H−1

h=1 uh(uh)T, we have that:

ηd ∝ βd ⇔
P ((X †)TX †)−1(X †)Tỹ†d ∝ βd ⇔
((X †)TX †)−1(X †)Tỹ†d ∝ P Tβd ⇔

(X †)Tỹ†d ∝ (X †)TX †P Tβd ⇔
P (X †)Tỹ†d ∝ P (X †)TX †P Tβd

where the second result is obtained by approximating ηd ≈ η̂d. We can set now
P (X †)T = (X̃ †)T and therefore the above relation becomes

(X̃ †)Tỹ†d ∝ (X̃ †)TX̃ †βd.

To obtain now a sparse estimator β̂d we propose to minimize the �1 penalized
quadratic loss function for a regularization parameter μ > 0:

L(βd) =
1

2n
‖ỹ†d − X̃ †βd‖22 + μ‖βd‖1, (3.4)

hence the name ‘LassoPSVM’ for the proposed procedure. Here ‖ · ‖1 and ‖ · ‖2
denote the usual �1 and �2 vector norms.

We close this section by commenting on the importance and benefits of The-
orem 1 and Corollary 1. In light of this theorem we highlight that the crucial
information to recover the CDRS is contained in the eigenvectors corresponding
to the non-zero eigenvalues of V u. However, these eigenvectors are still con-
tained in R

p. As such, this result is not useful enough as one still needs the
inverse of a p× p covariance matrix, which might not exist. Corollary 1 on the
other hand, allows us to improve on the dimensionality of the problem by pro-
jecting the crucial information to recover the CDRS in the space R

r. As r can
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be much smaller than n, the estimator Σ̂
†
we propose is always invertible. One

other possibility would be to plug in an estimator of Σ−1 in (3.2) as is proposed
in Pircalabelu and Artemiou (2021) for the graph-based procedures, however an
extra Gaussianity assumption is needed to justify the approach. Alternatively,
based on the KKT conditions an estimator as proposed in Cai et al. (2011)
could be used, but this would introduce additional computational complexity.
We argue that principal projections on a lower dimensional subspace offer an
elegant and natural solution in the proposed framework.

4. A sufficient dimension reduction algorithm

In this section we present schematically a sufficient dimension reduction algo-
rithm that allows for the estimation of B. Based on the development presented
in Section 3 one can put forward the following estimation procedure:

� Calculate the sample mean and sample covariance of the predictors Xi,
i = 1, . . . n, denoted as X̄ and Σ̂.

� Centre the Xi’s to obtain Xc
i = Xi − X̄.

� Perform an eigenvalue decomposition of the matrix Σ̂, to find the r non-
zero eigenvalues τ̂1, . . . , τ̂r and the corresponding eigenvectors ζ̂1, . . . , ζ̂r.

� Using the vectors ζ̂1, . . . , ζ̂r as columns, create the p× r matrix P̂ .

� Project the original centred data onto R
r, to obtain X̂

†
i = P̂

T

Xc
i and

construct its empirical covariance matrix Σ̂
†
.

� Divide the range of Y in H slices by taking H − 1 cut-off points qh, h =

1, . . . , H − 1 and create the vectors Ỹ
h
= (Ỹ h

1 , . . . , Ỹ h
n )T.

� For each Ỹ
h
, h = 1, . . . , H − 1 optimize (3.1) under the specified con-

straints, where population parameters are replaced by their sample esti-
mators, to find ŵh ∈ R

r.
� Construct ûh = P̂ ŵh, h = 1, . . . , H − 1 and use these vectors to create

V̂ u =
∑H−1

h=1 ûh(ûh)T.

� Find the D largest eigenvalues and corresponding eigenvectors of V̂ u and
use them to calculate each vector ỹ†d, d = 1, . . . , D.

� Run a Lasso algorithm with ỹ†d as the response vector and X̃ † = PP TXT

as predictor matrix to find each of the d (sparse) columns of the matrix
B.

In the first step of the algorithm, one needs an estimator of the covariance matrix
Σ. In principle, the simplest estimator that one can use is the sample covariance
matrix S. However, when p � n it is well known that the performance of this
estimator relative to the true unknown Σ is poor. See for example, the works of
Ledoit and Wolf (2004), Bickel and Levina (2008), Cai et al. (2010), Fan et al.
(2011) or Bien and Tibshirani (2011) among many others. For these reasons,
we propose to use the thresholded estimator of Bickel and Levina (2008) due to
computational simplicity, generality and good theoretical properties.
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5. Theoretical results

Let Σ0 denote the true covariance matrix of the vector X and V 0 the true
candidate matrix for which col(V 0) = col(B0), where B0 is the true matrix of
unknown parameters. Let Sd = {k : βd,0,k = 0} be the support of βd,0, S

c
d the

complement of Sd and sd = |Sd| the cardinality of Sd.
Regularity conditions: Assume

(a) rank(Σ0)=r and rank(V 0)=D with r ≥ D,
(b) there exist constants C1 and C2 such that

C1 ≥ τ1 ≥ . . . ≥ τr > 0

C2 ≥ λ1 ≥ . . . ≥ λD > 0

where τ1, . . . , τr and λ1, . . . , λD are the ordered eigenvalues of Σ0 and V 0.
(c) X̃ † satisfies a compatibility condition with constant φ0 > 0 with respect

to the true support for each d = 1, . . . , D i.e.

1

n
|| X̃ †v ||22≥

φ2
0

sd
|| vSd

||1 ∀v ∈ R
p such that

|| v ||1> 0 and || vSc
d
||1≤ 3 || vSd

||1 .

Condition (a) ensures the problem is well-posed, in the sense that if r <
D then one cannot recover the total number of directions directly from Σ0.
Condition (b) ensures that both Σ0 and V 0 are well-behaving with bounded
eigenvalues. Condition (c) is a standard technical Lasso condition on the design
matrix, which is generally regarded not as strict as the ‘Restricted eigenvalue’
condition present in the works of Bickel et al. (2009), Raskutti et al. (2010)
and Lin et al. (2019) (for sufficient dimension purposes) among many others.
We argue the above conditions are mild conditions which ensure a standard
application of Lasso techniques and results in the PSVM framework whenD = 1.

Lemma 1. Let β̂d be the LassoPSVM solution of (3.4) when μ = Aσ
√

log p
n ,

D = 1 and β̃d,0 be a vector proportional to the true vector that satisfies (2.1).
For a sufficiently large constant A, we have with high probability that

|| 1
n
(X̃ †)TX̃ †(β̂d − β̃d,0) ||∞≤ μ.

Proof. Let B be the event B = {|| (X̃ †)Tε/n ||∞≤ μ}. By the basic Lasso
inequality and Lemma 6.2 in Bühlmann and Van De Geer (2011) we know this
event holds with high probability. We work further on this event. Now from the
KKT conditions for Lasso, we have that β̂d is a solution of (3.4) if 0 ∈ ∂L(βd)|β̂d

implying that

μν =
1

n
(X̃ †)T(ỹ†d − X̃ †β̂d),

where ν is a vector such that || ν ||∞≤ 1. This happens if and only if

|| 1
n
(X̃ †)T(ỹ†d − X̃ †β̂d) ||∞≤ μ. (5.1)
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Working on the event B when β̂d is a LassoPSVM solution, also implies that

|| 1n (X̃ †)Tỹ†d||∞ ≤ μ. This bound is interesting in itself as it informs us that in an
�∞ sense, the components of this vector are well controlled when p grows. To see
why this inequality holds we work by contradiction. Suppose || 1n (X̃ †)Tỹ†d||∞ > μ.

As β̂d is a Lasso solution we argued (5.1) must hold. On the other hand, due to
the triangle inequality, we have that

|| 1
n
(X̃ †)T(ỹ†d − X̃ †β̂d) ||∞≤|| 1

n
(X̃ †)Tỹ†d||∞ + || 1

n
(X̃ †)TX̃ †β̂d ||∞> μ

since || 1n (X̃ †)Tỹ†d||∞ > μ (by our supposition) and since || 1n (X̃ †)TX̃ †β̂d ||∞≥ 0.
We have arrived at a contradiction, hence the supposition is false.

Now since,

1

n
(X̃ †)TX̃ †(β̂d − β̃d,0) =

1

n
((X̃ †)TX̃ †β̂d − (X̃ †)TX̃ †β̃d,0)

and using that
1

n
(X̃ †)Tỹ†d ∝ 1

n
(X̃ †)TX̃ †β̃d,0

for which we can guarantee a good control i.e. || 1n (X̃ †)Tỹ†d||∞ ≤ μ implies that
the term in (5.1) can be rewritten as

|| 1
n
(X̃ †)TX̃ †β̃d,0 −

1

n
(X̃ †)TX̃ †β̂d||∞ = || 1

n
(X̃ †)TX̃ †(β̃d,0 − β̂d)||∞

as stated in the lemma.

Proposition 2. Let β̂d be the LassoPSVM solution of (3.4) when μ = Aσ
√

log p
n ,

D = 1 and β̃d,0 be a vector proportional to the true vector that satisfies (2.1).

Assume X̃ † satisfies a compatibility condition with respect to the true support
Sd for a compatibility constant φ0 > 0. For sufficiently large constants A, A′

and A′′ one has with high probability that

|| β̂d − β̃d,0 ||1 ≤ A′sd
φ2
0

√
log p

n

|| X̃ †(β̂d − β̃d,0) ||22 ≤ A′′σ2sd log p

nφ2
0

.

Proof. Under the compatibility assumption we analyse the vector v = β̂d− β̃d,0

implying
φ2
0

sd
|| v ||21≤

1

n
|| X̃ †v ||22≤

1

n
|| (X̃ †)TX̃ †v ||∞|| v ||1 .

Using Lemma 1 we can bound
φ2
0

sd
|| v ||21≤ μ || v ||1. Now,

μ || v ||1= μ(|| vSc
d
||1 + || vSd

||1) ≤ 4μ || vSd
||1
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due to the constraint under the compatibility condition. As such,

|| v ||21≤ 4μ
sd
φ2
0

|| vSd
||1≤ 4μ

sd
φ2
0

|| vSd
+ vSc

d
||1= 4μ

sd
φ2
0

|| v ||1

implying that || v ||1≤ 4μ sd
φ2
0
since || v ||1> 0. The first result directly follows by

plugging in μ = Aσ
√

log p
n .

The second result follows from

1

n
|| X̃ †v ||22≤ 4μ || vSd

||1≤ 4μ || v ||1≤ 16μ2 sd
φ2
0

by plugging in μ = Aσ
√

log p
n .

The conditions D = 1 and β̃d,0 satisfies (2.1) in Lemma 1 and Proposition 2
put us in the single index model framework. If one considers a stronger restricted
eigenvalue condition on the design one can obtain the bound

|| β̂d(β̂
T

dβ̂d)
−1β̂

T

d − βd,0(β
T

d,0βd,0)
−1βT

d,0 ||F

≤ C

||β̃d,0||2

√
sd log p

nφ2
1

≤ C ′

||βd,0||2

√
sd log p

nφ2
1

,

where φ1 > 0 is now the constant for which the restricted eigenvalue condition
is satisfied and C ′ is a constant arbitrary large. Note that now the restricted
eigenvalue condition is much stronger since we require it to hold for any vector
of the form v = β̂d − β̃d,0 where β̃d,0 satisfies (2.1).

Proposition 3. Let β̂d be the LassoPSVM solution of (3.4) when μ = Aσ
√

log p
n

and D > 1. Let B0 be the true matrix of unknown coefficients. Assume X̃ †

satisfies a restricted eigenvalue condition for a constant φ1 > 0 with respect to
the true support for each d = 1, . . . , D:

1

n
|| X̃ †v ||22≥ φ2

1 || v ||22 ∀v ∈ R
p such that

|| v ||1> 0 and || vSc
d
||1≤ 3 || vSd

||1 .

For sufficiently large A and with ||Σ0β̃d,0||∞ > μ, ∀d = 1, . . . , D one has with
high probability

|| B̂(B̂
T

B̂)−1B̂
T −B0(B

T

0B0)
−1BT

0 ||F≤ C ′′

√
maxd (sd) log p

nφ2
1

where C ′′ is an arbitrary large constant.

Proof. First note that ∀d = d′ ∃ ι ∈ (0, 1) such that | cos(∠(β̂d; β̂d′))| ≤ ι
implying that any two estimated vectors are not orthogonal. This can easily be
shown by contradiction.
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Consider without loss of generality that D = 2. Then cos(θ) =
β̂

T
1β̂2

||β̂1||2||β̂2||2
=

aTb, where θ is the angle between the two component vectors β̂1 and β̂2 and
a and b are the unit vectors obtained after normalization. Suppose there exist
vectors a and b with a = b such that ||a||2 = ||b||2 = 1 and aTb = 1 which
implies the two vectors are orthogonal. This implies√

a21 + a22 = 1 ≡ a21 = 1− a22√
b21 + b22 = 1 ≡ b21 = 1− b22

a1b1 + a2b2 = 1 ≡ a1 =
1− a2b2

b1
.

These relations also imply that

1− a22 − b22 + a22b
2
2 = 1 + a22b

2
2 − 2a2b2

0 = (a2 − b2)
2

which holds as long as a2 = b2. Similarly one can arrive at a1 = b1, however
this is not allowed (due to our supposition), hence the contradiction.

Secondly, also by contradiction one can show that if ||Σ0β̃d,0||∞ > μ then

necessarily ||β̂d||∞ > 0 with high probability for it to be a solution of (3.4). This

implies further that the lengths of the vectors β̂d; d = 1, . . . , D are bounded
away from zero.

Suppose there exists a vector ||β̂d||∞ = 0 which is a LassoPSVM solution
when ||Σ0β̃d,0||∞ > μ. In light of Lemma 1 this happens iff

|| 1
n
(X̃ †)T(ỹ†d − X̃ †β̂d) ||∞ ≤ μ

|| 1
n
(X̃ †)TX̃ †β̃d,0 −

1

n
(X̃ †)TX̃ †β̂d||∞ ≤ μ

|| 1
n
(X̃ †)TX̃ †β̃d,0||∞ ≤ μ.

However when n → ∞, the LHS term approachesΣ0β̃d,0 for which ||Σ0β̃d,0||∞
> μ by assumption, whereas μ approaches 0. Hence the contradiction.

Using further Gram-Schmidt orthogonalisation, we can argue as in Lin et al.
(2019) that

|| B̂(B̂
T

B̂)−1B̂
T −B0(B

T

0B0)
−1BT

0 ||F

=||
D∑

d=1

β̂d(β̂
T

dβ̂d)
−1β̂

T

d −
D∑

d=1

βd,0(β
T

d,0βd,0)
−1βT

d,0 ||F

=||
D∑

d=1

β̂d(β̂
T

dβ̂d)
−1β̂

T

d −
D∑

d=1

β̃d,0(β̃
T

d,0β̃d,0)
−1β̃

T

d,0 ||F
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≤
D∑

d=1

||β̂d(β̂
T

dβ̂d)
−1β̂

T

d − β̃d,0(β̃
T

d,0β̃d,0)
−1β̃

T

d,0||F

≤ Dmax
d

(||β̂d(β̂
T

dβ̂d)
−1β̂

T

d − β̃d,0(β̃
T

d,0β̃d,0)
−1β̃

T

d,0||F )

≤ C ′′

√
maxd (sd) log p

nφ2
1

.

since D is fixed.

6. An inferential procedure based on desparsification

Following the steps of van de Geer et al. (2014), Zhang and Zhang (2014) and
Javanmard and Montanari (2014) one can also construct approximate confi-
dence intervals for the parameters β̃d,0 using the LassoPSVM procedure.

From the KKT conditions for Lasso, we have that β̂d satisfies

μν =
1

n
((X̃ †)Tỹ†d − (X̃ †)TX̃ †β̂d)

μν ∝ 1

n
(X̃ †)TX̃ †β̃d,0 −

1

n
(X̃ †)TX̃ †β̂d

μν ∝ S̃
†
(β̃d,0 − β̂d)

1

n
Θ̂((X̃ †)Tỹ†d − (X̃ †)TX̃ †β̂d) + β̂d ∝ β̃d,0

where Θ̂ is a relaxed version of the inverse of S̃
†
. This suggests the desparsified

estimator

b̂d =
1

n
Θ̂

(
1

4λ̂d

(X̃ †)T
H−1∑
h=1

(Ỹ
h �α)(Ỹ

h �α)TX †((X †)TX †)−1P Tη̂d −

(X̃ †)TX̃ †β̂d

)
+ β̂d.

The above expression used the approximation (X̃ †)Tỹ†d ∝ (X̃ †)TX̃ †βd. Equa-
tion (3.4) characterizes this approximation, in the sense that the model im-

plicitly assumes ỹ†d = X̃ †β̃d + ϕ where ϕ ∼ N(0, σ2
ϕI). From this perspective,

Theorems 2.1 and 2.2 from van de Geer et al. (2014) under their specified con-
ditions on the design, apply directly. As such, a hypothesis test for assessing
the relevance of variables in determining the sufficient direction can be set as
follows. For each component β̃d,j of the vector β̃d, where j = 1, . . . , p we test:

Hj
0 : β̃d,j = 0 versus

Hj
a : β̃d,j = 0.
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Under H0 we have that |√n b̂d,j/sj | ≤ Φ−1(1−α/2) with probability 1−α, with

s2j = ( 1nσ
2
ϕΘ̂(X̃ †)TX̃ †Θ̂

T

)j,j (i.e. the j-th element on the matrix diagonal) and

Φ(·) the standard normal cumulative distribution function. As σ2
ϕ is unknown,

we replace it by a consistent estimator.

7. Numerical studies

In this section we present the performance of our proposed procedure on simu-
lated and two gene expression real datasets as well as a phonetic dataset.

7.1. Simulation study: Frobenius loss performance

The performance of the LassoPSVM procedure has been investigated in a con-
trolled simulation study. We have benchmarked our procedure against LassoSIR
(Lin et al., 2019), as this procedure has been observed in practice to produce
competitive results and most importantly, it was designed for high-dimensional
data as it produces sparse estimators for the coefficient matrix B. Due to these
similarities, we argue that the two methods are directly comparable.

Performance for both competitors has been measured by a Frobenius loss
defined as:

Loss =|| B̂(B̂
T

B̂)−1B̂
T −B0(B

T

0B0)
−1BT

0 ||F
where B̂ represents the estimated coefficient matrix, B0 represents the true
coefficient matrix and || · ||F is the Frobenius norm. Smaller values for the loss,
denote a better performance.

Three data generating models have been used throughout the section, defined
as:

Model 1: Y = X1 +X2 + . . .+Xk + σε, where k = �2%p�;
Model 2: Y = X1/(.5 + (X2 + 1)2) + σε;
Model 3: Y = X1(X1 +X2 + 1) + σε;

Model 1 investigates the case of a linear, low or high-dimensional model
(depending on the value of p, the number of predictors), where the sparsity
coefficient (i.e. the number of active components) is set at 2% of the total number
of predictors. Models 2 and 3 investigate the very sparse, non-linear case. The
difference between model 1 and models 2 and 3 lies in the fact that model 1
needs one effective direction to model the central subspace, whereas models 2
and 3 need two distinct directions. The difference between models 2 and 3 is that
X1 affects both directions in model 3, while in model 2 there are two different
variables to define the two directions.

In each model X = (X1, . . . , Xp)
T ∼ N(0,Σ) where Σ = (σab) obeys a

Toeplitz structure with σab = ρ|a−b| and ρ ∈ {0, .5, .8}. This gave rise to three
different scenarios which range from uncorrelated to highly correlated predic-
tors. The errors ε followed ε ∼ N(0, 1) and σ ∈ {.5, 1}. From each model we
sampled n = 300 independent observations and p, the number of components,
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Fig 1. Simulation data. Frobenius loss (smaller is better) for LassoPSVM with Σ̂tn (x-axis)
and LassoSIR (y-axis) in panel (a) and LassoPSVM with S (y-axis) in panel (b). Values

above the main diagonal show a better performance of LassoPSVM with Σ̂tn . Each symbol
represents the empirical median of 300 repetitions from a scenario and the results of 144
different scenarios are plotted.

was set to p ∈ {100, 500, 1000, 2000}, while the number of slices was set to
H ∈ {5, 20}. Using each distinct value of the different data generating parame-
ters, 144 different simulation scenarios have been created and for each scenario
300 independent repetitions from the same generating process were performed.

For both competitors a 10-fold cross-validation scheme has been used for se-
lecting the tuning parameter μ that dictates the sparsity level of the coefficients
β̂ and both competitors have been given information about the true number of
directions needed to model the data.

As pointed out at the end of Section 4, in the first step of the algorithm one
needs an estimator of the covariance matrix Σ. We have investigated further
in this section two estimators: (i) the sample covariance matrix S and (ii) the
thresholded estimator of Bickel and Levina (2008). For the thresholded estima-

tor of the Σ matrix, i.e. Σ̂tn , the thresholding level was set to tn = M
√
log p/n

where M = .1 was used. A cross-validation strategy can be used here as well to
select M , but from our experiments we have observed that this value performed
satisfactorily.

Figure 1 presents the obtained results. In the plot each symbol represents the
empirical median over the 300 repetitions for each of the 144 scenarios and it
suggests that LassoPSVM provided similar or better results in a large majority
of different scenarios when compared to the LassoSIR procedure. In only a
small number of scenarios, the performance seemed to be slightly worse than
that of LassoSIR. Panel (b) illustrates that using the thresholded estimator or
the empirical estimator leads to similar conclusions, probably due to the choice
of the thresholding level tn.

To illustrate the benefits of using the thresholded estimator rather than the
empirical covariance matrix, we plot in Figure 2 the difference between Σ̂tn and
the true Σ, and between S and Σ in Frobenius norm. The difference is plotted
as a function of M for a particular configuration where n = 300, p = 100,
H = 5, σ = 0.5, ρ = .8 and Model 3 is used as a data generating process,
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Fig 2. Simulation data. Frobenius loss (smaller is better) of the difference between Σ̂tn and the
true Σ and between S and Σ. Each symbol represents the empirical median of 300 repetitions
from the same scenario where only the value M changes.

which in principle favors the empirical covariance estimator, as the example is
low-dimensional and enjoys a high signal to noise ratio. As the figure illustrates,
for higher values of the thresholding parameter, the accuracy of reconstructing
the true underlying Σ increases for Σ̂tn relative to the empirical covariance
estimator. Similar trends have been observed for other different configurations
of parameters, but are not reported here.

We ‘zoom in’ further on the performance of the methods as a function of
the data generating parameters in Figure 3. The figure suggests that under the
non-linear models 2 and 3, the LassoPSVM is better equipped at identifying
the effective directions in the data than the LassoSIR. The same holds for the
settings where Σ = I and p = 100 for which LassoPSVM always provided
comparable or better performance. For all other values of the data generating
parameters, the performance of the LassoPSVM is generally better (by which
we mean that the number of settings where it outperforms, is larger than the
number of settings where it underperforms) than that of LassoSIR, but for
all these cases we could identify a few settings where the LassoSIR is better
performing than LassoPSVM.

To conclude this section, we remark that the simulation study suggests that
none of the techniques is uniformly better than the other one, but in general Las-
soPSVM provided better results for more settings than LassoSIR. LassoPSVM
proved thus to be a worthy competitor to LassoSIR in a controlled, finite sample
setting.

7.2. Simulation study: Type I error and power

In this section we evaluate the Type I error rate and power of the hypothesis test
proposed in Section 6 with significance level α = 5%. We consider the models:

Model 4: Y = X1 +X2 +X3 +X4 +X5 + σε,
Model 5: Y = X1(X1 +X2 +X3 +X4 +X5 + 0.5) + σε,
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Fig 3. Simulation data. Results of the 144 scenarios split by values of p, model, values of ρ,
σ and H.

where the total number of predictors p takes values in the set {500, 1000},
σ ∈ {.5, 1} and ε ∼ N(0, 1). The vector X ∼ N(0,Σ) where σab = ρ|a−b| with
ρ ∈ {0, .5, .8}. We sampled n = 300 independent observations, while the number
of slices was set to H = 5 and 20.

We evaluate the performance of the test by the average empirical power and
average empirical Type I error defined as:

PowerS0 =
1

|S0|
∑
k∈S0

P (Reject Hk
0 |Hk

a )
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Fig 4. Heatmap of the predictor gene expression levels for the Scheetz et al. (2006) dataset
(left panel) and for the Bühlmann et al. (2014) dataset (right panel).

Type ISc
0
=

1

p− |S0|
∑
k∈Sc

0

P (Reject Hk
0 |Hk

0 )

where S0 and Sc
0 are the sets of active/non-active components.

Model 4 investigates the case of a linear, high-dimensional model where five
components of the total number of predictors are active and where one suffi-
cient direction is needed to model the underlying signal. Model 5 investigates
the sparse, non-linear case where one needs two distinct directions to model
the underlying signal. For model 5 only the first component is active for the
first direction and the first 5 components are active for the second direction.
The competitor procedures used in this section are the desparsified LassoPSVM
with S and Σ̂tn and the desparsified Lasso (van de Geer et al., 2014). For Las-

soPSVM with Σ̂tn a data splitting approach as suggested in Bickel and Levina
(2008) was repeated 10 times on a grid of 10 different values in order to select
an optimal thresholding level tn.

Table 1 presents the obtained results and it suggests that both competitors
control well the average type I error rate at the target level of 5%. For model 4,
the average power with respect to the specified alternative seems to decrease as
ρ and H increase when p = 500, but seems to be comparable to that of Lasso
for p = 1000. For the non-linear model 5, LassoPSVM captures much better the
important variable for the first direction, while being slightly less powerful than
the Lasso with respect to the components active on the second direction. As
the model is highly non-linear the obtained powers are lower than in the case of
model 4 and increasing the correlation between predictors severely reduces the
performance of the tests. Overall, using LassoPSVM with S or Σ̂tn provided
very close results.

7.3. Applications to real data: the continuous case

In this section we discuss the application of the LassoPSVM procedure to two
real datasets. The first dataset we analyse is a simplified version of the ‘Eye’
gene expression data from Scheetz et al. (2006). The data contain information
about the expression level of p = 200 genes (predictors) for a total of n = 120
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Table 1. Simulation data. PowerS0 (top panels) and Type ISc
0
(bottom panels) for desparsified LassoPSVM with S and Σ̂tn and desparsified Lasso.

Model 4 Model 5

S Σ̂tn Desp.Lasso S Σ̂tn Desp.Lasso
d = 1 d = 2 d = 1 d = 2

p σ

�����ρ
H 5 20 5 20 5 20 5 20 5 20 5 20

500 .5 0 100 100 100 100 100 69 69 19 19 70 69 19 19 23
500 .5 .5 99 94 99 94 100 40 44 12 13 40 44 12 13 18
500 .5 .8 56 33 56 33 100 22 22 8 8 21 22 8 8 11
500 1 0 100 100 100 100 100 65 65 19 19 65 64 20 19 23
500 1 .5 100 96 100 96 100 37 39 11 12 37 39 12 12 17
500 1 .8 86 37 86 36 99 20 21 7 7 20 22 7 7 11

1000 .5 0 100 100 100 100 100 69 70 20 20 68 70 20 19 22
1000 .5 .5 100 100 100 100 100 40 40 13 13 38 39 13 13 16
1000 .5 .8 98 98 98 98 100 20 21 9 9 20 21 8 9 11
1000 1 0 100 100 100 100 100 69 70 19 19 70 69 19 19 23
1000 1 .5 100 100 100 100 100 40 41 13 13 41 41 13 13 18
1000 1 .8 95 98 94 98 100 23 23 9 9 22 23 9 9 11

500 .5 0 4.9 4.9 4.9 5.1 4.9 5.0 5.0 5.0 5.0 5.1 5.0 5.1 5.0 5.1
500 .5 .5 4.8 4.6 4.8 4.7 4.9 4.9 4.9 4.9 4.9 5.0 5.0 5.0 5.0 5.1
500 .5 .8 4.7 4.7 4.7 4.7 4.9 4.9 5.0 4.9 5.0 4.9 5.0 4.9 5.0 5.0
500 1 0 4.8 4.8 4.9 4.9 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
500 1 .5 4.9 4.6 5.0 4.6 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
500 1 .8 4.8 4.7 4.8 4.7 4.9 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

1000 .5 0 4.9 4.9 5.0 5.0 5.0 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 5.0
1000 .5 .5 4.9 4.9 5.0 5.0 5.0 5.0 5.1 5.0 5.1 5.0 5.1 5.0 5.1 5.0
1000 .5 .8 4.9 5.0 4.9 5.0 5.0 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 5.1
1000 1 0 5.0 4.9 5.1 5.1 5.0 5.0 4.9 5.0 4.9 5.0 4.9 5.0 4.9 5.0
1000 1 .5 5.0 4.9 5.0 4.9 5.0 4.9 5.0 4.9 5.0 5.0 5.0 5.0 5.0 5.0
1000 1 .8 4.9 4.9 5.0 4.9 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
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Table 2

LOO and SdLOO for LassoPSVM and LassoSIR for the ‘Eye’ and ‘Riboflavin’ datasets.

H = 3 H = 5 H = 10

LassoPSVM d = 1 70.56 (1.87) 70.56 (1.87) 70.56 (1.87)
d = 2 70.56 (1.87) 70.56 (1.87) 70.56 (1.87)

E
y
e

LassoSIR d = 1 70.41 (1.85) 70.22 (1.87) 69.07 (1.82)
d = 2 70.46 (1.86) 69.88 (1.91) 67.56 (1.85)

LassoPSVM d = 1 52.10 (13.92) 52.08 (13.92) 52.13 (13.94)
d = 2 52.11 (13.93) 52.07 (13.92) 52.12 (13.93)

LassoSIR d = 1 52.07 (13.92) 52.08 (13.90) 51.88 (13.80)

R
ib
o
fl
av

in

d = 2 52.11 (13.95) 52.26 (13.95) 52.28 (14.08)

rats, while the response is represented by the expression level of the TRIM32
gene for all rats. The second dataset we analyse is the ‘Riboflavin’ dataset from
Bühlmann et al. (2014) which contains information regarding the riboflavin pro-
duction by Bacillus subtilis. Information for n = 71 observations on p = 4088
predictors (gene expressions) and a one-dimensional response (riboflavin pro-
duction) is recorded. Both datasets are freely provided in the R-based packages
flare and hdi. A visual inspection of the information in these two datasets is
offered in Figure 4.

We evaluate LassoPSVM and LassoSIR with respect to leave-one-out average
mean square prediction error and average standard deviation defined as

LOO =
1

D

D∑
d=1

(
1

n

n∑
i=1

Erri,d)

SdLOO =
1

D

D∑
d=1

(
1

n− 1

n∑
i=1

(Erri,d − Erri,d)
2)

where Erri,d = (yi−xT
i β̂d,(−i))

2 and Erri,d = 1
n

∑n
i=1 Erri,d. The values yi and xi

represent the observed values for the response and the vector of gene expression
levels for the i-th case and β̂d,(−i) is the d-th estimated direction, when the i-th
case is excluded from the training sample.

Table 2 presents the obtained results when D (the number of directions)
takes values in the set {1, 2} and H (the number of slices) takes values in
the set {3, 5, 10} for both the LassoPSVM and LassoSIR techniques. It sug-
gests that both techniques provide very similar results for the two datasets,
thus showing that the proposed procedure is a worthy competitor to the Las-
soSIR procedure. Moreover, for LassoPSVM a BIC-type criterion as proposed in
Artemiou and Dong (2016) suggests that D = 1 provides best results for both
datasets and as such allowing for a larger number of directions does not sensibly
improve its performance, which is confirmed by the results seen in the table.

To illustrate the usefulness of the testing procedure proposed in Section 6,
we present in Table 3 the selected variables when a Bonferroni correction is
applied to maintain a FWER of 10% and when LassoPSVM is compared to
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Table 3

Selected variables by desparsified LassoPSVM, desparsified Lasso and Kernel HD SIM for
the ‘Eye’ dataset. All procedures use a Bonferroni correction to maintain the FWER at 10%.

Variable Label Desp. LassoPSVM Desp. Lasso Kernel HD SIM
H = 3 H = 5 H = 10

87 x x x
96 x x x
102 x
140 x x
153 x x x x
174 x
180 x
200 x x

the desparsified Lasso and the desparsified kernel-based procedure for high-
dimensional linear single index models of Gueuning and Claeskens (2016). The
Eye dataset is used as example. The table illustrates that variables 87, 140, 153
and 200 are selected by multiple techniques, while variables 96, 102, 174 and
180 are selected by one technique, but not the others. Moreover, variable 153 is
deemed important by all three competitors.

7.4. Applications to real data: the discrete case

In this section we discuss the application of the LassoPSVM procedure to
the dataset of Tsanas et al. (2014) from the UC Irvine repository available at
https://archive.ics.uci.edu/ml/datasets/LSVT+Voice+Rehabilitation.

The dataset consists of n = 126 samples and p = 309 features, and the aim is
to assess whether voice rehabilitation treatment leads to phonations considered
‘acceptable’ or ‘unacceptable’ (a binary classification problem).

We evaluate LassoPSVM and LassoSIR with respect to Sensitivity, Specificity
and F1 score defined as: Sensitivity = A/(A+C); Specificity = D/(B+D); and
F1 = 2PR/(P +R), where P = A/(A+B), R = Sensitivity and the counts A,
B, C and D come from the below classification table:

����������Predicted
Observed

Acceptable Unacceptable

Acceptable A B
Unacceptable C D

The predicted class is obtained for each case in a leave-one-out scheme when
the training set uses all cases but the i-th case to make a prediction for the i-th
case. To maintain comparability, we use the same strategy as proposed in the
work of Lin et al. (2019): we first standardize each feature, apply LassoSIR and

LassoPSVM to identify the directions B̂ and the corresponding components,
followed by a logistic regression model on the training dataset, after which the

https://archive.ics.uci.edu/ml/datasets/LSVT+Voice+Rehabilitation.
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Table 4

Sensitivity, Specificity and F1 values for LassoPSVM and LassoSIR for the ‘LSVT Voice
Rehabilitation’ dataset.

LassoPSVM LassoSIR

S Σ̂tn

Sensitivity .80 .88 .80
Specificity .85 .83 .83

F1 .76 .79 .76

probability for the left out case to belong to the acceptable/unacceptable class is
calculated. Table 4 presents the obtained results whenD = 1 andH = 2 for both
the LassoPSVM and LassoSIR techniques. It illustrates that both techniques
provide very similar results for the classification problem, thus showing again
that the proposed procedure is a worthy competitor to LassoSIR.

8. Discussion

In this paper we have introduced a new method for sufficient dimension reduc-
tion which allows handling ‘small n, large p’ problems. The proposed method is
based on an SVM framework for SDR, in conjunction with the use of a principal
projections framework in order to avoid the singularity of the covariance ma-
trix. The method outputs sparse directions and this is achieved by penalizing a
transformed objective function with an �1 penalty. The method’s performance
is assessed on simulated and real datasets, where it provides in the majority of
cases similar or better results than a state-of-the-art, direct competitor.

The method is flexible enough that it admits extensions in multiple direc-
tions, but probably the most interesting extension would be towards non-linear
settings as framed in model (1.2). At first sight, connections with the Kernel
PCA methods are directly exploitable, but a thorough treatment of the subject
is topic for future research.
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