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ABSTRACT 

BACKGROUND: The manipulation of herbivore-induced volatile organic compounds (HI-VOCs) via the 

application of the inducers BTH [benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester] and 

Laminarin [β-1,3-glucan] is known to enhance the attractiveness of caterpillar-damaged cotton and 

maize plants to parasitoids. To test if this is also the case for legumes, we treated cowpea with these 

inducers and studied the effects on HI-VOC emissions and the attraction of three generalist 

endoparasitoids. 

 RESULTS:  After applying the inducers and subjecting the plants to either real or mimicked herbivory 

by Spodoptera littoralis caterpillars, females of the parasitoids Campoletis sonorensis and Microplitis 

rufiventris showed a strong preference for BTH treated plants, whereas Cotesia marginiventris females 

were strongly attracted to both BTH and Laminarin treated plants with real or mimicked herbivory. 

Treated plants emitted more of certain HI-VOCs, but considerably less indole, linalool and several 

sesquiterpenes. Multivariate data analysis revealed that enhanced wasp attraction after treatment 

was correlated with high relative concentrations of nonanal, α-pinene, (E)-β-ocimene and DMNT, and 

with low relative concentrations of indole, (S)-linalool and (E)-β-farnesene. Inducer treatments had no 

significant effect on leaf consumption by the caterpillars.  

CONCLUSION: Our findings confirm that treating cowpea plants with inducers can enhance their 

attractiveness to biological control agents.  

 

Keywords:  Legumes; Indirect plant defense; Priming; Tritrophic interactions; Herbivory; Terpenoids; 

Indole.  
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1. INTRODUCTION 

Plants have developed an effective arsenal of defense mechanisms during more than 400 million years 

of coevolution with insect herbivores and pathogens 1. One of these defenses is the synthesis and 

release of a complex mixture of herbivore-induced volatile organic compounds (HI-VOCs) in response 

to herbivore attack 2. These volatiles can mediate indirect defense by attracting the natural enemies 

of the herbivore 3,4.  

In nature, plants are confronted with multiple attack scenarios involving pathogens and 

herbivores. Inducible defenses against these attackers are regulated by a complex network of 

phytohormonal signaling, in which the phytohormones salicylic acid (SA) and jasmonic acid (JA) are 

key players 5. These hormones are also involved in the induction of plant volatiles 6, and crosstalk 

between SA and JA pathways will shape the eventual emission of induced VOCs 5,7, and thus the 

tritrophic interactions 8,9.  

VOC induction can also be achieved by applying xenobiotic chemicals that act as inducers of 

plant resistance against herbivores or pathogens 10,11, causing qualitative or/and quantitative changes 

in the VOCs released 12. An increasing body of evidence shows that the application of such plant 

defense inducers boosts indirect defense in various crop systems i.e.: cabbage 13; cotton 12,14, lima 

bean 15; maize 16–19; sweet pepper 20; rice 21,22; soybean 23,24, and tomato 11,25. In each case, treatment 

with an inducer alters the VOC blends, rendering plants more attractive to natural enemies of 

herbivores. Treating plants with these compounds can also enhance their direct defense against 

various herbivores 11. Often such treatments do not immediately switch on defenses, but potentiates 

the plant so that it responds more quickly and more strongly when it is subsequently attacked by a 

herbivore26. This phenomenon, which is referred to as “priming” 26, is also known for HI-VOCs 27,28.   

The development and application of inducers to promote resistance to herbivores is still at 

the experimental stage, but inducers that activate resistance against plant pathogens are already 

This article is protected by copyright. All rights reserved.
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being applied commercially 29,30. Responses to inducer treatments vary strongly with plant genotype 

and rigorous experimental programs are needed to evaluate treatment effects in different crops 

before these agrochemicals can be used by growers for crop protection 31,32. 

Legumes (Family: Fabaceae) are of particular interest in this context. They are second only to 

cereals in economic and nutritional value. Legumes provides on average 33% of human dietary 

protein, and as much as 60% in developing countries 33. Cowpea, Vigna unguiculata L., is an important 

legume crop in semiarid areas because of its drought tolerance and adaptation to drier regions of the 

tropics, where other food legumes do not perform well 34. Insect pests are still a major constraint to 

legume production in general 35, and can cause tremendous yield losses of up to 90% 36. Integrated 

approaches to limit crops losses are being sought as alternatives to insecticides 37. Biological control 

is an obvious alternative, but effectiveness needs to be improved so that it can be used on a larger 

scale 38. The manipulation of VOC emission through the use of chemical inducers may help to improve 

the foraging efficiency of natural enemies and thus the biological control of insect pests 18,39.  

The potential for this approach was shown for the plant strengtheners BTH (benzo-(1, 2, 3)-

thiadiazole-7-carbothioic acid S-methyl ester) and Laminarin (β -1, 3 glucan). Both inducers are used 

to induce resistance to a wide range of diseases in field crops 29,30. They induce the expression of 

pathogenesis related (PR) genes, but also enhance the attractiveness of plants to parasitoids 12,17. This 

is only evident when primed plants are damaged; the treatment with BTH and Laminarin does not 

induce volatile emissions in intact plants 17. Upon insect attack, primed plants, compared to unprimed 

plants, show increased emissions of some volatiles, but reduced emissions of other compounds that 

possibly interfere with or mask parasitoid attractants 16,17,40.  

In the current study, we tested if the strategy can be extended to legume cropping systems 

by testing if the treatment with BTH and Laminarin of cowpea has similar beneficial effects as observed 

for maize and cotton 12,17. For this, we conducted olfactometer assays with three generalist 

endoparasitoids: Cotesia marginiventris (Cresson), Microplitis rufiventris (Kok.) (Hymenoptera: 

Braconidae) and Campoletis sonorensis (Cameron) (Hymenoptera: Ichneumonidae), observing their 

This article is protected by copyright. All rights reserved.
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responses to the odors of cowpea plants primed with BTH and Laminarin. Plants were either infested 

with larvae of the Egyptian cotton leafworm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae), 

as a real herbivory treatment, or mechanically damaged and treated with S. littoralis oral secretions 

(OS) as a mimicked herbivory treatment. Spodoptera littoralis is a generalist herbivore that causes 

severe damage to a wide range of fiber and forage crops in many agro-ecosystems 41. To correlate 

parasitoid attraction with the emission of plant volatiles, the HI-VOC emissions of treated or untreated 

cowpea plants were also collected and analyzed. The leaf areas of cowpea plants consumed by S. 

littoralis caterpillars were measured to investigate the impact of inducer treatments on the direct 

defense of cowpea plants. With these experiments we addressed the following questions: (1) Does 

treatment of cowpea with BTH or Laminarin alter HI-VOC emission when plants are subsequently 

exposed to herbivores? (2) Do parasitoids respond differentially to HI-VOCs emitted from treated and 

untreated cowpea? (3) Does cowpea treatment with BTH or Laminarin affect the feeding behavior of 

S. littoralis caterpillars? The outcomes of the study could provide further insight into the potential of 

using chemical inducers as a sustainable and environmentally-benign strategy to enhance the 

biological control of insect pests in legume cropping systems.  

 

 

2. MATERIAL AND METHODS 

2.1 Plants and insects  

Cowpea, Vigna unguiculata var. unguiculata (Haefliger AG®, Herzogenbuchsee, Switzerland) plants 

were grown in commercial potting soil (Ricoter, Aussaaterde, Aarberg, Switzerland) in plastic pots 

(11cm height, 4cm diameter) at 25± 2°C, 60 ± 5% r.h., 926 µmol/m2s1, 16:8h L:D, in a climate chamber 

(Percival, CLF plant climatics, Germany). Cowpea plants used for the experiments were 15 d-old and 

had 4-5 fully developed leaves. Eggs of S. littoralis were supplied by Syngenta® (Stein, Switzerland). 

Newly hatched larvae were reared in transparent plastic boxes on a wheat germ-based artificial diet 

until they had reached the second instar, at which point they were used for experiments. The larval 
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endoparasitoids, M. rufiventris, C. marginiventris and C. sonorensis were reared as described in Sobhy 

et al. 17.  

 

2.2 Plant treatments 

BTH (BION®) was obtained from Syngenta® (Basel, Switzerland) as a water-dispersible granular 

formulation containing 50% active ingredient. Laminarin (IODUS 40®) was obtained from Stähler 

(Zofingen, Switzerland) as a soluble liquid formulation containing 3.5 % active ingredient. Both BTH 

and Laminarin were sprayed with hand-held sprayer (McProper ®, 500 ml) on 13-day old plants 48 h 

before the experiment. The chemicals were applied at concentrations of 0.15 g/L (BTH) and 20 ml/L 

(Laminarin), which correspond to the doses recommended by the manufacturers for agricultural 

practices. Plants were sprayed with distilled water as a control treatment. For all treatments, each 

plant was sprayed to the point of run-off with ≈ 10 ml of inducer solution 42. The different solutions 

were distributed equally over the whole plant. A day later, cowpea plants were challenged by either 

real or mimicked herbivory.  

For the real herbivory treatment, plants were infested with ten 2nd instar larvae of S. littoralis 

placed on each plant 24 h after priming with elicitors. These plants were kept under laboratory 

conditions (25±2°C, 16:8 L/D) and were used in olfactometer assays the day after insects had been 

placed on the plants (Fig. 1). For the mimicked herbivory treatment, the abaxial side of two fully 

developed leaves (20 mm2) was scratched using a scalpel blade, after priming with elicitors, and 10 µl 

of S. littoralis larval oral secretion (OS) was then applied to each wounded site using a micropipette 

(20 µl/plant). These secretions had previously been collected with a micropipette from 4th & 5th instar 

larvae that had been fed on cowpea leaves for at least 24 h, and were stored at -80°C until use 43. This 

treatment was carried out twice: i.e. on the evening after inducer treatment and the next morning, 

one hour before starting the olfactometer experiment (Fig. 1). 

 

2.3 Olfactometer bioassays  

This article is protected by copyright. All rights reserved.
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A series of experiments using a six-arm-olfactometer, as described by Sobhy et al. 12, was conducted 

to evaluate the effect of the treatments on the attractiveness of cowpea plants to parasitoids. More 

details of the six-arm-olfactometer such as the glassware dimensions, tubing and air delivery system 

are described in Turlings et al. 44. For all experiments, 3-5 day old mated naïve female wasps were 

used. Thirty minutes before the bioassays, the parasitoid cage was transferred to the olfactometer 

laboratory for acclimatization. For the choice bioassays, a group of six female wasps was removed 

from their cage with an aspirator and released into the central choice chamber of the olfactometer. 

The wasps moved up to the top of the chamber attracted by the diffuse light coming from above. The 

airflow through each arm was approximately 400 ml/min (see below). The central choice chamber was 

connected via a Tygon tube to a water-filled glass U-tube that served as a pressure gauge to balance 

incoming and outgoing air; minimizing pressure differences with the outside 44.  

Each group of wasps was given 30 min to make a choice. Wasps that did not enter an arm 

after this time were considered as individuals that made “no choice”. After removing all wasps from 

the olfactometer a new group was introduced. Five groups of six wasps were tested on each 

experimental day, and each experiment was repeated 6 times on different experimental days, each 

time with a new set of treated plants as odor sources and with new parasitoids. At the end of each 

experimental day, all olfactometer parts (glass and Teflon tubes) were completely cleaned with tab 

water then distilled water and thereafter with acetone and pentane. After solvents had evaporated, 

the glass parts were placed overnight in an oven at 250 °C. The position of the odor source was 

changed clock-wise after each day of testing to avoid position effects. All bioassays were performed 

between 9:00 A.M. and 5:00 P.M. following D’Alessandro et al. 40. 

 

2.4 Odor sources  

2.4.1 Cowpea plants challenged by real herbivory  

The following odor sources were offered to the parasitoids: (i) a cowpea plant primed with BTH and 

damaged by caterpillars, (ii) a cowpea plant primed with Laminarin and damaged by caterpillars and 

This article is protected by copyright. All rights reserved.
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(iii) a cowpea plant treated with distilled water and damaged by caterpillars. The remaining three 

vessels were left empty and alternated with vessels that contained the plants 44. 

2.4.2 Cowpea plants challenged by mimicked herbivory 

To rule out possible confounding effects of differences in HI-VOCs emissions due to differential 

damage inflicted by the caterpillars on plants with different treatments, we conducted an additional 

series of experiments with new sets of plants that were primed and then induced by mimicked 

herbivory, as described above. The odor sources offered in this experiment were: (i) a cowpea plant 

primed with BTH and induced by mimicked herbivory, (ii) a cowpea plant primed with Laminarin and 

induced by mimicked herbivory and (iii) a cowpea plant treated with distilled water and induced by 

mimicked herbivory. The three other vessels remained empty and were alternated with the treatment 

vessels. 

 

2.5 Odor trapping and analysis  

Volatiles emitted by the various odor sources from behavioral assay were trapped for 4 h during the 

bioassays on Super-Q adsorbent filters (25 mg, 80–100 mesh; Alltech Associates, Deerfield, Illinois, 

USA). Before use, the filters were washed with 3 ml dichloromethane and were then attached to the 

horizontal port at the top of each odor source vessel. Purified air entered the bottles at a rate of 1.1 

L/min and air carrying the volatiles was pulled through each trap at a rate of 0.7 L/min (Analytical 

Research System, Gainesville, FL, USA). The rest of the airflow entered the choice chamber with the 

wasps. After each assay, the traps were extracted with 150 μL dichloromethane (Super solvent; Merck, 

Dietikon, Switzerland), and 200 ng of n-octane and n-nonyl acetate (Sigma, Buchs, Switzerland) in 10 

μL dichloromethane were added to each sample as internal standards (IS). Samples were either 

analyzed immediately or stored at -80 °C (Supelco, Amber Vial, 7 mL with solid cap w/PTFE liner). Odor 

samples were analyzed using a gas chromatograph (Agilent 7890A) coupled to a mass spectrometer 

(Agilent 5975C VL MSD). After injection of 2 μL of sample, the GC oven temperature was programmed 

at 40 °C for 3.5 min, and then increased to 100°C at 8°C/min and subsequently to 200°C at 5°C/min, 

This article is protected by copyright. All rights reserved.
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followed by a post-run of 5 min at 250°C before returning to initial conditions. Helium at constant flow 

(0.9 ml/min) was used as carrier gas. MS ionization was achieved by electron impact at emission 

current 30 μAmps in the ion trap held at 200 °C. MS data were collected in full scan mode with a mass 

range of m/z 40–300. Volatiles were identified by comparing their mass spectra with those of the NIST 

05 library and by comparing their retention indices with those of previous analyses 19,40. The total 

amount of VOCs emitted from each treatment was estimated as the sum of the amounts for all 

compounds released during the collection period (4 h), assuming equal ionization efficiency in the 

source of the mass spectrometer for the different compounds. It should be noted that this relative 

quantification does not provide the true ratios among the various VOCs in the emitted blend.  

 

2.6 Plant inducers and leaf consumption by caterpillars  

To test whether cowpea priming with either BTH or Laminarin had an impact on S. littoralis herbivory 

we measured the area of leaf consumed by the caterpillars. For this, leaves of the cowpea plants that 

were used as odor sources in the olfactometer bioassay under real herbivory were digitally scanned, 

and the missing areas were measured using ImageJ 1.48 (NIH, http://imagej.nih.gov/ij/) software. 

Each plant had been exposed to 10 S. littoralis larvae (2nd instar; n=18).  

 

2.7 Statistical analysis  

The functional relationship between parasitoid responses and the different volatile sources offered in 

the six-arm olfactometer was examined with a generalized linear model as described earlier 44. The 

response of tested parasitoids (n= 6 parasitoids x 5 groups x 6 experimental days = 180 individuals) 

was statistically analyzed independently using a model that was fitted by maximum quasi-likelihood 

estimation in the software package R 45, and its adequacy was assessed through likelihood ratio 

statistics and examination of residuals. Before analysis, volatile data were log (ln) transformed to 

reduce heteroskedasticity and to approach normal distribution. One-way ANOVA (F-test) and Student-

Newman-Keuls methods were then performed to compare means of emitted VOCs when the data 
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were normally distributed (Shapiro-Wilk test) and the variances were homogeneous (Levene test). In 

case those assumptions for normally distributed data with homogeneous variances could not be 

fulfilled, we used the non-parametric Kruskal–Wallis one-way analysis on ranks (H-test) and then 

compared treatment effects using Dunn’s method. The same test was used to compare the leaf areas 

consumed by S. littoralis caterpillars in the feeding assay. These analyses were performed with 

SigmaPlot 12.3 (SPSS Inc, Chicago, IL, USA).  

Because univariate analyses do not elucidate both qualitative and/or quantitative changes 

(composition) in released HI-VOC blends upon various treatments, a multivariate data analysis using 

PLS-DA (Partial Least Squares-Discriminant Analysis) was applied to the data, incorporating each 

compound as a variable and treatment as a factor 46. PLS-DA can determine whether samples 

belonging to the different treatment groups can be separated based on either quantitative or 

qualitative differences in HI-VOCs. Two types of output were used: a matrix of ‘scores’ which display 

visually recognized sample structure separating treatment groups according to model components, 

and a matrix of ‘loadings’ which display the contribution of the variables (herein are the emitted HI-

VOCs) to these components (PCs) and the relationships among the variables themselves. Furthermore, 

one important measure in PLS-DA is the variable importance in the projection (VIP) of each variable 

(HI-VOC). More specifically, variables that have VIP values ˃ 1 are most effec ve into HI-VOCs blend 

47. In all cases, data were quantile normalized, cube root transformed and mean-centered and divided 

by the standard deviation of each variable before PLS-DA, using the comprehensive online tool suite 

MetaboAnalyst 3.0 48. 

 

 

3. RESULTS 

3.1 Wasp behavior 

3.1.1 Cowpea plants subjected to real herbivory 

This article is protected by copyright. All rights reserved.
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Here, we investigated whether foliar application of BTH and Laminarin alters the attractiveness of S. 

littoralis-infested cowpea plants to parasitoids. Generally, naïve female wasps of all three species 

preferred arms that carried the odor of S. littoralis-infested plants to empty arms of the olfactometer 

(Fig. 2i).  Cotesia marginiventris females showed a strong preference for both BTH and Laminarin 

primed plants (F3, 176=26.75; P<0.001) (Fig. 2.2.i), while C. sonorensis (F3, 176=15.01; P<0.001) and M. 

rufiventris (F3, 176=38.98; P<0.001) preferred the odor of BTH primed plants, but did not distinguish 

between untreated and Laminarin treated plants (Fig. 2.1.i, 2.3.i).  

3.1.2 Cowpea plants subjected to mimicked herbivory  

For cowpea plants that were induced by mimicked herbivory, results were similar to those obtained 

with real herbivory. All tested parasitoid species were predominantly attracted to BTH-primed plants 

(Fig. 2.ii). C. marginiventris females showed a strong preference for BTH and Laminarin primed plants 

(F3,176=23.34; P<0.001) (Fig. 2.2.ii). Females of C. sonorensis (F3,176=18.59; P<0.001) were only attracted 

to BTH-primed plants and showed insignificant attraction to Laminarin-primed plants compared with 

control plants (Fig. 2.1.ii). However, unlike in previous experiments with plants exposed to real 

herbivory, there was no significant increase in the attraction of M. rufiventris females to BTH-primed 

plants when compared with control plants. In all cases, VOCs from plants (treated and control) were 

significantly more attractive than the air coming from empty arms (Fig. 2).  

  

3.2 Volatile emissions 

3.2.1 Cowpea plants subjected to real herbivory 

The volatile analyses (Table 1) showed that BTH-primed plants emitted significantly higher amounts 

of green leaf volatiles (GLVs) i.e.: (E)-2-hexenal (F2,16=15.882, P <0.001); (Z)-3-hexen-1-ol (F2,26=15.357, 

P <0.001); 1-octen-3-ol (F2,17=5.747, P=0.012) and (Z)-3-hexenyl acetate (F2,42=4.870, P=0.013) 

compared to Laminarin or control plants. The emission of homoterpenes i.e.: (E)-4,8-dimethyl-1,3,7-

nonatriene (DMNT) and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT) from inducer-primed 

plants was significantly increased compared with control plants (H2=24.942, P=<0.001; F2,11=10.627, 
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P=0.003, respectively). The same pattern (F2,10=12.579, P=0.002) was also observed for the ketone 2-

methyl-2-hepten-6-one (MHO). Unlike (E)-β-ocimene, which was emitted in significantly higher 

amounts (F2,24=10.473, P=<0.001) from BTH-primed plants, a significant decrease in emission of the 

monoterpene (S)-linalool was observed from inducer-primed plants compared to control plants 

(F2,19=31.206, P=<0.001), which was also the case for indole (F2,36=27.473, P=<0.001), β-caryophyllene 

(F2,18=11.811, P=<0.001) and (E)-β-farnesene (F2,22=14.927, P=<0.001).  

3.2.2 Cowpea plants subjected to mimicked herbivory 

For the plants that were mechanically damaged and treated with caterpillar regurgitant (mimicked 

herbivory) we found similar, but less dramatic differences in volatile emissions as compared to the 

emission patterns of HI-VOCs after real herbivory (Table 1). The plants with mimicked herbivory were 

missing several of the HI-VOCs that were detected in the blends released by plants with real herbivory. 

For GLVs, BTH-primed plants released significantly higher amounts of (Z)-3-hexen-1-ol (F2,17=3.722, P 

=0.046), 1-octen-3-ol (F2,10=16.932, P <0.001) and (Z)-3-hexenyl acetate (F2,9=4.786, P=0.038) 

compared with Laminarin or control plants. There were also significantly higher emissions of the 

homoterpenes (DMNT, F2,35=5.849, P =0.006; TMTT, F2,5=13.524, P =0.010) for plants primed with BTH, 

but not when they were treated with Laminarin. Again, BTH primed plants emitted significantly lower 

amounts of (E)-β-caryophyllene (F2,18=11.811, P <0.001) compared to Laminarin treated or control 

plants.  

The total emission of HI-VOCS was significantly higher for BTH-primed plants under mimicked 

herbivory, compared to control or Laminarin-primed plants. For real herbivory there was a similar but 

only marginally significant trend (Table 1). Overall, quantitative differences in VOC emission rates of 

different compounds were found for all four treatments suggesting that it would be possible for wasps 

to distinguish between them.  

3.2.3 Multivariate analysis of volatile release  

A PLS-DA analysis of HI-VOCs emitted from cowpea plants subjected to feeding by S. littoralis neonates 

resulted in a model with two predictive principal components (PCs), explaining 11 % and 11 % of the 
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total variance in HI-VOCs collection (Fig. 3a). The greatest loadings of PC1 were for (S)-linalool (0.49), 

indole (0.40), (E)-β-farnesene (0.35) and (E)-β-caryophyllene (0.25), whereas major loadings of PC2 

were 1-octen-3-ol (0.37), (E)-2-hexenal (0.27), (S)-linalool (0.26) and DMNT (0.22) (Fig. 3b). The first 

component (PC1) separated the volatile blends based on the amount of emitted HI-VOCs caused by 

inducer treatment, exposing quantitative differences in emission rates. The second component (PC2) 

separated blends qualitatively, according to the proportion of certain compounds in the total blend. 

These discriminating compounds were the ones that had a VIP value higher than 1 (Fig S1a, b). In 

descending order of importance, the compounds contributing to PC1 were nonanal (1.85), (S)-linalool 

(1.83), decanal (1.63), α-pinene (1.19), indole (1.09), (E)-β-farnesene (1.07) and (E)-2-hexenal (1.03) 

(Fig S1a), whereas (S)-linalool (1.75), nonanal (1.73), decanal (1.54), indole (1.27), α-pinene (1.12), (E)-

2-hexenal (1.07), (cis)-3-hexen-1-ol (1.06) and (E)-β-farnesene (1.02) were identified with a VIP value 

higher than 1 for PC2 (Fig S1b). 

To gain more insight into the impact of plant inducers on VOC profiles, we analyzed VOCs that 

were released from cowpea plants treated with chemical inducers and then subjected to mimicked 

herbivory, in a separate model using PLS-DA (Fig 4). Similar to real herbivory, there were two 

significant PCs, explaining 12.8 % and 11.8 % of the total variance in HI-VOCs collection. The main 

loadings of PC1 were for DMNT (0.52), (E)-β-ocimene (0.43) and (E)-2-hexenal (0.30), whereas the key 

loadings of PC2 were (E)-β-ocimene (0.44), TMTT (0.42), decanal (0.36) and nonanal (0.32) (Fig. 4b). 

Furthermore, for PC1, six compounds [(E)-β-ocimene (1.99), (cis)-3-hexen-1-ol (1.74), DMNT (1.46), α-

pinene (1.24), E-2-hexenal (1.17) and decanal (1.07)] had a high discriminatory power (Fig S2a), with 

a VIP value >1, implying a strong contribution to the separation between the treatments. The highly 

influential compounds for the separation in PC2, with VIP value higher than 1, were (E)-β-ocimene 

(1.80), (Z)-3-hexen-1-ol (1.56), DMNT (1.37), α-pinene (1.27), (E)-2-hexenal (1.11) and decanal (1.01), 

which thus contributed the most to explaining the variation in the model (Fig S2b). 

 

3.3 Leaf consumption by S. littoralis caterpillars  
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Caterpillar consumption of plants was similar on all cowpea plants, regardless of whether the plants 

were treated with inducers or not (Over nearly 20 h, leaf consumption [cm 2± SE] on BTH-primed 

plants: 0.26 ± 0.03; Laminarin-primed plants: 0.34 ±0.06; control plants: 0.26 ± 0.05). Although leaf 

consumption on Laminarin-primed plants was somewhat higher, no significant effect of either BTH or 

Laminarin treatment was found on the amount of leaf material ingested by S. littoralis caterpillar 

compared with the control treatment (H2=0.0552, P=0.759).  

 

 

4. DISCUSSION  

Certain chemical compounds can trigger defense priming in plants, which results in a faster and 

stronger deployment of plant defences in the event of a future attack, even before plants actually 

experience an herbivore or pathogen 26. This also applies to a plant’s indirect defense, i.e. the release 

of HI-VOCs that attract the natural enemies of herbivores 27,28. Phenotypic manipulation of VOCs by 

applying priming agents has received considerable research attention recently due to its potential for 

providing more benign agrochemicals to use in crop protection 11,18,39. 

In the current study, we found that treating cowpea with two priming agents not only 

modulates the emission of VOCs upon either real or mimicked herbivory, but it also enhances the 

overall attraction of three parasitoid species. Specifically, our data show that cowpea treatment with 

BTH, and in few cases Laminarin, significantly increases the emission of certain key HI-VOCs such as 

DMNT, (E)- β-ocimene, (Z)-3-hexenyl acetate and MHO, whereas BTH treatment solely increases the 

emission of (E)-2-hexenal, (Z)-3-hexen-1-ol, 1-octen-3-ol, decanal and TMTT under real herbivory 

(Table 1). The same was true, but to a lesser extent, for treated cowpea plants that were challenged 

later by mimicked herbivory. In contrast, treatment of cowpea plants with BTH and Laminarin was 

found to reduce the emission of other HI-VOCs such as the monoterpene (S)-linalool, the 

sesquiterpenes (E)-β-caryophyllene and (E)-β-farnesene, and the aromatic volatile indole.  
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Using the same plant strengtheners, we previously showed similar effects on parasitoid 

attraction in maize and cotton. In those cases, treatment with BTH and Laminarin also increased 

DMNT, TMTT and trans-ocimene in subsequently damaged plants and decreased emission of 

sesquiterpenes, monoterpenes and indole 12,17. This is fully in agreement with our current results. 

Interestingly, these effects can also be obtained when utilizing the BTH and Laminarin as seed 

treatments 18.    

Elevated emissions of VOCs after treatment have also been reported for several other 

systems. For example, treating plants with cis-jasmone, an oxylipin that is produced naturally by 

plants, led to a significant increase in the emission of defensive VOCs in cotton 49; potato 50; soybean 

23 and sweet pepper 20. Similarly, treatment with methyl jasmonate (MeJA), which simulates herbivory, 

causes plants to emit significantly more VOCs 19,51–53, particularly DMNT 31. The increased emission of 

VOCs upon treatment with these compounds can be attributed to subsequent changes in the plant 

transcriptome which then increases the emission of VOCs 15,54. Treating plants with plant 

strengtheners such as BTH and Laminarin is typically done to induce systemic acquired resistance 

(SAR) against pathogens, which is mediated by salicylic acid (SA) and results in the upregulation of the 

marker genes PR1 and PR5 17,29. This may led to a down-regulation of genes that are involved in the 

biosynthesis of JA 55 and thus interfere with volatile production 6,56. Due to such negative cross talk 

between the SA and the JA pathways 7, it is likely that these inducers act as suppressors of the 

herbivore-induced JA response, thereby suppressing the production and release of  certain VOCs. This 

may explain the decreased emissions that we observed for sesquiterpenes, certain monoterpenes and 

indole in the treated plants. Semiz et al. 31 reported that the application of carrageenans, which, similar 

to Laminarin, are obtained from algal extracts, significantly reduced the emission of most 

constitutively produced monoterpenes in two woody tree species.  Again, this may be due to changes 

in defense hormone levels. 

Our behavioral assays revealed that C. sonorensis and M. rufiventris were more attracted to 

BTH treated plants than to control or Laminarin treated plants. C. marginiventris was significantly 
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more attracted to plants treated with either Laminarin or BTH compared to the untreated plants (Fig. 

2). This enhanced wasp attraction was mostly consistent for both real and mimicked herbivory. 

Enhanced wasp attraction after the induction of pathogen resistance or the SA pathway 17,29,30, 

followed by herbivory was already reported for maize 16. It was also recently shown for Brassica plants 

challenged by the bacterial pathogen Xanthomonas campestris Dowson with simultaneous herbivory 

by Pieris brassicae L. caterpillars, these doubly infested plants were more attractive to the specialized 

parasitoid Cotesia glomerata L. than plants only infested by caterpillars 9. This pathogen-mediated 

increase of parasitoid attraction may explain increases in parasitism rates observed for herbivore-

infested plants that were also infected with pathogens 57,58. These results seem to imply additive 

beneficial effects from treating plants with inducers of pathogen resistance.  

Several of the above-mentioned studies, including ours, have shown a substantial increase in 

GLVs, in particular (Z)-3-hexen-1-ol, 1-octen-3-ol and (Z)-3-hexenyl acetate, after priming treatment. 

GLVs can play an important role in the attraction of natural enemies 56,59. Indeed, we show that BTH- 

primed plants, under real or mimicked herbivory, released considerable amounts of (Z)-3-hexen-1-ol 

which is known to be attractive to parasitic wasps. For instance, Wei et al.60 reported that many 

fabaceous plants, including cowpea, release (Z)-3-hexen-1-ol, which attracts parasitoids of Agromyzid 

leafminers. Furthermore, attraction and electrophysiological activity to (Z)-3-hexen-1-ol, from faba 

bean plants, have also been observed for the syrphid Episyrphus balteatus (De Geer) 61. We also found 

that 1-octen-3-ol was emitted in significantly higher amounts from BTH-treated cowpea compared to 

either Laminarin or control plants. 1-Octen-3-ol is a characteristic volatile of legumes 62 that is known 

to attract lepidopteran pests 63, but also a biological control agent of powdery mildew 64. Our results 

further indicate that cowpea plants emitted higher amounts of (Z)-3-hexenyl acetate upon treatment 

with BTH and these plants were the most attractive to the parasitoids. (Z)-3-hexenyl acetate has also 

been reported to attract parasitoids 14,65,66 and is released from several plants after treatment with 

plant activators or phytohormones 66,67.  
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Various studies have reported a special role for 6-methyl-5-hepten-2-one (MHO), which was 

notably increased upon inducer treatment, in attracting parasitic wasps 68. MHO is a specific 

semiochemical target for exploitation in the control of legume pests 69. The two homoterpenes are 

also of special interest. It has been shown that DMNT 70,71 and TMTT 72,73 are essential HI-VOCs for 

attraction of natural enemies. Their emissions are strongly upregulated after plant treatment with 

resistance inducers or phytohormones 12,49,74.   

Contrary to the above compounds, several typical HI-VOCs were emitted in considerably lower 

levels after treatment with BTH or Laminarin, in particular (S) linalool, (E)-β-farnesene, (E)-β-

caryophyllene, and indole. This may also have importantly contributed to the enhanced parasitoid 

attraction 16,17. Terpenoids are often assumed to be attractants for natural enemies, but, for instance, 

the transformation of Arabidopsis with typical terpene-synthase genes from maize revealed that the 

transformed lines were only attractive to parasitoids after the wasps learned to associate the 

terpenoid blend with the presence of caterpillar hosts 75,76. For innate attraction these compounds are 

apparently not essential 40. Their toxic effects 6 may be one reason for parasitoids to avoid them. This 

is particularly true for indole, which despite the fact that it is a very common HI-VOC, it appears not 

to be attractive and even repellent to parasitoids, especially M. rufiventris 77. Indole is toxic to 

Spodoptera caterpillars 78 and possibly affects their suitability as hosts for parasitoids. 

Insects probably perceive HI-VOCs as a blend that may vary in quantity and composition 

(quality) 46,79,80. We therefore analyzed the volatile data using a multivariate tool (PLS-DA), allowing us 

to identify which HI-VOC combinations were associated with parasitoid preference. In all olfactometer 

observations, Campoletis and Microplitis females were most attracted to herbivore-damaged plants 

that had first been primed with BTH. The multivariate analysis revealed that BTH treated plants 

emitted a blend with reduced relative quantities of certain mono and sesquiterpene HI-VOCs [i.e.: (S)-

linalool, (E)-β-farnesene], as well as less of the aromatic indole compared to either control or 

Laminarin treated plants. This was different for the monoterpene α-pinene, which emission was 

significantly increased after BTH and Laminarin treatments, respectively (Fig. S1, S2), and is known to 
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attract parasitoids 81. Consistent to these findings, treated plants with JA or MeJA emit larger amounts 

of α- pinene, increasing the plants attractiveness to natural enemies 13,82.     

The PLS-DA provided further hints at which compounds may be of importance for attraction. 

For instance, the relative concentrations of nonanal was higher in HI-VOCS blends from BTH-primed 

plants, as compared to control plants or Laminarin treated plants. That BTH treated cowpea release 

larger amounts of nonanal may be explained by antimicrobial properties of this compound 83, which 

corresponds with the more robust induction of resistance to many phytopathogens upon BTH 

treatment compared to Laminarin treatment 29,30. Yu et al. 84  showed that the antennae of the 

parasitoid Microplitis mediator (Haliday) are highly responsive to nonanal released from caterpillar-

damaged cotton plants. Similarly, Cotesia plutellae (Kurdjumov), a parasitoid of the diamondback 

moth, and the ectoparasitoid Bracon hebetor (Say), which parasitizes mealmoth larvae, show strong 

electroantennogram (EAG) responses and attraction to nonanal 85,86. It should also be noted that 

nonanal baited traps in cotton fields are very attractive to predatory insects such as the anthocorid 

Orius similis Zheng and the syrphid fly Paragus quadrifasciatus Meigen 14.  

The PLS-DA of induced HI-VOCs blend by mimicked herbivory further revealed that the relative 

concentrations of (E)-β-ocimene and DMNT were notably higher into the emitted volatile blend from 

BTH and Laminarin-primed plants compared to control cowpea plants (Fig S2), suggesting a possible 

involvement in the enhanced attraction of female parasitoids. (E)-β-ocimene is a common HI-VOC 

released from many plants in response to herbivory 87, and it plays an important role in the attraction 

of predatory mites 72,74 and aphid parasitoids 88. The emission of (E)-β-ocimene can be induced by 

exogenous application of chemical elicitors and phytohormones or their analogues such as BTH 17, cis-

jasmone 23,89, MeJA 51,53, and JA 15,74, and in each case this was found to enhance the attractiveness of 

the plants to the studied natural enemies. DMNT is also a very common inducible plant volatile that is 

used by various natural enemies to locate prey or hosts 12,70,71,74. Interestingly, the antennae of C. 

sonorensis are highly responsive to DMNT 90, which might explain its strongly enhanced attraction to 

Laminarin-primed plants that were subjected to mimicked herbivory, which released DMNT in a 
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relative concentration that was considerably higher than the control or BTH treatments (Fig S2). In 

addition to VIP compounds, PLSDA of emitted HI-VOCS further revealed that, (S)-linalool and 1-octen-

3-ol from plants with real herbivore damage, as well as DMNT and (E)-β-ocimene from plants with 

mimicked herbivory, had the greatest loadings for both PC 1 & PC 2. This suggests that the production 

of these compounds may be linked to wasp attraction (Fig 3b, 4b).  

Treatment with BTH or Laminarin had no measurable impact on the leaf areas consumed by 

the caterpillars, but it should be noted that the Spodoptera caterpillars were only on the plants for 24 

h. Rostás and Turlings 16 found the same for maize plants treatment with BTH, with no effect on the 

amount of damage done to leaves by S. littoralis caterpillars. This is different for tomato plants treated 

with BTH, on which growth and survival of S. littoralis larvae is significantly reduced 42. In contrast, 

Gordy et al. 91 found that BTH treatment of cotton and soybean increased the growth rate of 

Spodoptera frugiperda. Various other studies showed a negative impact of plant treatments with 

inducers on the growth and performance of either sucking 92–95 or chewing 25,96,97 herbivores. This 

corresponds well with metabolic changes and activation of defense proteins that decrease the plants’ 

nutritional quality to the feeding herbivores 97–99.  

It has been proposed that plant inducers can be used to manipulate plant VOCs in order to 

enhance their attractiveness to natural enemies of pests 18,39,100. The current findings further support 

the potential of this new and ecologically sound strategy, showing that it is possible to use BTH or 

Laminarin treatments to alter HI-VOC emission in cowpea and increase parasitoid attraction. Yet, field 

experiments are still required to confirm that such treatments lead to increased parasitism of pests 

under realistic conditions. Given the fact that intercropping with grain legumes is currently  seen as a 

possible mechanism for vertical intensification in modern agriculture 101 and the high nutritional value 

of cowpea as a main source of protein for low income populations in tropical regions 33,34, any 

improvements to plant performance and yield would be highly valuable. The results of our current 

study may prompt further steps towards a novel strategy for the control of deleterious lepidopteran 

insect pests that attack this and other key legume crops.  
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Figures Captions  

Fig 1. Schematic representation shows the experimental procedure of the HI-VOCs sampling from 

cowpea plants and wasp response to these plants. (A) HI-VOCs collection from cowpea plants that 

were induced using real herbivory by adding 10 larvae (2nd instar) of Spodoptera littoralis to each 

cowpea plant. (B) HI-VOCs collection from cowpea plants that were induced using mimicked herbivory 

in which two leaves of each cowpea plant were wounded and then treated with 20µl of S. littoralis 

oral secretions (3x dil.). VOCs sampling was carried out for 4 h for both real and mimicked herbivory.   

 

Fig 2. Response and preference of naïve adult females of three different endoparasitoids tested in a 

six-arm olfactometer. Values shown are the number of parasitoid females choosing a particular odor. 

Parasitoids were allowed to choose between odors: BTH = BTH-treated cowpea plants; Laminarin= 

laminarin-treated cowpea plants; Control= cowpea plants treated with distilled water; Empty=empty 

control vessel (mean value of three vessels). (i) Ten 2nd instar larvae of Spodoptera littoralis were 

added to plants 24 h before the experiment. (ii) Plants were mechanically damaged and then treated 

with S. littoralis oral secretions. Different letters above bars indicate significant differences between 

treatments (P < 0.05, F-test). 

 

Fig 3. PLS-DA comparison of the volatile compounds emitted by cowpea plants (15 d-old with 4-5 fully 

developed leaves) sampled for 4 h. Plants (n=18) were challenged by ten 2nd instar larvae of 

Spodoptera littoralis. BTH = BTH-treated cowpea plants (●); Laminarin= laminarin-treated cowpea 

plants (●); Control= cowpea plants treated with distilled water (●). (a) Score plot showing the 

ordination of the samples according to the first two PLS components based on the quantitative values 

of HI-VOCs between different treatments, with the percentage of explained variation in parentheses. 

The PLS-DA resulted in a model with one significant component: R2X=0.2167, R2Y=0.2647, Q2=0.296. 

(b) Loading plot shows the contribution of each HI-VOC to the discrimination between treatments 
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using the first two PLS components. Numbers refer to the volatile compounds listed in Table 1. The 

ellipses display 95 % confidence regions.  

 

Fig 4. PLS-DA comparison of the volatile compounds emitted by cowpea plants (15 d-old with 4-5 fully 

developed leaves) sampled for 4 h. Plants (n=18) were mechanically damaged and then treated with 

S. littoralis oral secretions. BTH = BTH-sprayed cowpea plants (●); Laminarin= laminarin-sprayed 

cowpea plants (●); Control= distilled-water-sprayed cowpea plants (●). (a) Score plot showing the 

ordination of the samples according to the first two PLS components based on the quantitative values 

of HI-VOCs between different treatments, with the percentage of explained variation in parentheses. 

The PLS-DA resulted in a model with one significant component: R2X=0.186, R2Y=0.226, Q2=0.328. (b) 

Loading plot shows the contribution of each HI-VOC to the discrimination between treatments using 

the first two PLS components. Numbers refer to the volatile compounds listed in Table 1. The ellipses 

display 95 % confidence regions.  
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le Table 1. Mean amount of VOCs (in ng; Mean ± SE; n = 18) emitted by cowpea plants treated with BTH, Laminarin and distilled water (control) over 4 h 

collections carried out in a six-arm olfactometer. Plants were induced by either (i) Real herbivory: challenging plants with ten 2nd instar larvae of Spodoptera 

littoralis or (ii) Mimicked herbivory:  wounding plants and then adding S. littoralis regurgitant, 24 h before the experiment.        

Compounds 
(i) Real herbivory-damaged plants  (ii) Mimicked herbivory-damaged plants

BTH Laminarin Control P value  BTH Laminarin Control P value 

1 (Z)-3-hexenal C/GLV 30.5±1.7 31.9±3.9 31.1±4.3 P=0.881  ND ND ND -- 

2 (E)-2-hexenalC/GLV 40.3±3.2a 20.2±3.5 b 13.3±3.6b P<0.001  44.8±7.5 28.2±4.4 38.8±7.2 P=0.221 

3 (Z)-3-hexen-1-olC/GLV 47.9±4.7a 28.7±2.6b 22.7±1.8b
P<0.001  48.4±10.4a 21.1±2.6b 20.9±3.4b

P=0.046

4 α-pineneC/MT 56.1±10.6 58.3±20.7 51.4±17.9 P=0.826  69.7±24.5 66.5±17.4 49.7±13.6 P=0.877 

5 MHOC/KT 31.8±3.9a 29.3±4.1a 10.8±2.7b
P=0.002  23.7±6.5 15.1±1.1 6.4±5.3 P=0.203

6 1-octen-3-olC/ GLV 43.4±4.7a 19.2±4.9b 19.6±4.4b P=0.012  32.1±3.6a 15.6±1.8b 10.1±2.4b P<0.001 

7 MyrceneC/MT 19.9±4.3 21.8±6.4 17.1±4.7 P=0.771  54.4±16.6 45.4±5.4 45.1±17.6 P=0.965 

8 (Z)-3-hexenyl acetateI/GLV 54.8±9.1a 51.8±8.7a 27.3±2.9b
P=0.013  62.3±22.9a 24.4±7.9ab 14.6±4.8b

P=0.038

9 (E)-β-ocimene I/MT 87.4±9.9a 63.6±15.5a 24.7±4.8b P<0.001  45.3±19.2 20.6±3.1 10.1±2.9 P=0.115 

10 NonanalC/ ALH 13.2±1.9 14.3±4.1 13.8±6.1 P=0.882  31.3±2.8 28.5±4.1 31.8±3.1 P=0.690

11 (S) linalool I/MT 14.1±3.8b 21.4±1.7b 70.7±7.8a P<0.001  ND ND ND -- 

12 DMNT I/HT 296.1±24.6a 208.9±21.2a 101.2±11.4b
P<0.001  218.8±36.6a 103.7±20.9b 70.8±14.7b

P=0.006

13 DecanalC/ALH 36.1±11.4a 15.2±1.7b 15.1±2.2b P=0.002  25.5±3.6 27.6±5.2 25.4±5.3 P=0.704 

14 Indole I/AR 27.9±3.9b 40.1±5.2b 126.8±19.1a
P<0.001  ND ND ND --

15 (E)-β-caryophyllene C/ST 10.4±1.7b 22.9±2.9b 43.8±7.3a P<0.001  20.3±5.6b 38.1±19.6a 67.5±5.9a P=0.013 

16 (E)-β-farnesene I/ST 20.4±3.9b 27.1±6.4b 82.5±11.8a P<0.001  ND ND ND -- 

17 Nerolidol C/ST 25.9±4.5 32.8±1.9 31.6±7.8 P=0.577  ND ND ND -- 

18 TMTT I/ HT 154.8±19.1a 103.8±10.3b 70.8±6.2b P=0.003  102.1±12.8a 34.1±4.6b 41.3±6.26 b P=0.010 

19 Total HI-VOCs 560.1±53.3 448.9±67.1 433.7±43.3 P=0.073  350.9±63.5a 208.7±35.6ab 177.5±31.1b
P=0.045

The compounds are ordered in accordance with their increasing retention time in a gas chromatograph. A natural log (ln) transformed values were analyzed using one way analysis of variance. 
Different letters indicate significant differences between treatments (P < 0.05). P values in bold indicate significant difference. (ALH: Aldehyde; AR: Aromatics; C: Constitutive compounds; DMNT: 
(E)-4,8-dimethyl-1,3,7-nonatriene, GLV: Green Leafy Volatiles; HT: Homoterpene; I: Inducible Compounds; JD: Jasmonate derivative; KT: Ketone, MHO: 2-methyl-2-hepten-6-on, MT: Monoterpene; 
ND: compound not detectable; ST: Sesquiterpene; TMTT: (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene). The absolute configuration of chiral volatiles is not determined.  
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