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Study of Natural Scene Categories in Measurement
of Perceived Image Quality

Xiaohan Yang, Fan Li, Leida Li, Ke Gu, and Hantao Liu

Abstract—One challenge facing image quality assessment
(IQA) is that current models designed or trained on the basis
of exiting databases are intrinsically suboptimal and cannot deal
with the real-world complexity and diversity of natural scenes.
IQA models and databases are heavily skewed towards the
visibility of distortions. It is critical to understand the wider de-
terminants of perceived quality and use the new understanding to
improve the predictive power of IQA models. Human behavioural
categorisation performance is powerful and essential for visual
tasks. However, little is known about the impact of natural
scene categories on perceived image quality. We hypothesize
that different classes of natural scenes influence image quality
perception – how image quality is perceived is not only affected
by the lower-level image statistics and image structures shared
between different categories, but also by the semantic distinctions
between these categories. In this paper, we first design and
conduct a fully controlled psychovisual experiment to verify our
hypothesis. Then, we propose a computational framework that
integrates the natural scene category-specific component into
image quality prediction. Research demonstrates the importance
and plausibility of considering natural scene categories in future
IQA databases and models.

Index Terms—Image quality, natural scene categories, psycho-
visual experiment, perception, objective metric

I. INTRODUCTION

NOWADAYS, digital images are widely used in many
important research and commercial applications [1]-[4].

However, images are inevitably subject to a variety of distor-
tions in the process of acquisition, compression, transmission,
and storage. These distortions result in a degradation in image
quality, which affects human’s visual experiences. Therefore,
it is essential to develop reliable image quality assessment
(IQA) methods to quantify image quality in a broad range of
applications including image processing, computer vision and
pattern recognition [5]-[8].

Xiaohan Yang and Fan Li are with Shaanxi Key Laboratory of Deep Space
Exploration Intelligent Information Technology, School of Information and
Communications Engineering, Xi’ an Jiaotong University, Xi’an, 710049,
China. (e-mail: yangxiaohan@stu.xjtu.edu.cn; lifan@mail.xjtu.edu.cn).

Leida Li is with the School of Artificial Intelligence, Xidian University,
Xi’an 710071, China. (e-mail: ldli@xidian.edu.cn).

Ke Gu is with Faculty of Information Technology, Beijing University
of Technology, Engineering Research Center of Intelligent Perception and
Autonomous Control, Ministry of Education, Beijing Laboratory of Smart
Environmental Protection, Beijing Key Laboratory of Computational Intelli-
gence and Intelligent System, Beijing Artificial Intelligence Institute, Beijing,
100124, China (e-mail:guke.doctor@gmail.com).

Hantao Liu is with the School of Computer Science and Informatics, Cardiff
University, Cardiff, CF243AA, U.K. (e-mail: LiuH35@cardiff.ac.uk).

This work was supported in part by the National Natural Science Foundation
of China under Grant (62071369, 62076013), in part by the Beijing Natural
Science Foundation under Grant JQ21014.

“Since human beings are the ultimate receivers in most
image-processing applications, the most reliable way of as-
sessing the quality of an image is by subjective evaluation.
Indeed, the mean opinion score (MOS), a subjective quality
measure requiring the services of a number of human ob-
servers, has been long regarded as the best method of image
quality measurement.” [9] Subjective testing must be thor-
oughly designed and test conditions must be closely controlled
so that the variable being measured is statistically meaningful
[10]. To guarantee the reliability and statistical significance
of the MOS of image quality measurement, subjective exper-
imental protocols and procedures have been developed and
adopted as parts of an international standard by the Interna-
tional Telecommunications Union (ITU) [10]. For example,
the standard recommends the minimum number of human
subjects for a typical subjective image quality assessment
experiment, as well as essential experimental settings and
subjective data processing steps, etc. Researchers have used
the best practice guidance to conduct subjective experiments
and generate MOS-based databases that can faithfully reflect
human perception of image quality [11]-[12] However, sub-
jective testing is cumbersome, expensive and time-consuming
[13], and thus can hardly be used in practical applications.
Therefore, a more realistic solution is to develop objective
IQA methods that can automatically evaluate image quality as
perceived by human beings.

There has been growing interest in developing objective
IQA methods. Depending on the availability of the pris-
tine reference image, objective IQA methods are classified
into three categories: full-reference IQA (FR-IQA) [14]-[15],
reduced-reference IQA (RR-IQA) [16]-[17] and no-reference
IQA (NR-IQA) methods. Nevertheless, in many real-world
applications, the pristine reference image is often unavailable,
which makes FR-IQA and RR-IQA inapplicable. Thus, it
has become increasingly important to develop effective NR-
IQA methods which can predict image quality without any
reference. NR-IQA is a very challenging scientific problem
mainly because little is known about the mechanisms of the
human visual system (HVS) in determining image quality. In
general, existing NR-IQA methods rely on the assumption that
the image distortion is the dominant factor for image quality
perception [18]-[21]. NR-IQA models have been developed
to establish the relationship between image distortions and
perceived quality. The traditional approach taken in NR-IQA
models is based on extracting image features that explicitly
describe distortions, and learning a shallow regression model
to map the image representations onto scalar quality scores.
In the literature, a majority of NR-IQA models make use



of the natural scene statistics to extract distortion-related
features to evaluate image quality, such as Gaussian scale
mixture (GSM) model in the wavelet domain [18], Weibull and
Generalized Gaussian distribution (GGD) model in the DCT
domain [19]-[20], the GGD model in the spatial domain [21].
Although the traditional NR-IQA methods have achieved good
prediction performance in certain databases/applications, the
obvious limitation is that these handcrafted features may not
be powerful enough to adequately represent complex image
structures and distortions. Therefore, there is still considerable
room for improvement in NR-IQA models.

A. Related work

Recently, researchers attempt to apply deep learning in the
development of objective NR-IQA models. A deep neural
network (DNN) has proven ability to capture discriminative
task-relevant features, which can be a promising method for
IQA problem. However, DNN models heavily rely on large-
scale annotated data, such as the ImageNet dataset [22]. In
the area of image quality, creating such “big” IQA databases
is practically very challenging. This is because a meaningful
subjective quality label, i.e., MOS must be derived from psy-
chophysical experiments under fully controlled conditions –
making a large database increases the number of images/labels
at the expense of the reliability of the psychophysical data.
To exploit deep learning techniques in the context of the
nature of IQA databases, different approaches have been
attempted. In a so-called patch-based method [23]-[25], an
image is divided into patches with the aim to augment the
IQA database. The ground-truth quality label for each image
patch is approximated using either the corresponding overall
quality score or the score calculated by a traditional objective
IQA metric. However, the disadvantage is that the assigned
patch label does not accurately and faithfully reflect the actual
perceived quality, simply because no psychophysical data is
gathered at the patch level. This drawback hinders a DNN-
based model’s performance in predicting image quality. An
alternative approach taken in DNN-based models [26]-[28] is
to augment the IQA database by simulating extra new images
with distortions similar to the current data. In this approach,
transfer learning and domain adaptation are often adopted to
improve the sample efficiency and boost learning performance.
Some researchers also use multi-task learning methods to
reinforce the importance of the characteristics of distortions
in a DNN-based IQA model. In [29], the “distortion type”
sub-network is constructed and added to a DNN to optimize
its learning ability for image quality prediction. In [30], a two-
stream sub-networks (representing different distortion forms)
is designed and integrated to a DNN-based IQA model.

The common strategy of existing NR-IQA methods focuses
on establishing a mapping between image distortions and sub-
jective quality measures. However, other important factors that
can influence image quality remain largely unexplored [31].
Because of this single-factor focus, the construction of IQA
databases, for example, the widely used databases [32]-[35]
has been strongly skewed towards the single determinant of
image quality – distortion. This might have caused a potential
bias in the development of IQA models and complications in

their predictive power [36]. The urgent challenge facing the
IQA research is that models designed or trained on the basis of
existing IQA databases are intrinsically suboptimal and cannot
deal with real-world complexity and diversity of natural image
space [37]-[39]. It is critical to go beyond the single factor of
distortion and understand the wider determinants of perceived
image quality, and then use the new understanding to improve
the predictive power of IQA models.

B. Contributions

Vision literature reveals that humans are extremely profi-
cient at categorising natural scenes, despite subtle distinctions
between heterogeneous classes of natural scenes; they can
recognise natural scenes with exposures as brief as 100 ms,
and with little time to prepare for the categorisation tasks
[40]-[43]. Such powerful human behavioural categorisation
performance is essential for visual tasks such as navigation or
the recognition of objects in their natural environment [43]-
[44]. Little is known about how natural scene categories play
a role in image quality assessment, and how to integrate this
perceptually relevant aspect to objective IQA models.

An earlier attempt has been made in [45] to investigate the
impact of scene category in IQA. A JPEG database (158 dis-
torted images) and a Blur database (158 distorted images) were
created; each contained three scene categories (i.e., indoor,
outdoor natural, and outdoor manmade). Subjective quality
scoring experiments were conducted separately for these two
databases, where a controlled lab experiment was used for the
JPEG database and an uncontrolled crowdsourcing experiment
was used for the Blur database. The limitations of this study
are: first, the diversity is scene category is rather limited as
only three scene categories were used; second, the impact of
scene category on perceived image quality cannot be revealed
for the cross-distortion scenario, because subjective ratings
generated independently for the JPEG and Blur databases can-
not be compared due to the psychometric scale mismatch [46];
third, no objective IQA model was proposed, and the study
focused on testing the added value of incorporating hand-
crafted scene category features to existing IQA metrics using a
capacity-limited shallow regression (i.e., LSVR) method [47]-
[48]. Another attempt has been made in [49] to include scene
category information in aesthetic quality assessment (AQA),
which is a different but related area to IQA. AQA focuses on
categorising images into aesthetically higher or lower quality
(i.e., a “aesthetics classification” task [50]) and IQA focuses on
quantifying the image quality preference induced by visual sig-
nal distortions (i.e., a “preference regression” task). Although
no psychovisual experiment was conducted in this study, a
computational approach was proposed to exploit semantic
recognition to improve AQA. This work adopted a multi-
tasking learning framework, where the network architecture
design and optimisation take into account the specific charac-
teristics of the “aesthetics classification” task. This approach
can inspire a design towards a computational framework for
scene category-aware IQA. To overcome above challenges, our
work aims to (1) design and conduct a new and thorough
psychovisual experiment to analyse the impact of diverse



natural scene categories on perceived quality, and as a result
to faithfully reveal the human behavioural responses to image
distortions as a function of natural scene categories; and
(2) design and build a computational model, considering the
specific characteristics of the “preference regression” IQA task
in the model’s architecture and optimisation.

The DNN-based multi-task learning framework has been
recently exploited to improve IQA [51]-[52]. The IQA model
in [51] consists of two sub-networks – a distortion type
identification network and a quality prediction network –
sharing the early layers. The IQA model in [52] consists of
two sub-networks – a natural scene statistics (NSS) feature
prediction task and a quality prediction task – sharing a CNN
feature extractor. Both models exploit a highly distortion-
related feature (i.e., distortion type in [51] and distortion
characteristics in [52] ) prediction task as an auxiliary task
to enhance the network’s representation ability for the IQA
task. Based on the multi-task learning framework, it is critical
to investigate the impact of higher-level HVS features on IQA
and construct new plausible auxiliary tasks. However, it should
be noted that prior to modelling psychovisual study should
be in place to provide the grounding as well as HVS data so
that the new auxiliary task can faithfully learn the higher-level
HVS features in the presence/context of image distortions.
In addition, both models in [51]-[52] adopt the shared layer
feature strategy in the network architecture design. However,
the strategy is rather straightforward without fine-grained
analysis on the influence of different shared layer locations
on the performance of the IQA model. It is worthwhile to
thoroughly analyse the impact of shared layer locations in
order to optimise the network performance.

In this paper, we first investigate the impact of an HVS-
based determinant – natural scene categories – on perceived
image quality via a psychovisual experiment. In the ex-
perimental design, the independent (i.e., scene categories)
and dependent (i.e., perceived quality) variables are fully
controlled to ensure the results are unbiased and statistical
meaningful. Building upon our preliminary work [36], current
contribution lies in providing further justifications and analyses
to verify our hypothesis. This results in a “Scene Category
IQA” database that is the first and largest of its kind. Second,
substantial contributions have been made in this paper that
after gathering psychovisual evidence and data, we build a
new computational model to integrate natural scene category-
specific information to objective image quality assessment.
The model is based on multi-task learning with deep neural
networks, which jointly optimise scene-specific component
and distortion-specific component for image quality prediction.
In modelling, to leverage deep learning with limited data in
IQA, we take advantage of transfer learning combined with
dedicated optimisation strategies to enhance sample efficiency
and maximise the model’s learning performance.

The remainder of this paper is organized as follows. Section
II illustrates the psychovisual study and data analysis. Section
III describes the proposed computation method and the exper-
imental results. Section IV gives a discussion, and Section V
concludes the paper.

II. PSYCHOVISUAL STUDY AND ANALYSIS

A. Hypothesis

To enhance an IQA metric’s ability in handling complex
and diverse natural image space, researchers attempt to incor-
porate the functional mechanisms of the human visual system
(HVS) [32]-[35]. Since human’s ability to categorise natural
scenes has proven significant in perceiving and understanding
visual content [40], we hypothesize that different classes
of natural scenes influence image quality perception. How
image distortions are perceived may not only affected by the
image structure and low-level image statistics shared between
different categories, but also by the semantic distinctions
between these categories. In the literature, there is a paucity
of research on the impact of the natural scene categories
on image quality assessment. Most image quality perception
studies were conducted using a small number of original visual
scenes. Also, visual scenes were randomly selected without a
systematic way of content classification. This poses difficulties
for studying the influence of scene categories on image quality.
It should be noted that a perception study must be conducted
under fully controlled experimental conditions (with minimum
uncontrolled variables in the experimental design), otherwise,
the findings cannot faithfully reflect human sensory perception
[53]. We recently created a new IQA database including
natural scene categories, namely the CUID database as detailed
in [36]. We now briefly summarise the database, and give
further analysis on natural scene categories.

B. The CUID database

A total of sixty source images (original visual scenes)
were collected from the Unsplash website [54]. They were
high-quality images and had a resolution of 1920 × 1080
pixels. Ten different natural scene categories (six images were
chosen to capture the high variability within each category)
were purposely selected in a systematic way including ACT
(Action), BNW (Black and White), CGI (Computer-Generated
Imagery), IND (Indoor), OBJ (Object), ODM (Outdoor Man-
made), ODN (Outdoor Natural), PAT (Pattern), POT (Portrait),
and SOC (Social). These ten categories of sixty source images
are illustrated in Fig. 1.

The original images were distorted by applying three dif-
ferent types of common image distortions: contrast change
(i.e., CC), JPEG compression (i.e., JPEG), and motion blur
(i.e., MB). These different distortion types essentially give
distinctive impairments in images. By varying the distor-
tion parameters, the strength of distortion is adjusted, which
generates distorted images of varying quality. Fig. 2 shows
an example of distortion simulations, where a source image
leads to nine distorted images. For each distortion type, three
different levels of distortion/quality (i.e., Q1, Q2 and Q3) are
stimulated, reflecting distinctive levels of perceived quality: Q1
indicates ‘perceptible but not annoying artifacts’, Q2 indicates
‘noticeable and annoying artifacts’, and Q3 indicates ‘very
annoying artifacts’. This results in a total of 600 test stimuli
(including the original visual scenes).

A perception experiment was carried out at a laboratory
at School of Computer Science and Informatics, Cardiff



Fig. 1. Ten categories of 60 source images contained in the CUID dataset [36].

Fig. 2. Exemplars of distorted stimuli contained in the CUID dataset [36].



University. The laboratory was set up as a standard office
environment with fully controlled viewing conditions [10]. A
19-inch LCD monitor was used to display the test stimuli. The
viewing distance was approximately 60 cm. The experimental
procedures followed a single-stimulus method as prescribed by
[?]. Participants scored image quality using a rating scale that
ranged from 0 to 100. The within-subjects experimental design
[76] was adopted to ensure subjective results are reliable and
consistent. This means each participant must view and score
all stimuli in the entire dataset. To eliminate the undesirable
carry-over effects due to participant fatigue or boredom [53],
multiple sessions were arranged for each participant to com-
plete the rating task as detailed in [36]. Nineteen participants
were recruited to take part in the experiments. They were 8
males and 11 females, between age 23-52, and inexperienced
with subjective image quality assessment. The characteristics
of the assessment panel were determined in accordance with
the standard in [10]. In order to make participants familiar
with the test stimuli and the use of scoring scale, a training
session was provided to each participant before they started
the actual rating session.

After stimuli are evaluated by the assessment panel, the
mean opinion score (MOS) – representing the overall sub-
jective quality of an image – is derived as the average of
individual subjective scores [9]. To account for the potential
differences between participants when using the rating scale,
z-score is calculated to convert a raw subjective score into a
standard (calibrated/normalised) score [55]:

ZSij = (RSij − µi)/σi (1)

where RSij indicates the raw-score of the j-th test image rated
by the i-th participant, µi indicates the mean of all raw-scores
given by the participant i, and σi indicates the corresponding
standard deviation.

A standard procedure to remove outliers (detailed in [55])
was applied. Ultimately, MOS was calculated:

MOS =

P∑
i=1

ZSij (2)

where P denotes the number of scores (excluding outliers)
for the j-th image. After MOS values are generated, they
are linearly mapped to the range of [0, 100] to match with
the original value range of the rating scale. This results in a
Cardiff University Image quality Database (CUID). For a well-
balanced IQA database, the MOS values of test stimuli should
have a uniform distribution across the range of perceived
quality. The MOS distribution of the CUID database (see detail
in [36]) shows that the test images are, to some extent, evenly
distributed across the quality range, which is consistent to
other widely recognised IQA databases, such as the LIVE
database [32]. The reliability measure of the MOS as per
[56] – Pearson correlation between MOS values and individual
ratings (IR), i.e. MOSIR is calculated for individual subjects.
The 95 % confidence interval of the MOSIR is [0.75, 0.8],
indicating a subjective database of high reliability

C. Analysis of MOS and natural scene categories

Now, for the CUID database, the unique new feature is that
natural scene categories have been systematically built into
the database. Since the within-subjects design was used to
generate the MOS, the MOS of an image from one category
can be fairly compared to the MOS of an image from any
other category [53], without any additional experiments for
scale realignment [32].

Fig. 3. The CUID database: natural scene ”category-wise” MOS.
Error bars indicate a 95% confidence interval.

Fig. 3 shows the natural scene ”category-wise” MOS of
the CUID database. As can be seen from the figure, when
the same distortions equally were applied to each category of
natural scenes in the CUID database, the perceived quality of
OBJ category and CGI category is higher than that of other
categories. This might suggest OBJ and CGI images are less
impacted by the same distortions used in the CUID database.
The SOC category is largely affected by distortions, resulting
in a lower perceived image quality. The above observation
implies that natural scene categories tend to impact perceived
image quality. This impact might be attributed to the human
cognitive processes, such as emotion or aesthetics. The ob-
served tendencies are further statistically analysed. An analysis
of variance (ANOVA) is conducted by selecting perceived
quality as the dependent variable, and the categorical natural
scene as the independent variable. The ANOVA results show
that the categorical natural scene has a statistically significant
effect on perceived quality (F-value=8.63, p-value=5.17E-
13<0.001 at 95% level).

III. THE PROPOSED COMPUTATIONAL METHOD

We propose a computational framework for the integra-
tion of natural Scene Categories in Image Quality predic-
tion, namely SCIQ. The schematic overview of the proposed
framework is illustrated in Fig. 4. The framework is based
on a multi-task deep neural network, which contains two
branches respectively addressing the influence of natural scene
categories and distortions. The scene category-specific branch
is trained to classify natural scenes, and its output probability
of classification is used to guide the quality prediction branch.
By doing this, the two branches are jointly optimised to
learn the interactions of image distortions and natural scene
categories for the image quality prediction task.



Fig. 4. The proposed framework of SCIQ with a scene category (SC) sub-network and a quality prediction (QP) sub-network.

A. The proposed SCIQ model

1) The SCIQ architecture: The SCIQ architecture contains
two sub-networks, including the scene category (SC) sub-
network and the quality prediction (QP) sub-network. We
adopt the architecture of the pre-trained VGG network [59],
including 13 convolution (C) layers, 5 max-pooling (P) layers
and 3 fully-connected (FC) layers. The large-scale ImageNet
dataset [22] has been used to pre-train the VGG network. By
using the pre-trained VGG, the learned parameters/weights of
the network can be transferred to the SCIQ task to significantly
improve the sample efficiency.

For the scene category (SC) sub-network, since the pre-
trained VGG network is powerful for the image classification
task, it has potential for the natural scene classification in our
model. The number of the last FC layer is modified to n, which
aims to discriminate scene categories in the CUID database.
Then, the softmax layer is used to obtain the accuracy of scene
category, as shown in equation 3.

~P = [p1, p1, ..., pn] (3)

where ~P denotes the outputs of the last FC layer in the scene
category sub-network, the number of outputs is 10. pi (i=1 to
n) denotes the probability of the ith scene category.

Similarly, the quality prediction (QP) sub-network is also
based on the pre-trained VGG network. The number of outputs
of the last FC layer is altered to 10, which is to obtain a vector
of image quality scores, as show in equation 4.

~S = [s1, s1, ..., sn] (4)

where ~S denotes the outputs of the last FC layer in the quality
prediction sub-network, the number of outputs is 10. si (i=1
to n) denotes the quality score of the ith instance.

The two sub-networks share the mid-level deep features
(i.e., at the 10th C layer in our experiment), which aims to
speed up the feature discrimination for different tasks [60],
[61]. Finally, the image quality Q is obtained by associating
the image quality score vector ~S with the corresponding scene
category vector ~P .

Q = ~S � ~P =

n∑
i=1

sipi (5)

where � represents the weighted sum of element-wise multi-
plication.

2) The design choices: In our SCIQ algorithm, the mid-
level shared features design is proposed, as shown in Fig. 4.
This design is based on the fact that the shallow layers of
a DNN contain general features, such as edges and textures
and deep layers contain specific features, such as higher-level
semantics [66]. For multi-task learning, a mid-level shared fea-
tures design gives a good balance between minimizing training
parameters and extracting common attributes for distinctive
tasks. The network architecture also features the discrimination
ability of specific tasks by providing a transition from common
attributes to specific attributes. In principle, the two sub-tasks,
scene category (SC) and quality prediction (QP) share some
common attributes, such as saliency; while they have their
specific attributes, such as local properties for SC and local
distortions for QP [28], [61]. So, the mid-level shared features
design well captures this property of multi-task learning.

3) The loss function: The two sub-networks are jointly
trained using the following loss function L.

L = λ1L1(w; θ) + λ2L2(w; θ) (6)

where L1 is the cross entropy loss function [59] of scene
category (SC) sub-task. L2 represents the squared Euclidean
distance as the loss function [26] of the quality prediction (QP)
sub-task. λ1 and λ2 control the two components of the final
combined loss function.

4) The training strategy: Prior to training the SCIQ model,
the parameters contained in the first 10th convolution layers of
the pre-trained VGG-network are shared. The rest parameters
are initialized randomly. The last FC layer of the pre-trained
VGG network is modified to a ten-dimensional output to suit
the scene category and quality prediction sub-tasks.

Then, the SCIQ is trained by using the CUID database.
The input image is cropped randomly. The size of cropped
images is 224 × 224 pixels. The label for training the scene
category sub-network is a vector containing ten elements,
indicating the likelihood of scene categories. Meanwhile, the
label for training the quality prediction sub-network is a vector
of ten quality scores, indicating the ground truth image quality.
Finally, the end-to-end optimization strategy is adapted to
minimize the losses of the two sub-networks.

B. Experimental results

1) Experimental setup: To evaluate the performance of
an image quality metric, two commonly used measures are



quantified. They are PLCC (i.e., Pearson Linear Correlation
Coefficient) and SROCC (i.e., Spearman Rank-Order Corre-
lation Coefficient) calculated between the estimated visual
quality scores Qpre and the subjective quality scores Qsub,
as:

SROCC(Qpre, Qsub) = 1− 6
∑
di

m(m2 − 1)
(7)

PLCC(Qpre, Qsub) =
cov(Qsub, Qpre)

σ(Qsub)σ(Qpre)
(8)

where m indicates the number of test stimuli; di indicates
the rank difference of the i th test sample; cov(.) represents
the covariance between Qpre and Qsub; σ(.) represents the
standard deviation. PLCC measures the prediction accuracy
and SROCC measures the prediction monotonicity. The mag-
nitude of both correlation measures ranges from 0 to 1, with 0
indicating no correlation and 1 indicating perfect correlation.
Therefore, the larger the measure, the better the model’s
performance in predicting the subjective image quality [62]-
[63].

In training the SCIQ model, we randomly divide the dis-
torted images of each scene category in the CUID database
into a training set and a test set. The training set includes four
source scenes and the test set includes the two source scenes.
By doing so, no overlap occurs between the training set and
test set.

The SCIQ model is trained using the Caffe framework. In
our experiment, We set the min-batch to be 11; the momentum
and weight decay to be 0.9 and 0.0005, respectively; and the
learning rate to be 1e-6. Also, we make the training rates
decrease by a factor of 0.1 per 10K iterations for a total of
50K iterations. We set the dropout regularization ratio to be
0.5. Note these are commonly used settings for the hyper-
parameters of the Caffe deep learning framework [64]-[65].

The relative importance weights are set to be 0.8 and 0.2
in equation 6. The value range of the loss function of the
scene category (SC) subtask is between 0 and 1; while the
value range of the loss function of the quality prediction
(QP) subtask is found to be wider than that of SC subtask.
To compensate for the difference between two loss functions
and balance their contributions towards the combined loss, we
assign a relatively larger weight value to SC subtask and a
relatively smaller weight value to QP subtask. To verify the
weight assignment and demonstrate how difference assignment
combinations can impact the model performance, we conduct
experiments and the results are listed in Table I. It shows that
the best performance of the SCIQ model is achieved when
λ1=0.8 and λ2=0.2 are used.

This training process is repeated six times to eliminate the
performance bias. For each repetition, the training and test sets
are randomly selected as described above. The average values
of the SROCC and PLCC are reported as the final results.
Note, increasing the times of model running may help reduce
possible fluctuation in performance. We run an experiment to
increase the times of running the model from six to ten, and
compare the model’s performance as reported in Table II. It
can be seen from the table that the model has reached stable

TABLE I
The performance (i.e., SROCC and PLCC) of the proposed SCIQ
model using different λ1 and λ2 settings for the combined loss

function.

λ1 λ2 SROCC PLCC
0.2 0.8 0.856 0.860
0.4 0.6 0.861 0.866
0.5 0.5 0.878 0.875
0.6 0.4 0.880 0.884
0.9 0.1 0.885 0.890
0.8 0.2 0.909 0.905

performance when running it for six times.

TABLE II
The impact of model running times on the performance (i.e.,

SROCC and PLCC) of the proposed SCIQ model.

Running of SCIQ model SROCC PLCC
Six times 0.909 0.905
Ten times 0.910 0.903

2) Performance on the CUID database: Now, we want
to verify the proposed design: (1) whether the SC guidance
actually contributes to the prediction power of the network;
(2) after which convolution layer the network should break
up in to two sub-networks. We run experiments with the
CUID database using various design options: (1) a DNN
without the SC sub-network; (2) a DNN with both the SC
and QP sub-networks; (3) a DNN with the SC and QP sub-
network breaking up at different places (i.e., the number of
first convolution layers of the pre-trained VGG network used
as shared feature layers). As can be seen in Fig. 5 that
the prediction power (as measured by the Spearman rank
order correlation coefficient (SROCC) between the MOS and
predictions) with the scene category guidance is higher than
that without the guidance. Also, for the network with the SC
guidance, the best performance is achieved when the network
breaks up at the 10th convolution layer, meaning the first 10
convolution (C1-C10) layers are used as shared feature layers.
This result is in line with the mid-level shared features design
in [29], which suggests that the choice should be at the mid-
level layers (i.e., C5-C10) to avoid shared features being too
general or too specific.

We compare the performance of our proposed SCIQ model
to the state-of-the-art image quality assessment (IQA) algo-
rithms, including both Full-reference (FR) and No-reference
(NR) models. The FR models include PSNR [67], SSIM
[14] and VIF [68]. The NR models include traditional and
deep learning-based methods. Since our proposed model is
DNN-based, we decided to include only two representative
traditional NR-IQA, i.e., BLIINDSSII [20], and BRISQUE
[21], and focus on the comparison amongst deep learning-
based IQA models. It should be noted that a fair comparison
is possible only when the source code is available for all IQA
models under study, and the same fine-tuning procedure is
consistently applied for all models. We include nine DNN-



Fig. 5. The prediction power of the network with various design
choices.

based NR-IQA, i.e., Alexnet [75], VGG [59], CNN [23],
BIECON [69], DIQaM [71], RankIQA[70], WaDIQaM [72],
GraphIQA [73], and TTL SFTnet [74]. Note Alexnet [75] and
VGG [59] represent two well-known general DNN models.
We simply applied them for the IQA task by first pre-training
the model with the ImageNet [22] database and then directly
fine-tuning the model on the CUID database. The other models
are specifically designed for IQA, therefore, they were directly
fine-tuned on the CUID database. Note the same fine-tuning
procedure is consistently applied for those nine IQA models
to ensure the results are comparable. To the best of our knowl-
edge, this represents a comprehensive comparison of state-of-
the-art deep learning-based IQA models that have made their
source code publicly available so far in the literature.

Table III shows the performance of these IQA methods. It
can be seen that our proposed SCIQ outperforms other IQA
metrics.

TABLE III
The performance of different IQA methods on the CUID database.

Note for DNN-based NR-IQA, only the IQA models with their
source code made publicly available so far in the literature are

included in our comparative experiment.

Type Method SROCC PLCC

FR-IQA
PSNR 0.123 0.109
SSIM 0.522 0.494
VIF 0.697 0.598

Traditional NR-IQA BLIINDSSII 0.716 0.729
BRISQUE 0.722 0.736

DNN-based NR-IQA

AlexNet 0.794 0.797
VGG 0.858 0.870
CNN 0.533 0.515

BIECON 0.772 0.752
DIQaM 0.847 0.845

RankIQA 0.867 0.866
WaDIQaM 0.857 0.853
GraphIQA 0.803 0.817

TTL SFTnet 0.862 0.868
Our SCIQ 0.909 0.905

The performance of FR-IQA is unsatisfactory as the corre-

lation (i.e. in terms of PLCC and SROCC) is rather low. For
the traditional NR-IQA, the limitation mainly lies in the use
of handcrafted features, which can not adequately capture the
perceptual characteristics of the combination of image content
and distortions, and therefore, their prediction performance
is also quite low. Most Deep learning-based methods give
good performance due to the fact that deep features represent-
ing perceptual image quality can be automatically extracted.
Amongst those deep learning-based metrics, Our SCIQ model
is the best, possibly due to the scene categories are explicitly
included and quantified.

3) Cross-database evaluation: In the literature, cross-
database evaluation is often used in the image quality com-
munity to measure the generalization ability of IQA models,
particularly for machine learning-based and deep learning-
based models [24],[27],[70]. The performance of an IQA
model could be evaluated on the CUID database only using
the conventional train-test split technique as the procedure
used in Section III.B 2). However, a more critical performance
evaluation would be to use the CUID database as the training
set and use a different unseen IQA database (i.e., obtained
from a different laboratory, such as the popular LIVE, CSIQ,
TID2013 or LIVEMD database [32]-[34]) as the test set.
This cross-database evaluation can reveal how well the model
can generalise – the ability of a learning model to perform
accurately on new, unseen examples after having learned a
training set. If a learning model successfully built a general
model about the IQA space using the training examples of
CUID, it would produce sufficiently accurate predictions for,
e.g., LIVE, CSIQ, TID2013 and LIVEMD. As shown in
Table IV, compared to other state-of-the-art deep learning-
based IQA models, i.e., AlexNet, VGG, CNN, BIECON,
DIQaM, RankIQA, WaDIQaM, GraphIQA and TTL SFTnet,
our proposed SCIQ model shows superior generalization abil-
ity in the demanding cross-database evaluation.

4) Ablation experiments: A series of systematic ablation
experiments are carried out to further verify the rationality
of our proposed SCIQ model. Note some ad hoc ablation
experiments have been initially conducted in Section III B.2).

Contribution of “shared layer features”: We run four com-
parative experiments to verify the effectiveness of the mid-
level shared features (SF) design choice. In the first experiment
(i.e., referred to as “QP-only”), the quality prediction (QP)
sub-network is trained and model is rendered as the image
quality predictor. In the second experiment (i.e., referred to
as “SC-only”), the scene category (SC) sub-network is first
trained to classify 10 categories; then the last FC layer of the
sub-network is modified to 1 and network is train to predict
image quality. In the third experiment (i.e., referred to as
“QP-SC-without SF”), the scene category sub-network and
quality prediction sub-network are trained separately without
considering the mid-level shared features, and the last FC
layer is fused to produce a score as the prediction of image
quality. In the last experiment (i.e., referred to as “QP-SC-with
SF”), the proposed SCIQ architecture is used. The results are
listed in Table V. It can be seen that our SCIQ architecture
is superior to the method without considering the mid-level
shared features.



TABLE IV
Cross-database evaluation. Model performance is quantified by SROCC (note, PLCC exhibits the same trend of SROCC). Note only the

DNN-based IQA models with their source code made publicly available so far in the literature are included in our comparative experiment.

Train Test AlexNet VGG CNN BIECON DIQaM RankIQA WaDIQaM GraphIQA TTL-SFTnet SCIQ
CUID LIVE 0.602 0.655 0.528 0.807 0.713 0.752 0.710 0.679 0.761 0.853
CUID CSIQ 0.586 0.602 0.505 0.791 0.695 0.758 0.677 0.658 0.728 0.783
CUID TID2013 0.597 0.638 0.500 0.560 0.516 0.713 0.702 0.635 0.726 0.751
CUID LIVEMD 0.610 0.643 0.541 0.712 0.661 0.705 0.690 0.600 0.746 0.773

TABLE V
The contribution of shared features (SF) to SCIQ design.

Different model design options SROCC PLCC
QP-only 0.853 0.870
SC-only 0.860 0.874

QP-SC-without SF 0.866 0.868
QP-SC-with SF (proposed SCIQ) 0.909 0.905

Contribution of “natural scene categories”: To verify the ra-
tionality of including the natural scene categories, we run two
comparative experiments. In the first experiment (i.e., referred
to as “Direct-SC”), without using the scene category (SC) sub-
network, we directly provide the SC vector to the network; and
use the vector to weight the quality score vector obtained from
the last FC layer of the quality prediction (QP) sub-network to
generate the final quality score. In the second experiment (i.e.,
referred to as “Learned-SC”), we use our SCIQ architecture to
adaptively learn the relationships between scene categories and
image distortions. The results are shown in Table VI. It can
be seen that including the scene category (SC) sub-network
enhances learning the complex relationships between natural
scene categories and image quality assessment.

TABLE VI
The contribution of natural scene categories to SCIQ design.

Different model design options SROCC PLCC
Direct-SC 0.879 0.879

Learned-SC (proposed SCIQ) 0.909 0.905

The contribution of “core modelling strategies”: To verify
the rationality of our core modelling strategies (i.e., “transfer
learning (TL)” and “shared features (SF)”, we run four com-
parative experiments. In the first experiment (i.e., referred to
as “NO TF & NO SF”), the model does not contain shared fea-
tures between SC and QP sub-networks and is trained directly
on the CUID database without transferring information from
the pre-trained VGG. In the second experiment (i.e., referred
to as “NO TF & YES SF”), shared features design is included,
but model is rendered without transfer learning. In the third
experiment (i.e., referred to as “YES TF & NO SF”), the model
does not include the shared feature design but does make use
of transfer learning. In the forth experiment (i.e., referred to
as “YES TF & YES SF”), the complete SCIQ design is used
including both transfer learning and shared feature design. The
results are shown in Table VII. It can be seen that both core
modelling strategies significantly contribute to the proposed

SCIQ model.

TABLE VII
The contribution of core modelling strategies (i.e., transfer learning

(TF) and shared feature (SF)) to SCIQ design.

Different model design options SROCC PLCC
NO TF & NO SF 0.523 0.506
NO TF & YES SF 0.569 0.581
YES TF & NO SF 0.866 0.868

YES TF & YES SF (proposed SCIQ) 0.909 0.905

IV. DISCUSSION

In this paper, we focus on single-distortion image quality
assessment, where each stimulus is degraded by only one of
many possible distortion types. The vast majority of literature
has been focusing on single-distortion IQA mainly because
the impact of individual distortion types on perceived quality
can be thoroughly studied. It should be noted in practical
imaging chain, the images often undergo multiple stages
of quality degradation, therefore, multiple-distortion image
quality assessment is of high practical relevance [34],[78].
An immediate extension of research is to build upon the
methodologies established in the current work and investigate
the ”natural scene categories” in multiple-distortion IQA by
simulating multiple distortion stages and generating multiply
distorted images.

To facilitate image quality research, more psychovisual
studies should be conducted to provide a better understanding
of wider determinants of image quality as perceived by human
beings. However, it should be noted that subjective data
are meaningless unless they are gathered by well-designed
psychometric tests with fully controlled experimental condi-
tions. Also, a great deal of attention has been paid to the
image quality assessment behaviour of an average human
observer (i.e., MOS), but little attention has been paid to the
subjectivity of individuals. Future work could investigate the
variances between subjective opinions and their implications
on objective IQA models.

To facilitate the development of advanced DNN-based IQA,
it is important for developers to make the source code of IQA
models as well as IQA databases publicly available so that
a fair comparative study can be conducted. Table III so far
represents a comprehensive comparison of DNN-based IQA
models that have made their source code publicly available.
Further comparison can be easily conducted if new IQA source
code is released in future.



There is a growing trend to use image quality methodologies
to advance technology developments in emerging applications,
such as video blending, underwater image enhancement, and
image fusion, etc. [79]-[80]. One way to develop useful
application-specific IQA models is to understand the charac-
teristics of the visual stimuli through subjective evaluation,
and build these application-specific features into objective IQA
models. The latter involves an important step to test whether
existing IQA models are readily applicable, if so, these models
could be modified or adapted to the new application domain.
Here, we give an exploratory example of using the proposed
SCIQ model in image fusion. Fig. 6 shows two fused images
created by different image fusion methods, namely G12 [81]
and ShutaoLi12 [82]; and their ground truth image quality (i.e.,
MOS) scores derived from subjective experiments [83]. Our
proposed SCIQ is directly applied to produce objective scores
for the fused images, as the results shown in Fig. 6. It can
be seen that there is a good level of agreement between the
subjective and objective scores, suggesting that our proposed
SCIQ model has the potential to be used for assessing the out-
put quality of image fusion methods. However, to effectively
adapt our SCIQ model to image fusion, more work is needed
including gathering reliable subjective data – output quality of
various image fusion methods – via psychovisual experiments
as per methodologies used in [81]-[83], and fine turning the
SCIQ model on the new subjective image quality scores.

   

(a) G12 (MOS=3.957 vs. SCIQ=2.798)     (b) ShutaoLi12 (MOS=8.739 vs. SCIQ=8.024) 

Fig. 6. An example of two fused images created by different image
fusion methods. (a) Fused image generated by G12 [81]. (b) Fused
image generated by ShutaoLi12 [82]. Ground truth image quality (i.e.,
mean opinion score – MOS, note the range is [1,10]) derived from
subjective experiments [83] versus objective image quality predicted
by our proposed SCIQ model (note, SCIQ is directly applied without
fine-tuning on the fused images) is illustrated for each image.

V. CONCLUSION

In this paper, we have verified an important hypothesis
that natural scene categories significantly impact image quality
assessment. Through the design and conduct of a fully con-
trolled psychovisual experiment, we found that when the same
distortions are applied, different categories of natural scenes
intrinsically induce different human behavioural responses to
image quality. Building on this psychovisual evidence, we
have proposed a computational framework that integrates the
natural scene category-specific component to image quality
prediction. We have demonstrated the importance of natural
scene categories in improving the reliability of image quality
models. We suggest that future research should consider
natural scene categories in both subjective and objective image
quality assessment.
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