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Abstract
Neurofibromatosis type 1 (NF1) is the most frequent disorder associated with multiple café-au-lait macules (CALM) which 
may either be present at birth or appear during the first year of life. Other NF1-associated features such as skin-fold freckling 
and Lisch nodules occur later during childhood whereas dermal neurofibromas are rare in young children and usually only 
arise during early adulthood. The NIH clinical diagnostic criteria for NF1, established in 1988, include the most common 
NF1-associated features. Since many of these features are age-dependent, arriving at a definitive diagnosis of NF1 by employ-
ing these criteria may not be possible in infancy if CALM are the only clinical feature evident. Indeed, approximately 46% 
of patients who are diagnosed with NF1 later in life do not meet the NIH diagnostic criteria by the age of 1 year. Further, 
the 1988 diagnostic criteria for NF1 are not specific enough to distinguish NF1 from other related disorders such as Legius 
syndrome. In this review, we outline the challenges faced in diagnosing NF1 in young children, and evaluate the utility of 
the recently revised (2021) diagnostic criteria for NF1, which include the presence of pathogenic variants in the NF1 gene 
and choroidal anomalies, for achieving an early and accurate diagnosis.

Introduction

Neurofibromatosis type 1 (NF1, MIM#162200) is an auto-
somal dominant inherited genodermatosis and tumour pre-
disposition syndrome with an incidence of 1:3000 (Lammert 
et al. 2005). NF1 is caused by pathogenic variants in the NF1 
gene on chromosome 17q11.2 and characterized by skin pig-
mentation anomalies such as café-au-lait macules (CALM) 
and skin-fold freckling, as well as dermal neurofibromas. 
Additionally, NF1 patients frequently have Lisch nodules, 
learning disabilities, attention deficits, hyperactivity, skel-
etal abnormalities, plexiform neurofibromas and optic path-
way gliomas. The criteria for the diagnosis of NF1 were 
established by a National Institutes of Health (NIH) Con-
sensus Conference in 1988 (Neurofibromatosis: conference 

statement: National Institutes of Health Consensus Develop-
ment Conference 1988). They comprise the most common 
clinical features observed in NF1 (Table 1). Two or more 
of the 7 listed criteria must be met in a given individual for 
a definitive diagnosis of NF1 to be made. These diagnostic 
criteria have been widely used in the clinical routine since 
their original formulation in 1988. However, the discovery 
of other genetic disorders with clinical symptoms overlap-
ping those of NF1 made the revision of these criteria neces-
sary (Legius et al. 2021). The diagnostic criteria were also 
revised to facilitate the diagnosis of NF1 in young children 
who present with isolated CALM but no other disease mani-
festations or a family history of NF1 and hence do not meet 
the strict 1988 clinical diagnostic criteria. The revised diag-
nostic criteria for NF1 were published recently as an inter-
national consensus recommendation (Table 1) (Legius et al. 
2021). They include the detection of a pathogenic variant in 
the NF1 gene as a diagnostic criterion which allows for an 
early diagnosis of NF1 in oligosymptomatic children with-
out a family history of the disease. The revised diagnostic 
criteria for NF1 also include choroidal anomalies as a new 
ophthalmic symptom with high sensitivity and specificity for 
NF1 which may facilitate the diagnosis of NF1 particularly 
in young oligosymptomatic children.
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In this review, the challenges presented by the diagno-
sis of NF1 in young children are outlined, and the utility 
of the recently revised diagnostic criteria for NF1 (which 
include genetic testing) for overcoming these problems, are 
discussed.

Challenges in the diagnosis of NF1 in young 
children and how the revised diagnostic 
criteria can help

The vast majority of adult patients with NF1 meet the 1988 
clinical diagnostic criteria listed in Table 1. The diagnosis 
of NF1 may however be more difficult in infants or toddlers 
if they present with isolated CALM and have no family his-
tory of the disease. Many NF1-associated features are age-
dependent. The first symptoms are generally CALM which 
may be present at birth or occur in the first year of life, often 
in the absence of other disease features. In the first year of 
life, multiple CALM are present in at least 82% of infants 

later diagnosed with NF1 (Huson et al. 1989). After CALM, 
the second most common feature in NF1 is axillary and/or 
inguinal freckling (Korf 1992; Nunley et al. 2009). However, 
axillary or inguinal freckles usually occur in children older 
than 2–3 years of age (Huson et al. 1989; Cnossen et al. 
1998). Lisch nodules are present in the majority of adults 
with NF1, but only 5% of children younger than 3 years pos-
sess them (Lubs et al. 1991). Dermal neurofibromas fre-
quently appear during puberty or young adulthood but are 
only very rarely detected in children younger than 3 years of 
age. Of the children with isolated CALM at initial presenta-
tion who are eventually diagnosed as having NF1, 76% meet 
the clinical NIH NF1 criteria by the age of 4 years, whereas 
94% meet the criteria by the age of 6 years, and 97–100% 
by the age of 8 years (DeBella et al. 2000; Nunley et al. 
2009). However, approximately 46% of sporadic NF1 cases 
fail to meet the 1988 clinical diagnostic criteria by the age 
of 1 year (DeBella et al. 2000). Only by the age of 6–8 years 
do most children with NF1 meet the 1988 clinical diagnosis 
criteria (DeBella et al. 2000; Nunley et al. 2009). Until this 

Table 1   Comparison of the NIH diagnostic clinical criteria for NF1 from 1988 with the newly revised NF1 diagnostic criteria according to 
Legius et al. (2021)

a Legius et al. (2021) Revised diagnostic criteria for neurofibromatosis type 1 and Legius syndrome: an international consensus recommendation. 
Genet Med 23:1506–1513
b Neurofibromatosis: conference statement: National Institutes of Health Consensus Development Conference (1988) Arch Neurol 45:575–578
c If only café-au-lait macules and freckles are present, the diagnosis is most likely NF1 but exceptionally the individual might have another diag-
nosis such as Legius syndrome. At least one of the two pigmentary findings (café-au-lait macules or freckles) must be bilateral
d Sphenoid wing dysplasia is not a separate criterion in case of an ipsilateral orbital plexiform neurofibroma
e Thinning of the long bone cortex turned out not to be the primary lesion. Instead, anterolateral bowing of the lower limb and medullary canal 
narrowing as well as cortical thickening in the tibia and/or fibula is observed. Therefore, the orthopaedic criterion has been rephrased accord-
ingly
f In the revised diagnostic criteria, only an affected parent but not affected siblings and offspring qualify as a criterion for NF1. If only siblings 
are affected, the diagnosis of CMMRD is possible. ‘Offspring’ was omitted because if an adult person has only one diagnostic criterion and one 
offspring meeting the diagnostic criteria, mosaic NF1 cannot be excluded
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age, a definitive diagnosis of NF1 may not be possible, a 
shortcoming that may well impede treatment and risk strati-
fication. Earlier diagnosis of NF1 may be beneficial to both 
the affected children and their families. Genetic counselling 
could be offered to parents and other relatives earlier, and 
therapeutic interventions for learning disabilities, develop-
mental problems or other complications could be initiated 
sooner (Cnossen et al. 1997).

Another problem is that the 1988 clinical diagnostic 
criteria for NF1 are not specific if children exhibit only 
CALM and skin-fold freckling. Other conditions such as 
Legius syndrome (MIM#611431) or constitutional mismatch 
repair deficiency (CMMRD, MIM#276300) are also associ-
ated with these clinical manifestations in children (Brems 
et al. 2007; Wimmer et al. 2017; Suerink et al. 2019; Perez-
Valencia et al. 2020). These disorders are caused by patho-
genic variants in genes other than NF1 and are associated 
with quite different disease courses. Legius syndrome is 
caused by pathogenic variants of the SPRED1 gene whereas 
CMMRD is caused by pathogenic variants in one of four 
mismatch repair genes, namely MLH1, MSH2, MSH6 or 
PMS2 (Brems et al. 2007; Wimmer et al. 2017).

In the following, the most frequent and less frequent NF1-
associated features in young children at risk of having NF1 
are presented in greater detail.

Frequent diagnostic features in children 
with NF1

Café‑au‑lait macules (CALM)

One or 2 CALM occur in 2.5% of infants (< 1 year old) 
without a known underlying disorder (Alper et al. 1979). 
However, the presence of more than 3 CALM is rare, being 
detected in only 0.4% of healthy children ≤ 11 years of age 
(Whitehouse 1966; Alper et al. 1979; Burwell et al. 1982) 
(Table 2). NF1 is the most frequent disorder associated with 
the occurrence of more than 5 CALM (Lalor et al. 2020).

In children presenting with isolated CALM at the time 
of first investigation, the predictive value of CALM for 

the diagnosis of NF1 has been assessed in several studies 
(DeBella et al. 2000; Nunley et al. 2009; Ben-Shachar et al. 
2017). These analyses indicated that the higher the number 
of CALM, the more likely it is that a child has indeed NF1. 
According to the study of Ben-Shachar et al. (2017), 79% of 
children younger than 14 months with ≥ 6 isolated CALM 
and no other disease features were diagnosed with NF1 
later in life as additional clinical features of NF1 became 
apparent. If comprehensive genetic testing for pathogenic 
NF1 variants was applied, 88.4% of children younger than 
14 months with ≥ 6 isolated CALM were diagnosed with 
NF1 (Ben-Shachar et al. 2017). By contrast, none of the chil-
dren younger than 14 months of age with fewer than 6 iso-
lated CALM were diagnosed with NF1, at least according 
to the clinical diagnostic criteria.  However, 16% of these 
children were diagnosed with NF1 by means of genetic 
testing (Ben-Shachar et al. 2017). These findings indicate 
two important points: First, the presence of ≥ 6 CALM 
greatly increases the likelihood that children younger than 
14 months have NF1. The risk for children with fewer than 
6 CALM appears to be significantly lower, as confirmed 
by other studies (Korf 1992; Nunley et al. 2009). Further, 
these findings indicate that comprehensive genetic testing for 
pathogenic NF1 variants increases the proportion of children 
presenting with isolated CALM, who can be diagnosed with 
NF1, by at least 10–16%. Thus, including the detection of a 
pathogenic NF1 variant among the revised diagnostic crite-
ria has been very important in facilitating the early diagnosis 
of NF1 in this subgroup of children (Legius et al. 2021) 
(Table 1). This conclusion has been confirmed by the results 
of the studies of Guigliano et al. (2019) and Castellanos 
et al. (2020) as summarized in Table 3.

In addition to the number of CALM, the age of the child 
may also be an important factor in terms of a putative diag-
nosis of NF1. None of 50 children with fewer than 6 CALM 
who were 29 months or older were given a diagnosis of 
NF1 on the grounds that they did not have a pathogenic NF1 
variant or did not meet the 1988 clinical diagnostic criteria 
(Ben-Shachar et al. 2017).

In addition to the number of CALM, their morphological 
appearance is also of some predictive value in determining 

Table 2   Number of café-au-lait macules (CALM) in infants (< 1 year) and older children without a known underlying disorder as determined in 
3 different studies

Alper et al. (1979) Whitehouse (1966) Burwell et al. (1982)

Age of children analysed Newborn–1 year 1 Month–5 years 4–11 years
Total number of children 4641 365 542 Σ = 5548
Children with 1 CALM 88 (1.9%) 69 (18.9%) 146 (26.9%) Σ = 303 (5.5%)
Children with 2 CALM 26 (0.6%) 15 (4.1%) 30 (5.5%) Σ = 71 (1.3%)
Children with 1 or 2 CALM 114 (2.5%) 84 (23%) 176 (32%) Σ = 374 (6.7%)
Children with ≥ 3 CALM 10 (0.2%) 1 (0.3%) 11 (2%) Σ = 22 (0.4%)
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whether a child is at higher or lower risk of having NF1. 
Typical CALM present with homogeneous pigmentation 
and regular borders. By contrast, atypical CALM exhibit 
irregular margins and ragged borders. Children who were 
29 months or older with atypical CALM had a very low risk 
of having molecularly or clinically confirmed NF1 (Ben-
Shachar et al. 2017). Furthermore, patients with NF1 who 
were found to harbour pathogenic NF1 variants had atypi-
cal CALM six-fold less frequently than individuals with-
out pathogenic NF1 variants (Ben-Shachar et al. 2017). 
This concurs with the results of Nunley et al. (2009) who 
observed that 47% of children with isolated typical CALM 
were diagnosed as having NF1 later in life by means of 
clinical criteria, whereas only 5% of children with atypical 
CALM developed NF1. Comprehensive genetic testing for 
pathogenic NF1 variants, as included now in the revised 
criteria for NF1, may facilitate the diagnosis in patients with 
atypical CALM in the absence of further NF1-associated 
disease features.

Skinfold freckling

Axillary and inguinal freckles are generally 1–3 mm in 
diameter and appear as tiny brown spots, often in groups. 
In contrast to CALM, these freckles become apparent later 
in childhood. The youngest patients exhibiting freckles are 
2–3 years old (Huson et al. 1989; Cnossen et al. 1998). In 
children suspected of having NF1 on the grounds that they 
exhibit ≥ 6 isolated CALM at initial presentation, the second 

most common disease feature used to establish the diagnosis 
of NF1 is axillary and/or inguinal freckling, occurring in 
77% of patients (Nunley et al. 2009). By the age of 6 years, 
81% of patients with NF1 exhibit freckling and by the age 
of 7 years almost 90% have freckling (Obringer et al. 1989; 
DeBella et al. 2000). Since freckles usually become vis-
ible only after the age of 2–3 years, they do not facilitate 
the diagnosis in younger children presenting with isolated 
CALM and no family history of NF1. Until the appearance 
of skin-fold freckling in this group of children, a definitive 
diagnosis of NF1 is not possible without molecular testing 
for a pathogenic NF1 variant.

Lisch nodules

Lisch nodules are benign hamartomas of the iris. Isolated 
Lisch nodules are very rarely seen in individuals from the 
general population (reviewed by Cassiman et al. 2013). By 
contrast, the vast majority of adult NF1 patients have mul-
tiple Lisch nodules (Huson et al. 1989; Lubs et al. 1991). 
Hence, Lisch nodules are a highly specific diagnostic crite-
rion (Lubs et al. 1991). It has been shown that light irides 
harbour significantly more Lisch nodules than dark irides 
what may be explicable in terms of the photo-protective 
effects of pigmentation (Boley et al. 2009). Furthermore, 
Lisch nodules are primarily located in the inferior hemi-
field (half) of the iris, irrespective of its colour. These find-
ings suggest that UV radiation and DNA damage may play 
a role in the pathogenesis of Lisch nodules (Boley et al. 

Table 3   Studies that have investigated children with isolated CALM but no other NF1-associated disease features and without an affected first-
degree relative by means of comprehensive genetic testing of the NF1 gene (and the SPRED1 gene)

a In addition to 34 pathogenic NF1 variants, 7 patients with missense NF1 variants of unknown significance (VUS) were identified. Thus, the 
total number of NF1 variants identified was N = 41 (57.8%)
b In addition to 3 pathogenic SPRED1 variants, two patients with SPRED1 variants of unknown significance (VUS) were identified. Thus, the 
total number of SPRED1 variants identified was N = 5 (7%)
c In this study, patients under suspicion of segmental NF1 were excluded but children were not tested for possible generalized mosaic NF1

Total number of 
patients investi-
gated

Age of the patients Number 
of CALM

Number of patients 
with pathogenic vari-
ants in the NF1 gene

Number of patients 
with pathogenic vari-
ants in the SPRED1 
gene

Number of patients 
without a pathogenic 
variant

References

44  ≤ 9 Years  ≥ 6 28 (63.6%) 1 (2.3%) 15 (34.1%) Giugliano et al. 
(2019)

71 0–7 Years (N = 42);
 > 7 Years (N = 8);
age unknown 

(N = 21)

 ≥ 6 34 (47.9%)a 3 (4.2%)b 25 (35.2%) Castellanos et al. 
(2020)

95  ≤ 14 Months  ≥ 6 84 (88.4%) Not investigated 11 (11.6%) Ben-Shachar et al. 
(2017)c

65  > 14 Months 
and ≤ 29 months

 ≥ 6 45 (69.2%) Not investigated 20 (30.8%) Ben-Shachar et al. 
(2017)c

38  ≤ 14 Months  < 6 6 (15.8%) Not investigated 32 (84.2%) Ben-Shachar et al. 
(2017)c
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2009). Although Lisch nodules appear during childhood, 
only 5% of children younger than 3 years have them (Lubs 
et al. 1991). The estimated prevalence of Lisch nodules is 
42% among children with NF1 who are 3–5 years old and 
55% in children aged 5–6 years (Lubs et al. 1991). Another 
study has reported Lisch nodules in 52% of children with 
NF1; the mean age at presentation of Lisch nodules in these 
patients was 8.8 years with a standard deviation of 3.6 years 
(Cnossen et al. 1998). Thus, Lisch nodules are an important 
diagnostic feature of NF1 in older children but may not allow 
for a definitive diagnosis of NF1 in infants with multiple 
CALM. Lisch nodules are not however observed in patients 
with Legius syndrome and hence may facilitate the differ-
ential diagnosis by means of clinical criteria.

Choroidal anomalies

Fundus examination by means of near-infrared reflectance 
with a scanning laser ophthalmoscope (NIR) and ocular 
coherence tomography (OCT) have indicated that choroi-
dal anomalies are frequent in patients with NF1 (Yasunari 
et al. 2000; Viola et al. 2012; Goktas et al. 2014; Parrozzani 
et al. 2015; Vagge et al. 2015; Cassiman et al. 2017; Tucci 
et al. 2017). Choroidal anomalies appear as ovoid, bright 
patches or nodules consisting of proliferating Schwann cells 
and melanocytes arranged in concentric rings around axons 
(Viola et al. 2012). Choroidal involvement has previously 
been considered to be a rare finding in NF1, due to the fact 
that these lesions are asymptomatic and not detectable by 
conventional ophthalmoscopy or fluorescein angiography.

The presence and number of choroidal anomalies (CA) 
is age-dependent; their prevalence is lower in children 
with NF1 than in adults with the disease. Whilst CA are 
observed in 86–100% of adult NF1 patients (Yasunari et al. 
2000; Viola et al. 2012), the prevalence of CA in children 
with NF1 younger than 12 years is 60.5–78.9% (Viola et al. 
2012; Goktas et al. 2014; Parrozzani et al. 2015; Vagge et al. 
2015).

CA appear to be as frequent as, or even more frequent 
than, Lisch nodules in children with NF1 (Viola et  al. 
2012; Parrozzani et al. 2015). Most importantly, CA can 
be detected in children as young as 2 years of age (Vagge 
et al. 2015). By contrast, in many children with NF1, Lisch 
nodules appear only later, around the age of 3–5 years (Lubs 
et al. 1991).

CA are only rarely detected or not all in healthy controls 
(Viola et al. 2012; Goktas et al. 2014; Parrozzani et al. 2015; 
Vagge et al. 2015; Cassiman et al. 2017). If CA are present 
in healthy controls, they represent single lesions (Cassiman 
et al. 2017). In NF1 patients, CA are generally present as 
multiple lesions; 56% of patients exhibit more than 4 CA 
(Cassiman et al. 2017). Multiple CA are not detected in 
patients with Legius syndrome (Cassiman et al. 2017; Tucci 

et al. 2017) and only two of 19 patients with Legius syn-
drome were found to have a single choroidal anomaly (Cas-
siman et al. 2017; Tucci et al. 2017). These findings imply 
that CA are very rare in patients with Legius syndrome and 
may represent an important distinguishing diagnostic fea-
ture. Further, since CA are present at an early stage, they 
may facilitate the diagnosis of NF1 in children with isolated 
CALM who do not meet the 1988 clinical diagnostic criteria. 
Therefore, CA have been included in the revised criteria for 
the diagnosis of NF1 (Table 1) (Legius et al. 2021). The 
NIR method is non-invasive and generally well tolerated by 
children. However, the success of the investigation is very 
much dependent upon the degree of cooperation given by 
the child. Parrozzani et al. (2015) investigated 160 children 
with a mean age of 8 years (range 2–13 years) by means of 
NIR and the feasibility rate was found to be 82%. Of these 
160 children, 119 were already diagnosed with NF1 since 
they met the clinical diagnostic criteria and 72 (60.5%) of 
them had CA. The remaining 41 children were suspected to 
have NF1 although they did not meet the NIH criteria. One 
of them was a 2-year old boy with more than 5 CALM but 
no other symptoms of NF1. Since this boy had CA, he was 
diagnosed with NF1. Likewise, Vagge et al. (2015) detected 
CA in a 2-year old child, indicative of the early appearance 
of this diagnostic feature of NF1. So far, there are no indica-
tions for the assumption that CA would cause clinical com-
plications during the course of the disease. Since CA have 
a high specificity and sensitivity for NF1, they have been 
added as an ophthalmic criterion to the revised diagnostic 
criteria for NF1 (Legius et al. 2021) (Table 1).

Plexiform neurofibromas and optic pathway 
gliomas

Plexiform neurofibromas (PNFs) are congenital lesions 
characterized by tumour cells that spread along multiple 
fascicles of the nerve, leading to a diffuse mass of thick-
ened nerve fibres embedded within a proteinaceous matrix. 
PNFs may be located superficially and/or internally and 
hence only detectable by MRI scans, particularly in young 
children. The estimated prevalence of externally visible or 
palpable plexiform neurofibromas (but not internal PNF) in 
children with NF1 is 26.6–30% (Huson et al. 1989; Cnos-
sen et al. 1998; Prada et al. 2012). Whole-body MRI of 65 
children and adolescents with NF1 aged between 1.7 and 
17.6 years indicated that 37 (57%) had internal PNF which 
were asymptomatic in 20 (31%) of the patients (Nguyen 
et al. 2011). In approximately 50% of all children with PNF, 
the age at clinical identification of the tumours is 0–3 years 
(Prada et al. 2012). Since PNFs occur in the vast majority 
of cases in the context of NF1, they are a rather specific 
diagnostic criterion for NF1.



182	 Human Genetics (2022) 141:177–191

1 3

Optic pathway gliomas (OPGs) are low grade astrocy-
tomas observed in 14–20% of patients with NF1 as deter-
mined by neuroimaging (Listernick et al. 1994; Blanchard 
et al. 2016; Friedrich and Nuding, 2016). NF1-associated 
OPGs are most often diagnosed during childhood. Chil-
dren ≤ 6 years of age have the highest risk to develop a 
symptomatic OPG (Listernick et al. 1994). The mean age 
at diagnosis of a symptomatic OPG was 4.2 years (Listern-
ick et al. 1994), 4.6 years (Trevisson et al. 2017), 5.1 years 
(Nicolin et al. 2009) and 7.6 years (Friedrich and Nuding 
2016). Asymptomatic OPGs are often diagnosed later in 
life, with a mean age at diagnosis of 5.3 years (Listernick 
et al. 1994), 5.9 years (Trevisson et al. 2017), 11.6 years 
(Friedrich and Nuding 2016). Visual acuity, strabismus, 
exophthalmus and proptosis are the most common symptoms 
caused by these tumours (Listernick et al. 2007; Friedrich 
and Nuding 2016). A proportion of OPGs are already pre-
sent at birth and their detection in young children by MRI 
may facilitate the diagnosis of NF1. Taken together, PNFs 
and optic pathway gliomas are important diagnostic features 
in young children with NF1.

Less common disease features in children 
with NF1

Long‑bone dysplasia

Long-bone dysplasia, seen in 5% of patients with NF1 typi-
cally involves the tibia and frequently presents with antero-
lateral bowing that may progress to fracture (Riccardi 1981). 
In addition to the tibia, fibula, radius and ulna are also poten-
tial sites of dysplasia even though less commonly. Long-
bone dysplasia is most often unilateral, evident in the first 
year of life, and usually not associated with a neurofibroma 
(Stevenson et al. 1999). Congenital anterolaterally bowed 
tibia without pseudarthrosis is observed in 3–4% of young 
children with NF1 (Friedman and Birch 1997). It may be 
apparent at birth but in most cases, it is recognized months 
later albeit within the first year of life. Remarkably, tibial 
dysplasia with pseudarthrosis is caused by double inacti-
vation of the NF1 gene (Stevenson et al. 2006; Sant et al. 
2015). Thus, these osseous lesions as well as other frequent 
clinical symptoms in NF1 such as CALM, neurofibromas 
and other tumours arise according to the two-hit model of 
tumorigenesis (Serra et al. 1997, 2000; Maertens et al. 2007; 
De Schepper et al. 2008; reviewed by Brems et al. 2009). 
The prevalence of patients with NF1 among patients with 
congenital arthrosis of the tibia has been estimated to be 85% 
(Van Royen et al. 2016). Germline NF1 pathogenic variants 
are present in patients with NF1 but are absent in patients 
with congenital pseudarthrosis of the tibia without NF1 
thereby differentiating these patient groups (Zhu et al. 2019).

The NIH diagnostic criteria for NF1 from 1988 included 
the criterion: “thinning of the long bone cortex with or 
without pseudarthrosis” (Table 1). However, thinning of 
the long bone cortex turned out not to be the primary lesion 
(Stevenson et al. 2007). Instead, anterolateral bowing of the 
lower limb and medullary canal narrowing as well as cortical 
thickening in the tibia and/or fibula is observed (Stevenson 
et al. 2007). In the revised version of the diagnostic criteria, 
the orthopaedic criterion has been rephrased accordingly 
(Table 1).

Sphenoid wing dysplasia

Unilateral dysplasia of the greater wing of the sphenoid bone 
is one of the most distinctive craniofacial lesions in NF1, 
being observed in 3–11% of cases (reviewed by Alwan et al. 
2005). Sphenoid wing dysplasia (SWD) is congenital but 
becomes clinically apparent later in life, frequently before 
the age of 2 years. SWD can be asymptomatic and is diag-
nosed by skull radiographs or CT scans. SWD is relatively 
rare in the general population, and over 50% of cases are 
associated with NF1 (reviewed by Chauvel-Picard et al. 
2020). SWD may become progressive and cause disrup-
tion of the orbit and consequent pulsating exophthalmos. 
Abnormal growth of the skull associated with sphenoid wing 
lesions in children with NF1 may also lead to progressive 
facial deformities (Jacquemin et al. 2002). SWP is thought to 
result from a primary ossification defect with poor mesoder-
mal development and bone formation (reviewed by Alwan 
et al. 2005; Chauvel-Picard et al. 2020). However, SWP may 
also occur concurrent with orbital-periorbital plexiform neu-
rofibromas (reviewed by Avery et al. 2017). According to the 
newly revised diagnostic criteria for NF1, sphenoid wing 
dysplasia is not a separate diagnostic criterion in case of an 
ipsilateral orbital plexiform neurofibroma (Table 1).

Genetic testing in NF1

New in the revised version of the diagnostic criteria is the 
inclusion of the detection of a pathogenic NF1 gene variant 
as a separate diagnostic criterion (Legius et al. 2021).

Variants identified in the NF1 gene are classified as 
pathogenic according to the guidelines developed by the 
American College of Medical Genetics and Genomics, 
the Association for Molecular Pathology and the College 
of American Pathologists (Richards et al. 2015). The NF1 
gene is relatively large, encompassing ~ 350 kb and 55 con-
stitutive exons as well as five alternatively spliced exons. 
NF1 encodes neurofibromin, a multifunctional protein with 
at least 6 different functional domains involved in the regula-
tion of various signalling pathways (reviewed by Bergoug 
et  al. 2020). More than 3600 different pathogenic NF1 
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variants have now been reported by The Human Gene Muta-
tion Database (HGMD; http://​www.​hgmd.​org/); these are 
located across the gene coding regions as well as within the 
introns thereby interfering with the splicing process (Stenson 
et al. 2020). Whilst some 31 different pathogenic NF1 vari-
ants exhibit a prevalence of ≥ 0.5% among NF1 patients, it 
has been estimated that approximately 46% of NF1 patients 
carry extremely rare or private pathogenic NF1 gene vari-
ants (Koczkowska et al. 2018, 2019, 2020). In addition, copy 
number variants of single and multiple NF1 exons have been 
identified, as well as deletions spanning the entire NF1 gene 
which are observed in 5–11% of all NF1 patients (Messiaen, 
2020; Kehrer-Sawatzki and Cooper 2021).

Genetic testing in NF1 is complicated by the large size of 
the gene with its long stretches of intronic DNA, the exten-
sive allelic heterogeneity (i.e. the large number of different 
pathogenic and likely pathogenic NF1 variants) and the chal-
lenging interpretation of potentially pathogenic NF1 vari-
ants, particularly missense and in-frame deletion/insertion 
variants. However, a comprehensive genetic testing protocol 
can ensure a high detection rate of the pathogenic variants 
residing within or involving the NF1 gene as well the accu-
rate and reliable interpretation of their molecular conse-
quences (Messiaen et al. 2000; Wimmer et al. 2006; Pros 
et al. 2008; Valero et al. 2011; Sabbagh et al. 2013; Imbard 
et al. 2015; Pasmant et al. 2015; Evans et al. 2016; Pasmant 
and Vidaud 2016; Messiaen 2020). Such a protocol should 
include RNA analysis by means of cDNA sequencing, the 
sequence analysis of the coding sequence and intron/exon 
boundaries of the NF1 gene, as well as the copy number 
analysis of NF1 exons and whole gene deletions (Messiaen 
et al. 2000; Wimmer et al. 2006; Pros et al. 2008; Valero 
et al. 2011; Sabbagh et al. 2013; Pasmant et al. 2015; Evans 
et al. 2016; Pasmant and Vidaud 2016; Giugliano et al. 2019; 
Castellanos et al. 2020; Messiaen 2020). By means of a com-
prehensive mutation testing protocol in 361 NF1 patients 
with more than pigmentary diagnostic criteria, a potentially 
pathogenic NF1 variant was identified in 166/171 (97%) of 
familial cases and 182/190 (96%) of sporadic cases (Evans 
et al. 2016). If class 3 variants of unknown pathogenicity 
according to Plon et al. (2008) and Richards et al. (2015) 
had not been included, the pathogenic variant detection rate 
decreased to 154/171 (90%) in familial cases and 175/190 
(92%) in sporadic cases. Similarly high mutation detection 
rates have been obtained in other studies that employed com-
prehensive genetic testing of the NF1 gene (Messiaen et al. 
2000; Valero et al. 2011; Sabbagh et al. 2013; Guigliano 
et al. 2019). cDNA sequencing is superior to standard exon 
sequencing since a broader spectrum of pathogenic variants 
can be identified, including deep intronic variants. Further, it 
improves the detection of those pathogenic missense variants 
that affect splicing (Messiaen et al. 2000; Evans et al. 2016; 
Pasmant and Vidaud, 2016).

The recruitment of genetic testing to make possible 
a definitive diagnosis of NF1 is particularly important in 
children and young adults with isolated multiple CALM but 
without a family history of the disease (Tsang et al. 2012; 
Yao et al. 2016). This assertion is supported by the study of 
Evans et al. (2016) who analysed 71 individuals with ≥ 6 
CALM with or without freckling, but no other NF1 diag-
nostic criterion, who also lacked a parent with any NF1 cri-
terion and were < 20 years of age. Of these 71 individuals, 
44 (62%) harboured a clearly pathogenic NF1 variant, 3 had 
NF1 variants of uncertain pathogenicity, 6 (8.5%) a patho-
genic SPRED1 variant whilst 18 (25.3%) did not possess 
a disease-causing variant in either SPRED1 or NF1. Thus, 
the likelihood that a child with ≥ 6 CALM with or without 
freckling and no other NF1 criterion has non-mosaic NF1 
is 62–66%. This conclusion is in accord with the results of 
other studies that determined the pathogenic NF1 variant 
detection rate in children with isolated multiple CALM and 
no family history of the disease (Table 3). A negative testing 
result for a pathogenic NF1 variant reduces the likelihood to 
have constitutional (non-mosaic) NF1 to ~ 11% in children 
and young adults with ≥ 6 CALM with or without freckling, 
but no other NF1 diagnostic criterion (Evans et al. 2016).

Genetic testing performed to detect pathogenic NF1 vari-
ants may also facilitate the diagnosis in some families with 
spinal NF1 (Burkitt Wright et al. 2013) or patients with the 
pathogenic in-frame deletion in NF1 exon 17 at position 
c.2970-2972 delAAT (p.Met992del) which is associated 
with typical pigmentary features of NF1, but not with neu-
rofibromas (Upadhyaya et al. 2007; Quintans et al. 2011; 
Koczkowska et al. 2019). Likewise, patients with various 
different NF1 missense pathogenic variants at amino acid 
residue Arg1809 have multiple CALM with or without 
freckling and rarely Lisch nodules, but do not exhibit neu-
rofibromas (Pinna et al. 2015; Rojnueangnit et al. 2015; 
Santoro et al. 2015). In these cases, the genetic testing isn’t 
simply to facilitate the clinical diagnosis, but also to allow a 
prediction to be made about the clinical phenotype from the 
mutant genotype detected. NF1 patients with these lesions 
may not meet the 1988 clinical diagnostic criteria, particu-
larly during childhood. However, they would do so if the 
2021 criteria would be applied including genetic testing. By 
contrast, 95% of individuals with classic NF1 fulfil two or 
more of the 1988 clinical diagnostic criteria (not taking fam-
ily history into account) by ≥ 9 years of age (DeBella et al. 
2000). Individuals with p.Arg1809 or p.Met992del patho-
genic variants are less likely than NF1 patients of the same 
age who harbour other NF1 variants to fulfil the 1988 clini-
cal criteria at ≥ 9 years of age (Rojnueangnit et al. 2015). 
In the same vein, pathogenic missense variants affecting 
NF1 residue Met1149 are associated with a mild phenotype 
characterized by the lack of NF1-associated tumours (Koc-
zkowska et al. 2020). These authors reported that 16.7% of 

http://www.hgmd.org/
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patients with pathogenic missense variants affecting resi-
due Met1149 who were older than 9 years did not fulfil the 
1988 clinical diagnostic criteria (Koczkowska et al. 2020). 
In these families, genetic testing is therefore important to 
confirm the clinical diagnosis and identify at-risk relatives 
(Jett and Friedman 2010).

Even though genetic testing may facilitate the diagnosis 
of NF1 in young oligosymptomatic children without a fam-
ily history of the disease, some parents and physicians may 
object to genetic testing for practical or financial reasons and 
might instead opt to wait until further diagnostic symptoms 
may (or may not) appear.

Differential diagnosis of NF1 versus Legius 
syndrome and CMMRD

Differential diagnosis is particularly difficult in children with 
multiple isolated CALM without a family member with mul-
tiple CALM, NF1 or Legius syndrome. These children may 
not be affected by NF1 but instead by Legius syndrome or 
less frequently by another RASopathy such as Noonan syn-
drome with multiple lentigines (formerly known as LEOP-
ARD syndrome, MIM#151100) or Constitutive mismatch 
repair deficiency (CMMRD) (Brems et al. 2007; Shah et al. 
2010; Santoro et al. 2014; Santos et al. 2016; Wimmer et al. 
2017; Suerink et al. 2019; Anderson 2020; Jha et al. 2020; 
Perez-Valencia et al. 2020).

NF1 and Legius syndrome are the RASopathies with the 
most pronounced overlap in clinical symptoms. RASopa-
thies constitute a group of genetic disorders that are caused 
by germline pathogenic variants affecting RAS-mitogen 
activated protein kinase (MAPK) pathway genes leading 
to RAS/MAPK pathway dysregulation (reviewed by Rauen 
2013). To improve the differential diagnosis of NF1, the 
detection of pathogenic variants in the NF1 gene has been 
included among the revised diagnostic criteria for NF1 
(Table 1) (Legius et al. 2021). In children with multiple iso-
lated CALM and without affected family members, genetic 
testing indicated a detection rate of pathogenic NF1 variants 
in the range of 48% up to 88%, depending on the age of the 
children and the number of CALM (Ben-Shachar et al. 2017; 
Giugliano et al. 2019; Castellanos et al. 2020) (Table 3).

Legius syndrome

Legius syndrome (MIM#611431) is characterized by the 
occurrence of CALM with or without axillary or inguinal 
freckles and therefore resembles NF1. Learning disabilities, 
attention deficits and hyperactivity may also occur in patients 
with Legius syndrome even though they are generally less 
frequent and less severe than in NF1 (Brems and Legius 
2013; Denayer and Legius 2020). Other NF1-associated 

features such as Lisch nodules, neurofibromas, NF1-specific 
bone lesions, optic pathway gliomas, and malignant periph-
eral nerve sheath tumours are however absent in patients 
with Legius syndrome (Brems et al. 2007, 2012; Messiaen 
et al. 2009; Pasmant et al. 2009; Spurlock et al. 2009; Lay-
cock-van Spyk et al. 2011; Brems and Legius 2013; Denayer 
and Legius 2020).

Legius syndrome has been estimated to occur with a 
prevalence of 1:46,000–1:75,000 and is caused by patho-
genic variants in the SPRED1 gene located on chromosome 
15q13.2 (Brems et al. 2007, 2012; Messiaen et al. 2009; 
Pasmant et  al. 2009; Spurlock et  al 2009; Laycock-van 
Spyk et al. 2011). The mode of inheritance is autosomal 
dominant and 65% of patients with Legius syndrome have a 
family history of the disease. SPRED1 encodes the sprouty-
related EVH1 domain–containing protein 1. Via its EVH1 
domain, the SPRED1 protein binds to neurofibromin, the 
protein product of the NF1 gene, thereby recruiting it to the 
plasma membrane. Neurofibromin is a negative regulator of 
RAS and its interaction with SPRED1 leads to the down-
regulation of the RAS-MAPK signal transduction pathway 
(Wakioka et al. 2001; Stowe et al. 2012; Dunzendorfer-Matt 
et al. 2016; Lorenzo and McCormick 2020).

In young children presenting with CALM with or without 
freckling and no other NF1-associated features or a fam-
ily history of the disease, the differential diagnosis between 
NF1 and Legius syndrome is not possible by means of the 
1988 clinical diagnostic criteria. However, an early differen-
tial diagnosis is very important in terms of patient care and 
risk stratification since Legius syndrome is not associated 
with the tumour phenotype seen in NF1.

In families with an autosomal dominant phenotype of 
CALM with or without freckles but without other NF1-asso-
ciated disease features or a pathogenic NF1 gene variant, 
19% have a mutation in the SPRED1 gene (Messiaen et al. 
2009; Brems et al. 2012). It has been estimated that 1–8.5% 
of patients with multiple CALM with or without freckling 
but no other NF1 diagnostic features, have Legius syndrome 
(Evans et al. 2016; Brems and Legius, 2013; Pasmant et al. 
2015; Bernier et al. 2016).

Approximately 50% of patients with Legius syndrome 
meet the 1988 clinical diagnostic criteria for NF1 since they 
have ≥ 6 CALM with freckles or have ≥ 6 CALM without 
freckles and a family member with CALM and freckles 
(Messiaen et al. 2009). Approximately 1–4% of patients 
with multiple CALM who meet the 1988 clinical diagnostic 
criteria for NF1 have Legius syndrome since they harbour 
SPRED1 pathogenic variants (Brems et al. 2012). Conse-
quently, the diagnostic criteria for NF1 had to be revised 
(Legius et al. 2021). Concomitantly, the diagnostic criteria 
for Legius syndrome were formulated for the first time by an 
international board of experts (Table 4) (Legius et al. 2021). 
It was most important to be able to distinguish between the 
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two conditions since they differ markedly in terms of the 
severity of their clinical manifestations. In contrast to NF1, 
frequent surveillance for tumours is not necessary in chil-
dren and adults with Legius syndrome (Denayer and Legius 
2020).

It is important to add that in some patients with multiple 
isolated CALM, pathogenic variants are not found in either 
the SPRED1 gene or the NF1 gene by the molecular test-
ing of blood. In sporadic patients, the underlying cause may 
be somatic mosaicism for a pathogenic NF1 or SPRED1 
variant that is present only in melanocytes and absent from 
blood cells (Maertens et al. 2007; Legius et al. 2021). To 
provide guidance for the correct diagnosis, diagnostic crite-
ria for mosaic NF1 and mosaic Legius syndrome have also 
been formulated and published as an international consen-
sus recommendation (Legius et al. 2021). It has been esti-
mated that ~ 10% of sporadic NF1 patients have mosaic NF1 
caused by postzygotic NF1 mutations that are absent from, 
or present in, a very low proportion of blood lymphocytes 
(Messiaen et al. 2000). This may be concluded from the 
pathogenic variant detection rate determined by means of 
comprehensive genetic testing including the genomic DNA 
and cDNA sequencing of the NF1 gene as well as the assess-
ment of copy number variants of single and multiple NF1 
exons and entire NF1 gene deletions (Messiaen et al. 2000). 
Mosaicism has also been observed in Legius syndrome but 
it would appear to be rare (Jobling et al. 2017). The clinical 
suspicion of mosaicism justifies genetic testing for Legius 
syndrome and NF1, as now included in the newly formulated 
diagnostic criteria for the mosaic forms of both conditions 
(Legius et al. 2021).

CMMRD

Constitutive mismatch repair deficiency (CMMRD, 
MIM#276300) is a rare autosomal recessive inherited dis-
ease caused by pathogenic variants in one of the mismatch 
repair genes MLH1, MSH2, MSH6 or PMS2 (Bakry et al. 
2014; Wimmer et al. 2014, 2017; Suerink et al. 2019; Perez-
Valencia et al. 2020; Aronson et al. 2021; Duorno et al. 
2021). Children with CMMRD often have multiple CALM 
that are similar to those seen in patients with NF1 or Legius 
syndrome. Hence, CMMRD should be considered when 

arriving at a differential diagnosis of children presenting 
with multiple CALM. Some patients with CMMRD even 
meet the clinical NIH diagnostic criteria for NF1 (Wim-
mer et al. 2014). It is important to distinguish between these 
conditions because CMMRD is associated with a high risk 
of childhood malignancy unlike NF1 and Legius syndrome 
(Bakry et al. 2014; Wimmer et al. 2014, 2017; Suerink 
et al. 2019; Perez-Valencia et al. 2020; Aronson et al. 2021; 
Duorno et al. 2021).

The occurrence of CALM in patients with CMMRD is 
intriguing. Most likely, CALM (and other NF1-associated 
symptoms such as neurofibromas or freckling) in patients 
with CMMRD are caused by postzygotic NF1 mutations. 
This has been concluded from the observation that several 
patients with CMMRD exhibited a segmental distribution 
of these lesions and from the detection of postzygotic NF1 
variants causing somatic mosaicism in CMMRD patients 
(Wang et al. 1999; Auclair et al. 2007; Alotaibi et al. 2008). 
The large size of the NF1 gene and its high mutation rate, 
indicated by the fact that at least 50% of all NF1 cases are 
sporadic, may render the NF1 gene highly susceptible to 
postzygotic mutations in the absence of MMR activity 
(Wang et al. 1999). The need for a differential diagnosis to 
distinguish between CMMRD, NF1 and Legius syndrome 
as well as mosaic NF1 has been emphasised in the revised 
diagnostic criteria for NF1 (Legius et al. 2021).

The 1988 NIH clinical diagnostic criteria for NF1 
included the criterion “a first-degree relative NF1 (parent, 
sib or offspring) diagnosed with NF1” (Table 1). This crite-
rion has been restricted to “parent”, and “sib or offspring” 
has been removed from the revised criteria by Legius et al. 
(2021) (Table 1). An affected sibling no longer qualifies 
as a criterion for NF1 since if only siblings are affected, a 
diagnosis of CMMRD would also be possible. Additionally, 
having affected offspring no longer qualifies as a diagnostic 
criterion for constitutional NF1. If an adult person only has 
one NF1 criterion in addition to an affected child fulfilling 
the diagnostic criteria, this person is likely to have mosaic 
NF which should be differentiated from constitutional NF1. 
Legius et al. (2021) stated that the revised criterion, which 
only includes “parent with NF1”, is specific enough to cor-
rectly diagnose most offspring presenting with one diagnos-
tic criterion as having NF1.

Table 4   Diagnostic criteria for Legius syndrome according to Legius et al. (2021)

a The presence of fewer than 6 café-au-lait macules does not exclude Legius syndrome

(A) The diagnostic criteria for Legius syndrome are met in an individual who does not have a parent diagnosed with Legius syndrome if both of 
the following criteria are present:

 ≥ 6 Café-au-lait macules bilaterally distributed and no other NF1-related diagnostic criteria except for axillary or inguinal frecklinga

 A heterozygous pathogenic variant in SPRED1 with a variant allele fraction of 50% in an apparently normal tissue such as white blood cells
(B) A child of a parent who meets the diagnostic criteria specified in (A) merits a diagnosis of Legius syndrome if one or more of the criteria in 

(A) are present
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Mosaicism

Somatic mosaicism caused by a postzygotic pathogenic NF1 
variant may be responsible for isolated CALM in patients 
without a family history of NF1. In general, mosaicism in 
NF1 may either be associated with a generalized form of 
the disease, with symptoms located in a disseminated man-
ner and not restricted to a specific body part. Alternatively, 
mosaic NF1 can present in a segmental form characterized 
by symptoms such as CALM limited to one side of the body 
or one specific limb or segment. Mosaic NF1 is often asso-
ciated with a milder disease manifestation than generalized 
NF1 caused by a germline pathogenic NF1 variant and may 
be responsible for an oligosymptomatic disease manifes-
tation (Ruggieri and Huson 2001; Tinschert et al. 2000; 
García-Romero et al. 2016; Ejerskov et al. 2021). Remark-
ably, many children with segmental NF1 have only localized 
pigmentary changes (Listernick et al. 2003; Lara-Corrales 
et al. 2017; Hom et al. 2020). In addition to the revised 
diagnostic criteria for NF1 and Legius syndrome, Legius 
et al. (2021) also recommended diagnostic criteria for the 
mosaic forms of both disorders. According to Legius et al. 
(2021), mosaic NF1 in a patient with clinical signs of the 
disease is confirmed if the patient harbours a heterozygous 
pathogenic NF1 variant in unaffected tissue such as blood 
but in significantly fewer than 100% of cells (as indicated by 
a variant allele fraction of < 50%). Further, mosaic NF1 is 
confirmed if an identical first hit pathogenic NF1 variant is 
identified in two or more anatomically unrelated lesions such 
as CALM or neurofibromas in the absence of this pathogenic 
NF1 variant in unaffected tissue such as blood. The retrieval 
of biopsies taken from small children suspected of having 
NF1 could be regarded as problematic but has been suc-
cessfully applied to diagnose small plexiform neurofibromas 
below irregular shaped CALM or hyperpigmented regions 
by histopathological analysis which served to confirm the 
diagnosis of NF1 in children with a mean age of 6.7 years 
(range: 6 months–18 years) (García-Martínez et al. 2021).

Conclusion/summary

The revised diagnostic criteria for NF1 comprise all the 
clinical criteria included in the NIH diagnostic criteria from 
1988 which proved to be very helpful for the diagnosis of 
NF1, particularly in older children and adults. Additionally, 
the revised diagnostic criteria include choroidal anomalies 
as a new ophthalmic criterion of high importance since cho-
roidal anomalies may be observed earlier than Lisch nodules 
and have a high sensitivity and specificity for NF1. Fur-
thermore, the revised diagnostic criteria for NF1 include 
the detection of a pathogenic variant of the NF1 gene as 

a separate diagnostic criterion. Taken together, the revised 
diagnostic criteria for NF1 may facilitate an early diagno-
sis, particularly in young children with isolated CALM and 
without a parent with NF1. The revised diagnostic criteria 
for NF1, together with the newly formulated diagnostic cri-
teria for Legius syndrome which include genetic testing for 
pathogenic variants in SPRED1, promise to facilitate the 
differential diagnosis of both disorders at an early age.
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