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ARTICLE

Analysis of missense variants in the human
genome reveals widespread gene-specific clustering
and improves prediction of pathogenicity

Mathieu Quinodoz,1,2,3 Virginie G. Peter,1,2,3,4 Katarina Cisarova,5 Beryl Royer-Bertrand,5

Peter D. Stenson,6 David N. Cooper,6 Sheila Unger,5 Andrea Superti-Furga,5 and Carlo Rivolta1,2,3,*
Summary
We used a machine learning approach to analyze the within-gene distribution of missense variants observed in hereditary conditions

and cancer.When applied to 840 genes from the ClinVar database, this approach detected a significant non-randomdistribution of path-

ogenic and benign variants in 387 (46%) and 172 (20%) genes, respectively, revealing that variant clustering is widespread across the

human exome. This clustering likely occurs as a consequence of mechanisms shaping pathogenicity at the protein level, as illustrated

by the overlap of some clusters with known functional domains. We then took advantage of these findings to develop a pathogenicity

predictor, MutScore, that integrates qualitative features of DNA substitutions with the new additional information derived from this po-

sitional clustering. Using a random forest approach, MutScore was able to identify pathogenic missense mutations with very high ac-

curacy, outperforming existing predictive tools, especially for variants associated with autosomal-dominant disease and cancer. Thus,

the within-gene clustering of pathogenic and benign DNA changes is an important and previously underappreciated feature of the hu-

man exome, which can be harnessed to improve the prediction of pathogenicity and disambiguation of DNA variants of uncertain sig-

nificance.
Introduction

It has been previously noted that mechanisms associated

with the pathogenesis of missense variants often correlate

with the three-dimensional structure of proteins1–3 and

that, for some disease-associated genes, mutations appear

to cluster within specific regions.4–12 More systematic ana-

lyses have identified DNA sub-regions intolerant to

missense variants13,14 and domains in protein families en-

riched in variants associated with disease.15,16 In addition,

within many genes, pathogenic missense variants tend to

cluster within specific domains or regions of the encoded

proteins, whereas most loss-of-function variants do not10,

15 with the exception of the penultimate and last exons

where premature termination codons can escape

nonsense-mediated decay (NMD).17 This information has

been used empirically to estimate the pathogenic potential

of newly detected variants for individual genes. Surpris-

ingly perhaps, the same information has never been sys-

tematically considered to determine clusters of benign

and deleterious variants across the entire human exome,

or to score the pathogenicity of DNA changes on the

same scale.

Identifying variants that underlie Mendelian pheno-

types and cancer represents a major challenge in genetic

medicine. Achieving this goal relies critically on devel-

oping the capability to recognize the one or a few muta-

tions that have a clinical impact among the hundreds of
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thousands of benign variants which are normally present

in an individual’s genome.18,19 Next generation

sequencing (NGS) is now being applied routinely in clin-

ical diagnostic settings,20 making the prediction of patho-

genic DNA variants, and particularly of missense variants,

a crucial element not only for medical research, but also in

the context of patient diagnosis and disease management.

The American College of Medical Genetics and Genomics

(ACMG) has provided guidelines for the classification of

variants into five categories: pathogenic, likely pathogenic,

variants of uncertain significance (VUSs), likely benign,

and benign, thereby establishing a terminology that has

been widely adopted by the molecular genetics commu-

nity.21 Recently this approach has been validated by using

a Bayesian classification framework.22 However, these

criteria still leave many rare missense variants classified

as VUSs,23 resulting in an impasse at the diagnostic level.

Many in silico tools have been developed over the past

few years to help with this problem, delineating features

that are typical of variants with benign versus pathogenic

outcomes. Such features are generally uni-dimensional

and include evolutionary conservation at the nucleotide

or amino acid sequence levels, the structure of the protein,

and the severity of the amino acid substitution in terms of

change in hydrophobicity, charge, and size. Some of these

tools exploit these features per se,24–30 whereas others take

advantage of machine learning approaches and are trained

on sets of pathogenic versus benign DNA changes.31–45
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Finally, meta-predictors offer an optimized combination of

existing tools, such as those mentioned above,46–55

although they sometimes suffer from circularity issues

that are prone to producing falsely optimistic results

(e.g., Grimm et al.56).

In this work, we address the topic of within-gene distri-

bution of pathogenic and benign variants, reveal signifi-

cant clustering of missense changes across the entire cod-

ing genome, and use this information to build a

positional score. This value is then integrated with other

unsupervised independent features (to avoid any circu-

larity issues) to yield a pathogenicity score (MutScore)

that has high discriminatory power for variants of uncer-

tain significance.
Material and methods

Computation of the positional score
First, we extracted missense variants reported in ClinVar as of

November 21, 2020 as pathogenic and likely pathogenic (PLP)

and as benign and likely benign (BLB). Since some genes have a

reduced number of BLB missense variants within ClinVar, we first

computed the maximal allele frequency (AF) in gnomAD

(maximum of gnomAD_exomes_AF and gnomAD_genomes_AF

from dbNFSP4.0) of all reported PLP variants (missense, LoF, and

others) for every gene. We then termed this value max-AF-PLP

(maximum allelic frequency of PLP variants per gene) and ex-

tracted variants having a higher frequency than this value within

the gnomAD dataset (r.2.1.1, PASS variants only), since variants

occurring more frequently than max-AF-PLP can be considered

as likely benign (ACMG criteria BS1). This allowed the addition

of 354,888 BLB variants to our analysis and the building of the po-

sitional score as well as the amino acid change score (see below, Ta-

ble S1).

To build our positional score, we used a random forest approach

for each transcript, considered individually, having at least ten PLP

(arbitrary threshold) and one BLB (the random forest needs at least

one negative observation) variants in the training set (see below

for details of the set). We used the randomForest function from

the R package randomForest (v.4.6.14), with default parameters,

except for the ntree value, which was set to 1,000. We considered

as positive cases the amino acid positions of PLP missense variants

and as negative cases all BLB missense variants (including com-

mon gnomAD variants with AF higher than max-AF-PLP) from

the training set. Then, for every variant, we selected the score

from the isoform in which the highest number of PLP variants

was found and defined this value as the positional score. The po-

sitional score was set to zero for variants that were present only

in transcripts with fewer than ten missense PLP variants in the

training set.
Cluster analysis
We computed clusters of missense PLP variants in every transcript

of every annotated gene by taking regions of consecutive posi-

tional scores higher than 0.05 and containing 5 or more PLP

missense variants. A clustering score was also computed, defined

as the minimum value between the fraction of PLP missense var-

iants located inside detected clusters (over the total number of

PLP variants; this is indicative of the precision of the clustering)
2 The American Journal of Human Genetics 109, 1–14, March 3, 202
and the fraction of the transcript not covered by clusters (over

the total length of the transcript; this is indicative of the density

of the clustering). Hence, the resulting score ranges between 0 and

1, with higher values indicating higher clustering. We then per-

formed a permutation test for every transcript to evaluate the sig-

nificance of the clustering score. More precisely, for each tran-

script, we ran 1,000 simulations by randomly assigning new

amino acids positions for PLP and BLB and computing the result-

ing clustering score. With the resulting scores of these simula-

tions, we could derive a p value and considered as significant

those transcripts for which a p value below 0.05 with false discov-

ery rate (FDR) correction was obtained.

Genes were also classified according to their clustering scores.

Specifically, they were defined as having low, medium, or high

PLP clustering if their best-performing isoform had scores below

0.33, between 0.33 and 0.66, or above 0.66, respectively.

A similar analysis was performed for the cluster analysis of BLB

variants, by taking regions of consecutive positional scores lower

than 0.05 and containing 10 or more BLB missense variants.

Finally, genes were classified according to the mode of inheri-

tance of their associated phenotype, according to the OMIM data-

base.57 More precisely, genes were included in the autosomal-

dominant class if all of their associated phenotypes were labeled

in OMIM as ‘‘autosomal dominant (AD)’’ and not ‘‘autosomal

recessive (AR)’’ or ‘‘somatic mutation (SMu),’’ whereas they were

included in the autosomal-recessive class if all their associated

phenotypes were labeled as ‘‘autosomal recessive.’’ For the so-

matic class, we selected genes with at least one phenotype linked

to the label ‘‘somatic mutation’’ and no occurrences of ‘‘auto-

somal recessive.’’ Genes linked to phenotypes having non-Men-

delian or uncertain inheritance (OMIM entries beginning with a

question mark or within curly brackets) were excluded from our

analyses.
Selection of existing features
To build our model, we first selected all unsupervised scores avail-

able through dbNFSP4.058 that were also relevant to coding vari-

ants, namely SIFT,24 SIFT4G,59 LRT,29 PROVEAN,25 GERPþþRS,27

phyloP100way, phyloP30way, and phyloP17way,26 phast-

Cons100way, phastCons30way, and phastCons17way,28 SiPhy29-

way,30 dbscSNV-ADA, and dbscSNV-RF.60 Proportion expressed

across transcripts (pext) scores61 were downloaded separately

from the gnomAD database, since they are not available within

dbNFSP4.0. The maximal and the mean score for every variant

was then computed, yielding two features: pext-max and pext-

mean. In order to replacemissing values, we computed themedian

value of all missense mutations from dbNFSP4.0 for each feature,

except for dbscSNV-ADA, dbscSNV-RF, and pext scores, for which

missing values were simply zeroed.
Computation of the amino acid score
The amino acid change score was computed as follows. First, for

every possible missense variant (e.g., Arg > Trp), we computed

the number of genes containing this change as PLP in at least

one instance (value a) as well as the number of genes containing

this change as BLB, again at least once (value b). We then

defined the amino acid score as being a/(aþb), for all missense

changes. This approach was adopted so as to avoid any

potential bias from genes with numerous identical changes,

such as for instance Gly > Xaa substitutions in collagen triple

helices.62
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Annotation of variants
All variants from the training set (see below), the testing sets (see

below), gnomAD, and ClinVar were annotated by using ANNO-

VAR63 (based on RefSeq genes) with data from the dbNFSP v.4.0

database and with custom-made tables for scores that were not

present in this dataset. These tables included data from

ClinPred,52 dbscSNV-ADA and -RF,60 as well as CONDEL.48

Training set
For the training set, we used variants reported in ClinVar as of

November 21, 2020. The VCF file was downloaded from the

ClinVar website. PLP variants were defined as annotated either

as pathogenic or likely pathogenic and BLB variants as annotated

benign or likely benign (Table S1). Variants with conflicting inter-

pretations (CI) and variants of uncertain significance (VUSs) were

discarded from the training set.

We excluded ClinPred from comparison with MutScore for the

training set and testing sets since it uses directly allelic frequency

(AF) from gnomAD as a feature, and therefore it is biased against

AF, since most BLB variants have higher AF than PLP variants.

By stratifying the analysis by AF, we could indeed show that the

performance of ClinPred is lower for very rare variants (Figure S1).

Computation of the prediction score (MutScore)
MutScore was built using a random forest approach (randomForest

function from the R package randomForest, default parameters,

except ntree ¼ 1,000; increasing the number of trees did not

improve the performance of the model) with selected existing

and novel features, as described above (n ¼ 18; SIFT, SIFT4G,

LRT, PROVEAN, GERPþþRS, phyloP100way, phyloP30way, phy-

loP17way, phastCons100way, phastCons30way, phastCons17-

way, SiPhy29way, dbscSNV-ADA, dbscSNV-RF, pext-mean, pext-

max, amino acid change score, and positional score) on the

training set. The ratio of pathogenic out-of-box (OOB) votes

over the total number of votes outputted by the random forest

model was taken as the score for the variants of the training set

for all further analysis. The score for other variants was obtained

as the resulting probability of the model (R function ‘‘predict’’).

10-fold cross-validation on the training set
The training set used to build MutScore (PLP and BLB variants

from ClinVar) was split randomly into ten equal parts. Iteratively,

nine parts were considered. These parts constituted the training

subset of the cross-validation, whereas the remaining tenth was

taken as a validation subset. This subdivision was used to compute

the amino acid change score, the positional score, and finally the

‘‘MutScore.’’ Subsequently, performance was assessed on both the

ten training and the ten validation subsets. AUCs were computed

for all permutations, yielding ten values for the training subsets

and ten values for the validation subsets. These two groups of

AUCs were then compared using an unpaired t test (R function

‘‘t.test’’), with unequal variance (Figure S2).

Testing sets
For testing set 1, we used ClinVar PLP and BLB variants that

were present in the database on September 19, 2021. We

excluded variants that were present in the training set (entries

present in ClinVar up to November 21, 2020), that were used

to train the positional score, or that were present in testing

set 3 (see below). This procedure yielded 1,867 PLP and 459

BLB variants (Table S1).
The
We further stratified PLP variants from the testing set 1 accord-

ing to the star-based classification system in ClinVar: zero stars (no

assertion criteria provided), one star (criteria provided, single

submitter), two stars (criteria provided, multiple submitters, no

conflicts), three stars (reviewed by expert panel), and four stars

(practice guideline). An additional stratification included their

molecular origin, i.e., germline only (CLNORIGIN ¼ 1) or de

novo (CLNORIGIN ¼ 32 or 33). To establish the performance of

the tested tools on these subsets of variants, we used only BLB var-

iants for genes also carrying retained PLP variants, to avoid type 2

circularity.56

For testing set 2, we used as PLP variants all disease-causing

missense mutations (DM) from the HGMD database (v.2020.2)

that were added since 2017 and were neither in ClinVar nor

were included in the training set or another testing set (n ¼
14,327). Since the HGMD database does not contain BLB variants,

we used all missense variants from gnomAD that were (1) absent

from the training set, (2) not used to train the positional score,

(3) absent from both HGMD and ClinVar, and (4) present only

in genes for which we defined at least one PLP variant. In order

to have a similar number of BLB and PLP variants, we used an

AF threshold of >0.000177 in gnomAD (maximum value of

exome and genome subsets), resulting in the selection of 13,248

BLB variants (Table S1). For the analysis of AUCs as a function of

time (Figure S3B), we used only HGMD variants published during

the year considered.

For testing set 3, we used variants from the DoCM database as

PLP variants, excluding variants from the training set and variants

used to build the positional and amino acid change features (n ¼
205). Since the DoCMdatabase only contains pathogenic variants,

BLB variants were selected according to the same criteria described

for testing set 2 (n ¼ 207, Table S1).

For all testing sets, AUCs of MutScore were compared to other

tools using the DeLong test in the ‘‘roc.test’’ function from the

package pROC (v1.17.0.1) with default arguments, except for

‘‘method¼delong.’’
Analysis of VUS and CI variants
VUSs andCI variants (ClinVar, dataset of November 21, 2020) in the

3,663 genes with at least one PLP variant in our training set were

selected and annotated with MutScore, VEST4, and REVEL (Table

S1). Two thresholds were computed for each score to reclassify

such variants as likely pathogenic (LP), VUS, or likely benign (LB).

Specifically, a variant was reclassified as LP if its score was above

the value for which 95% of variants from the training set with

that score (or higher) were indeed PLPs. Similarly, a variant was clas-

sified as LB if its scorewas below the value for which 95%of variants

from the training set with that score (or lower values) were BLB.
Analytical and graphical software
All the analyses outlined above were performed with R (v.4.0.3)

and the following packages: gridExtra (v.2.3), MASS (v.7.3.53),

pROC (v.1.17.0.1), dplyr (v.1.0.4), randomForest (v.4.6.14), ca-

Tools (v.1.18.1), rpart.plot (v.3.0.9), rpart (v.4.1.15), and stringr

(v.1.4.0). The figures resulting from these analyses were also ob-

tained by the use of the same software.
MutLand and MutScore-batch online apps
Plots were performed in R (v.4.0.3), using the following packages:

MASS (v.7.3-53.1) shiny (v.1.6.0), UniProt.ws (v.2.30.0), drawPro-

teins (v.1.10.0), inlmisc (v.0.5.2), DT (v.0.17), shinythemes
American Journal of Human Genetics 109, 1–14, March 3, 2022 3
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(v.1.2.0), waiter (v.0.2.0), and caTools (v.1.18.1). We computed the

data obtained from ClinVar, gnomAD, conservation scores within

dbNFSP4.0, as well as pext scores from gnomAD to build a graph-

ical representation of the mutational landscape for genes with at

least one PLP variant in ClinVar (n ¼ 3,663). UniProt information

about regions and domains was obtained with the UniProt.ws and

drawProteins packages.
Results

Detection of intragenic variant clustering

We set out to investigate whether the clustering of

missense lesions could be a general feature of the entire hu-

man morbid genome, rather than a phenomenon limited

to a few specific loci, families of genes/proteins, or

conserved domains. We selected all pathogenic or likely

pathogenic (PLP) missense DNA variants reported in the

ClinVar database,64 the largest public database assessing

the pathogenicity of known human variants, as a reference

set for disease-causing mutations in the human genome,

whereas benign and likely benign substitutions (BLB)

were extracted from both ClinVar and gnomAD65 (see Ma-

terial and methods for details on variant selection). We

then determined a ‘‘positional score,’’ based on a random

forest model, for each transcript of every gene annotated

in the RefSeq database (n ¼ 52,630)66 using the position

of amino acids affected by PLP and by BLB missense vari-

ants as a feature. This process allowed us to associate a

score for the likelihood of pathogenicity for every single

codon of every known transcript. Following the selection

of disease genes harboring sufficient (10 or more) PLP var-

iants to potentially allow the detection of clustering (840

genes), we identified 3,854 regions in 740 genes with mul-

tiple PLP variants and positional scores above a minimal

threshold (as defined in the Material and methods). We

then computed the clustering score, a parameter assessing

both the precision and the density of variant clustering

within a given transcript, and subdivided these 740 genes

into three classes (with low, medium, or high clustering),

as a function of this score (Figures 1A and 1B). The biolog-

ical significance of such clustering was then assessed by

means of a permutation test, and 387 genes were found

to have at least one transcript with a p value below 0.05 af-

ter FDR correction, indicating that statistically significant

clustering of pathogenic missense mutations occurred in

more than 40% of all well-characterized disease genes (Fig-

ures 1A and 1B, Table S2). In addition, more than 79% of

significantly clustered genes had at least one transcript

with medium or high clustering (Figure 1B; examples of

one gene for each class, Figures 2A–2C; global overview,

Figure S4). Interestingly, a large majority of the genes

that were associated only with autosomal-dominant phe-

notypes or with the presence of clinically relevant somatic

mutations showed significant clustering (65.9% and 79.6%

for the autosomal-dominant and the somatic classes,

respectively, Figures S5B and S5C, Table S3), whereas corre-

sponding significant values were obtained for aminority of
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genes linked to autosomal recessive-only phenotypes

(19.7%), with 2.6% of them displaying high clustering

(Figure S5A, Table S3).

The same analysis was performed for BLB variants.

Within the 851 genes considered (i.e., carrying 10 or

more BLB missense changes), 10,136 enriched regions in

490 of them were identified, including 172 (20.2% of the

total) displaying a significant clustering score (Figures 1C

and 1D, Table S2). However, only 9 genes (1.1%) exhibited

high clustering of BLB variants (Figure 1D). Themajority of

transcripts showed precise but sparse BLB clustering (bot-

tom right, Figure 1C), as for example NSD1, which also dis-

plays high PLP clustering (Figure 2D). Sub-classification of

BLB variants according to recessive versus dominant and

somatic occurrence resulted in a trend similar to that

observed for PLP variants (Figures S5D–S5F, Table S3).

Implementation of MutScore

We developed MutScore with the goal of exploiting the

biological information contained in this patterning of var-

iants to predict the pathogenicity of DNA changes, and

potentially obtaining additional knowledge on the molec-

ular mechanisms underlying pathogenicity. In addition,

we aimed at an improved classification of VUSs, which in

whole-genome sequencing (WGS) or whole-exome

sequencing (WES) studies are mostly represented by low-

frequency missense substitutions.

In addition to the positional score described above, we

also calculated an ‘‘amino acid change score,’’ which is in-

tended to approximate the likelihood of a particular amino

acid substitution (e.g., Arg> Trp) to result in a pathological

phenotype (see Material and methods for details on both

scores). Moreover, we collected 16 additional existing fea-

tures from published predictive tools, all of which origi-

nated from unsupervised approaches,24–30,59–61 to avoid

artificially inflating the resulting predictive power

(Figure 3A).

Finally, we built another random forest model that

considered these 18 features, trained on a set containing

only two discrete classes: PLP (36,966 variants) and BLB

(29,066 variants), as assessed by ClinVar in its release of

November 21, 2020 (Table S1). The importance of each

feature was computed as either mean decrease in accuracy

(Figure 3B) or decrease in Gini index (mean decrease in im-

purity, Figure 3C). In both cases, the positional score as

well as the PROVEAN25 and SIFT24 scores were found to

be the three most important features (Figures 3B and 3C,

Table S4). The least important features were represented

by the output of two splicing predictors, probably because

only a small minority of missense variants are predicted to

alter splicing.

To generate a final score for pathogenicity (MutScore),

the model was applied to all single-nucleotide substitu-

tions resulting in a missense change, for all possible

RefSeq genes (range: 0–1, representing the likelihood

for a given missense variant to be pathogenic). A 10-

fold cross-validation step was also performed to check
2
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Figure 1. Genome-wide quantification of clustering of PLP and BLB missense variants
(A and C) Plots of clustering precision (defined as the proportion of variants of a given transcript located inside clusters) versus clustering
density (defined as the proportion of a given transcript not covered by clusters) for all transcripts with at least ten PLP and one BLB
missense variants in ClinVar. Dots indicate individual transcripts (some genes may be represented by more than one dot). Squares indi-
cate clustering score thresholds (at 0.33 and 0.66 units) used to define three categories: low, medium, and high clustering. Transcripts
with non-significant clustering scores (see Material and methods) are marked in dark gray. Rectangles with yellow dots depict schemat-
ically examples of transcripts with dense or precise clustering.
(B and D) Pie charts of the same data depicted in (A) and (C) for the transcript of a given gene with the highest clustering score. Genes for
which no clusters were detected, in any of their transcripts, are also shown (in light gray).
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whether overfitting had occurred during training. The

areas under the curve (AUCs) from the validation sets

from this cross-validation procedure (average ¼ 0.949)

were not statistically different from the corresponding

training sets (average ¼ 0.950) (two-tailed unpaired t

test, p ¼ 0.701, Figure S2), showing no overfitting of

the model on the training data.

Testing sets

To determine the real predictive power of our tool, we eval-

uated its performance with respect to different sets of data

that were not used in the training process. Specifically,

we considered recent ClinVar entries, logged between

November 22, 2020 and September 19, 2021 (testing
The
set 1), the HGMD database67 (testing set 2), and the data-

base of cancer variants DoCM68 (testing set 3).

For testing set 1, including 5,021 PLP and 2,035 BLB var-

iants, MutScore had an AUC of 0.937 (Figure 4A) which

was the highest value, at a statistically significant level,

across all tools tested (p < 0.05, DeLong test). The closest

competitors were REVEL and VEST4, with AUCs of 0.924

and 0.919, respectively. For testing set 2, PLP variants

were selected to correspond to all disease-causing muta-

tions (DM) from the HGMD database that were present

in neither testing set 1 nor in the training set. In addition,

to avoid using variants that were used to train other tools

(such as REVEL and VEST4), we deliberately selected only

PLP variants from HGMD that were added after such tools
American Journal of Human Genetics 109, 1–14, March 3, 2022 5
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Figure 2. Examples of transcripts with significant clustering score p values
Shown are (A) low PLP clustering (COL3A1, GenBank: NM_000090.3); (B) medium PLP clustering (BRAF, GenBank: NM_004333.6); (C)
high PLP clustering (KRT6A, GenBank: NM_005554.4); and (D) high PLP clustering and low BLB clustering (NSD1, GenBank:
NM_022455.4). Variants were extracted from ClinVar, November 21, 2020 release.
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were published, i.e., in 2017 or at a later date. For BLB en-

tries, we selected variants from the gnomAD database that

did not overlap with previous analyses (see Material and

methods for details). This resulted in the selection of

14,327 PLP and 13,248 BLB missense variants in 2,603

different genes. Again, MutScore exhibited a significantly

higher performance than other tools (p < 0.05, DeLong

test, Figure 4B, Table S5) with an AUC of 0.915 compared

to 0.904 for REVEL, the second-best predictor. No other

predictor achieved an AUC above 0.900. For testing set 3,

we selected somatic cancer variants from the DoCM data-

base, a curated set of somatic variants with established rele-

vance to cancer biology. More precisely, we considered all

variants from this database that were not present in the

training set and were not used to build the model as PLP

entries, whereas BLB entries were selected according to

the same procedures described for testing set 2. This re-

sulted in the identification of 205 PLP and 207 BLB vari-

ants. Once more, MutScore had the highest AUC value,

in a statistically significant way (AUC ¼ 0.960, p < 0.05,

DeLong test), followed by M-CAP (AUC ¼ 0.943,

Figure 4C, Table S5).
6 The American Journal of Human Genetics 109, 1–14, March 3, 202
It is interesting to note that the performance of some

predictors appeared to decrease when evaluating more

recent variants, and in particular when HGMD data prior

to 2017 versus post-2017 (testing set 2) were used

(Figure S3A). This could be due to certain tools having

been overfitted on data used to train them versus data

that were completely naive to them (Figure S3B), a conclu-

sion supported by the observation that untrained tools

(SIFT, PROVEAN, GERP, PhyloP, etc.) retained their power

on old versus new entries (Figure S3A). More specifically,

the performance bias toward older entries by trained versus

untrained tools was significant (average differences be-

tween new and old entries: �0.0024 and �0.0170 for un-

trained and trained tools, respectively; p value ¼ 5.8 3

10�5, by t test, bilateral with unequal variance).

Performance on subsets of testing set 1 from ClinVar

We wished to test whether MutScore performance would

reflect the actual pathogenicity of variants as assessed by

curated experimental evidence. ClinVar attributes a score

ranging from zero to four stars to every entry, depending

upon the number of submissions and on data supporting
2
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Figure 3. Outline of the procedures used to build MutScore and MutLand and importance of different features within the training
set
(A) Framework representing the different steps followed to generate MutScore and MutLand (dark green, database; light green, variant
set; light blue, computation; dark blue, scores; orange, graphical output).
(B) Ranking of features in the model based on mean decrease in accuracy.
(C) Ranking of features in the model based on mean decrease in Gini index.
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its pathogenicity. For instance, it was recently shown that

the tool Rhapsody69 classified PLP variants with zero stars

(i.e., no assertion criteria provided) less accurately than

other variants. MutScore’s AUCs correlated well with the

number of stars attributed by ClinVar to PLP variants,

with values of 0.908 for variants with zero stars, 0.946

for variants with one star (i.e., criteria provided, single sub-

mitter), 0.963 for variants with two stars (i.e., criteria pro-

vided, multiple submitters, no conflicts), and 0.967 for

variants with three stars (i.e., reviewed by expert panel).

Since there were too few missense variants with four stars

(i.e., practice guideline) to assess, we could not compute

performance for such a small dataset. Other prediction

tools displayed the same trend (Figure S6, Table S5). Mut-

Score had a significantly higher AUC with 0.946 for the

PLP variants with zero stars, which represents more than

66% of all PLP variants.

We also investigated the performance of MutScore ac-

cording to ClinVar’s defined origin of PLP missense vari-

ants: strictly germline versus de novo. In this test, MutScore

had the highest AUCs for germline and de novo variants
The
(0.938 and 0.908, respectively, Figures S7A and S7B, Table

S5). Again, all differences were statistically significant

(p < 0.05, DeLong test), except for the comparison with

VEST4 on de novo variants. MutScore also displayed a lower

decrease in AUC for de novo variants compared to germline

variants when compared to VEST4 and REVEL (Table S5).

This can be explained by the fact that both de novo and so-

matic missense mutations tend to exert their influence via

dominant gain-of-function mechanisms and hence usu-

ally only affect specific portions of a protein (e.g., a kinase

domain). Traditional tools consider amino acid residue

conservation, but usually do not take into account muta-

tional clustering or positional information, and therefore

their predictive power may be less efficient with respect

to that of MutScore.

Finally, since the positional score appears to be the most

important feature of our model (Figure 3B), we evaluated

MutScore’s performance for genes that were previously

well characterized from a mutational standpoint (HCGs

[highly characterized genes], with a positional score > 0)

versus genes that were not (PCGs [poorly characterized
American Journal of Human Genetics 109, 1–14, March 3, 2022 7
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Figure 4. Performance of MutScore and other tools with respect to different testing sets
Shown are (A) testing set 1: recent ClinVar variants (PLPs versus BLBs); (B) testing set 2: recent variants from the HGMD database (from
2017 onward; PLPs) versus frequent gnomAD variants (BLBs); and (C) testing set 3: variants from the DoCM database (PLPs) versus
frequent gnomAD variants (BLBs). ROC curves for the top-8 predictors and histograms of AUCs for the top-20 predictors are also shown.
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genes], positional score ¼ 0). MutScore displayed the high-

est AUC for both HCGs and PCGs for testing set 1 (ClinVar,

Figures S8A and S8B) as well as for testing set 2 (HGMD,

Figures S8C and S8D), although the difference with respect

to other top-performing tools for PCGs was only marginal

(%0.006 units, overall) and statistically not significant (Ta-

ble S5). Testing set 3 was not used since it did not contain
8 The American Journal of Human Genetics 109, 1–14, March 3, 202
sufficient PLP variants in PCGs. As expected, performance

for HCGs was higher than for PCGs in all cases.

Variants of uncertain significance (VUSs) and with

conflicting interpretation (CI)

As a next step, we investigated the ability of MutScore, as

well as of the two predictors that displayed the best
2



Figure 5. Distribution of MutScore, VEST4, and REVEL scores of ClinVar’s PLP, BLB, VUSs and CI variants
MutScore provides a better separation of all classes of variant and allows for an improved re-classification of VUSs and CI variants (see
Figure S9 as well). Red, PLP variants; blue, BLB variants; light blue, VUSs/CIs reclassified as likely benign; light orange, VUSs/CIs not re-
classified; light red, VUSs/CIs reclassified as likely pathogenic; black lines, thresholds for reclassification. The thresholds used to reclassify
variants are defined in the Material and methods, and correspond specifically to 0.140 and 0.730 for MutScore, 0.187 and 0.819 for
VEST4, and 0.086 and 0.682 for REVEL for BLB and PLP variants, respectively.
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performance in previous tests (VEST4 and REVEL), to re-

classify ambiguous variants. Following the reassessment

of all VUSs and conflicting interpretation (CI) variants

from ClinVar, MutScore succeeded in reclassifying 54.7%

of VUSs and 61.7% of CI variants, compared to 35.5%

and 33.9% of VUSs and 40.7% and 37.3% of CI variants

for VEST4 and REVEL, respectively (Figures 5 and S9). In

particular, MutScore had an edge in redirecting VUSs and

CI variants toward BLB variants (ACMG classes 2 and 1),

compared to other predictors (Figure 5, left column and

Figure S9). Again, this was probably a consequence of

the positional score, which allows for a better assessment

of variants with respect to their presence within muta-

tional clusters or outside of them, whereas existing

algorithms evaluate variants independently of such

regional information.70 We can assume that many variants

were reclassified as BLB by virtue of their presence outside

pathogenic clusters.

MutLand and MutScore-batch

To provide a visual representation of our results in individ-

ual genes, as well as to facilitate the scoring of newly iden-

tified variants, we created an interactive, web-accessible

interface displaying data from ClinVar, gnomAD, and Uni-

Prot, conservation scores from other tools, PLP and BLB

clusters, as well as the output from MutScore. As an

example, Figure 6 shows the MutLand output for

KCNQ2, which is known to harbor clusters of PLPmissense

variants in specific transmembrane segments, in the pore

loop, and in some intracellular helices.10,71 In the Mut-

Land representation of this gene, clustering of PLP

missense variants can be easily identified, whereas PLP

LoF variants do not cluster. Many VUSs are scattered along

the entire protein sequence. Of these, those affecting
The
amino acids in the C-terminal portion, located outside of

PLP clusters and with a lower MutScore value, might

then be reclassified as likely benign. To allow the user to

interrogate multiple MutScore values simultaneously, we

also created a separate web interface, MutScore-batch.
Discussion

It has long been known that the pattern of pathogenic var-

iants within a limited number of genes72 or gene classes fol-

lows a non-random and biological function-driven distri-

bution,9,10,73 such as variants in the triple-helical region

of collagen74,75 or in the BRCT region of BRCA1.76,77

Here we find that clustering of pathogenic missense

variants occurs in almost half of all human genes,

genome-wide, and that for about 18% of them such clus-

tering is highly delimited. This also applies to benign

missense changes, irrespective of their allelic frequency, as

clusters of BLB variants are detectable in approximately

20% of all genes associated with a hereditary condition.

Based on the distribution of MutScore values in relation

to protein regions and protein classes, it is reasonable to as-

sume that this clustering of DNA variants is mainly shaped

by pathogenic mechanisms occurring at the protein level.

For instance, in humans the majority of dominant muta-

tions lead to gain-of-function or dominant-negative events,

usually affecting amino acid residues locatedwithin specific

domains or regions of a given protein.15,78,79 This phenom-

enon is clearly reflected in our finding that PLP variants

associated with dominant conditions are mostly identified

in clusters, and is even more pronounced for somatic vari-

ants involved in cancer (Figure S5). By contrast, most reces-

sivemissensemutations act via loss-of-function (or reduced
American Journal of Human Genetics 109, 1–14, March 3, 2022 9



Figure 6. Example of a MutLand graphical output
Here we display the output for KCNQ2 (GenBank: NM_172107.4), listing various attributes of this gene/protein, including MutScore.
Variants were extracted from ClinVar, release of November 21, 2020.
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function) mechanisms and in general this type of DNA

changes is more dispersed along the protein sequence.72

In particular, recessive PLPmissense variants tend to cluster

less and, if they do, to generate larger and more loosely

defined regions. The mirror effect of these events is often

visible for BLB variants: in genes associated with dominant

conditions, BLB variants tend to cluster anywhere in the

gene other than in regions with PLP clusters. Conversely,

in genes linked to recessive conditions, BLB clustering is

in general absent.

We reasoned that the clustering or dispersion ofmissense

variants might be used to infer the pathogenicity of newly

observed DNA changes, similar to the use of evolutionary

conservation across species. For this purpose, we developed

MutScore, a predictor tool, and its graphical interface, Mut-

Land, to enable the easy visualization of mutational land-

scapes. In addition to existing unsupervised dimensions,

MutScore integrates two novel features into its final predic-

tive model: a positional score and an amino acid change

score. Furthermore, it builds heavily on curated informa-

tion of clinically relevant DNA variants, as defined by Clin-

Var. The positional score in particular, essentially defining

regions of a gene inwhich pathogenicmutations or benign

variants are likely (or unlikely) to occur, appears to be the
10 The American Journal of Human Genetics 109, 1–14, March 3, 20
most important feature, conferring upon MutScore an

edge over existing algorithms. Interestingly, the integration

of as many benign variants as possible within the model

also appears to be very important, since it allows for the

determination of a ‘‘harmlessness threshold’’ that is gene

specific and improves prediction even more.

When tested with real data from three independent data-

sets (HGMD and recent ClinVar data for constitutional dis-

orders, as well as DoCM for cancer), MutScore performed

markedly better than existing tools in discriminating be-

tween pathogenic and non-pathogenic variants. This per-

formance allowed for a high rate of disambiguation of

VUSs, a key issue in current NGS-based genetic diagnostics.

One limitation of our scoring approach lies in the fact that

prediction is partly dependent on the positional score, and

therefore on information pertaining to existing pathogenic

variants, such as the number of entries in ClinVar and their

quality and accuracy. This explains why MutScore’s perfor-

mance is still uneven with respect to different genes in the

human genome and essentiallymatches that of othermeta-

predictors for poorly characterized genes. As more and

more variants are identified and their clinical implications

are assessed, both information on variant clustering and

MutScore’s performances are likely to increase substantially
22
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over time. Furthermore, integration of data on the tridi-

mensional structure of proteins, e.g., from the AlphaFold

project,80 may help the future development of MutScore

and improve even further its predictive power.

In conclusion, our analysis of the regional distribution of

missense variants within human disease genes reveals that

extensive clustering is common, both for pathogenic and

benign DNA changes. This observation may help in clari-

fying protein structure and function and will hopefully

prime further research into mechanisms of selection and

evolution. Moreover, the AI-driven integration of clus-

tering information in MutScore allows for more accurate

pathogenicity scoring and the disambiguation of variants

of uncertain significance. Together with its graphical inter-

face MutLand and withMutScore-batch, this tool promises

to become a useful instrument in genetic medicine and

could be used as a stepping stone for new research projects

aiming to define further key properties of the morbid hu-

man genome.
Data and code availability

MutScore values can be retrieved from https://iob-genetic.

shinyapps.io/mutscore/ or from https://iob-genetic.shinyapps.io/

mutscore-batch and they can be used under a Creative Commons

Attribution-NonCommercial-ShareAlike 4.0 International Li-

cense. For commercial uses of MutScore, please contact the

authors.

The code used to generate the MutScore and the analyses pre-

sented here is available at https://github.com/mquinodo/

mutscore, except for the part using ANNOVAR, which can be

found at https://annovar.openbioinformatics.org/en/latest/.
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2022.01.006.
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References

1. Tokheim, C., Bhattacharya, R., Niknafs, N., Gygax, D.M., Kim,

R., Ryan,M.,Masica, D.L., and Karchin, R. (2016). Exome-scale

discovery of hotspot mutation regions in human cancer using

3D protein structure. Cancer Res. 76, 3719–3731.

2. Medina-Carmona, E., Betancor-Fernández, I., Santos, J., Mesa-

Torres, N., Grottelli, S., Batlle, C., Naganathan, A.N., Oppici,

E., Cellini, B., Ventura, S., et al. (2019). Insight into the speci-

ficity and severity of pathogenic mechanisms associated with

missense mutations through experimental and structural

perturbation analyses. Hum. Mol. Genet. 28, 1–15.
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