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a b s t r a c t 

Tremendous efforts have been made in the last decade to advance cutting-edge MRI technology in pursuit of 
mapping structural connectivity in the living human brain with unprecedented sensitivity and speed. The first 
Connectom 3T MRI scanner equipped with a 300 mT/m whole-body gradient system was installed at the Mas- 
sachusetts General Hospital in 2011 and was specifically constructed as part of the Human Connectome Project. 
Since that time, numerous technological advances have been made to enable the broader use of the Connectom 

high gradient system for diffusion tractography and tissue microstructure studies and leverage its unique advan- 
tages and sensitivity to resolving macroscopic and microscopic structural information in neural tissue for clinical 
and neuroscientific studies. The goal of this review article is to summarize the technical developments that have 
emerged in the last decade to support and promote large-scale and scientific studies of the human brain using the 
Connectom scanner. We provide a brief historical perspective on the development of Connectom gradient tech- 
nology and the efforts that led to the installation of three other Connectom 3T MRI scanners worldwide – one in 
the United Kingdom in Cardiff, Wales, another in continental Europe in Leipzig, Germany, and the latest in Asia 
in Shanghai, China. We summarize the key developments in gradient hardware and image acquisition technology 
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. Introduction 

Since its launch in 2010, the Human Connectome Project (HCP) has
ttracted tremendous attention in the scientific community. Two con-
ortia were awarded in the first phase of the HCP: one led by Wash-
ngton University, the University of Minnesota, and Oxford University
the WU-Minn-Ox HCP consortium) [see ( Elam et al., 2021 ) for details],
nd the other by Massachusetts General Hospital (MGH) and University
f Southern California (USC) (the MGH-USC HCP consortium). The 3T
onnectome MRI scanner 1 equipped with a 300 mT/m gradient system
as one of the key hardware outcomes achieved in the HCP, led by

he MGH-USC consortium. This “super ” scanner, whose maximum gra-
ient strength is seven times stronger than what was then considered the
linical standard, was purposely designed for pushing the limits of dif-
usion MRI (dMRI) and its capability to reconstruct white matter fiber
onnections in the living human brain. Descriptions of the system de-
ign ( Setsompop et al., 2013 ) and initial demonstrations of its unprece-
ented capabilities ( McNab et al., 2013a ) were reported in the first spe-
ial issue of the journal NeuroImage devoted to human connectomics
https://www.sciencedirect.com/journal/neuroimage/vol/80) . An ob-
ious advantage of high gradient strengths for dMRI is the improved
ignal-to-noise ratio (SNR) due to the much shorter echo times (TE) af-
orded by more efficient diffusion encoding, resulting in less signal loss
ncurred by T2 relaxation ( Fig. 1 ). Strong diffusion-encoding gradients
lso enable the use of shorter diffusion-encoding gradient pulses ( 𝛿) and
horter diffusion times ( Δ), which increase the sensitivity of the dMRI
ignal to smaller diffusion displacements, thereby encoding informa-
ion regarding tissue microstructure at shorter length scales ( ∼microns)
 Fig. 2 ). The resulting increase in “diffusion resolution ” also serves to
ensitize the diffusion of water molecules to complex white matter struc-
ures. One of the major benefits to dMRI that the MGH-USC consortium
1 In this manuscript, we will refer to the MGH scanner with 300 mT/m gra- 
ient strength as the Connectome scanner as it was built for the Human Con- 
ectome Project, and use the Siemens trade-name Connectom to refer to the 
canners installed at other sites. 
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 Connectom-related research efforts, including the rich array of high-sensitivity
mage artifact correction strategies and data preprocessing methods needed to
ent strength diffusion MRI data for subsequent analyses. Finally, we review the
 MRI scanner, including advances in diffusion tractography, tissue microstruc-

 and clinical investigations that have been enabled by Connectom technology.
nto the unique value of strong gradients for diffusion MRI and where the field

et out to demonstrate using the Connectom scanner was the improved
bility to resolve crossing fibers within a voxel using high b -value ac-
uisitions acquired with reasonable SNR in the living human brain. 

A number of excellent review articles on high gradient dMRI
nd the burgeoning field of in vivo tissue microstructural imaging
nabled by such technology have been published in the last few
ears ( Afzali et al., 2021b ; Alexander et al., 2019 ; Duval et al.,
016 ; Henriques et al., 2021b ; Jelescu et al., 2020 ; Jones et al.,
018 ; Kiselev, 2021 ; Nilsson et al., 2018 ; Novikov, 2021a , 2021b ;
ovikov et al., 2019 , 2018 ; Palombo et al., 2018 ; Szczepankiewicz et al.,
021 ; Xu, 2021 ). In particular, the review by ( Jones et al., 2018 ) focused
n the topic of imaging tissue microstructure in the context of the oppor-
unities and challenges introduced by this ground-breaking scanner and
radient system. The goal of this review article is to summarize the tech-
ical developments and advances that have emerged in the last decade
o support and enable large-scale and scientific studies of the human
rain using the Connectom scanner. We start from the engineering core
developments in gradient coil hardware, radiofrequency coil technol-
gy, image acquisition techniques, and data preprocessing methods –
hat is, the key elements of the imaging chain, from scanner to image.

e then focus on the analytical studies that have been performed on
nd/or utilized data acquired from the Connectom scanner, which will
rovide insight into the unique value of strong gradients for dMRI and
here the field is headed in the coming years. 

I. Engineering core: Hardware, sequences and preprocessing 

In this section, we discuss the engineering aspects of Connectom-
elated efforts, which have enabled the neuroscientific investigations
hat will be described in subsequent sections. The engineering advances
nclude a description of the gradient hardware and scanner design,
onsiderations of peripheral nerve stimulation, advances in acquisition
echniques including RF coil development and innovations in imaging
equences and reconstruction, as well as strategies to control artifacts
hat are specific to the Connectom system, such as eddy currents and
radient nonlinearity. 
Fig. 1. Benefits of strong gradients for diffusion MRI. High 
gradient amplitudes up to 300 mT/m on the Connectome sys- 
tem (bottom) achieve a given diffusion-encoding gradient area 
in less time compared to conventional gradient systems (top), 
as illustrated through the pulsed gradient spin echo diffusion 
MRI sequence. Benefits of strong diffusion-encoding gradients 
include shortening the entire diffusion-encoding period and 
echo time (TE), and hence increasing the signal-to-noise ratio 
(SNR) by reducing signal loss due to T2 decay. The larger gra- 
dient amplitudes also enable stronger diffusion encoding (i.e., 
larger diffusion-encoding gradient areas, larger q - values and 
b- values) to be achieved with shorter diffusion times, provid- 
ing higher “diffusion resolution ” to improve the capability of 
resolving smaller length-scales for probing tissue microstruc- 
ture and for resolving complex white matter structures such as 
crossing fibers. RF = radiofrequency, 𝛿 = diffusion-encoding 
gradient pulse duration, Δ = diffusion time. 
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Fig. 2. Illustration of the different length scales accessible by diffusion MRI in the brain. Macrostructure refers to structures on the whole-brain and regional 
level, while microstructure refers to structures on the microscopic level, e.g., cells and axons. Mesostructure resides in the intermediate, millimeter to sub-millimeter 
regime, on the order of the typical MRI voxel size. Figure contents adapted from ( Reisert et al., 2017 ). 
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Fig. 3. Distribution of the four 300 mT/m gradient strength MRI systems 

installed worldwide. Figure contents adapted from news announcements for 
the Cardiff University, 2 Max Planck Institute for Human Cognitive and Brain 
Sciences, 3 and Fudan University. 4 
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2 https://www.cardiff.ac.uk/news/view/188635-europes-most-powerful- 
brain-scanner-arrives . 

3 https://www.cbs.mpg.de/press-releases/super-brain-scanner- 
connectom?c = 7533 . 

4 
. Gradient hardware and scanner design 

The rationale, design considerations, and optimization of the gradi-
nt coil and MGH Connectome scanner are described in detail in the
rticle by Setsompop et al. ( Setsompop et al., 2013 ). Here, we summa-
ize the design process and specifications of the Connectom gradient
oil, which targeted a maximum gradient amplitude of 300 mT/m and
aximum slew rate of 200 T/m/s. 

Engineering efforts for the MGH Connectome scanner began as a
oint collaboration between MGH and Siemens. Initial design studies
ased on the Siemens SC72 whole-body gradient supported a maximum
radient strength of 100 mT/m and slew rate of 200 T/m/s. The design
rojections indicated that by reducing the linearity constraints, a max-
mum gradient strength of 150 mT/m could be reached with a single
radient power amplifier. Due to the large volume encompassed by the
hole-body gradient coil with a 56 cm patient bore diameter, the num-
er of current density layers and thereby the gradient amplitude could
e doubled to achieve 300 mT/m, at the cost of a four-fold increase in
oil inductance due to mutual coupling of the primary and secondary
ayers. To drive this large inductance at the high slew rate needed for
PI readout, a new gradient system concept involving multiple gradi-
nt amplifiers was created. In order to achieve the targeted slew rate
f 200 T/m/s, each of the three physical gradient axes (G x , G y , and G z )
as divided into four independently driven segments, with each primary
nd shield pair driven by a separate gradient amplifier, yielding a total
f 12 gradient amplifiers (four 900A drivers at 2250 V each per phys-
cal axis). Cooling layers were also increased by four-fold for efficient
eat dissipation. The operation of this whole-body segmented gradient
oil was anchored by the development of an MR control system capa-
le of driving four sets of gradient amplifiers separately. When powered
ogether, these amplifiers drove a gradient coil wound to attain a max-
mum gradient amplitude of 300 mT/m for high sensitivity dMRI at a
aximum slew rate of 200 T/m/s for high-efficiency EPI image encod-

ng. While peripheral nerve stimulation prevents the use of both high
radient strength and high slew rate simultaneously (see Section II.2:
eripheral nerve stimulation and safety considerations), these capabili-
ies can be utilized during different portions of the dMRI sequence, with
he diffusion encoding module using the maximum gradient strength but
imited slew rate and the EPI image encoding utilizing modest gradient
trengths and high slew rates. 

The choice of scanner field strength (3T versus 7T) was made based
n a number of considerations. Firstly, dMRI contrast is dictated by
he displacement of water molecules in the presence of a magnetic
eld gradient and is independent of field strength. The image SNR is
eld strength-dependent, but the shorter T2 relaxation times at 7T par-
ially offset the higher SNR afforded by higher field strength. Finally,
3 
agnet-gradient interactions were simpler to deal with at the lower field
trength, including torques and forces as well as magnet heating effects.
he gradient coil was built with a second-order shim set along its outer

ayer, with a final constructed weight of ∼1400 kg. The high mass and
tiffness of the finished gradient coil were advantageous as they served
o lower acoustic noise and decrease vibrations. 

The first Connectome scanner installed at MGH in 2011 was intended
o be a one-of-a-kind system built expressly for the HCP. The success of
he engineering and technical development efforts, combined with the
emonstrated promise and potential of high-gradient dMRI measure-
ents for characterizing human brain structure, motivated the manu-

acturing and delivery of other Connectom MRI systems to select sites
orldwide ( Fig. 3 ). To date, these sites include: the Cardiff Univer-

ity Brain Research Imaging Center (CUBRIC) at Cardiff University in
he United Kingdom; the Max Planck Institute for Human Cognitive and
rain Sciences in Leipzig, Germany; and the Zhangjiang International
rain Imaging Center (ZIC) supported by the Shanghai Municipal Gov-
rnment and Fudan University in Shanghai, China. 
https://istbi.fudan.edu.cn/info/1084/1677.htm . 

https://www.cardiff.ac.uk/news/view/188635-europes-most-powerful-brain-scanner-arrives
https://www.cbs.mpg.de/press-releases/super-brain-scanner-connectom?c=7533
https://istbi.fudan.edu.cn/info/1084/1677.htm
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Fig. 4. Peripheral Nerve Stimulation (PNS) Simulations. A: Experimental and simulated PNS threshold curves given as minimum stimulating gradient amplitude 
ΔG as a function of rise time for the y-axis of the Connectome gradient (experiments in blue, simulation in red) and the Prisma gradient (in grayscale). PNS thresholds 
were obtained for a trapezoidal bipolar train with 0.5 ms flat top duration. B: Simulated activation maps plotted as PNS oracle hot-spots (reciprocal PNS thresholds) 
in the male model for a head-imaging position and for a trapezoidal rise time of 0.5 ms. The overall nerve activation induced by the Connectome y-axis gradient was 
substantially lower than that of the Prisma y-axis gradient. The activation hot-spots in both coils occurred in the shoulders (suprascapular nerve) and close to the 
cervical spine (intercostal nerves). 
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6 Philips Achieva 3.0T MRI - medical equipment distribution (htig.com) . 
7 https://www.philips.nl/healthcare/product/HC781271/ingenia-30t-cx-mr- 

system . 
Beyond the whole-body design of the original Connectom system,
ead-only gradient designs have been advanced by several separate re-
earch projects in an effort to achieve high G max and fast slew rates.
or example, the MAGNUS (Microstructure Anatomy Gradient for Neu-
oimaging with Ultrafast Scanning) was developed as part of the Con-
ressional Directed Medical Research Programs (CDMRP) supported by
he U.S. Department of Defense. MAGNUS achieves up to G max of 200
T/m and 500 T/m/s slew rate ( Foo et al., 2020 ). The 7T Impulse

radient ( Feinberg et al., 2021 ), developed by Siemens Healthineers in
ollaboration with the University of California, Berkeley, and MGH is
lso specifically designed as a head gradient for brain imaging. The Im-
ulse gradient is capable of up to 200 mT/m maximum gradient strength
ith a maximum slew rate of 900 T/m/s per axis. In addition, a next-
eneration human Connectome MRI scanner (Connectome 2.0) target-
ng a maximum gradient strength of 500 mT/m and 600 T/m/s is be-
ng engineered with a head-only design in collaboration with Siemens
ealthineers and will be brought online to replace the current Connec-

ome scanner at MGH ( Huang et al., 2021b ; Yendiki et al., 2020 ). In com-
arison to the body gradient design, the head-only design offers several
dvantages from an engineering perspective. First, head-only gradients
llow for higher gradient performance due to the smaller bore size. Less
tringent constraints arising from peripheral and cardiac nerve stimula-
ion are expected due to less exposure of the body to the gradient field.
oreover, head-only gradients can be developed to be synergistic with

igher field strengths by taking advantage of the smaller bore sizes and
igher SNR afforded by stronger static magnetic fields. As an emerging
rend, the head-only design represents a promising long-term direction
or the development of future high gradient strength systems. 

As a fruitful byproduct of gradient hardware development for the
CP, the strengths of the gradient systems delivered on commercial MRI

canners have continued to increase over the last decade. For exam-
le, the Siemens MAGNETOM Prisma 3T scanner and the GE Premier
T scanner provide up to 80 mT/m and have been installed worldwide
or clinical and research use. 5 Philips developed the high-performance
uasar Dual gradient system (maximum gradient strength of 80 mT/m),
hich has been installed on different models, including the Achieva 3T
5 https://www.dicardiology.com/content/siemens-announces-first-us- 
nstallation-magnetom-prisma-3t-mri-system . 

%
%
%

4 
ystem in 2006 6 and the more recent Ingenia 3T CX model in 2017. 7 The
antage Centurian 3T system by Canon provides up to 100 mT/m gra-
ient strength. 8 Most recently, United Imaging announced the release
f the μMR 890 3T system, which is equipped with a gradient system
apable of up to 120 mT/m strength. 9 The advances in gradient technol-
gy inspired by the HCP and related efforts have informed and crossed
eyond the boundaries of academic inquiry and scientific research into
ommercially available clinical scanners, illustrating the far-reaching
mpact of the Connectome scanner and other high-gradient systems in
ealthcare and clinical practice. 

. Peripheral nerve stimulation and safety considerations 

An important biological factor that was considered in the gradient
oil design for the Connectome scanner was peripheral nerve stimula-
ion (PNS), especially given the high gradient strengths employed in the
iffusion-sensitizing gradient waveforms. PNS is a perceivable sensation
enerated by the rapid switching of MRI gradient coils ( Glover, 2009 ;
chaefer et al., 2000 ). The rapid switching induces electric fields (E-
elds) in the body powerful enough to evoke unwanted action poten-
ials in peripheral nerves, leading to muscle contractions or tactile per-
eptions. PNS can render significant portions of the gradient hardware
perational parameter space inaccessible to the user and is thus an im-
ortant factor to consider in the design of high-performance gradient
oils. As a whole-body gradient coil, the Connectome gradient system
s substantially limited by PNS. In head-only gradient coils, the body is
ot exposed to the magnetic field as much, but in the latest generation
f head-only gradient coils, the PNS effects are also becoming an acute
imitation ( Davids et al., 2021a ; Tan et al., 2020a ; Weiger et al., 2018 ).

The PNS thresholds of an MRI gradient are typically given in terms of
inimum stimulating gradient amplitude ΔG as a function of gradient
8 https://jp.medical.canon/News/PressRelease/Detail/45069-834 . 
9 http://demo.united-imaging.com/cn/news/2021/%E8%81%94%E5%BD 

B1-cmef-%E5%8D%81%E5%B9%B4%E5%8E%9A%E7%A7%AF- 
E8%87%AA%E4%B8%BB%E5%8F%AF%E6%8E%A7%E5%9C%A8%E6 
AD%A4-%E6%B2%B8%E8%85%BE/ . 

https://www.dicardiology.com/content/siemens-announces-first-us-installation-magnetom-prisma-3t-mri-system
https://www.htig.com/catalog/mri-equipment-magnetic-resonance/philips-achieva-3-0t-mri/
https://www.philips.nl/healthcare/product/HC781271/ingenia-30t-cx-mr-system
https://jp.medical.canon/News/PressRelease/Detail/45069-834
http://demo.united-imaging.com/cn/news/2021/\045E8\04581\04594\045E5\045BD\045B1-cmef-\045E5\0458D\04581\045E5\045B9\045B4\045E5\0458E\0459A\045E7\045A7\045AF-\045E8\04587\045AA\045E4\045B8\045BB\045E5\0458F\045AF\045E6\0458E\045A7\045E5\0459C\045A8\045E6\045AD\045A4-\045E6\045B2\045B8\045E8\04585\045BE/
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Fig. 5. Select array coils developed for the Connectome MRI scanner . Start- 
ing in 2011 with a 32-channel head coil, Connectome coil technology has 
evolved from a 60-channel head-neck array, a 64-channel brain array, and a 
48-channel ex vivo brain coil all the way to a 64-channel head coil with an in- 
tegrated field monitoring system in 2021. Figure adapted from ( Gruber et al., 
2014; Keil et al., 2013 ; Mahmutovic et al., 2021 ; Scholz et al., 2021 ). 

c  

c  

c  

c  

i  

s  
lew period t rise . In the range of rise times most relevant to MRI (100
2000 μs), the relationship between PNS thresholds and rise times is

pproximately linear, allowing the characterization of a given experi-
ental setup by the y-axis intercept threshold ΔG min (PNS threshold at

ero rise-time). The exact threshold characteristics of a given coil ge-
metry depend on various design aspects, including the coil geometry,
he gradient axis (i.e., X, Y, or Z axis), and properties of the field of
iew (FOV), including the diameter and gradient linearity ( Zhang et al.,
003 ). For example, decreasing the size of the FOV or tolerating a larger
radient non-linearity decreases the peak B-field excursion in the body,
hus leading to lower induced E-fields and higher PNS thresholds. This
elationship was utilized in the Connectome whole-body gradient coil by
sing a comparably small 20 cm FOV with a 6% gradient non-linearity
 McNab et al., 2013a ; Setsompop et al., 2013 ). This led to increased
NS thresholds compared to a more typical whole-body coil such as the
iemens Prisma gradient with a 50 cm FOV ( Fig. 4 A). Note that while
he maximum gradient in EPI readout is still PNS limited despite the
hreshold gains from the small FOV, the peak amplitude of the gradient
an be utilized in diffusion imaging when longer rise times are employed
o prevent PNS. 

Recent advances in modeling PNS effects using electromagnetic-
eurodynamic body models are helping to gain a better understand-
ng of the “where and why ” questions surrounding PNS and developing
trategies to mitigate PNS ( Davids et al., 2020 , 2017 , 2019 ; Davids et al.,
022 ). PNS models can predict threshold curves (similar to those typi-
ally obtained in experimental studies) as well as nerve activation maps.
igs. 4 A and B show predicted PNS threshold curves and activation maps
or the Connectome and Prisma gradients (y-axes), demonstrating good
greement between experimental and predicted PNS thresholds. PNS
redictions can be used to inform the design phase of new gradient coils,
ither by directly including PNS metrics in the numeric boundary ele-
ent method coil design algorithm ( Davids et al., 2021b ) or by manually

nalyzing candidate coil winding patterns. In both cases, the coil wind-
ngs are iteratively adjusted to minimize PNS effects while satisfying the
any other design constraints (i.e., field linearity and efficiency, shield-

ng, coil inductance, wire spacing, power dissipation, etc.). Building on
he insights gained from developing the MGH Connectome scanner, a
imilar approach is currently being used in the design phase of the Con-
ectome 2.0 gradient system, see ( Huang et al., 2021b ) in this special
ssue for more details. 

. Advances in RF coils 

With the advances in the highly parallel imaging acquisition technol-
gy such as SENSE ( Pruessmann et al., 1999 ), GRAPPA ( Griswold et al.,
002 ) and SMS ( Setsompop et al., 2012 ), phased-array receiver coils are
idely used nowadays and have played an important role in not only
ccelerating the image encoding but also improving reception sensitiv-
ty as well. Several dedicated multichannel coils have been developed
s a result of the HCP efforts ( Fig. 5 ), including a 32-channel head array
oil, a 60-channel head-neck coil ( Keil et al., 2011 ) for extended FOV
rain and cervical spine dMRI acquisitions ( Fig. 6 ) and a 64-channel
rain only array coil ( Keil et al., 2013 ). With more readily available
arge-volume three-dimensional (3D) printing techniques, as well as dig-
tal surface modeling and simulation tools ( keil and wald, 2013 ), a 60-
hannel ex vivo brain slab array coil ( Gruber et al., 2014 ) was designed
o resemble a panini sandwich press to accommodate 1 to 5 cm thick
rain slices and achieved a boost in SNR by a factor of 3.5, enabling
ocused acquisitions of brain slabs up to 350 μm isotropic spatial resolu-
ion and diffusion weighting of up to b = 30,000 s/mm 

2 ( Wieseotte et al.,
015 ). More recently, a close-fitting 48-channel ex vivo whole brain coil
 Scholz et al., 2021 ) has been developed for imaging ex vivo whole brain
pecimens at sub-millimeter spatial resolution with high SNR ( Ramos-
lorden et al., 2021 ). 

While the dual roles of the Connectome receiver coils in signal de-
ection and image encoding have been successfully implemented, the
5 
urrent goal for the next generation of array coils for Connectome scans
enters on embedding a third role into the receiver coil: namely, to in-
orporate probes that will enable dedicated field monitoring. Such field
ameras are being used to concurrently monitor the field perturbations
nduced by higher-order eddy currents produced by the strong diffusion-
ensitizing gradients on the Connectom scanner ( Mahmutovic et al.,



Q. Fan, C. Eichner, M. Afzali et al. NeuroImage 254 (2022) 118958 

Fig. 6. Combined brain and cervical-spine tractography. 

Data was obtained from 1.5 mm isotropic diffusion acquisition 
using the 60-channel head-neck array coil. 
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021 ; Ramos-Llorden et al., 2022 ). The measured field can then be in-
orporated into the image reconstruction to correct for residual eddy
urrent effects during the image readout and mitigate image artifacts
 Barmet et al., 2008 ; Wilm et al., 2011 , 2015 ). To create state-of-the-
rt highly parallel RF coil technology with an integrated field moni-
oring system ( Mahmutovic et al., 2021 ), a 64-channel brain array coil
ith an integrated 16-channel field monitoring system (Skope Magnetic
esonance Technologies AG, Zurich, Switzerland) was developed that
oncurrently measures the spatiotemporal magnetic field dynamics dur-
ng the acquisition ( Fig. 7 ). Substantial reduction of blurring, aliasing,
nd distortions were observed in the resulting images. Although build-
ng high-density receiver arrays with a set of close-fitting field camera
robes is challenging, the synergies between advances in gradient and
eceive coil technology ensure that these technologies will continue to
volve together for high-resolution dMRI in a productive way. 

. Innovations in pulse sequences and image reconstruction 

The dramatic advances in phased array receiver coil technology for
MRI have directly benefitted parallel imaging methodology develop-
ent by enabling higher SNR and providing more flexibility in sequence
esign and image reconstruction. Owing to its ability to encode an imag-
ng slice typically within 200 ms, EPI has been the dominant readout
trategy in dMRI. In large-scale neuroimaging studies including Ado-
escent Brain Cognitive Development (ABCD) ( Casey et al., 2018 ), UK
iobank ( Miller et al., 2016 ) and especially the HCP, high angular and
patial resolution have provided increased sensitivity to crossing fibers
nd improved specificity to hard-to-image tracts ( Sotiropoulos et al.,
013b ). While EPI has high per-slice imaging efficiency, the need for
igh angular and spatial resolution dMRI with whole brain cover-
ge has rendered these acquisitions extremely encoding intensive and
reated a need for additional efficiencies to be built in. To address
his need, the HCP projects employed multiband (MB) acceleration
 Feinberg et al., 2010 ; Larkman et al., 2001 ; Moeller et al., 2010 ), which
educes the repetition time (TR) by the number of simultaneously ex-
ited slices. As part of the MGH-USC Connectome project, blipped con-
rolled aliasing (blipped-CAIPI) emerged as a popular encoding strat-
gy ( Setsompop et al., 2012 ). Blipped-CAIPI simultaneous multislice
SMS) imaging creates FOV shifts between the excited slices to bet-
er distribute the image aliasing. Since high acceleration leads to g-
actor noise amplification, which is less tolerable in SNR-starved dif-
usion acquisitions, large-scale studies limited the MB factor to 3–4-fold
n dMRI ( Casey et al., 2018 ; Harms et al., 2018 ; Miller et al., 2016 ;
otiropoulos et al., 2013b ). 

To push the limits of spatial resolution for dMRI, an important strat-
gy is volumetric encoding. This approach either performs multiple 2D
cquisitions with thin slabs and employs super-resolution reconstruc-
ion to resolve thin-slice information, or utilizes 3D phase encoding in
he partition (kz) direction. There are three important commonalities
etween these approaches: (i) the entire volume is often divided into
everal slabs, (ii) they benefit from simultaneous multi-slab (SMSlab)
6 
ncoding where a few slabs are excited together (analogous to the stan-
ard SMS strategy), and (iii) they have to estimate and eliminate phase
ifferences due to motion across each slab’s encoding. An exemplary
pproach to the 2D, thin-slab acquisitions is gSlider ( Setsompop et al.,
018 ), in which multiple acquisitions are made with different RF profiles
o encode thin-slice information. Typically, a slab is five times thicker
han its constituent slices, e.g., for 1 mm slice resolution, a 5 mm thick
lab is excited. The RF profile is modulated across five different acqui-
itions, thereby performing Hadamard-like encoding ( Oh et al., 1984 ;
aritas et al., 2014 ; Souza et al., 1988 ). The encoding matrix formed by
he RF profiles is designed to have a small condition number. This en-
ures minimal noise amplification during the matrix inversion required
or super-resolution reconstruction, through which thin-slice informa-
ion is estimated. gSlider lends itself to SMSlab encoding, where as many
s 10 thin slices (5 × from gSlider, 2 × from SMSlab) are excited si-
ultaneously to provide volumetric noise averaging benefits. Phase dif-

erences between RF encodes are estimated and removed from interim
lipped-CAIPI reconstructions for each shot, prior to super-resolution re-
onstruction. Hardware imperfections (e.g. B1 + nonuniformity) and T1
elaxation can be incorporated into the RF encoding matrix to mitigate
otential slab boundary artifacts ( Liao et al., 2020 ). 

The gSlider acquisition has recently been employed to create a
ublicly-available reference Connectome diffusion dataset at 760 μm
sotropic resolution across 1260 q -space samples, in which data were
cquired on a single subject scanned across 9 two-hour sessions
 Wang et al., 2021 ). gSlider can also be combined with multishot EPI
msEPI) encoding in the in-plane direction. This enables pushing the
esolution to an unprecedented 600 μm isotropic resolution for in vivo

MRI, and is facilitated by high in-plane acceleration that reduces dis-
ortion, blurring and TE ( Liao et al., 2021 ). 

Spiral imaging provides efficient k-space transversal and presents a
avorable alternative to EPI ( Li et al., 1999 ; Liu et al., 2004 ), particularly
n light of recent innovations in field-probe monitoring ( Barmet et al.,
008 ) and expanded encoding model reconstruction, which have been
hown to effectively mitigate the detrimental B0 and eddy-current blur-
ing artifacts in spiral imaging to achieve high-quality diffusion imaging
 Wilm et al., 2017 ). Spiral acquisitions can have significant SNR-benefit
ver EPI for diffusion imaging ( Lee et al., 2021b ). With its center-out
eadout strategy, a much shorter TE can be achieved when compared to
PI, which acts to reduce T2-related signal loss. Moreover, in acceler-
ted acquisitions, spiral image encoding typically incurs a lower g-factor
NR penalty than EPI, thanks to its more favorable spreading rather than
olding aliasing pattern ( Lee et al., 2021b ). Nonetheless, spiral acquisi-
ions at high resolutions can suffer from significant T2 ∗ decay related
mage blurring, caused by the slower k r transversal at the outer edges of
-space when compared to EPI. Multi-shot strategies can be employed to
itigate this issue ( Liu et al., 2004 ; Truong and Guidon, 2014 ). More-

ver, high-performance gradients can also be used to provide a faster
-space transversal and reduced blurring, while at the same time allow-
ng for faster diffusion encoding to further reduce TE ( Mueller et al.,
019b ; Wilm et al., 2020 ). Using a custom-built high performance head
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Fig. 7. Illustration of spiral image reconstruction using concurrent field 

monitoring. (A) Zero-order phase and higher-order dynamic field effects; (B) 
first-order read trajectory. Examples of temporal SNR (tSNR) maps (calculated 
from a series of 20 repetitions) obtained with the 64-ch coil using (C) spiral 
and (D) EPI acquisitions. Images reconstructed from the spiral acquisitions us- 
ing concurrently monitored field information do not show evident distortions. 
Figure adapted from ( Mahmutovic et al., 2021 ). 
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Fig. 8. Schematic illustration of diffusion-encoding gradients and induced 

eddy currents. In the following diagrams, the x-axis represents time and the y- 
axis represents gradient strength. a) If the nominal temporal gradient profile 
(red dotted line) follows the desired shape, the actual gradient profile (blue 
continuous line) is distorted by eddy currents (yellow dashed line). b) This can 
be compensated by gradient pre-emphasis, i.e., overshooting the gradient pro- 
file. For demonstration purposes, the eddy current amplitude is exaggerated. c) 
Stejskal-Tanner diffusion encoding with eddy currents for a single time constant 
(with rescaled amplitude for better visibility). The short vertical dash between 
the two diffusion encoding lobes indicates the position of a 180° pulse. d) Twice 
refocused spin echo diffusion encoding with timing optimized to null the eddy 
current of this time constant. This method requires two RF pulses to achieve a 
high b- value and eddy current reduction. 
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radient system (G max 200 mT/m, S max 600 T/m/s), high quality dif-
usion imaging with an in-plane resolution of 0.68 mm and b- value of
000s/mm 

2 was demonstrated via single-shot spiral acquisitions at an
mpressively short TE of 19 ms ( Wilm et al., 2020 ). Analogous efforts
re now underway on the Connectom MRI system to achieve shorter TEs
eyond what is afforded by the strong gradients for diffusion-encoding
nd potentially enhance the sensitivity of the dMRI signal not only to
iffusion but also myelin content ( Mueller et al., 2019a ). 

. Challenges posed by eddy currents & concomitant field terms 

With the use of strong gradients on the Connectom system, eddy cur-
ents are generally more prominent than those observed on most clin-
cal systems. Eddy current-induced magnetic fields [see Appendix for
etailed formulation] produce geometric distortions in the acquired im-
ges ( Jezzard et al., 1998 ) and may complicate the diffusion-encoding
rocess in certain circumstances ( Szczepankiewicz et al., 2020 , 2019 ).
s such, eddy currents and strategies to mitigate their negative ef-
7 
ects have received considerable attention from investigators working
n Connectom studies. 

To compensate for eddy current effects on the Connectom system,
ypical hardware approaches, such as active shielding ( Mansfield and
hapman, 1987 ; Roemer et al., 1986 ) and gradient pre-emphasis
 Ahn and Cho, 1991 ; Jehenson et al., 1990 ; Morich et al., 1988 ;
an Vaals and Bergman, 1990 ), as illustrated in ( Fig. 8 a and b), were im-
lemented. To compensate for the residual eddy current effects caused
y the use of strong diffusion encoding gradients, additional approaches
ere also taken, which can be largely divided into three categories: im-
ge processing methods, image reconstruction methods that incorporate
he measured and/or predicted eddy current effects, and methods that
ailor the shape of diffusion encoding gradients to minimize the gener-
tion of eddy currents. 

Image processing methods correct for distortions after the im-
ges are acquired and are by far the most common approach to
ddy current correction due to their ease of use and accessibility. In
he case of strong eddy currents due to the use of strong diffusion-
ncoding gradients, the simplest affine registration-based algorithms
 Haselgrove and Moore, 1996 ; Jezzard et al., 1998 ) may not be suf-
cient ( Sotiropoulos et al., 2013b ). Modern correction methods, such
s the EDDY tool from the FMRIB Software Library ( Andersson and
otiropoulos, 2015 , 2016 ), have advanced to accommodate for the dis-
ortions induced by higher-order eddy currents. EDDY makes use of the
edundancy in the shell-sampled diffusion data, and adopts a Gaussian
rocess (GP) predictor to make predictions of data based on the fact
hat diffusion-encoding gradients of opposite polarities generate oppo-
ite eddy current effects. It iteratively solves for the model of eddy
urrent-induced magnetic fields up to third order, which is then used
o correct for image distortions. These methods were mainly developed
or EPI and are not applicable to non-Cartesian sequences (e.g., spiral
eadouts). 

For non-Cartesian readouts, the actual k-space trajectories need to
e measured, either by phantom experiments ( Brodsky et al., 2013 ;
uyn et al., 1998 ; Latta et al., 2007 ; Rahmer et al., 2019 ) or using field
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robes ( Barmet et al., 2008 , 2009 ; Dietrich et al., 2016 ). The nominal
-space trajectory is then replaced with the measured one in the image
econstruction step to compensate for the eddy current effects. This ap-
roach has been shown to be effective not only for non-Cartesian read-
uts corrupted by strong eddy currents ( Edwards et al., 2021b ; Lee et al.,
021b ; Wilm et al., 2017 , 2020 ) but also for EPI ( Wilm et al., 2011 ,
015 ). 

Alternatively, eddy current effects can be counterbalanced by pur-
osely designing temporal gradient profiles of opposite polarities, as
llustrated for the classic Stejskal-Tanner encoding in ( Fig. 8 c). Simi-
ar strategies are also applicable to double diffusion-encoding scenarios
 Mueller et al., 2017 ). This approach has the advantage that it can be
ombined with more flexible diffusion-encoding gradient schemes such
s the free gradient waveforms used for b -tensor encoding ( Yang and
cNab, 2019 ). The main drawback arises from the concomitant field-

nduced dephasing that is caused by the non-symmetric gradient wave-
orms – that is, a purely linear gradient field is not compatible with the
axwell equations, giving rise to higher order field distributions: 

 𝐶 = 

1 
2 𝐵 0 

( ( 

𝐺 𝑥 𝑧 − 

𝐺 𝑧 𝑥 

2 

) 2 
+ 

( 

𝐺 𝑦 𝑧 − 

𝐺 𝑧 𝑦 

2 

) 2 
) 

+ ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠 

These fields grow with the square of the gradient amplitude, can be-
ome prohibitively large for twice refocused spin-echo scheme on the
onnectome scanner ( Setsompop et al., 2013 ) and can cause artifactu-
lly large and spatially varying b- values ( Szczepankiewicz et al., 2020 ).
he concomitant fields need to be considered explicitly in designing the
radient waveforms, and strategies to compensate for Maxwell terms in
esigning asymmetric gradient waveforms have also been explored and
emonstrated ( Szczepankiewicz et al., 2021 , 2019 ). 

. Data preprocessing 

In addition to eddy currents, the acquisition of dMRI data on the
onnectom system faces several other challenges that may affect the
ata quality, thereby necessitating preprocessing of the data in order to
nsure that the effects on downstream analyses are minimized. In this
ection, we discuss these challenges, their causes, manifestations and
pproaches to correction. We also refer readers to a separate review
rticle included in this special issue ( Tax et al., 2022 ) for a more general
overage of dMRI data preprocessing. 

.1. Gradient nonlinearity 

By design, the gradient field on the Connectome MRI scanner is less
inear than conventional systems (see Section II.1: Gradient hardware
nd scanner design). As a result, the gradient nonlinearity on the Con-
ectom scanner induces noticeable spatially varying deviations from the
xpected gradient direction and intensity, resulting in marked distor-
ions away from the center of the image. The 300 mT/m whole-body
radient coil has a tighter-fitting architecture with a much thicker shell
ompared to conventional gradient coils. The linear region of the gra-
ient is therefore relatively small, and gradient nonlinearities may be-
ome apparent even within the brain itself. Nonlinearity in the imaging
radients results in image distortions, which may be moderated by re-
ucing the FOV or corrected in the post-processing using the spherical
armonics description of the gradient profile provided by the vendor
 Jovicich et al., 2006 ). 

In addition to its impact on image encoding, gradient nonlinearity
nfluences the diffusion encoding by modifying the b -values and di-
ections of the applied diffusion gradients at each voxel. The impact
f gradient nonlinearity on the diffusion weighting is particularly pro-
ounced at high gradient strengths, since the b -value is proportional to
he square of gradient amplitude. Gradient nonlinearity can result in
eviations in the local effective b -value of up to ± 15% for the Connec-
om gradient ( Fig. 9 ) ( Eichner et al., 2019 ). The adverse effects of gra-
ient nonlinearity-induced variations in the b- values and b- vectors for
iffusion model fitting ( Mesri et al., 2020 ), fiber orientation estimation
8 
nd tractography ( Guo et al., 2021 ; Morez et al., 2021 ), b- tensor en-
oding ( Paquette et al., 2020b ) and Maxwell compensation when using
symmetric gradient waveforms ( Szczepankiewicz et al., 2020 ) have
een thoroughly studied, and consistent conclusions have been drawn
mong these studies that the impact of gradient nonlinearity on diffu-
ion encoding cannot be neglected and must be corrected for, especially
hen using high gradient amplitudes. 

The impact of gradient nonlinearity on diffusion encoding can be
ompensated for by correcting the b- values and b- vectors using a spa-
ially varying gradient coil tensor that calculates the actual gradient field
roduced by the coil using the known gradient profile ( Bammer et al.,
003 ). For analyses in which the b- values for each diffusion-encoding
irection are explicitly described in an analytical form, such as diffusion
ensor imaging and diffusion kurtosis imaging (DKI), the correction for
radient nonlinearity is straightforward and simply uses the corrected
- values and b- vectors for the model fitting. If descriptions of the gradi-
nt profile are not available from the vendor, calibrations on phantoms
an be used for corrections ( Mohammadi et al., 2012 ). For spherical
econvolution ( Tournier et al., 2007 , 2004 ) and spherical mean tech-
ique (SMT) based approaches ( Fan et al., 2020 ; Kaden et al., 2016a ,
016b ), accounting for gradient nonlinearity in the diffusion gradients
ay require additional calculations ( Paquette et al., 2019 ). Moreover,

he gradient coil tensor is not only spatially varying but also tempo-
ally varying if the head position in the scanner changes due to motion.
he spatiotemporal tracking of b- values and b- vectors has been demon-
trated to produce the most consistent parameter estimates in the pres-
nce of large gradient nonlinearities ( Rudrapatna et al., 2021 ), in which
ach voxel in every DWI volume is characterized by a distinct b- values
nd b- vector. 

.2. Susceptibility 

Susceptibility-induced off-resonance fields lead to spatially vary-
ng image distortions in EPI images. These distortions will challenges
n co-registering the diffusion data and anatomical data for sub-
equent connectome-related analyses, such as cortico-cortical diffu-
ion tractography that relies upon cortical masks derived from T1-
eighted images, or surface-based analysis ( McNab et al., 2013b ) that

elies upon the cortical surfaces derived from the T1-weighted im-
ge. Image processing-based correction approaches often estimate the
usceptibility-induced field from a pair of non-diffusion weighted im-
ges acquired with reversed phase encoding directions to compensate
or the field inhomogeneity ( Andersson et al., 2003 ). Modern correc-
ion methods have evolved to estimate the spatially varying field by
racking head movement and correcting for susceptibility-induced dis-
ortions ( Andersson et al., 2018 ). More recently, approaches that utilize
on-linear co-registration between distorted images and anatomical im-
ges without distortions ( Bhushan et al., 2015 ; Schilling et al., 2020 )
ave also been demonstrated. 

.3. Preprocessing pipeline 

The order in which eddy currents, B 0 inhomogeneity, and gradient
onlinearity corrections are performed in the preprocessing pipeline
ave been found to impact the model fitting results significantly
 Rudrapatna et al., 2021 ). Two distinct diffusion preprocessing pipelines
ave been proposed by the MGH-USC and WU-Minn-Ox HCP consor-
ia. The MGH-USC pipeline corrects for the gradient nonlinearity first,
ollowed by eddy current correction ( Fan et al., 2016 ), while the WU-
inn-Ox pipeline adopts the opposite order, i.e., correcting for B 0 in-

omogeneity and eddy currents first and finally gradient nonlinearity
 Glasser et al., 2013 ). The performance of each pipeline depends on the
mount of gradient nonlinearity and/or motion present in the data. In
 Rudrapatna et al., 2021 ), comparisons were made between different or-
ers of preprocessing steps (as in that of the MGH-USC pipeline versus
he WU-Minn-Ox pipeline) using a dataset acquired on the Connectom
ystem installed at Cardiff. They found that there is no obvious prefer-
nce for the ordering of the preprocessing steps, and the performance of
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Fig. 9. Maps of the deviation in diffusion encoding from the nominal prescribed b -value and corresponding histogram of the calculated variance across 

the whole brain volume. The diffusion gradient direction [1, 0, 0] was used to generate the map. Figure adapted from ( Eichner et al., 2019 ). 

Fig. 10. Effects of distortion correction with double versus single interpolation . The left and middle panels compare enlarged views of a b = 0 image corrected 
using two successive interpolation steps versus a single concatenated interpolation. Adapted from ( Eichner et al., 2019 ). 
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he preprocessing pipeline depends on the specific characteristics of the
ata and acquisition parameters. For example, in cases where the gra-
ient nonlinearity was more severe, performing gradient nonlinearity
orrection first followed by simultaneous eddy current and susceptibil-
ty correction gave the best results. On the other hand, when extensive
otion was present, EDDY + TOPUP followed by gradient nonlinearity

orrection performed better. Moreover, combining the interpolations
rom multiple intermediate preprocessing steps into a single step will
void unnecessary image blurring and loss of structural details arising
rom multiple successive interpolation steps ( Eichner et al., 2019 ). The
egative effect is most pronounced at tissue boundaries, where signal
ifferences on the order of ± 10% can be observed ( Fig. 10 ). 

.4. Other considerations 

In addition, preprocessing steps that are not particular to the Con-
ectom gradients also benefit the subsequent model fitting and analy-
is ( Ades-Aron et al., 2018 ; Cieslak et al., 2021 ), such as B 0 drift cor-
ection ( Vos et al., 2017 ), noise reduction and noise level estimation
 Veraart et al., 2016b , 2016c ), as well as correction for Gibbs ringing
rtifact ( Kellner et al., 2016 ; Veraart et al., 2016a ) and partial-Fourier
cquired data ( Lee et al., 2021a ; Muckley et al., 2021 ). It is worth-
hile to mention that typical image data, which consist of the magni-

ude of complex values, follow a Rician distribution. This introduces a
oise floor for high b -value Connectom data and can bias subsequent
odel fitting ( Fan et al., 2020 ; Veraart et al., 2020 ). One solution is to

orrect this bias in magnitude data, based on the noise level estimated
rom repeated experiments ( Koay and Basser, 2006 ). Another solution
s to acquire both the magnitude and phase data and compute the real
components of the complex data, which is characterized by Gaussian-
istributed noise and can provide true signal averaging with signifi-
antly reduced noise bias ( Eichner et al., 2015 ). Noise reduction al-
orithms such as Marchenko-Pastur principal component analysis (MP-
CA) ( Veraart et al., 2016b , 2016c ) have also been adapted to complex
ata to suppress the effects of Rician noise ( Lemberskiy et al., 2019 ,
021 ; Moeller et al., 2021 , 2017 ). In addition, the SENSE1 coil combine
9 
ethod ( Sotiropoulos et al., 2013c ) is an effective approach to reduc-
ng the noise floor in the magnitude data by incorporating coil sensitiv-
ty profiles when the images from individual receiver coil elements are
ombined. 

II. Scientific impact 

The advances in hardware, acquisition technology and preprocessing
echniques developed for the Connectom MRI system provide the techni-
al framework upon which scientific investigations can be launched. In
his section, we first discuss the data resources made available by Con-
ectom research efforts, starting with the data-sharing component of
he MGH-USC Connectome project. We then review how high-gradient
ystems have been broadly utilized in the pursuit of comprehensive map-
ing of structural connectivity and tissue microstructure in the living hu-
an brain. Such use cases include identifying complex fiber configura-

ions to improve diffusion tractography, resolving tissue microstructure
y leveraging the enhanced diffusion resolution afforded by high gra-
ient strengths, developing ex vivo dMRI as a tool for mapping connec-
ional anatomy at mesoscopic resolutions, and investigating potential
on-invasive biomarkers of tissue integrity in a variety of neurological
isorders. 

. Dissemination of connectom data 

Direct access to the in vivo acquisition capabilities afforded by 300
T/m gradient strengths has thus far been limited, since only four Con-
ectom scanners have been installed worldwide, lending a unique im-
ortance and role to data-sharing efforts. The MGH-USC Connectome
roject took a first step toward this goal in 2014 by releasing a dataset
rom 35 healthy adults scanned at this unique facility ( Fan et al., 2016 )
o the broader scientific research community. In subsequent years, as
ew image acquisition methods were developed and greater experience
as accrued on Connectom systems worldwide, the imaging data re-

ources that were disseminated improved in both quality and quantity.
ndeed, a growing number of datasets have been made accessible in the
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Table 1 

Representative Connectom datasets disseminated through data repositories or challenge competitions. 

Datasets (References) 
Site of 
Acquisition Data Repository Data Description in Brief 

MGH HCP Adult Diffusion 
( Fan et al., 2016 ) 

MGH ConnectomeDB 
https://db.humanconnectome.org , or 
Laboratory of Neuro Imaging Image Data 
Archive (LONI IDA) https://ida.loni.usc.edu 

• 35 healthy adults 
• b -values = 1000, 3000, 5000, 10,000 s/mm 

2 

• voxel size = 1.5 mm isotropic 

ISBI 2015 Challenge on 
White Matter Modeling 
( Ferizi et al., 2017 ) 

MGH The Challenge Website: 
http://cmic.cs.ucl.ac.uk/wmmchallenge 

• 1 healthy adult 
• 48 shells acquired (36 for training, 12 for testing) 
• b -value up to 45,900 s/mm 

2 

• voxel size = 2 × 2 × 4 mm 

MICCAI 2017 & 2018 
Challenge on Data 
Harmonization 
( Tax et al., 2019 ) 
( Ning et al., 2019 ) 

Cardiff CUBRIC Center 
https://www.cardiff.ac.uk/cardiff- 
university-brain-research-imaging- 
center/research/projects/cross-scanner-and- 
cross-protocol-diffusion-MRI-data- 
harmonization 

• 15 healthy adults, 
• across 3 scanners and 5 acquisition protocols 
• b -value up to 5000 s/mm 

2 

• voxel size down to 1.2 mm isotropic 

Taxon phantom 

( Fan et al., 2018b ) 
MGH 

XNAT Central database 
https://central.xnat.org 
(ProjectID: dMRI_Phant_MGH) 

• Biomimetic phantom, 
• b -values up to 18,250 s/mm 

2 

• Δ = 20, 30, 40, 50 ms 
• voxel size = 2 mm isotropic 

gSlider diffusion data 
( Wang et al., 2021 ) 

MGH 

Dryad 
https://doi.org/10.5061/dryad.nzs7h44q2 
(Part I) 
https://doi.org/10.5061/dryad.rjdfn2z8g 
(Part II) 

• 1 healthy adult, 9 two-hour sessions 
• b -values = 1000, 2500s/mm 

2 

• voxel size = 760 μm 

MICRA 
( Koller et al., 2021 ) 

Cardiff
Open Science Framework 
https://osf.io/z3mkn/ • 6 healthy adults, each with 5 repetitions 

• b -value up to 6000 s/mm 

2 

• voxel size = 2 mm isotropic 
• Relaxometry and Quantitative Magnetization Transfer 

(QMT) data also available 

MGH Connectome Diffusion 
Microstructure Dataset 
(CDMD) 
( Tian et al., 2022 ) 

MGH FigShare 
https://doi.org/10.6084/m9.figshare.c.5315474.v1 

• 26 healthy adults 
• b -value up to 17,800 s/mm 

2 

• Δ = 19, 49 ms; 8 b -values per Δ
• voxel size = 2 mm isotropic 
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ast few years, either in perpetual data repositories ( Fan et al., 2018b ,
016 ; Koller et al., 2021 ; Tian et al., 2022 ; Wang et al., 2021 ) or through
rganizing computational competitions such as the International Sym-
osium on Biomedical Imaging (ISBI) challenge on white matter mod-
ling ( Ferizi et al., 2017 ) and Medical Image Computing and Computer
ssisted Intervention (MICCAI) challenges on cross-scanner and cross-
rotocol diffusion data harmonization ( Ning et al., 2020a ; Tax et al.,
019 ). Each of these datasets was acquired with a unique focus ( Table 1 )
nd hence different imaging parameters, such as spatial resolution and
 -value. Both high spatial resolution and b -value are desired characteris-
ics in diffusion MRI data, but there is a fundamental trade-off between
he two due to the SNR limit ( Fan et al., 2017 ), and the actual choice
f the balance depends on the goal of the study and what specific infor-
ation is of most interest. Although sub-millimeter resolution has been
emonstrated on the system ( Setsompop et al., 2018 ), most of the shared
atasets used higher gradient strengths and compromised on spatial res-
lution (typically ∼2 mm), as listed in Table 1 . This was especially the
ase for datasets tailored to microstructural modeling, where the high
radient strength of the Connectom system is critical for achieving dif-
usion resolution and sensitivity to axonal sizes that go beyond what
ther high-end commercial gradients can offer ( Veraart et al., 2019 ). 
10 
The dissemination of Connectom data has facilitated research in
he broader scientific community from various perspectives, includ-
ng improving methods of q -space signal representations ( Sun et al.,
019 ; Tian et al., 2019 ; Varela-Mattatall et al., 2020 ; Yeh and Versty-
en, 2016 ), noise management ( Dela Haije et al., 2020 ; St-Jean et al.,
020a ), data harmonization ( Moyer et al., 2020 ; Ning et al., 2020a ;
t-Jean et al., 2020b ; Tax et al., 2019 ), resolving multiple fiber
undles ( Morez et al., 2021 ; Shakya et al., 2017 ; Shi et al., 2021 ;
ristan-Vega and Aja-Fernandez, 2021 ), improving diffusion tractog-
aphy ( Benou et al., 2019 ; Farooq et al., 2019 ; Girard et al., 2017 ;
orn et al., 2017 ; Maffei et al., 2018 , 2019 ; Makris et al., 2016 ;
u et al., 2021 ; Safadi et al., 2018 ; Siless et al., 2018 ; Tang et al.,
019 ; Uesaki et al., 2018 ; Wang et al., 2019 , 2020 ; Wegmayr et al.,
019 ; Zhang, 2018 ), advancing efforts to understand diffusion signal
haracteristics and parameter estimation ( Aja-Fernández et al., 2020 ;
erizi et al., 2015 ; Fick et al., 2016 ; Harms et al., 2017 ; Henriques et al.,
021a ; Lanzafame et al., 2016 ; Li et al., 2018 , 2019a; Li et al., 2019b ;
ozumder et al., 2019 ; Palombo et al., 2020 ; Qin et al., 2021 ), as
ell as serving as benchmark training data for artificial intelligence-
ediated artifact removal ( Ding et al., 2019 ; Schilling et al., 2020 ) and

mage reconstruction ( Antun et al., 2021 ; Koonjoo et al., 2021 ; Xu et al.,

https://db.humanconnectome.org
https://ida.loni.usc.edu
http://cmic.cs.ucl.ac.uk/wmmchallenge
https://www.cardiff.ac.uk/cardiff-university-brain-research-imaging-center/research/projects/cross-scanner-and-cross-protocol-diffusion-MRI-data-harmonization
https://central.xnat.org
https://doi.org/10.5061/dryad.nzs7h44q2
https://doi.org/10.5061/dryad.rjdfn2z8g
https://osf.io/z3mkn/
https://doi.org/10.6084/m9.figshare.c.5315474.v1
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019 ; Zhu et al., 2018 ). Other studies have used these data to investi-
ate whether a dMRI protocol with very high b -values offers advan-
ages over the more widely available b max = 3000 s/mm 

2 HCP proto-
ol of ( Harms et al., 2017 ). For example, ( Maffei et al., 2019 ) found
robabilistic tractography to be most reliable with the highest b -value,
hile ( Li et al., 2019a ) found that �̄� was more specific to the intra-

ellular signal component at high b -values ( b ≥ 3000 s/mm 

2 ). Finally,
he Connectom data of Fan et al. (2016) have been used to develop a
omprehensive white-matter tract atlas that is distributed freely as part
f the FreeSurfer software suite ( https://dmri.mgh.harvard.edu/tract-
tlas/ ). When these manually annotated tracts are used as training data
or global probabilistic tractography, they allow the same tracts to be
econstructed automatically and with high accuracy from much lower
uality dMRI data ( Maffei et al., 2021 ). This is an example of how the
enefits of a Connectom system can be extended to studies that collect
ata with much more widely available scanners. 

. Fiber orientation estimation and diffusion tractography 

Taking advantage of the unique capabilities of Connectom systems
o improve inference of fiber orientations and reconstruction of white-
atter pathways is an active area of research. On the one hand, the re-
uced TE and thus increased SNR per unit b -value that can be achieved
ith higher gradient strengths enables dMRI acquisitions with higher

patial resolution, which enables the resolution of smaller white-matter
undles ( Jones et al., 2018 ). Increased spatial resolution is also help-
ul in mitigating the signal bias toward white matter near the bound-
ry between cerebral cortex and white matter, yielding more accurate
ber orientation estimates close to that boundary. On the other hand,
igher gradient strength also enables acquisitions with higher b- values,
hich have been shown experimentally to yield sharper orientation dis-

ribution functions and are thus beneficial in areas of fiber crossings
 Fan et al., 2014 ). However, there is a trade-off between the spatial
esolution and b- value achievable for a given SNR level. Thus, early
ork focused on fusing data acquired with high spatial resolution or
ith high b- values, to take advantage of their complimentary bene-
ts. Resolutions Unified for Bayesian Inference of X-ings (RubiX) is
 method for data fusion of lower- and higher-resolution dMRI scans
 Sotiropoulos et al., 2016 , 2013a ). It was applied to fuse HCP data
cquired at 3T (1.25 mm, b max = 3000 s/mm 

2 ) and 7T (1.05 mm,
 max = 2000s/mm 

2 ) ( Sotiropoulos et al., 2016 , 2013a ). For data col-
ected with a Connectom system, the HIgh B -value and high Resolution
iffusion Integrated Diffusion (HIBRID) method was proposed to fuse
ata acquired with a high b -value (2 mm, b = 8000 s/mm 

2 ) and data
cquired with high spatial resolution (1 mm, b = 1500s/mm 

2 ), allowing
igh-definition imaging of fiber orientations in both white matter and
ortex ( Fan et al., 2017 , 2015 ). 

The nonlinearity of the Connectom gradient coil is a confound for
ber orientation distribution estimation algorithms such as spherical
econvolution ( Anderson, 2005 ; Jeurissen et al., 2014 ; Tournier et al.,
004 ), as the applied b -value depends on the spatial location and the
iffusion-encoding direction (also see II.6.1: Gradient nonlinearity).
ecent work extended the conventional spherical deconvolution ap-
roaches by replacing the second-order tensor with more complex re-
ponse functions, which depend on both the direction and the strength
f the diffusion-encoding gradient ( Guo et al., 2021 ; Morez et al., 2021 ).
his was shown to yield more accurate fiber orientation estimates in the
resence of gradient nonlinearities, as well as for data collected with
on-shell q- space sampling schemes. 

The unprecedented spatial and angular resolution of dMRI data col-
ected with high-gradient systems has enabled the reconstruction of
mall white matter pathways that were previously impossible to re-
olve with in vivo dMRI. These pathways include, but are not limited
o, the acoustic radiation ( Maffei et al., 2018 ), Meyer’s loop of the op-
ic radiation ( Chamberland et al., 2018 ), brainstem pathways ( Edlow
t al., 2016; McNab et al., 2013a ), projections of Brodmann area 6 to
11 
he pyramidal tract ( Wang et al., 2019 ), the subthalamic nucleus (STN)-
erebellum pathway ( Wang et al., 2020 ), the fornix ( Perea et al., 2018 ),
nd short association fibers in the visual pathway ( Movahedian Attar
t al., 2020 ). After these pathways are reconstructed from Connectom
ata, they can be used to build high-definition atlases ( Maffei et al.,
021 , 2019 ; Shan et al., 2019 ) to train algorithms for reconstructing the
ame pathways automatically in lower-quality dMRI data ( Maffei et al.,
021 , 2019 ; Shan et al., 2019 ), or to study structure-function relation-
hips with greater specificity ( Movahedian Attar et al., 2020 ). 

A major challenge in determining whether these advances have im-
roved the accuracy of fiber orientation estimation or tractography in
he brain is that the ground truth of brain circuitry is not fully known. A
etailed discussion of post mortem microscopy methods that have been
sed to validate dMRI, and the key findings of those validation studies,
s provided elsewhere in this issue ( Yendiki et al., 2021 ). Here we refer
o studies that have compared single- or multi-shell sampling schemes
hat would be feasible with widely available human scanners (the equiv-
lent of b max = 3000 s/mm 

2 in vivo ) to a denser sampling of q- space
hat would only be feasible with Connectom scanners (the equivalent of
 max = 10,000 s/mm 

2 in vivo ). These validation studies have shown a
odest but consistent advantage of ultra-high b- values in terms of the

ccuracy of fiber orientation estimates ( Jones et al., 2020, 2021 ) or trac-
ography ( Grisot et al., 2021 ; Maffei et al., 2021 ). A possible explanation
or why this advantage is not greater may be that current approaches to
he inference of fiber orientations cannot take advantage of the informa-
ion content in ultra-high b- value data. Specifically, the aforementioned
alidation studies show that the white-matter areas where errors occur
onsistently involve complex fiber configurations that go beyond cross-
ngs, such as branching, fanning, and turning. Conventional methods for
nferring fiber orientations involve antipodally symmetric orientation
istribution functions, which were designed to model fiber crossings.
his points to a need for methods that can resolve fiber configurations
ith antipodal asymmetry. 

Certain methods have attempted to resolve antipodally asymmetric
anning configurations, either by modeling ( Savadjiev et al., 2008 ) or by
sing information from neighboring voxels ( Bastiani et al., 2017; Reis-
rt et al., 2012 ). Another approach to overcoming the ambiguities in an-
ipodally symmetric orientation distribution functions is microstructure-
nformed tractography. One such example is the AxTract framework
 Girard et al., 2017 ) ( Fig. 11 ), in which tractography was informed
y microstructure such as the apparent distribution of axon diameters
ithin fascicles (see ( Daducci et al., 2016 ) for an in-depth discussion
f microstructure informed tractography). As the diffusion resolution
n microstructural imaging also critically depends on gradient strength,
onnectom systems have the potential to increase the accuracy of in vivo

hite matter tract reconstruction through the integration of advanced
icrostructure imaging and tractography. 

. Tissue microstructure 

Beyond mapping the macroscopic connectome, the high gradient
trengths available on the Connectom scanner have introduced the pos-
ibility of probing tissue microstructure in the living human brain. Tra-
itionally, histology has been considered the gold standard approach for
leaning information about tissue structure at the microscopic scale, in-
luding information regarding cell size and morphology. However, his-
ology is limited to ex vivo assessment in fixed tissue. Diffusion MRI is
ensitive to the restriction of membrane structures in neural tissue that is
eyond the nominal spatial resolution of dMRI ( ∼millimeters), offering
 powerful non-invasive tool to infer tissue microstructural properties
uch as axon diameter and relative compartmental volume fractions in
ivo , and thus provides a bridge between the macroscopic scale tissue
eatures at the whole-brain level and the microscopic cellular details
een under a light or electron microscope (see ( Weiskopf et al., 2021 )
or a review on the topic of quantitative MRI and in vivo histology). 

https://dmri.mgh.harvard.edu/tract-atlas/
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Fig. 11. Illustration of the AxTract framework . (a) Ground truth directions used to generate the data with their lengths scaled by the axon diameter index 𝛼. (b) 
Estimated fiber ODFs (fODFs), (c) fiber ODF peaks and (d) fiber ODF peaks with their lengths scaled by 𝛼, (e) show valid connections (VC) and invalid connections 
(IC) for AxTract. (f) VC and IC for conventional deterministic tractography (CDT) are provided for comparison. Figure adapted from ( Girard et al., 2017 ). 
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The main advantages of high gradient strengths for assessing tissue
icrostructure lie in the high diffusion resolution and high SNR / low TE
er b- value and voxel size. Diffusion resolution is the minimum length-
cale that can be resolved in dMRI experiments and is critically limited
y the maximum gradient amplitude 𝐺 𝑚𝑎𝑥 and the minimum detectable
ercentage of signal change ( Nilsson et al., 2017 ) – that is, the higher the
 𝑚𝑎𝑥 and SNR, the smaller the resolution limit. Many applications were
ade possible for in vivo human imaging by the high gradient strengths

n the Connectom scanner, which were previously only feasible in NMR
xperiments ( Callaghan, 1993 ) or on pre-clinical systems. Axon diame-
er mapping is one of the most prominent examples and will be discussed
n greater detail here. 

Measuring pore size using dMRI dates back to earlier experiments
n MR microscopy ( Callaghan, 1993 ; Callaghan et al., 1979 ; Cory and
arroway, 1990 ). The concept of decomposing the MRI signal into var-

ous tissue compartments was first proposed by ( Stanisz et al., 1997 ),
here the short axis of an ellipsoid was associated with axon diam-

ter ( Fig. 12 a). More recent models of white matter represent axons
s straight, impermeable cylinders. The AxCaliber model ( Fig. 12 b)
 Assaf et al., 2008 ) was developed and demonstrated using porcine sci-
tic and optic nerves and porcine spinal cord on preclinical platforms,
here a single fiber orientation was assumed to be known, and the dif-

usion weighting was only applied in the direction perpendicular to the
ber orientation. A gamma distribution was used to model the distribu-
ion of axon diameters. The first in vivo AxCaliber experiment was per-
ormed in the corpus callosum of a rat brain ( Barazany et al., 2009 ) and
12 
n vivo in the human corpus callosum ( McNab et al., 2013a ) and spinal
ord ( Duval et al., 2015 ) on the MGH Connectome scanner. In particular,
igh gradient strengths were found to be beneficial for gaining greater
ensitivity to axonal diameter in empirical studies performed in humans
n the Connectome scanner ( Huang et al., 2015b ) and in ex vivo animal
rains on small-bore scanners ( Dyrby et al., 2013 ; Sepehrband et al.,
016 ). In such models, multiple diffusion times are important for differ-
ntiating between restricted and hindered water compartments. High
radient strength systems enable shorter diffusion times compared to
onventional systems. 

To generalize the estimation of axon diameter to fibers of arbitrary
rientation, methods like ActiveAx ( Alexander et al., 2010 ) and Tract-
aliber ( Huang et al., 2015a , 2020 ) were developed for axon diameter
apping in the living human brain, in which shelled diffusion data were

cquired to sample the diffusion signal decay irrespective of the fiber
rientation, and a single apparent axon diameter was fitted to the data
nstead of a gamma distribution. Modifications to the AxCaliber model
ere also made to account for fiber dispersion ( Fig. 12 c) ( Zhang et al.,
011 ) and crossings ( Fig. 12 d) ( Barazany et al., 2011 ). Later, the powder
verage or Spherical Mean Technique (SMT) was adopted to integrate
ut the dependence on fiber orientation distribution and generalize such
nalyses to the whole brain ( Fan et al., 2020 ; Veraart et al., 2018a , 2019 ,
020 , 2021 ). 

Despite the dramatic improvements in hardware and software for
MRI in the last decade, validation of tissue microstructural measures
s crucial before axon diameter mapping methods can be used and ap-
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Fig. 12. Illustration of diffusion models and key concepts. The concept of compartmentalization was initially proposed by Stanisz et al. (a), following which the 
AxCaliber aims to estimate the diameter distribution of the restricted water compartment (b). Variations of the AxCaliber model was proposed, such as modifications 
to account for fiber dispersions (c) and crossings (d). Realistic axons are very different from ideal cylinders, instead, there are plenty of beadings and undulations (f) 
and structural disorder are commonly seen along neurites (g). In gray matter, a sphere (e) or dot (h) compartment is incorporated into the physical model to account 
for additional signal component present in the measurement. Figure adapted from the papers labeled therein. 

p  

h  

i  

(  

(  

a  

f  

(  

e  

s  

b  

p  

q
v  

a  

a  

r  

(  

r  

t  

V  

a  

t  

n
 

d  

s  

(  

d  

t  

l  

a  

v  

(  

f  

a  

b  

i  

a  

l  

(  

u  

e  

t  

m  

s  

f  

l
 

m  

d  

d  

v  

o  

c  

(  

P  

m  

i  

g  

n  

r  

a  

e  

s  

c
 

c  

m  

e  

t  

o  

f  

f  
ropriately interpreted for neuroscientific studies. Progressive efforts
ave been made to validate the estimation of axonal size by dMRI us-
ng the Connectom scanner, including studies in bio-mimetic phantoms
 Fan et al., 2018b ; Huang et al., 2021a ) and ex vivo tissue samples
 Veraart et al., 2020 ), which have compared the estimated pore sizes
gainst parameters obtained using orthogonal measures such as manu-
actured parameters or histological findings from electron microscopy
EM). The work by Veraart et al. ( Veraart et al., 2020 ) performed both
x vivo and in vivo MRI experiments in animal and human brains, re-
pectively, and found that although the MR signal is strongly weighted
y the larger axons in the tail of the axon diameter distribution, the ap-
arent axon diameters derived from the Connectom dMRI data agree
uantitatively with histology after accounting for the “MR-effective ”
olume weighting. Correlations to other forms of non-imaging data such
s the variability of conduction velocity (CV) in the human brain have
lso been carried out, and plausible estimates of CV were obtained for
egions of the brain in which the axon diameter is sufficiently large
 Drakesmith et al., 2019 ; Mancini et al., 2021 ). In addition, the scan-
escan repeatability of axon diameter estimates has been evaluated in
he human spinal cord ( Duval et al., 2018 ) and brain ( Fan et al., 2021 ;
eraart et al., 2021 ) to assess variability within and across individuals,
nd between sites ( Veraart et al., 2021 ), providing essential knowledge
o inform on the feasibility of apparent axon diameter mapping in future
euroscientific investigations. 

Although there is plenty of research showing the feasibility of axon
iameter mapping using Connectom gradient strengths, there are also
ome works that have placed these findings in question. Paquette et al.
 Paquette et al., 2020a ) showed that, for the estimation of mean axon
iameter, resolving the simplest situations including multiple diame-
ers is infeasible even with diameters much bigger than the resolution
imit. Andersson et al., ( Andersson et al., 2020 ) found that the vari-
tion in axon diameter correlates with mean diameter, contesting the
alue of precise diameter determination in larger axons. Lee et al.,
 Lee et al., 2019 ) showed that fiber orientation dispersion estimated
rom MRI should be relatively stable, while the "apparent" axonal di-
meters are sensitive to experimental settings and cannot be modeled
y perfectly straight cylinders. Further, Lee et al., ( Lee et al., 2020b )
13 
llustrated that dMRI is sensitive to the micrometer-scale variations in
xon caliber or pathological beading, by identifying a signature power-
aw in diffusivity time-dependence along axons. Finally, Brabec et al.
 Brabec et al., 2020 ) investigated frequency-dependent diffusion in thin
ndulating fibers and its impact on axon diameter estimation. And Lee
t al., ( Lee et al., 2020a ) developed the theory of intra-axonal diffusion
ransverse to the realistic axon with caliber variations (beading) and
icro-dispersion (undulation) along each axon ( Fig. 12 f), and demon-

trated how axon diameter estimation is confounded by these cellular
eatures based on the 3D diffusion coarse graining and numerical simu-
ations in realistic axons. 

In addition to the vast literature focused on the modeling of white
atter microstructure, Zhu et al. ( Zhu et al., 2021 ) observed time-
ependent kurtosis in the human cortical gray matter based on in vivo

MRI data acquired on the Connectom scanner, and attributed the obser-
ation to the neurite and soma architecture. Lee et al. ( Lee et al., 2020c )
bserved diffusivity and kurtosis time-dependence in the in vivo human
ortical gray matter and argued that structural disorder along neurites
 Fig. 12 g) was mainly responsible for the observed time dependence.
alombo et al. ( Palombo et al., 2020 ) introduced a compartment-based
odel for apparent cell body (namely soma) and neurite density imag-

ng (SANDI) ( Fig. 12 e), which has mainly been developed for modeling
ray matter microstructure ( Palombo et al., 2020 ). Maps of soma and
eurite signal fractions were shown using the MGH-USC HCP data that
emarkably mirror the contrast seen on histological images of brain cyto-
nd myelo-architecture. Genc et al. studied the repeatability of SANDI
stimates using the MICRA data and found that measures of soma den-
ity, neurite density and apparent soma size were highly reliable across
ortical areas ( Genc et al., 2021 ). 

More advanced diffusion encoding schemes ( Fig. 13 ) beyond the
onventional Stejskal-Tanner experimental paradigm have also received
uch attention recently. For example, different combinations of b- tensor

ncoding for fitting SANDI was proposed ( Afzali et al., 2021a ). To es-
imate the soma size using SANDI, the Gaussian phase approximation
f intra-soma diffusion for b -tensor encoding was applied to account
or the ill-defined diffusion time in optimized b- tensor encoding wave-
orms. Their results showed that different combinations of linear, pla-
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Fig. 13. Illustration of various diffusion encoding schemes. In each row, 
an exemplary diffusion weighting gradient waveform was shown on the left 
(x, y, and z components are shown in blue, green, and red, respectively) and 
its corresponding b- tensor shape was shown on the right. The diffusion encod- 
ing schemes shown here include: a) single diffusion encoding (SDE) (standard 
Stejskal-Tanner), b) double diffusion encoding (DDE), c) tiple diffusion encod- 
ing (TDE), (d-g) q- vector trajectory encoding, d) spherical tensor encoding (STE) 
or isotropic encoding, e) planar tensor encoding, f) prolate encoding, g) oblate 
encoding. 
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14 
ar, and spherical tensor encoding stabilized the fitting and improved
he precision of parameter estimation. In another study, Afzali et al.
 Afzali et al., 2021a ) identified three main challenges in SANDI model
tting, such as the Rician noise floor in magnitude data, the empiri-
al lower bound on the spherical signal fraction and pore-size, and fi-
ally, the entanglement of intra-cellular diffusivity time-dependence in
pheres and cylinders. Tax et al. ( Tax et al., 2020 ) combined the asym-
etric spherical tensor encoding with ultra-strong diffusion gradients

o achieve high diffusion-weightings with high SNR, while suppressing
ignal arising from anisotropic water compartments. The remaining sig-
al at high b- values has the potential to serve as a novel marker for
sotropically-restricted water compartments ( Fig. 12 h). Apparent diffu-
ivities and sphere sizes were further characterized in the cerebellar gray
atter and were consistent across healthy volunteers. 

For stick-like structures (e.g., axons), the 1∕ 
√

𝑏 power-law scal-
ng of orientationally averaged diffusion-weighted signals over each
 -shell was investigated using conventional Stejskal-Tanner encoding
 Jespersen et al., 2013 ; Kaden et al., 2016b ; McKinnon et al., 2017 ;
eraart et al., 2019 , 2020 ). Afzali et al. ( Afzali et al., 2020 ) generalized

his idea to more advanced encoding schemes including planar tensor
ncoding (PTE). They found that only three specific forms of encoding
esult in a power-law dependency, pure linear and pure PTE when the
issue geometry is "stick-like" and pure LTE when the tissue geometry is
pancake-like." 

In contrast to the model-based approaches discussed above, where
he diffusion signals are related to the underlying tissue microstructure
hrough assumptions about the structural geometries or physical com-
artments of the microenvironment (i.e., a simplification of the realistic
issue), the signal representation approach aims to identify the best way
o represent the measured signal using a mathematical form and does
ot rely upon any specific assumptions or physical models. For example,
ian et al. ( Tian et al., 2016 ) studied q- space truncation and sampling in
iffusion spectrum imaging (DSI) using data acquired on the MGH Con-
ectome scanner. They showed the minimum required q -space sampling
ensity corresponds to a FOV approximately equal to twice the mean
isplacement distance in the tissue. They found that the 11 × 11 × 11
rid was suitable for both ex vivo and in vivo DSI experiments. 

The availability of high gradients on the Connectom scanner has en-
bled the measurement of the full range of diffusion tensors and their
istribution, rather than just averaged diffusion properties that are typ-
cally reported on standard clinical dMRI. In addition, the high SNR
nd advances in image acquisition technology available on the Connec-
ome scanner are crucial for obtaining data with many b -values within a
easonable scan time. In a preliminary study, high quality data were ac-
uired as part of a multi-diffusion time, multi- b -value acquisition to ob-
ain a model-free diffusion tensor distribution (FDTD) in order to char-
cterize and distinguish different classes of tissue in the healthy adult
rain. In comparison to previous work on diffusion tensor distribution
DTD) analyses ( Magdoom et al., 2021 ; Topgaard, 2019 ), FDTD expands
he range of diffusion tensors and does not constrain the symmetry of
he tensors, hence achieving a model-free approach. 

Mapping tissue microstructure using dMRI, even with high gradient
trengths, is challenging, primarily due to the limited SNR and image
esolution, and some issues regarding the validity of model assumptions
hat remain open questions. However, with the insights accumulated
hrough the above-mentioned efforts, we are gaining more confidence
n obtaining a better understanding of these issues and are motivated to
ush further on the gradient strength, see ( Huang et al., 2021b ) in this
pecial issue for further details. With the better technology, including in-
ovations in hardware, image acquisition, diffusion encoding schemes,
ata analysis frameworks, and validation, we will continue to gain a
ore in-depth understanding of what we are measuring and how to fur-

her improve the measurements in the future. 
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. Complementing diffusion experiments with additional contrasts 

One of the strengths of MRI over other medical imaging modali-
ies arises from the numerous contrasts enabled by different MRI se-
uences. This diverse range of contrasts can complement each other to
eflect tissue properties from distinct perspectives. Specific to high per-
ormance gradient systems, the shortened TE and increased SNR pro-
ide additional flexibility on the encoding of tissue properties into the
R signal in addition to the diffusion contrast. Correlating diffusion
RI with relaxation times T1, T2 and T2 ∗ has gained great interest

or its ability to provide additional information from the perspective of
olecular interactions of the system of spins in the microenvironment

 Tax, 2020 ). T1 and T2-diffusion correlation experiments have shown
o be useful in improving prostate tissue classification ( Yu et al., 2017 ).
elaxation information has been demonstrated to be helpful in resolv-

ng distinct signal components arising from nervous tissue in early in
itro NMR experiments ( Andrews et al., 2006 ; Beaulieu et al., 1998 ;
eled et al., 1999 ; Stanisz and Henkelman, 1998 ), and animal MRI ex-
eriments ( Benjamini and Basser, 2017 ; De Santis et al., 2016a , 2016b ;
oes and Gore, 2000 ; Kim et al., 2017 ; Qin et al., 2009 ). More re-
ently, similar MRI experiments have also been carried out in humans
 Attar et al., 2019 ; de Almeida Martins et al., 2021 ; De Santis et al.,
016c ; Kleban et al., 2020 ; Lemberskiy et al., 2018 ; Lin et al., 2018 ;
ulkern et al., 2000 ; Nam et al., 2015 ). 

The multi-compartmental model is a common approach to inter-
ret water diffusion in neuronal tissues; however, under the typical
ow SNR in dMRI, more than one solution of parameters yields simi-
ar diffusion signals due to the flatness or inherent degeneracy in the
tting parameter landscape ( Jelescu et al., 2016 ; Novikov et al., 2019 ).
olving such degeneracy in parameter estimations requires additional
easurements orthogonal to the conventional pulsed-gradient dMRI. For

xample, Veraart et al. ( Veraart et al., 2018b ) performed the TE de-
endent Diffusion Imaging (TEdDI) to break the degeneracy in param-
ter estimation and robustly estimate the intra- and extra-axonal wa-
er T2 relaxation time. In addition to the relaxation, adding orthogonal
easurements of diffusion time-dependence ( Lee et al., 2018a ) or b -

ensor encoding waveforms ( Afzali et al., 2019 ; de Almeida Martins and
opgaard, 2016a ; Dhital et al., 2015 , 2018b ; Fieremans et al., 2018 ;
zczepankiewicz et al., 2016 ) also help to lift the degeneracy in pa-
ameter estimations. Furthermore, the sensitivity of diffusion signals to
ntra-axonal diffusion was achieved by adding orthogonal acquisitions
uppressing extra-neurite signals via linear ( Skinner et al., 2017 ) or pla-
ar ( Dhital et al., 2019 ) diffusion weightings. Similarly, the isotropically
estricted compartment in the brain was detected by adding spherical
ncoding weightings ( Dhital et al., 2018a ; Tax et al., 2020 ). Finally, the
iffusion properties of myelin water in-between myelin sheaths were
stimated by combining dMRI with either double inversion recovery
 Andrews et al., 2006 ) or magnetization transfer preparation to distin-
uish myelin water signals ( Avram et al., 2010 ). 

The “hybrid ” type of experiment that measures diffusion and other
ontrasts such as relaxation simultaneously provides advantages over
easuring them separately, because a multi-parametric (i.e., multi-
imensional) space is naturally laid out ( Fig. 13 ), and the association
etween various dimensions can be directly analyzed. The advantage of
igh gradients is to enable a much wider spectrum of multi-contrast
maging parameters ( Fig. 13 a), such as b- value, TE, diffusion time,
iffusion encoding schemes ( Lampinen et al., 2020 ; Reymbaut et al.,
020a ), and even spectroscopy ( Jenkins et al., 2020 ), in addition to
he diffusion encoding direction ( Fig. 13 c), to provide sufficient data
or multi-dimensional tissue parameter mapping ( Fig. 13 b). Assuming
 single T2 and an axially symmetric tensor per micro-environment, a
ve-dimensional diffusion-relaxation distribution in living human brain
ould be resolved using a hybrid diffusion-T2 experiment ( de Almeida
artins et al., 2021 ; Tax et al., 2018 ), where the five dimensions are

he T2 value, the polar and azimuthal angles, and the axial and radial
iffusivities of the tensor. Clustering of different tissue types could be
15 
bserved in this parameter space of high dimensionality, where the re-
axation dimension provides additional information. Strong gradients
re fostering the translation of NMR experiments into studies of living
uman brain ( de Almeida Martins et al., 2020 ). 

However, solving a nonlinear inverse problem of such a high di-
ensionality is nontrivial, especially given the limited SNR at the range

f imaging parameters. Non-parametric inversion algorithms have been
dopted with strategies to sample sparsely and perturb solutions to ac-
elerate the computation ( de Almeida Martins and Topgaard, 2016b ).
n model-based approaches, various strategies were used to reduce the
imensionality of the parameter space to be estimated, such as using
owder-average or spherical mean to get rid of the dependence on dif-
usion direction ( Lasi č et al., 2014 ; Veraart et al., 2018a , 2020 , 2021 ), or
plit and conquer the fiber orientation and tissue property estimations in
eparate steps ( De Santis et al., 2016c ). The Markov Chain Monte Carlo
MCMC) framework can be used to quantify the uncertainty in the esti-
ated parameters ( Alexander, 2008 ; Alexander et al., 2010 ; Fan et al.,
018a ; Huang et al., 2015b ; Sotiropoulos et al., 2013a ). 

“Hybrid ” experiments can also be thought of as using one con-
rast as a filter for the other, which can dial up or down the sig-
al weighting from different tissue compartments ( Ning et al., 2020b ;
alombo et al., 2018 ). Compartmental relaxation properties can, e.g.,
e disentangled by diffusion anisotropy/restriction or directionality of
iffusion ( Reymbaut et al., 2020a ; Tax et al., 2021a ). The former has
een leveraged to investigate the T2 of the intra- and extra-axonal
pace ( Lampinen et al., 2020 ; McKinnon and Jensen, 2019 ; Tax et al.,
017 , 2021a ; Veraart et al., 2018b ), T2 ∗ and susceptibility effects
 Kleban et al., 2020 ), and orientation-dependence of T2 on the direc-
ion of the main magnetic field with a tiltable receiver coil ( Tax et al.,
021a ). The latter has been used to reveal differences in T2 between
ifferent fascicles ( Barakovic et al., 2021 ; Reymbaut et al., 2020b ). 

Multi-contrast diffusion experiments are challenged by noise, long
cquisition times and stringent requirements on hardware that are im-
ractical for clinical applications, as well as limitations arising from
odel assumptions. Despite these challenges, preliminary experimental

esults have already demonstrated the great potential of the diffusion-
elaxation correlation approach in providing a more complete picture of
issue microstructure than its one-dimensional counterparts. Advances
n efficient experiment design in a model-based (e.g., ( Lampinen et al.,
020 )) or data-driven (e.g., ( Grussu et al., 2020 ; Tax et al., 2021b )) fash-
on will facilitate the adoption of multi-contrast experiments in clinical
esearch studies. 

. Utilization of the Connectom system for post-mortem tissue acquisitions 

In validating the emerging techniques of human connectome map-
ing using the high gradient system discussed in earlier sections, post-
ortem dMRI has become an essential tool for probing human brain

tructure at the mesoscopic level ( Liu et al., 2020 ; Roebroeck et al.,
019 ). This is especially due to its capability of achieving substantially
igher spatial resolutions (i.e., sub-millimeter isotropic voxel sizes) than
ypically achievable in vivo using long scan times and volumetric en-
oding strategies ( Fritz et al., 2019 ; McNab et al., 2013a ; Miller et al.,
011 ). High-resolution postmortem dMRI data may help to develop de-
ailed models of brain circuitry, including macro-anatomy and tissue mi-
rostructure. Postmortem dMRI provides a mesoscopic bridge between
n vivo dMRI and the ground truth that can be obtained from microscopy.

One challenge in the acquisition of postmortem dMRI data stems
rom the generally altered tissue properties resulting from tissue fixation
 Roebroeck et al., 2019 ). The reduced diffusivity requires substantially
tronger diffusion weightings in order to generate a similar diffusion
ontrast as observed under in vivo conditions. Compared to clinical de-
ices, the Connectom gradient strength of G max = 300 mT/m allows sub-
tantially reduced echo times, and hence elevated SNR to enable much
igher resolution diffusion MRI ( Jones et al., 2018 ; Setsompop et al.,
013 ). Compared to small-bore preclinical devices, the Connectom sys-



Q. Fan, C. Eichner, M. Afzali et al. NeuroImage 254 (2022) 118958 

Fig. 14. The concept of the multi-contrast diffusion experiments . (a) Illustration of the concept of multi-contrast encoding space with each MRI parameter as 
one dimension; (b) the distribution of different tissue types in the multi-dimensional space of tissue properties (figure adapted from de Almeida Martins et al., 2020 , 
permission pending); (c) examples of the contrast dimensions include, but are not limited to, diffusion weighting directions, b- value, TE, delay time (TD), inversion 
time (TI), diffusion encoding schemes, etc. Figure adapted from ( Tax et al., 2021b ). 
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em has a substantially larger magnet bore, which also allows for imag-
ng of entire human brains. 

The initial utilization of the 300 mT/m gradient system for
igh resolution postmortem dMRI data acquisition was presented in
 McNab et al., 2013a ), where a complete human brain was scanned
ith an isotropic resolution of 0.6 mm using a highly accelerated, seg-
ented 3D EPI sequence. In a recent study, the temporal efficiency and

NR of postmortem dMRI data were further improved using multi-echo
cquisitions ( Eichner et al., 2020 ). For this purpose, the typically em-
loyed rapid, segmented dMRI spin echo EPI train was extended to in-
lude several additional segmented gradient echoes at various TEs. This
ulti-Echo dMRI (ME-dMRI) sequence was subsequently used for whole

rain dMRI acquisitions of non-human primates with up to 500 μm
sotropic resolution and b = 5000 s/mm 

2 ( Eichner et al., 2021 ). The
eveloped ME-dMRI sequence was further leveraged to jointly describe
hite matter anisotropies in diffusion and susceptibility, using a com-
ination of HARDI dMRI and high-angle-resolution susceptibility ten-
or imaging (STI) ( Gkotsoulias et al., 2021 ). The influence of gradient
onlinearities on the Connectom scanner (also see section II.6.1) for
ostmortem recordings has been shown recently and should not be dis-
egarded in dMRI reconstruction ( Edwards et al., 2021a ). With the 48-
hannel whole brain ex vivo coil built expressly for the MGH Connectome
RI scanner ( Scholz et al., 2021 ) and designed to surround the brain

ightly from all sides (see section II.3 and Fig. 5 ), the substantial SNR
ain allows acquisitions of postmortem dMRI data with 550 μm isotropic
oxel size and maximum diffusion weighting of b = 10,000 s/mm 

2 or
igher ( Ramos-Llorden et al., 2021 ) ( Fig. 14 ). We expect that dedicated
ostmortem coils will advance dMRI validation efforts on the Connec-
om system. 

Fig. 15 

. Clinical investigations 

The availability of strong gradients up to 300 mT/m on human MRI
canners has enabled new classes of dMRI measurements to be per-
ormed in living patients. The use of strong diffusion-encoding gradients
romises to offer greater sensitivity to key aspects of tissue microstruc-
ure in various neurological diseases. The feasibility of detecting even
ndividual-subject anomalies was recently shown with high b -value data
 Chamberland et al., 2021 ). In particular, high gradient amplitudes have
16 
een shown to benefit the estimation of tissue microstructural proper-
ies by dMRI such as axon diameter ( Alexander et al., 2010 ; Assaf et al.,
008 ; Dyrby et al., 2013 ; Fan et al., 2018b ; Huang et al., 2015b ) and
he dimensions of the extracellular space ( Lee et al., 2018b ). 

Axon diameter mapping using high-gradient diffusion MRI has been
pplied to study changes in axonal structure and packing density in
ultiple sclerosis (MS) and the aging brain. Axon diameter mapping

n the corpus callosum of relapsing-remitting and progressive MS pa-
ients has revealed increased axon diameter and decreased axon density
n lesions and the normal-appearing white matter ( Huang et al., 2016 ;
gamsombat et al., 2020 ; Yu et al., 2019 ), in keeping with findings on
istopathology, which show decreased axon density and an overall in-
rease in axon diameter in postmortem MS brain tissue ( Evangelou et al.,
000 ). The observed increase in axon diameter as measured by high-
radient dMRI is also a strong predictor of disability and cognitive dys-
unction ( Huang et al., 2019 ), particularly in tests of interhemispheric
rocessing speed and working memory, which rely on the corpus callo-
um as the major white matter fiber tract mediating these processes. 

The application of axon diameter mapping to the aging brain has
ncovered significant increases in axon diameter with advancing age
n the anterior white matter ( Fan et al., 2019 ), with changes most pro-
ounced in the genu of the corpus callosum and forceps minor. These
lterations in axon diameter are consistent with previously reported re-
ional decreases in fractional anisotropy within the frontal white matter
 Salat et al., 2005 ) and parallel decreases in corpus callosum area and
egional gray matter volume with age. In teenagers, ( Genc et al., 2020 )
howed that with increasing b -values, diffusion MR signal has higher
pecificity to intra-axonal spaces and hence improved estimations of the
pparent fiber density and an increased sensitivity to developmental age
elationships. 

The availability of strong gradients for dMRI has also enabled the
ranslation of novel diffusion-encoding paradigms to probe brain tis-
ue microstructure in patients, including oscillating-gradient waveforms
 Tan et al., 2020b ), double-diffusion encoding ( Yang et al., 2018 ), and
- space trajectory imaging ( Westin et al., 2016 ). One recent study com-
ined isotropic diffusion encoding with strong diffusion gradients to
chieve high diffusion-weighting in highly restricted, spherical compart-
ents (the so-called “dot compartment ”) in the cerebellar gray matter
hile suppressing signal arising from anisotropic water within axons
 Tax et al., 2020 ). By gaining greater specificity to cellular signatures in
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Fig. 15. Whole-brain ex-vivo diffusion MRI 

at 550 micrometer isotropic resolution us- 

ing b -values up to 10000s /mm 

2 . Axial, coro- 
nal, and sagittal views of a given diffusion 
direction are shown in (a), and the corre- 
sponding averaged DWI are displayed in (b). 
High-quality submillimeter diffusion MRI al- 
lows mapping diffusivity with unprecedented 
quality in fine anatomical structures often in- 
accessible in in-vivo settings, as seen in the in- 
ternal capsule and transverse fibers in the pons 
(c), and anisotropic diffusivity in the primary 
and somatosensory cortex (d). Resolving fiber 
architecture of the hippocampus is achievable 
using this high-quality, high-spatial-resolution 
dataset, as can be seen in (e). Adapted from 

( Ramos-Llorden et al., 2021 ). 
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he cerebellum, spherical tensor encoding performed with high gradi-
nt strengths may enable the earlier identification of cerebellar gray
atter loss in patients with hereditary ataxias such as spinocerebel-

ar ataxia type 2, which selectively affects the granule and Purkinje
ells. The ability to probe microscopic diffusion anisotropy in brain tu-
ors using q- space trajectory imaging may enable the differentiation of

rain tumors such as meningiomas from high-grade glial tumors based
n their cellular morphology and composition ( Szczepankiewicz et al.,
015 ). 

The results of clinical research studies demonstrate the potential
f high-gradient dMRI to uncover changes in axonal and cellular mi-
rostructure and motivate the continued development, application and
issemination of high-gradient technology for use in commercially avail-
ble human MRI scanners. 

V. Conclusion 

The high gradient strengths on the Connectom MRI scanner have re-
arkably expanded the range of diffusion-encoding parameters acces-

ible for studies of the living human brain, providing a veritable play-
round for the development of new dMRI methods and the investiga-
ion of their potential significance in clinical and neuroscientific studies.
uch progress has been made since the first special issue on “Advances

n Mapping the Connectome ” published by NeuroImage in 2013. We
17 
re aware that many of the methodologies covered in this article are
ust emerging, not fully validated and possibly even controversial, yet
he field is thriving and expanding rapidly. Connectom MRI scanners
quipped with up to 300 mT/m gradient strength are not yet readily
vailable for direct translation to clinical care, but the impact of the re-
ated technical development and validation efforts can be seen in the
ncorporation of gradient systems with ever higher gradient strengths
nto commercially available MRI scanners. We anticipate this trend will
ontinue into the foreseeable future, thereby providing much hope for
he eventual translation of high-gradient dMRI techniques into key tech-
ology that will inform and inspire the next-generation of dMRI appli-
ations for improving everyday clinical practice. 
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ppendix. The eddy current induced magnetic fields 

Eddy current induced magnetic fields can be expressed as a sum of
ecaying exponentials with corresponding decay times (from under 1 ms
o seconds) and amplitudes. They are not only produced in the gra-
ient direction but also in the other directions (cross-terms) and with
ore complicated spatial configurations (higher order terms). The mag-
etic field caused by the eddy currents can be written as ( Van Vaals and
ergman, 1990 ): 

 𝐸𝐶 ( 𝑥, 𝑦, 𝑧, 𝑡 ) = 

 𝑥 →0 ( 𝑡 ) + 𝐸 𝑦 →0 ( 𝑡 ) + 𝐸 𝑧 →0 ( 𝑡 ) 
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

B 0 eddy currents 

 𝐸 𝑥 →𝑥 ( 𝑡 ) 𝑥 + 𝐸 𝑦 →𝑦 ( 𝑡 ) 𝑦 + 𝐸 𝑧 →𝑧 ( 𝑡 ) 𝑧 
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

linear self − terms 

 𝐸 𝑥 →𝑦 ( 𝑡 ) 𝑦 + 𝐸 𝑥 →𝑧 ( 𝑡 ) 𝑧 + 𝐸 𝑦 →𝑥 ( 𝑡 ) 𝑥 + 𝐸 𝑦 →𝑧 ( 𝑡 ) 𝑧 + 𝐸 𝑧 →𝑥 ( 𝑡 ) 𝑥 + 𝐸 𝑧 →𝑦 ( 𝑡 ) 𝑦 
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

linear cross − terms 

 𝐸 𝑥 →𝑥𝑦 ( 𝑡 ) 𝑥𝑦 + 𝐸 𝑥 →𝑦𝑧 ( 𝑡 ) 𝑦𝑧 + 𝐸 𝑥 →𝑥 2 + 𝑦 2 ( 𝑡 ) 
(
𝑥 2 + 𝑦 2 

)
+ …

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
higher order terms 

, 

here 

 𝑖 →𝑗 ( 𝑡 ) = − 

d 𝐺 𝑖 

d 𝑡 
∗ 

( 

𝐻 ( 𝑡 ) 
∑
𝑘 

𝛼𝑖𝑗𝑘 e 
− 𝑡 

𝜏𝑖𝑗𝑘 

) 

. 

𝑖𝑗𝑘 and 𝛼𝑖𝑗𝑘 are the decay time and corresponding amplitude. The no-
ation 𝑖 → 𝑗 indicates that a gradient pulse ( 𝐺 𝑖 ) in direction 𝑖 (x, y or z)
auses a magnetic field with spatial dependency 𝑗. 𝐻( 𝑡 ) is the Heaviside
tep function which is 0 for 𝑡 < 0 and 1 otherwise. The ∗ indicates a con-
olution. For the higher order terms, we use spherical harmonics here
ut other bases are possible ( Xu et al., 2013 ). 
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