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Abstract 
Antigen-specific immunotherapy is an immunomodulatory strategy for autoimmune diseases, such as type 1 diabetes, in which patients are 
treated with autoantigens to promote immune tolerance, stop autoimmune β-cell destruction and prevent permanent dependence on exogenous 
insulin. In this study, human proinsulin peptide C19-A3 (known for its positive safety profile) was conjugated to ultrasmall gold nanoparticles 
(GNPs), an attractive drug delivery platform due to the potential anti-inflammatory properties of gold. We hypothesised that microneedle intra-
dermal delivery of C19-A3 GNP may improve peptide pharmacokinetics and induce tolerogenic immunomodulation and proceeded to evaluate 
its safety and feasibility in a first-in-human trial. Allowing for the limitation of the small number of participants, intradermal administration of 
C19-A3 GNP appears safe and well tolerated in participants with type 1 diabetes. The associated prolonged skin retention of C19-A3 GNP after 
intradermal administration offers a number of possibilities to enhance its tolerogenic potential, which should be explored in future studies
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Introduction
Autoimmune destruction of insulin-producing β-cell by T 
lymphocytes in type 1 diabetes (T1D) makes affected indi-
viduals permanently dependent on exogenous insulin. Despite 
advances in insulin delivery with glucose sensors and closed-
loop systems, in many regions of the world less than 30% 
of patients achieve glycaemic control sufficient to prevent 
long-term complications [1]. Immunotherapy aims to stop 
β-cell destruction, thus preserving the individual’s ability 
to synthesise endogenous insulin. This could lead to better 
control, or even disease prevention [2, 3]. Antigen-specific 
immunotherapy (ASI) is an attractive immunomodulatory 
strategy for antigen-specific autoimmune diseases, such as T1D 
in which patients are treated with autoantigens to promote 
immune tolerance. The aim is to boost immunoregulation, by 
expanding antigen-specific regulatory T-cells, although some 
ASI appears to act predominantly by deleting or anergising 
antigen-specific effector cells [4–8]. The advantage of this ap-
proach is that it can potentially slow the disease process in a 
targeted manner, without the need for systemic immunosup-
pression. Human studies have been conducted in this area [8, 
9] and a range of approaches have been used including intra-
muscular injection of whole antigen alone or with adjuvant 
[10–14], administration of the antigen via the mucosal route 
(orally or nasally) [15–18], DNA vaccination [19, 20], and 
the use of peptide epitopes or altered peptide ligands [21]. 
These approaches have generally proved safe and very well 
tolerated but achieving sufficient efficacy to reliably reverse 
established disease in humans has not yet been demonstrated 
[8, 14, 16, 17, 22]. A review of the antigen-specific immuno-
therapy trials to date suggests that the context in which the 
antigen is presented to the immune system plays an important 
role in efficacy [23–26].

In this study, the HLA-DR4 (DRB1∗0401) restricted pro-
insulin peptide C19-A3 has been selected as the therapeutic 
immunomodulatory antigen as it is associated with a positive 
safety profile in Phase 1 clinical studies and is thought to pre-
serve β-cell function by modulating autoreactive CD4 T-cells 
[27, 28]. In addition, this peptide has been conjugated to 
gold nanoparticles (GNPs), an attractive drug delivery plat-
form in this context due to the potential anti-inflammatory 
properties of gold [29], to create a C19-A3 GNP construct. 
Previous in vitro studies conducted in our laboratories ad-
ministered the C19-A3 GNP construct into the skin using 
hollow microneedles and exemplified the diffusive proper-
ties of the C19-A3 GNP construct, which facilitated its re-
flux from the point of dermal deposition to the overlying 
human skin epidermis. These studies demonstrated main-
tained stability of the construct upon delivery and efficient 
uptake by antigen-presenting cells in the skin, with the re-
sponsible antigen-presenting cells being identified as predom-
inantly Langerhans cells [30], which are considered to have 
tolerogenic properties by some researchers [31, 32], whilst 
others favour the tolerogenic potential of other skin dendritic 

cells [33, 34]. Importantly, the use of GNP provides the pos-
sibility of introducing a second cargo to accompany the 
peptide to further enhance the tolerogenic properties of the  
construct. Thus, the microneedle-administered C19-A3 GNP 
construct may offer a valuable platform for tolerogenic 
immunomodulation in T1D and, therefore, the aim of this 
study was to evaluate the safety of the construct in a first-in-
human clinical trial.

Materials and methods
Study design
The study was a two-centre, open-label, uncontrolled, single-
group first-in-human Phase 1A safety study of C19-A3 GNP 
peptide in individuals with T1D.

The Investigational medicinal product (IMP) was C19-
A3 GNP (Midacore™), which comprises GNPs [30, 35] of 
a size of less than 5 nm, covalently coupled to an 18-amino 
acid human peptide, the sequence of which is identical to 
the residues from position 19 in the C-peptide of proinsulin 
through to position 3 on the A-chain of the same molecule 
(GSLQPLALEGSLQKRGIV). The peptide is synthesised with a 
linker to facilitate binding to the GNPs: 3-mercaptopropionyl-
SLQPLALEGSLQKRGIV 2 acetate salt (disulfide bond). The 
chemical composition of the IMP contained a ratio of 4 C19-
A3 peptides: 11 glucose C2: 29 glutathione ligands as de-
termined by 1H-NMR (proton nuclear magnetic resonance). 
The nanoparticle suspension was purified using Amicon ultra 
centrifugal filtration units with a 10 kDa cut-off and sterile 
pre-filtered through a poly(ether sulfone) (PES) 0.22 µm pre-
sterilised cartridge compliant for use in GMP manufacturing. 
Liquid chromatography–mass spectrometry (LC–MS) ana-
lysis showed that peptide integrity was maintained in the 
nanoparticles. Stability testing was also performed both on 
the nanoparticle product stored at 4oC for 23 weeks and at 
25oC for 10 weeks. The IMP was manufactured at Midatech 
Pharma Plc (Derio, Spain) and delivered as a sterilised solu-
tion in small vials produced by Baccinex SA (Courroux, 
Switzerland). Following the filling process of the IMP stability 
batch (No. F15220), the structure of the peptide was checked 
both by 1H-NMR and by LC–MS for the release of the drug 
product. Both methods confirmed the integrity of C19-A3 
peptide. The IMP was stored, QP released, and shipped to the 
clinical sites by PharmaKorell GmbH (Lörrach, Germany). 
A typical batch contained: [C19-A3 peptide] = 1.33 mg/ml; 
[gold] = 5.5 mg/ml; [glucose linker] = 0.6 mg/ml; [glutathione 
linker] = 1.79 mg/ml. As the drug substance was diluted 1:7 
to 1:10, depending on the content of C19-A3 peptide per par-
ticle, and as 50 μl of the diluted solution was administered to 
the study participants, this corresponded to C19-A3 peptide: 
10 μg; gold: 39 μg; glucose linker: 4.3 μg; glutathione: 12.7 
μg. The vials were stored refrigerated at 2–8°C.

C19-A3 GNP was administered intradermally in the 
deltoid region of the arm via CE-marked 600 µm length 
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MicronJet600™ hollow microneedles (NanoPass Technologies 
Ltd.) attached to a standard luer-lock syringe. The device has 
been used in over 50 clinical trials, mostly for the delivery of 
vaccines [36–40], but also for multiple early-phase trials as 
well as Phase III study in allergy immunotherapy for the pur-
pose of inducing tolerance (https://clinicaltrials.gov/).

Three doses were given at 4-weekly intervals (weeks 0, 4, 
and 8) in alternate arms (2 doses in one arm and 1 dose in 
the other arm). The single-dose given in 50 μl volume was 
equivalent to 10 μg of C19-A3 peptide (cumulative dose of 30 
μg). Participants were followed up according to the full study 
protocol for up to 52 weeks in total (Fig. 1).

Inclusion criteria were as follows: age (16–40 years of age), 
>3 months from a clinical diagnosis of T1D (dated from the 
day of first insulin injection), commenced on insulin within 
1 month of diagnosis, HLA-DRB1∗0401 genotype and 2-h 
post-meal urine C-peptide to creatinine ratio (UCPCR) >0.2 
nmol/mmol or random serum C-peptide >0.06 nmol/l on at 
least one occasion (maximum three tests on different days). 
The main exclusion criteria were the use of immunosuppres-
sive or immunomodulatory therapies, immunisation with 
live or killed vaccinations or allergic desensitisation pro-
cedures less than 1 month before the first treatment, raised 
serum creatinine or abnormal urine albumin/creatinine ratio 
(ACR), HbA1c >86 mmol/mol, recent participation in other 
research trials of immunomodulatory agents, pregnancy, and 
breastfeeding.

Safety laboratory measures of haematological indices, liver 
function, thyroid-stimulating hormone, urea, creatinine, cal-
cium, lipid levels, immunoglobulin levels, and urine analysis 
(pH, blood, protein, albumin/creatinine ratio, urine β-2-
microglobulin, and cystatin-C) were performed at baseline, 4, 
9, 14, 20, and 52 weeks. Serum and urine gold concentrations 
were measured at baseline, 1 day after the first and third dose, 
and at 9, 14, 20, and 52 weeks. The planned duration of the 
study was initially 20 weeks, but this was later extended to 
52 weeks to continue safety follow-up of the participants due 
to a persistent local response to the intradermal injection (as 

described below). Skin changes at the injection site were fol-
lowed up beyond 52 weeks in some individuals in the clinical 
care setting (12–24 months).

All subjects were observed for 6 h after their first dose/in-
jection. The first subject was dosed >24 h before subsequent 
subjects as per sentinel dosing strategy. If no serious adverse 
events were observed after the first dose, all subjects were ob-
served for a minimum of 1 h after each subsequent injection, 
with the plan to extend the observation period if there were 
any signs of hypersensitivity. All local and systemic reactions 
were documented. Safety data were under regular review by 
an independent Data Safety Monitoring Board (DSMB).

The primary end-point was an assessment of the safety of 
C19-A3 GNP administration; secondary end-points were as-
sessments of changes in (i) C-peptide secretion at weeks 14 and 
52, compared to baseline, assessed by a mixed-meal tolerance 
test (MMTT) and a stimulated urine C-peptide test, (ii) gly-
caemic control assessed by glucose profiles, insulin require-
ments, and HbA1c at weeks 14 and 52, compared with baseline, 
(iii) level or quality of lymphocyte biomarkers of β-cell-specific 
immune response, and (iv) level or quality of islet cell autoanti-
body biomarkers of β-cell-specific immune response.

Ethics statement
This study was carried out with the approval of the UK 
Research Ethics Service, Swedish Regional Ethical Review 
Board (RERB), UK Medicines and Healthcare products 
Regulatory Agency (MHRA) for Clinical Trial Authorisation, 
and Swedish Medical Products Agency (MPA). Written in-
formed consent was obtained from all participants. The 
trial was conducted in compliance with the principles of the 
Declaration of Helsinki (1996) and the principles of Good 
Clinical Practice and in accordance with all applicable regu-
latory requirements including but not limited to the Research 
Governance Framework and the Medicines for Human 
Use (Clinical Trial) Regulations 2004, as amended in 2006. 
Further details are available at https://clinicaltrials.gov/.

Figure 1. Study recruitment and visit schedule. (a) Consort diagram and (b) schedule of the study visits. D, dose; V, visit; W, week.
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Assays
Ensure Plus® [Abbott Nutrition, Maidenhead, UK; 6  ml/
kg (max 360  ml)] was used as a mixed-meal stimulant of 
β-cell production, in both the standard MMTT and the as-
sessment of stimulated urine C-peptide/creatinine ratio as de-
scribed previously [41, 42]. MMTTs were carried out after 
an overnight fast at 0, 14, and 52 weeks. Serum samples for 
C-peptide and glucose were collected at −10, 0, 15, 30, 60, 90, 
and 120 min. Urine samples were collected from the second 
void in the morning (before MMTT) and 120 min after the 
MMTT (mixed-meal-urine C-peptide/creatinine ratio) with 
no urine loss in between.

Urine samples were collected in boric acid containers 
(Sterilin; Thermo Scientific, Newport, UK) and transported 
to a laboratory at ambient temperature within 72 h. If not 
assayed within 72 h of collection, they were stored at −80°C 
for up to 14 days. Serum samples were stored at −20°C and 
transported on dry ice in batches. Urine C-peptide level was 
measured in samples diluted 1:10, using an enzyme-linked 
immunosorbent assay (10-1136-01; Mercodia, Uppsala, 
Sweden). The detection limit for the C-peptide assay was 
0.025 nmol/l, with intra- and inter-assay coefficients of vari-
ation of <5% and <5%, respectively. Urine creatinine was as-
sayed using a colorimetric method (Jaffe reaction; CR8316; 
Randox Ltd, London, UK). The detection limit, and intra- 
and inter-assay coefficients of variation were 100 μmol/l, < 
4% and <6%, respectively. Results were expressed as urine 
C-peptide/creatinine ratio (nmol/mmol). Serum C-peptide 
was measured using an immunochemiluminometric assay 
(IV2-004, Invitron, Monmouth, UK). The detection limit, 
and intra- and inter-assay coefficients of variation were 0.005 
nmol/l, <5% and <8%, respectively.

Anti-glutamic acid decarboxylase antibody (GADA), anti-
insulinoma-associated antigen 2 (IA-2A), and anti-Zinc 
transporter 8 (ZnT8A) were measured by enzyme-linked 
immunosorbent assay (GDE/96, IAE/96/2, ZnT8/96; RSR 
Ltd., Cardiff, UK) according to the manufacturer’s instruc-
tions. Positive cut-off values were ≥5, ≥7.5, and ≥15 U/ml for 
GADA, IA-2A, and ZnT8A, respectively. The detection limit 
for the GADA was 0.57 U/ml, for IA-2A was 1.25 U/ml, and 
for ZnT8A was 1.2 U/ml.

The gold concentration of the IMP was measured by 
Midatech Pharma Plc using microwave plasma atomic emis-
sion spectroscopy (MP-AES) and inductively coupled plasma-
mass spectrometry (ICP-MS). Ligand ratios and purity of 
the IMP were measured by nuclear magnetic resonance (1H-
NMR). Quantification of peptide bound to the GNP was 
performed using liquid chromatography–mass spectrometry 
(LC–MS). Particle hydrodynamic size and ζ potential were 
measured by dynamic light scattering (DLS) and particle 
diameter by transmission electron microscopy (TEM).

The concentration of gold in serum and urine samples 
was measured by ICP-MS, using a methodology developed 
and validated by Midatech Pharma Plc. The ICP-MS was 
a Perkin Elmer NEXION 300× instrument, equipped with 
the software NEXION (version 1.4). Serum and urine sam-
ples were digested with tetramethylammonium hydroxide 
(TMAH) solution, using iridium as an internal standard. 
Standards and control standards were prepared in the same 
way as the samples, using foetal bovine serum as an organic 
matrix. Samples were bracketed by control standards at low 
and high gold concentration. The concentration of gold in 

serum and urine was calculated interpolating in a simple-
linear through-zero calibration curve (ranging from 0.1 to 
100 ng/ml). Detection limit was 0.2 ng/ml and quantitation 
limit was 0.6 ng/ml.

Glucose variability was assessed by using a Dexcom 
Platinum G4 continuous glucose monitor (CGM). Recordings 
were taken for at least 72 h before study visits at weeks 0, 14, 
and 52.

Punch skin biopsies of the local area were performed under 
aseptic conditions and under local anaesthetic (Lidocaine 
Hydrochloride Injection BP 2%, w/v), using a 6-mm sterile 
disposable biopsy punch. Following the biopsy, samples were 
immediately placed in 10% formalin and transported to the 
laboratory.

Automatic tissue processing (Excelsior AS) and staining 
(Leica Autostainer) produced Haematoxylin & Eosin-stained 
tissue sections for assessment. Immunohistochemistry for 
CD2, CD3, CD4, CD8, CD20, CD79a, CD68, CD1a, and 
Ki67 was performed (Ventana Benchmark Ultra stainer).

The distribution of the gold was assessed using light 
microscopy of skin sections by catalytic deposition of silver. 
Dewaxed and rehydrated sections were incubated in Newman 
and Jasani’s physical developer [43]. Sections were then coun-
terstained with Nuclear fast red + picro-methyl blue/light 
green [44]. The presence of elemental gold was confirmed on 
reprocessed samples using a transmission electron microscope 
(TEM; Philips CM12) fitted with an energy dispersive X-ray 
spectrometer (EDAX).

Gold hypersensitivity was assessed by using an epicutaneous 
patch test. Aqueous gold sodium thiosulphate (concentration 
range 2.0–0.0002%, w/v) and gold sodium thiosulphate in 
petrolatum 2% w/w were applied by using Finn Chambers 
(Chemotechnique Diagnostics, Sweden) to the skin on the 
participant’s back. The patches were removed after 48 h and 
the test was read after a further 48 h.

Details of immunological assays will be described in a 
separate publication (Hanna S.J. and are not part of this 
manuscript.

Statistical analysis
Data are expressed as mean ± SD and median and interquar-
tile range. A Wilcoxon signed-rank test was used to test the 
significance of the change in relation to the baseline value. 
Differences were considered significant if the P-value was 
<0.05. GraphPad PRISM version 9.0 for Macintosh was used 
for the analysis.

The area under the curve (AUC) was calculated using the 
trapezoidal method, not adjusted for baseline C-peptide but 
normalised for the 120-min period of the standard MMTT 
using the serum C-peptide value at each time point.

The insulin dose-adjusted HbA1c (IDAA1c) was used as 
a surrogate measure of β-cell function. It examines the com-
bined impact of changes in HbA1c and insulin usage on meta-
bolic control. Levels ≤9 are considered favourable. It was 
calculated according to the formula: HbA1c (%) + [4 × in-
sulin dose (units per kg per 24 h)] [45].

Safety assessments (i.e. safety blood and urine tests and 
IMP-related adverse events during the course of the study) 
were counted in terms of both the number of events and the 
number of participants. Injection site reactions were described 
verbally and photographed.
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Results
Study enrolment and study participants
Twenty-four participants attended a screening visit. 
Participants who did not have either the HLA-DRB1∗0401 
genotype (N = 12), stimulated serum/urine C-peptide below 
the defined threshold (N = 2) or both (N = 4) were excluded 
(Fig. 1a).

A total of six participants were enrolled in the study and 
received the first injection. Four participants received all three 
doses as planned. Two participants received only the first 
dose. One of them withdrew from further assessments due to 
competing time commitments and was withdrawn from fur-
ther analysis, whilst another did not receive the second and 
third doses because of the decision to halt further drug ad-
ministration. The latter participant remained in the study and 
attended all planned visits and assessments. A total of five 
participants were included in the final analysis.

The study was initially temporarily halted to obtain further 
information and expert advice about a delayed local reaction 
at the injection site that was observed in all participants (as de-
scribed below). The study was subsequently terminated before 
recruitment of the planned eight participants was completed 
because the study was considered to have had achieved its pri-
mary aim, i.e. to assess the safety and tolerability of the IMP.

Mean participant age on entry was 28.00  ±  7.92 years 
[18–37]. Their age at diagnosis of T1D was 27.00 ± 10.12 
years with a mean diabetes duration of 32.20 ± 35.39 months 
(Supplementary Table S1). Two out of the five participants 
were female, and all were of white ethnicity.

All participants were autoantibody-positive defined by 
being positive to at least one of GADA, IA-2A, or ZnT8A.

Evaluating changes in C-peptide levels
Median serum C-peptide AUC at baseline was 0.88 (0.56–
1.30) nmol h/l. There was no significant difference in median 
serum C-peptide AUC at week 14 (0.70 (0.44–0.80) nmol h/l) 
and week 52 (0.40 (0.26–0.95) nmol h/l) in comparison to 

baseline. The serum C-peptide remained stable in two out of 
five participants (Fig. 2a, Supplementary Table S3).

Median UCPCR at baseline was 1.56 (0.86–3.18) nmol/
mmol. There was no significant difference in median UCPCR 
at week 14 (1.84 (0.69–1.91) nmol/mmol) and week 52 
(0.82 (0.31–1.08) nmol/mmol) in comparison to baseline. 
It remained stable in three out of five participants (Fig. 2b, 
Supplementary Table S3).

Evaluating glycaemic control
Median HbA1c at baseline was 48.0 (38.5–65.0) mmol/mol. 
There was no significant difference at week 4 (52.0 (38.5–
67.5) mmol/mol), week 9 (49.0 (40.5–68.5) mmol/mol), 
week 14 (45.0 (43.5–79.0) mmol/mol), and week 52 (45.0 
(42.0–68.5) mmol/mol) in comparison to baseline (Fig. 2c, 
Supplementary Table S3).

Median insulin dose at baseline was 0.43 (0.24–0.63) units/
kg. It remained at similar levels at weeks 4, 9, and 14 (0.46 
(0.19–0.60) units/kg, 0.52 (0.18–0.61) units/kg, and 0.45 
(0.27–0.61) units/kg, respectively. The observed increase to 
0.58 (0.30–0.80) units/kg at week 20 and to 0.54 (0.33–0.81) 
at week 52 was not statistically significant in comparison to 
baseline (Fig. 2d, Supplementary Table S3).

Median IDAA1c at baseline was 7.72 (7.10–10.34). It re-
mained unchanged at weeks 4 and 9 (7.73 (7.31–9.74)) and 
(7.94 (7.17–10.13)), respectively. The observed increase to 
8.00 (7.27–11.84) at week 14 and to 8.34 (7.37–11.68) at 
week 52 was not statistically significant in comparison to 
baseline (Fig. 2e, Supplementary Table S3).

At the start of the study, glucose levels were in range (glu-
cose between 4 and 10 mmol/l; measured by CGM) 80.80% 
(52.80–86.50%) of the recorded period (at least 72 h). This 
did not change significantly when assessed at 14 and 52 weeks 
(57.50 (49.50–82.00)% and 69.70 (60.00–76.25)%, respect-
ively) – Fig. 3a, Supplementary Table S3.

There was no significant difference in time spent above range 
(glucose >10 mmol/l) at week 14 (39.10 (13.50–48.70) %) or 

Figure 2. Effect of C19-A3 GNP on β-cell function and metabolic parameters. (a) Serum C-peptide expressed as area under the curve (AUC) over 
120 min after mixed-meal challenge; (b) urine C-peptide to creatinine ratio (UCPCR) 2 h after mixed meal; (c) HbA1c; (d) median total daily insulin dose 
recorded over 3 days before the study visit and normalised for body weight; (e) insulin dose-adjusted A1c (IDAA1c) calculated according to the formula: 
HbA1c (%) + [4× insulin dose (units per kg per 24 h)]. Each line represents an individual participant with an assigned study number as shown in the 
legend.
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week 52 (25.90 (15.00–36.80) %) in comparison to baseline 
(16.00 (10.55–47.00) %) – Fig. 3b, Supplementary Table S3.

There was also no significant difference in time spent below 
range (glucose <4 mmol/l) at week 14 (3.40 (1.80–4.50) %) 
and 52 (2.60 (0.85–12.00)) in comparison to baseline (0.40 
(0–4.55) %) – Fig. 3c, Supplementary Table S3.

Evaluating gold serum concentration and excretion
Serum gold concentrations increased in all participants after 
the first and third dose of C19-A3 GNP peptide. The decline 
in the gold serum concentrations was observed as early as 
week 9 (1 week after the third dose), although detectable 
levels were present in all participants at that point in time, 
with the exception of the participant who received the first 
dose only. A reduction in gold serum concentration became 
more evident at weeks 14 and 20, when only three and one 
participant(s), respectively, had detectable levels. Serum gold 
levels were undetectable at week 52 in all participants – Fig. 4a,  
Supplementary Table S4.

Measurements of gold in the urine showed a less consistent 
pattern. An increase in urinary gold concentration after dosing 
was recorded in two of the five participants 1 day after the 
first dose, one of four participants 1 day after the third dose, 
and in two of the four participants 1 week after the third dose. 
Urinary gold urine levels were undetectable at week 52 in all 
participants – Fig. 4b, Supplementary Table S5.

Safety assessments in blood and urine tests
There were no clinically significant abnormalities in 
safety blood and urine tests and no IMP-related serious 

adverse events were reported during the course of the 
study. There was one serious adverse event requiring hos-
pital admission, which was secondary to Campylobacter 
infection, which was considered unrelated to the IMP 
(Supplementary Table S6).

Participants also reported headache, mild upper respira-
tory tract infection symptoms, and nausea and vomiting 
during the study. None of the reported adverse events were 
considered to be directly related to the IMP (Supplementary 
Table S6).

Injection site reactions and gold hypersensitivity
All participants developed an immediate localised skin reaction 
after all IMP injections. It consisted of an asymptomatic GNP-
derived dark-coloured central area (3–4 mm) surrounded by a 
circular erythematous area (diameter of 2–3 cm), as illustrated 
in Fig. 5a–g. Erythema disappeared after 45–60 min of close 
observation, but the dark central area persisted and reduced in 
size to 1–2 mm by the following day.

Subsequently, delayed skin changes over the injection site 
were observed. The change consisted of a small central area 
of GNP-derived pigmentation surrounded by an asymptom-
atic circular erythematous induration. Induration initially 
reached 2–3 cm in diameter that reduced to approximately 
1  cm during the follow-up period. These delayed reactions 
appeared 17.4 ± 2.3 days after the first injection, but much 
sooner, i.e. 1–3 days after the second and third injection. 
This was consistent in all participants. The skin changes sig-
nificantly faded over the course of the study, although they 
were still visible at the end of the observation period (12–24 
months depending on the participant) – Fig. 5a–g.

Figure 3. Effect of C19-A3 GNP on glucose variability. (a) Time in range (the % of time participants recorded a blood glucose level of 4–10 mmol/l); (b) 
time above range (the % of time participants recorded a blood glucose level of >10 mmol/l); (c) time below range (the % of time participants recorded 
a blood glucose level of <4 mmol/l). Recordings were taken for at least 72 h before study visits. Each line represents an individual participant with an 
assigned study number as shown in the legend.

Figure 4. Serum and urine gold concentration following administration of C19-A3 GNP. (a) Serum gold concentration; (b) urine gold concentration. Blood 
and urine samples for measurement of gold concentration were taken at baseline (week 0), one day after 1st dose (week 0 + 1 day) and one day after 
3rd dose (week 8 + 1 day). Detection limit was 0.2 ng/ml and quantitation limit 0.6 ng/ml. Levels below detection and quantitation limit are presented 
as zero on the graph. Each line represents an individual participant with an assigned study number as shown in the legend.
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Four participants who received the IMP injection agreed to 
have gold hypersensitivity testing. All had positive reactions 
with epicutaneous patch testing to gold sodium thiosulphate 
2% in petrolatum.

A skin biopsy of the injection site was performed on two 
participants. Haematoxylin & eosin-stained tissue sections 
showed a normal epidermis with perivascular inflammation 
in the upper- and mid-dermis. The inflammatory infiltrate was 
composed of lymphocytes and histiocytes, but no granulomas 
were present. Immunohistochemistry showed the infiltrate to 
be mainly CD3-positive T-cell lymphocytes (equal distribution 

of CD4+ and CD8+) with small numbers of CD20-positive 
B-cell lymphocytes. There was also evidence of intradermal 
gold retention – Fig. 6a–f.

Discussion
This study has explored the concept of enhanced antigen-
specific immunotherapy by conjugating proinsulin peptide 
C19-A3 which has a known favourable immunomodulating 
profile [28] to very small gold nanoparticles to target antigen 
delivery to potentially tolerogenic DCs in the skin.

Figure 5. Skin changes after intradermal injection of C19-A3 GNP. (a) Immediately after injection; (b) 5 min after injection; (c) 24 h after injection; (d) 
30 days after injection; (e) 2 months after injection (upper left), 1 month after injection (right) and 7 days after injection (lower left); (f) 20 months after 
injection; (g) close-up of the injection site showing central area of hyperpigmentation and surrounding induration and redness.

Figure 6. Histopathology and immunohistochemistry staining of the punch biopsies of the injection sites. (a) Anti-CD3 staining; (b) anti-CD20 staining; 
(c) anti-CD4 staining; (d) anti-CD8 staining; (e) and (f) gold staining.
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This first-in-human study was designed to assess the 
safety and tolerability of the new construct. In general, 
dosing was well tolerated by patients. The study was not 
powered to assess effects on β-cell preservation, although 
there was no evidence of accelerated β-cell function decline 
in the small number of participants. Participants were not 
recruited immediately after diagnosis of T1D as these pa-
tients are often recruited to other immunomodulatory trials 
in T1D. However, the requirement for a participant to have 
a threshold C-peptide value ensured they had a residual 
β-cell function at the time of their enrolment in the study. 
Two participants maintained stable levels of stimulated 
C-peptide and three had an IDAAC1 level in the favourable 
range (<9) for the duration of the trial [45]. However, in at 
least one participant stable C-peptide levels can be explained 
by the stage of their diabetes, i.e. a slow natural decline in 
C-peptide in that phase of the disease was expected. Others 
showed moderate decline in endogenous insulin production, 
which again may be consistent with the natural progression 
of T1D during the early years of the disease (three out of five 
participants), Supplementary Table S2 [46]. Importantly, in-
sulin requirements of most participants remained low (<0.8 
units/kg of body weight) throughout the study and there was 
reasonably good glycaemic control with median HbA1c of 
45.00 (42.0–68.5) mmol/mol and glucose levels, recorded 
at the time of the last visit, that was maintained within ex-
pected range for 69.7% (60.0–76.2%) of the time (Figs. 2 
and 3).

There was no evidence of systemic hypersensitivity and no 
IMP-related serious adverse effects were observed during the 
study. In addition, there was no evidence of systemic gold 
retention or effect as evidenced by normalisation of serum 
and urine gold concentration (Fig. 4, Supplementary Tables 
S4 and S5) and normal safety tests including renal and liver 
function tests.

All participants developed a delayed local skin reaction 
at the site of each injection (Fig. 5). It appeared 1–3 weeks 
after the first injection, 1–3 days after the second and third 
injection, and persisted, gradually fading over 12–24 months. 
Histopathological findings indicated retention of gold in the 
dermis (Fig. 6e and f) with B- and T-cell infiltrate in distribu-
tion and quantity atypical to normal skin, but not consistent 
with foreign body granuloma (Fig. 6). Immunological analysis 
of this infiltrate and its antigen specificity (gold vs. C19-A3 
peptide) will be reported separately (Hanna S.J.). However, 
the observation of the prolonged retention of the GNP (and 
possibly the whole construct, including peptide) in the skin is 
a unique outcome of this study that opens a number of thera-
peutic approaches, including the creation of a depot with the 
potential to create a sustained immunomodulating environ-
ment in the skin. In this example, the addition of tolerogenic 
cargo could facilitate a favourable effect on autoimmune pro-
cesses and β-cell function.

To assess the possibility of induced gold hypersensitivity, 
participants had a skin patch hypersensitivity test to gold 
thiosulphate which came back positive in all tested subjects. 
Gold thiosulphate was chosen as it is the antigen routinely 
used in standard clinical practice for patch testing to detect 
gold hypersensitivity. Contact allergy can occur in routinely 
patch-tested patients, but the clinical relevance of this is un-
clear and often not demonstrated, as a systemic hypersensi-
tivity rarely, if ever, develops [47, 48]. There is a potential 

cosmetic drawback of permanent or semi-permanent skin 
changes. These could be practically overcome in future studies 
by choosing less exposed areas for injection sites and they 
may be more or less visible in different skin types. The occur-
rence of injection site reactions was reviewed by the DSMB 
who considered that events did not adversely change the risk/
benefit ratio and did not constitute a safety issue.

We are of the opinion that benefits of this approach (well-
tolerated, minimally invasive intradermal administration that 
could be modified to self-administration in the future; poten-
tial for creating a sustained tolerogenic immunomodulating 
environment in the skin; no systemic gold retention or effects) 
outweigh the risks (possible induction of gold hypersensitivity 
with unknown clinical significance and no evidence of sys-
temic hypersensitivity; unfavourable cosmetic effect).

In summary, allowing for the limitation of the small number 
of participants, intradermal administration of C19-A3 GNP 
constructs appears safe and well tolerated in people with T1D. 
The associated prolonged skin retention after intradermal ad-
ministration offers a number of possibilities to enhance its 
tolerogenic potential in T1D, which should be explored in fu-
ture studies.

Supplementary material
Supplementary data are available at Immunotherapy 
Advances online.
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