

ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/147671/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Alkodaymi, Mohamad Salim, Omrani, Osama Ali, Fawzy, Nader A., Shaar, Bader Abou, Almamlouk, Raghed, Riaz, Muhammad, Obeidat, Mustafa, Obeidat, Yasin, Gerberi, Dana, Taha, Rand M., Kashour, Zakaria, Kashour, Tarek, Berbari, Elie F., Alkattan, Khaled and Tleyjeh, Imad M. 2022. Prevalence of post-acute COVID-19 syndrome symptoms at different follow-up periods: A systematic review and meta-analysis. Clinical Microbiology and Infection 28 (5), pp. 657-666. 10.1016/j.cmi.2022.01.014

Publishers page: http://dx.doi.org/10.1016/j.cmi.2022.01.014

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

1	Prevalence of Post-acute COVID-19 Syndrome Symptoms at Different Follow-up Periods:	Pre	riods: A
2	Systematic Review and Meta-Analysis		
3			
4	Running title: PACS Symptoms at Different Follow-up Periods	Running	
5	Authors:	Authors	
6	1. Mohamad Salim Alkodaymi ¹ , MBBS, MPH*	1.	
7	2. Osama Ali Omrani ^{2,3} , MBBS, BSc*	2.	
8	3. Nader A. Fawzy ^{4#}	3.	
9	4. Bader Abou Shaar ^{4#}	4.	
10	5. Raghed Almamlouk ⁴ , MBBS [#]	5.	
11	6. Muhammad Riaz ⁵ , PhD [#]	6.	
12	7. Mustafa Obeidat ⁴ , MBBS, MBA	7.	
13	8. Yasin Obeidat ⁶ , MBBS	8.	
14	9. Dana Gerberi ⁷ , MLS	9.	
15	10. Rand M. Taha ⁴	10.	
16	11. Zakaria Kashour ⁴ , MBBS	11.	
17	12. Tarek Kashour ⁸ , MBChB	12.	
18	13. Elie F. Berbari ⁹ , MD	13.	
19	14. Khaled Alkattan ⁴ , MD	14.	
20	15. Imad M. Tleyjeh ^{4,9,10,11} , MD, MSc	15.	
21	* These 2 authors contributed equally as first authors	* These	
22	These 4 authors contributed equally as second authors	[#] These	
23	1. Department of Family & Community Medicine, Alfaisal University, Riyadh, Saudi Arabia	1.	Arabia
24	2. The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom.	2.	
25	3. Barts and the London School of Medicine and Dentistry, Queen Mary University, Londo	3.	_ondon,
26	United Kingdom		

27		
28	4.	College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
29	5.	Center for Clinical Trial Research, School of Medicine, Cardiff University, United Kingdom
30	6.	UMass chan medical school, Baystate, MA, USA
31	7.	Mayo Clinic Libraries, Mayo Clinic, Rochester, MN, USA
32	8.	Department of Cardiac Sciences, King Fahad Cardiac Center, King Saud University Medical
33		City, Riyadh Saudi Arabia
34	9.	Infectious Diseases Section, Department of Medical Specialties King Fahad Medical City,
35		Riyadh, Saudi Arabia
36	10.	Division of Infectious Diseases, Mayo Clinic College of Medicine and Science, Rochester, MN,
37		USA
38	11.	Department of Epidemiology, Mayo Clinic College of Medicine and Science, Rochester, MN,
39		USA
40		
41	Corres	ponding Author:
42	Imad N	1. Tleyjeh, MD, MSc, FACP, FIDSA
43	Profess	or of Medicine and Epidemiology
44	Sectior	of Infectious Diseases, King Fahd Medical City
45	PO Box	59046, Riyadh 11525, Saudi Arabia
46	Phone:	00966112889999
47	Tleyjeh	.Imad@mayo.edu
48		
49	Abstra	ct word count: 336
50	Paper v	word count: 3518

51 Abstract

Background: Post-acute COVID-19 Syndrome is now recognized as a complex systemic disease that is
 associated with substantial morbidity.

54 Objectives: To estimate the prevalence of persistent symptoms and signs at least 12 weeks after
 55 acute COVID-19 at different follow-up periods.

56 Data sources: Searches were conducted up to October 2021 in Ovid Embase, Ovid Medline, and
57 PubMed.

58 **Study eligibility criteria:** Articles in English that reported the prevalence of persistent symptoms

among individuals with confirmed SARS-CoV-2 infection and included at least 50 patients with a

60 follow-up of at least 12 weeks after acute illness.

61 Methods: Random-effect meta-analysis was performed to produce pooled prevalence for each

62 symptom at 4 different follow-up time intervals. Between-studies heterogeneity was evaluated using

63 the I² statistic and was explored via meta-regression, considering several a priori study level

64 variables. Risk of bias was assessed using the Joanna Briggs Institute (JBI) tool and the Newcastle-

65 Ottawa Scale for prevalence studies and comparative studies, respectively.

66 Results: After screening 3209 studies, a total of 63 studies were eligible, with a total COVID-19

67 population of 257,348. The most commonly reported symptoms were fatigue, dyspnea, sleep

disorder and concentration difficulty (32%, 25%, 24%, and 22% respectively at 3-<6 months follow-

69 up), effort intolerance, fatigue, sleep disorder and dyspnea (45%, 36%, 29% and 25% respectively at

70 6-<9 months follow-up), fatigue (37%) and dyspnea (21%) at 9-<12 months and fatigue, dyspnea,

71 sleep disorder, myalgia (41%, 31%, 30%, and 22% respectively at >12 months follow-up). There was

substantial between-studies heterogeneity for all reported symptoms prevalence.

73 Meta-regressions identified statistically significant effect modifiers: world region, male gender,

74 diabetes mellitus, disease severity and overall study quality score. Five of six studies including a

75 comparator group consisting of COVID-19 negative cases observed significant adjusted associations

76 between COVID-19 and several long-term symptoms.

- 77 **Conclusions:** This systematic review found that a large proportion of patients experience PACS 3 to
- 78 12 months after recovery from the acute phase of COVD-19. However, available studies of PACS are
- highly heterogeneous. Future studies need to have appropriate comparator groups, standardized
- 80 symptoms definitions and measurements and longer follow-up.

81 **INTRODUCTION**

82 A significant number of patients who have recovered from acute COVID-19 infection are reporting

83 lasting symptoms resulting in impairment of everyday activities beyond the initial acute period. These

84 post COVID-19 patients suffer from a phenomenon known as "long" or "chronic" COVID-19 or more

85 recently, Post-Acute Sequelae of COVID-19 or Post-Acute COVID-19 syndrome (PACS) (1,2).

86

87 The terms "long COVID-19" and "post-acute COVID-19 syndrome (PACS)" lack a unified definition. The 88 definition endorsed by the National Institute for Health and Care Excellence (NICE) and the World Health 89 Organization (WHO) as a set of "signs and symptoms that emerge during or after an infection consistent 90 with COVID-19, persist for more than 12 weeks, and are not explained by an alternative diagnosis" (3,4). 91 Many experts including the NICE panel also agree to subdivide into two categories: 1- post-COVID-19 92 subacute phase of ongoing symptoms that last 4-12 weeks after the onset of illness, and 2- chronic 93 phase or long COVID-19, defined as symptoms and abnormalities that last more than 12 weeks after the 94 onset of illness and are not explained by an alternative diagnosis (2,4). 95 This timeframe distinction is important because it differentiates between the acute illness and the 96 97 sequelae of possibly an irreversible tissue damage with varying degrees of dysfunction and symptoms 98 potentially involving several possible conditions as suggested by some experts: post-intensive care 99 syndrome, post-thrombotic or hemorrhagic complications, acute-phase immune-mediated 100 complications, and/or multi-systemic inflammatory syndrome in children or adults (5). Globally, the 101 number of patients recovering from COVID-19 infection continues to grow at an unprecedented rate. 102 Therefore, we sought to perform a systematic review and meta-analysis of available literature to

- estimate the prevalence of persistent symptoms and signs after at least 12 weeks of acute COVID-19 at
 different follow-up (FU) periods.
- 105

106 **METHODS**

- 107 This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
- 108 guideline for study design, search protocol, screening, and reporting (6,7).

109 Literature Search and Studies Selection

- 110 The literature was searched by a medical librarian for the concepts of long-term symptoms in patients
- 111 infected by Covid-19. Search strategies were created using a combination of keywords and standardized
- 112 index terms. Searches were originally run in November 2020 and updated in January and September
- 113 2021 in Ovid Embase, Ovid Medline (including publication ahead of print, in-process & other non-
- 114 indexed citations) and PubMed.gov which includes preprints. Results were limited to English language
- and primarily adult studies. All citations were exported to EndNote where 4,539 duplicates were
- 116 removed leaving 3,921 citations. Search strategies are provided in the supplementary material

117 (Supplement 1).

- 118 Articles were considered eligible for inclusion if they (1) were written in the English language; (2) were
- 119 peer-reviewed cohort, case-control or cross-sectional studies that reported the prevalence of persistent
- symptoms among individuals with SARS-CoV-2 infection; (3) included at least 50 patients (4) had follow-
- 121 up of at least 3 months after symptoms onset (as per the NICE definition), (5) all patients with laboratory
- 122 confirmed COVID-19 and (6) follow-up reported as mean, median or set-interval following symptoms
- 123 onset, diagnosis, acute illness or initial CT chest imaging. Where studies had overlapping investigated
- 124 populations, studies with larger sample sizes were prioritized with the remainder excluded (8).

125	We subsequently identified a subgroup of these eligible studies that included studies with a comparator
126	group consisting of non-COVID cases.

127 Identification of Studies

128 Six reviewers (O.O., M.S.A., M.O., N.A.F., R.A., B.A.S.) examined the titles and abstracts of articles in

- pairs, using the above pre-defined selection criteria. This was followed by a full text review of each
- 130 article to confirm meeting the eligibility criteria. Disagreements regarding inclusion of a full-text article
- 131 were discussed and agreed with the senior reviewer (IT).

132 Data Collection

- 133 Data were extracted simultaneously by six reviewers in duplicates (OO, NAF, BAS, RA, MSA, MO) into a
- 134 pre-specified data collection form, with any discrepancies resolved in consultation with the senior
- 135 reviewer (IMT). Data were collected across the following domains: study characteristics, follow-up
- 136 method, baseline demographics and symptom prevalence. Full details of the data collation variables can
- 137 be found in the supplementary material (Supplement 2).

138 Quality Assessment

139 The reviewers independently assessed the risk of bias for each study using the Joanna Briggs Institute 140 (JBI) critical appraisal tool for prevalence studies. JBI critical appraisal checklist for studies reporting 141 prevalence consists of nine questions: (1) Sample frame suitability,(2) Sampling method appropriateness 142 (3) Sample size adequacy, (4) Proper description of study subjects and setting, (5) Sufficient coverage of 143 the identified sample (6) Usage of valid methods for identification of the condition, (7) Standard and 144 reliable way of measurement of the condition for all participants, (8) Appropriate statistical analysis and 145 (9) Adequate response rate (9). Each study was assessed across each of these questions and determined 146 as either 'Yes', 'No' or 'Unclear'. Studies were assigned an overall score, reflecting the number of 147 questions with a 'Yes' response.

148 Studies with a comparator group consisting of non-COVID cases were assessed using the Newcastle-

149 Ottawa Scale (NOS) (10). The NOS rates observational studies based on 3 parameters: selection,

150 comparability between exposed and unexposed groups, and exposure and outcome assessment. These

- 151 3 domains can have a maximum score of 4, 2, and 3 stars, respectively. Studies with <5 stars are
- 152 considered low quality, 5–7 stars moderate quality, and >7 stars high quality.

153 Data Synthesis

154 Our outcome of interest was prevalence of symptoms at follow-up across four different follow up

155 intervals: 3-<6 months, 6-<9 months, 9-<12 months and ≥12 months. Due to varying definitions of "day

156 0" to follow up across the literature, we accepted definitions of "day 0" that include COVID-19 symptom

157 onset, COVID-19 diagnosis or hospital discharge after acute illness. We further categorized studies

according to the severity of COVID-19, which was defined in this context as patients' setting during

acute illness: ranging from outpatient (OP), general inpatient wards (IP) or intensive care unit (ICU)

160 settings. Where symptoms prevalence at follow-up was not reported separately based on COVID-19

161 severity, studies were described as "mixed", for example "mixed IP/ICU".

162 The range of persistent COVID-19 symptoms reported to date was then identified and categorized.

163 Given the exchangeable terminology to refer to symptoms across studies, the following terms were

164 grouped: "sleep disturbance" to refer to insomnia, daytime sleepiness, sleep difficulties, and/or sleep

165 disorders, "concentration difficulties" to refer to confusion, change in level of consciousness and/or

166 concentration, "cognitive impairment" to refer to cognitive dysfunction, brain fog, and/or cognition

167 difficulties, "loss of taste" to refer to taste dysfunction, alteration of taste, dysgeusia, and parageusia,

168 "loss of smell" to refer to smell dysfunction, alteration of smell, anosmia, hyposmia, smell blindness, and

169 olfactory disorders. Signs and symptoms were divided into 7 main systems: mental health, respiratory

system, cardiovascular system, musculoskeletal system, nervous system, gastrointestinal system andother.

172 Statistical Analyses

191

173 The total cohort number and the number of patients with different symptoms or complaints were 174 extracted from each study at different follow up times into 4 intervals: 3-<6 months, 6-<9 months, 9-<12 175 months and \geq 12 months. We performed separate meta-analyses for the aforementioned follow up 176 intervals where ≥ 3 studies reported symptom prevalence at that follow up interval. The arcsine 177 transformation was used to obtain a pooled estimate of the prevalence of each symptom. As 178 conventional meta-analysis models assume normally distributed data, the arcsine-based 179 transformations are applied to the proportion data to yield better approximations to the normal 180 distribution and they have the important advantage of stabilizing variances (11,12). We used 181 DerSimonian and Laird random effect model with inverse variance method to pool prevalence (13). We 182 performed subgroup meta-analyses by severity of acute COVID-19 in the included studies, thereby 183 allowing a visual display of heterogeneity due the differences in the severity of illness in reporting 184 studies. We evaluated between-studies heterogeneity using the I² statistic, which estimates the 185 variability percentage in effect estimates that is due to heterogeneity rather than to chance (14). Two-186 tailed p<0.05 were considered statistically significant. 187 We performed meta-regression to explore between studies heterogeneity. We considered several a 188 priori chosen study level variables based on clinical plausibility (Supplement 3). Meta-regression was 189 performed for each symptom where \geq 10 studies reported prevalence at any given follow-up interval as 190 per the Cochrane Handbook for Systematic Reviews (15). The regression coefficients obtained from the

192 unit increase in the continuous explanatory variable and changes for the category of interest compared

meta-regression analyses describe how the outcome variable (the pooled prevalence) changes with a

193 to a reference category for a categorical variable. The statistical significance was considered as

194 p<0.01 for the results of the meta-regression and we reported if a variable was found to be a significant

195 contributor to heterogeneity. All statistical analyses were performed using Stata 12 statistical software

- 196 StataCorp. 2021. Stata Statistical Software: Release 17. College Station, TX: StataCorp LLC. (16).
- 197

198 **RESULTS**

- 199 Of the 3209 abstracts screened, 152 full-text articles were reviewed with 63 included in the final analysis
- 200 (Figure 1) (17–79). After full article review, the most common reason for exclusion was the absence of
- 201 reported data on symptom prevalence at stated follow-up (n=36), followed by the inclusion of COVID-19
- 202 patients without laboratory confirmed COVID-19 (n=23). Of the 63 included studies (total COVID-19
- 203 population = 257348), six were from North America (COVID-19 sample size = 237261), twelve from East
- Asia (COVID-19 sample size = 10162), thirty-seven from Europe (COVID-19 sample size = 8998) and eight
- from North Africa, the Middle East, or South Asia (COVID-19 sample size = 927) (Table 1). The majority of
- included studies were single center (n = 43), followed by multicenter (n = 18) with two nationwide
- studies. Only four studies included follow up equal to or greater than 365 days (sample size = 1246),
- with five studies with follow up of 270 to 364 days (sample size = 3758), twenty-five studies with follow
- up of 180 to 269 days (sample size = 243576) and the majority of studies with follow up of 90 to 179
- 210 days (n = 33, sample size = 9323).

211 Meta-analyses of prevalence of symptoms at different follow up periods

212 Meta-analysis highlighted the substantial heterogeneity between symptom prevalence's reported across 213 studies, with l^2 statistics ranging from 75.4% (difficulty concentrating at 3-<6 months follow up) to 99.4% 214 (fatigue at 9-<12 months follow up), with the vast majority of symptoms across all follow up intervals 215 producing an $l^2 \ge 90\%$. The most commonly reported symptoms between 3-<6 months are fatigue (32%,

216	95% CI = 22-44%, number of studies = 25, sample size = 7268) followed by dyspnea (25%, 95% CI = 17-
217	34%, number of studies = 28, sample size = 8132), sleep disorder (24%, 95% CI = 8-44%, number of
218	studies = 8, sample size = 4369) and concentration difficulty (22%, 95% CI = 15-31%, number of studies =
219	5, sample size, = 466). Between 6-<9 months, the most common symptoms reported were effort
220	intolerance (45%, 95% CI – 25-67%, number of studies = 5, sample size = 850), fatigue (36%, 95% CI = 27-
221	46%, number of studies = 19, sample size 8191), sleep disorder (29%, 95% CI 15-45%, number of studies
222	= 12, sample size = 242000), and dyspnea (25%, 95% CI = 20-30%, number of studies = 13, 4384). In the
223	9-<12 months period, the meta-analysis included 9 symptoms with the highest prevalence reported for
224	fatigue (37%, 95% CI = 16-62%, number of studies = 5, sample size = 3758) and dyspnea (21%, 95% CI =
225	14-28%, number of studies = 5, sample size = 3758), with loss of taste being the least reported (6%, 95%
226	Cl 1-13%, number of studies = 3, sample size = 1742). Similarly, fatigue was the most reported symptom
227	(41%, 95% CI 30-53%, number of studies = 4, sample size = 1246) in the >12 months period. It is
228	noteworthy that fatigue, dyspnea, myalgia, and sleep disorder were most reported in the >12 months
229	interval; while cough, headache, loss of taste and loss of smell were most common at 6-<9 months
230	(Figure 2, Panels A-B, Supplement 6, Panels C-D).
231	Exploring Heterogeneity

231 Exploring Heterogeneity

Due to a limited number of studies reporting symptom prevalence at 9-<12 months or ≥12 months,

233 meta-regression was performed for symptom prevalence at 3-<6 months and 6-<9 months (Supplement

6). Observed statistically significant effect modifiers included: world region where the study was

235 conducted, percentage of study participants who were men, and those who had DM, disease severity

category as defined earlier and the overall study quality score.

237 Studies reporting results from Asian populations reported a lower prevalence of fatigue, dyspnea, loss of

smell and loss of taste at 3-6 month follow up and a lower prevalence of fatigue at 6-9 month follow up.

A higher proportion of men was found to be associated with a lower prevalence of cough and loss of smell at 6-9 months follow up, whilst a higher proportion of diabetes mellitus as a comorbidity was associated with a lower prevalence of loss of smell and taste at 3-6 and 6-9 month follow up. Studies investigating patients in ICU were associated with a higher prevalence of dyspnea compared to studies investigating an OP population at 3-6 month and 6-9 month follow up intervals. Higher study quality was found to be associated with lower prevalence of dyspnea at 3-6 months and cough at 6-9 months follow up.

246 Studies with a COVID-19 negative comparator group

247 A total of 6 studies reporting symptoms prevalence included a comparator group consisting of COVID-19 248 negative cases, with a summary of their findings presented in Table 2 (17,24,26,37,59,62). Of these, 2 249 studies compared long term symptom prevalence of COVID-19 cases to either influenza, pneumonia or 250 other respiratory tract infection cases (17,26). Overall, all but one study reported higher prevalence of 251 symptoms or adverse event in cases following COVID-19 compared to respective comparator groups, 252 with one negative study specifically assessing olfactory and gustatory dysfunction at 6 months (37). Two 253 out of 6 studies were rigorously designed. One study observed that COVID-19 cases had significantly 254 higher hazard of mood disorder, anxiety and insomnia when compared to matched cohorts with 255 influenza or respiratory tract infection (26). Another study observed that COVID-19 cases have 256 significantly higher prevalence of symptoms at 6 and 9 months follow-up when compared to community 257 controls, including fatigue, sleep difficulties, hair loss, smell disorder, taste disorder, palpitations, chest 258 pain and headaches (45).

- 259 Quality Assessment
- 260 Studies without comparator groups

- 261 The studies were generally assessed to have good quality with a mean average critical appraisal score
- across all studies of 7.97/9. The question that affected the scores the most was "Was the sample size
- adequate?", with few studies demonstrating appropriate sample size calculations nor representing a
- significantly large enough sample to provide high external validity (Table S1).
- 265 Studies with comparator groups
- 266 Study quality was assessed via the NOS as moderate to high, ranging from 5 to 9 (maximum 9), with a
- 267 number of studies using an non-representative sample of healthcare workers (37,59), or having
- 268 comparability concerns by not adequately matching cases with the comparator group (17,37,59,62)
- 269 (Table S2).
- 270

271 **DISCUSSION**

272 Summary of the findings

- 273 In this systematic review and meta-analysis of 63 studies with a total of 257,348 COVID-19 patients from
- 274 different world regions, we observed that patients report several clinically significant symptoms across
- 275 many organs systems 3 months post-acute COVID-19. In addition, we observed that the high between-
- 276 studies heterogeneity of reported symptoms prevalence could at least be partially explained by clinically
- 277 plausible effect modifiers such as acute COVID-19 severity, and certain patients' demographics and
- 278 comorbidities (26,45,80,81).
- 279 Our findings lend more support to the initiatives of several countries and organizations that have started
- 280 to fund more research and disseminate guidelines to better understand, diagnose and treat PACS

281 (8,82,83).

282

283 Mechanisms

284 It remains unknown what proportion of these lingering symptoms are true sequalae of COVID-19 vs. the 285 effects of underlying chronic diseases or pandemic effects on individuals and societies (84,85). Although 286 most studies did not have a control group, the association of certain symptoms with COVID-19 infection 287 among the 6 studies that had appropriate comparator groups supports our findings of a significant 288 burden of PACS. Recent rigorously conducted comparative studies that examined the risk of new clinical 289 sequalae rather than persistent symptoms at 6-month follow-up have shown a higher risk of long-term 290 complications and incident diagnoses after acute COVID-19 infection, among non-hospitalized cases 291 when compared to a matched non-COVID cohort, and hospitalized COVID-19 cases when compared to 292 matched hospitalized influenza cases or when compared to other non-COVID viral lower respiratory 293 tract illnesses. An increasing risk gradient of new sequalae was observed with increasing COVID-19 294 severity (86,87).

295 Nevertheless, the mechanisms that explain these chronic symptoms after COVID-19 are not yet fully 296 understood. In addition to the direct effects of SARS-CoV-2, the immune response to the virus is 297 believed to be partly responsible for the appearance of these lasting symptoms, possibly through 298 facilitating an ongoing hyperinflammatory process (88). Several hypotheses have been proposed to 299 explain the long-term outcomes of COVID-19 infection: a) Sequalae of COVID-19 organ involvement 300 during acute infection, b) COVID-19 patients with chronic symptoms may harbor the virus in several 301 potential tissue reservoirs across the body, which may not be identified by nasopharyngeal swabs, c) 302 cross reactivity of SARS-CoV-2-specific antibodies with host proteins resulting in autoimmunity, d) 303 delayed viral clearance due to immune exhaustion resulting in chronic inflammation and impaired tissue 304 repair, e) mitochondrial dysfunction and impaired immunometabolism, and f) alterations in microbiome 305 leading to long-term health consequences of COVID-19 (88–91).

306

307 **Comparison to other studies**

308 Our systematic review provides a rigorous and unique update of previous attempts by other 309 investigators. First, a number of previous reviews either did not assess the included studies for risk of 310 bias or utilized an inappropriate assessment tool, such as the Newcastle-Ottawa Scale for non-311 comparative studies. We observed that the quality of included studies to be a significant contributor to 312 heterogeneity of reported symptoms prevalence, with lower quality studies reporting higher prevalence 313 of certain symptoms (92,93). Second, other systematic reviews have included studies with short follow-314 up periods between one and three months after acute illness and hence do not provide an indication of 315 persistent and chronic symptoms that are defined beyond 12 weeks as per NICE (92–95). Third, although 316 previous studies have performed meta-analysis, with Michelen et al. performing meta-regression for 317 variables of ICU admission and proportion female and Igbal et al. performing thorough sub-group 318 analysis, no previous systematic review has separated symptoms prevalence across different follow-up 319 intervals or considered other important effect-modifiers for meta-regression (96,97). Finally, and 320 importantly, we present the first attempt to identify and assess studies including an appropriate non-321 COVID group to provide additional evidence of the association between COVID-19 and the high 322 prevalence of symptoms at follow-up. 323 Although our review included the most recent eligible studies with the largest sample size, there is a 324 degree of consistency between the findings of symptoms prevalence between our meta-analyses and 325 others. We report a prevalence of fatigue of 32%, 36%, 47% and 41% across follow up periods from 3 to 326 6 months, 6 to 9 months, 9 to 12 months and greater than 12 months respectively, which is comparable 327 to the findings of Michelen et al. (30.1%) and Iqbal et al. (37%). This similarity is also the case for 328 dyspnea, with previous meta-analysis reporting estimates of prevalence between 25 and 35%, as well as 329 myalgia and hair loss.

330

331 Strengths and Limitations

332 Our study is the largest and most comprehensive systematic review of persistent symptoms after acute 333 COVID-19 to date. However, it has a number of limitations inherent to the included studies and studies 334 design. As noted by previous systematic reviews on this topic, studies included in our review lacked 335 uniform symptom terminology, standardized recording methods, and grouping of multiple symptoms 336 under umbrella terms. This limited our ability to compare prevalence and frequency of these symptoms 337 across the studies. Severity of illness was not described in numerous studies, with results presented for 338 whole cohorts and not presented as sub-groups. Thus, grouping all symptoms of various disease severity 339 yield inaccurate estimates of symptoms frequencies. The high observed statistical heterogeneity as 340 measured by l² limit the interpretation of the pooled frequencies, although our extensive meta-341 regression illuminates significant contributors to this heterogeneity; namely severity as defined by 342 highest level of medical care, geographic location, prevalence of diabetes and method of assessing 343 symptom at follow-up (98). 344 We agree with Nasserie et al. in their recommendations about areas of improvement in future research 345 of PACS whether in the conduct of studies or reporting of the various characteristics of symptoms for 346 such conditions including the use of a standardized definition for symptoms and time-zero and including 347 an objective measure of symptom severity and duration. There is a need for further rigorously 348 conducted cohort studies in order to quantify the relative risk of developing long term symptoms 349 following acute COVID-19 infections in comparison to non-COVID-19 comparator group, including 350 healthy controls and those with other acute respiratory infections (94,97,99). 351

352 CONCLUSION

353	In this large systematic review, we observed, with high degree between-study heterogeneity, that a
354	large proportion of COVID-19 patients have persisting and varying symptoms for several months after
355	the acute infection. While there remain many unanswered questions about PACS, our study brings more
356	evidence from a large number of patients and across different worldwide populations about the
357	prevalence of the long-term effects of COVID-19. Our data support the recent global efforts to conduct
358	additional research to address its underlying mechanisms, epidemiology, diagnosis, and treatment of
359	PACS.
360	
361	Conflict of interest statement
362	The authors declare no conflicts of interest.
363	EFB : UTD honorarium <5 k Per year and member of advisory board for DEBIOPHARM INTERNATIONAL
364	S.A.
365	
366	Funding
367	No funding was received for this work.
368	
369	Authors Contribution:
370	Authors are listed in alphabetical order. Conceptualization: I.M.T. and T.K.; Supervision: I.M.T. and
371	K.M.T.; Project Administration: M.S.A and O.A.O.; Formal Analysis: M.R.; Data Curation: B.A.S., D.G.,
372	M.S.A., M.O., N.A.F., O.A.O., R.A., Y.O., and Z.K.; Visualization: M.R., and R.M.T; Writing – Original Draft:
373	B.A.S., M.S.A., N.A.F., O.A.O., and R.A.; Writing Review & Editing: E.F.B. and I.M.T.
374	
375	REFERENCES

- Sandler CX, Wyller VBB, Moss-Morris R, Buchwald D, Crawley E, Hautvast J, et al. Long COVID and
 Post-infective Fatigue Syndrome: A Review. Open forum infectious diseases. 2021 Sep
 9;8(10):ofab440–ofab440.
- Nalbandian A, Sehgal K, Gupta A, Madhavan M v, McGroder C, Stevens JS, et al. Post-acute
 COVID-19 syndrome. Nature Medicine. 2021;27(4):601–15.
- World Health Organization. A clinical case definition of post COVID-19 condition by a Delphi
 consensus. 2021 [cited 2021 Dec 19]. Available from:
- 383 https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition 384 Clinical_case_definition-2021.1
- 3854.National Institute for Health and Care Excellence (UK). COVID-19 rapid guideline: managing the386long term effects of COVID-19. 2020 [cited 2021 Dec 19]. Available from:
- 387 https://www.nice.org.uk/guidance/ng188
- Lledó GM, Sellares J, Brotons C, Sans M, Antón JD, Blanco J, et al. Post-acute COVID-19 syndrome:
 a new tsunami requiring a universal case definition. Clinical microbiology and infection. 2021 Nov
 24;S1198-743X(21)00661-3.
- Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting
 items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic
 reviews. 2015 Jan 1;4(1):1.
- Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting
 items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and
 explanation. BMJ : British Medical Journal. 2015 Jan 2;349:g7647.
- 397 8. Sivan M, Taylor S. NICE guideline on long covid. BMJ. 2020 Dec 23;371:m4938.
- Munn Z, Moola S, Lisy K, Riitano D, Tufanaru C. Methodological guidance for systematic reviews
 of observational epidemiological studies reporting prevalence and cumulative incidence data. JBI
 Evidence Implementation. 2015;13(3).
- 401 10. Guyatt G, Busse J. Methods Commentary: Risk of Bias in Cohort Studies. [cited 2021 Dec 18].
 402 Available from: https://www.evidencepartners.com/resources/methodological-resources/risk-of403 bias-in-cohort-studies
- Tleyjeh IM, Kashour Z, AlDosary O, Riaz M, Tlayjeh H, Garbati MA, et al. Cardiac Toxicity of
 Chloroquine or Hydroxychloroquine in Patients With COVID-19: A Systematic Review and Metaregression Analysis. Mayo Clinic proceedings Innovations, quality & outcomes. 2021
 Feb;5(1):137–50.
- 40812.Barendregt JJ, Doi SA, Lee YY, Norman RE, Vos T. Meta-analysis of prevalence. Journal of409Epidemiology and Community Health. 2013 Nov 1;67(11):974.
- 41013.DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled Clinical Trials. 1986;7(3):177–41188.
- 412 14. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ
 413 (Clinical research ed). 2003 Sep 6;327(7414):557–60.

414 15. Deeks J, Higgins JP, Altman DG. Chapter 10: Analysing data and undertaking meta-analyses. [cited 415 2021 Dec 18]. Available from: https://training.cochrane.org/handbook/current/chapter-10 416 16. Viechtbauer W. Conducting Meta-Analyses in R with the metafor Package. Journal of Statistical 417 Software. 2010 Aug 5;36(3):1-48. 418 17. Elkan M, Dvir A, Zaidenstein R, Keller M, Kagansky D, Hochman C, et al. Patient-Reported 419 Outcome Measures After Hospitalization During the COVID-19 Pandemic: A Survey Among 420 COVID-19 and Non-COVID-19 Patients. International journal of general medicine. 2021 Aug 421 26;14:4829-36. 422 18. Zayet S, Zahra H, Royer P-Y, Tipirdamaz C, Mercier J, Gendrin V, et al. Post-COVID-19 Syndrome: 423 Nine Months after SARS-CoV-2 Infection in a Cohort of 354 Patients: Data from the First Wave of 424 COVID-19 in Nord Franche-Comté Hospital, France. Microorganisms. 2021 Aug 12;9(8):1719. 425 Mechi A, Al-Khalidi A, Al-Darraji R, Al-Dujaili MN, Al-Buthabhak K, Alareedh M, et al. Long-term 19. 426 persistent symptoms of COVID-19 infection in patients with diabetes mellitus. International 427 journal of diabetes in developing countries. 2021 Aug 24;1-4. 428 20. Maestre-Muñiz MM, Arias Á, Mata-Vázquez E, Martín-Toledano M, López-Larramona G, Ruiz-429 Chicote AM, et al. Long-Term Outcomes of Patients with Coronavirus Disease 2019 at One Year 430 after Hospital Discharge. Journal of clinical medicine. 2021 Jun 30;10(13):2945. 431 21. Fernández-de-Las-Peñas C, Guijarro C, Plaza-Canteli S, Hernández-Barrera V, Torres-Macho J. 432 Prevalence of Post-COVID-19 Cough One Year After SARS-CoV-2 Infection: A Multicenter Study. 433 Lung. 2021 Jun;199(3):249-53. 434 22. Lombardo MDM, Foppiani A, Peretti GM, Mangiavini L, Battezzati A, Bertoli S, et al. Long-Term 435 Coronavirus Disease 2019 Complications in Inpatients and Outpatients: A One-Year Follow-up 436 Cohort Study. Open forum infectious diseases. 2021 Jul 16;8(8):ofab384–ofab384. 437 23. Boscolo-Rizzo P, Guida F, Polesel J, Marcuzzo AV, Capriotti V, D'Alessandro A, et al. Sequelae in 438 adults at 12 months after mild-to-moderate coronavirus disease 2019 (COVID-19). International 439 Forum of Allergy & Rhinology. 2021 Dec 1;11(12):1685-8. 440 24. Huang L, Yao Q, Gu X, Wang Q, Ren L, Wang Y, et al. 1-year outcomes in hospital survivors with 441 COVID-19: a longitudinal cohort study. Lancet. 2021 Aug 28;398(10302):747–58. 442 25. Clavario P, de Marzo V, Lotti R, Barbara C, Porcile A, Russo C, et al. Cardiopulmonary exercise 443 testing in COVID-19 patients at 3 months follow-up. International journal of cardiology. 2021 Oct 444 1;340:113-8. 445 26. Taquet M, Geddes JR, Husain M, Luciano S, Harrison PJ. 6-month neurological and psychiatric 446 outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health 447 records. The lancet Psychiatry. 2021 May;8(5):416–27. 448 27. Menges D, Ballouz T, Anagnostopoulos A, Aschmann HE, Domenghino A, Fehr JS, et al. Burden of 449 post-COVID-19 syndrome and implications for healthcare service planning: A population-based 450 cohort study. PloS one. 2021 Jul 12;16(7):e0254523-e0254523.

451 28. Shoucri SM, Purpura L, DeLaurentis C, Adan MA, Theodore DA, Irace AL, et al. Characterising the
452 long-term clinical outcomes of 1190 hospitalised patients with COVID-19 in New York City: a
453 retrospective case series. BMJ open. 2021 Jun 2;11(6):e049488–e049488.

- 454 29. Biadsee A, Dagan O, Ormianer Z, Kassem F, Masarwa S, Biadsee A. Eight-month follow-up of
 455 olfactory and gustatory dysfunctions in recovered COVID-19 patients. American journal of
 456 otolaryngology. 2021;42(4):103065.
- Wu Q, Zhong L, Li H, Guo J, Li Y, Hou X, et al. A Follow-Up Study of Lung Function and Chest
 Computed Tomography at 6 Months after Discharge in Patients with Coronavirus Disease 2019.
 Canadian respiratory journal. 2021 Feb 13;2021:6692409.
- Shang YF, Liu T, Yu JN, Xu XR, Zahid KR, Wei YC, et al. Half-year follow-up of patients recovering
 from severe COVID-19: Analysis of symptoms and their risk factors. Journal of internal medicine.
 2021 Aug;290(2):444–50.
- 463 32. Blomberg B, Mohn KG-I, Brokstad KA, Zhou F, Linchausen DW, Hansen B-A, et al. Long COVID in a
 464 prospective cohort of home-isolated patients. Nature medicine. 2021 Sep;27(9):1607–13.
- 33. Sigfrid L, Drake TM, Pauley E, Jesudason EC, Olliaro P, Lim WS, et al. Long Covid in adults
 discharged from UK hospitals after Covid-19: A prospective, multicentre cohort study using the
 ISARIC WHO Clinical Characterisation Protocol. The Lancet regional health Europe. 2021
 Sep;8:100186.
- 469 34. Yin X, Xi X, Min X, Feng Z, Li B, Cai W, et al. Long-term chest CT follow-up in COVID-19 Survivors:
 470 102-361 days after onset. Annals of translational medicine. 2021 Aug;9(15):1231.
- 471 35. Darcis G, Bouquegneau A, Maes N, Thys M, Henket M, Labye F, et al. Long-term clinical follow-up
 472 of patients suffering from moderate-to-severe COVID-19 infection: a monocentric prospective
 473 observational cohort study. International journal of infectious diseases. 2021 Aug;109:209–16.
- 474 36. Augustin M, Schommers P, Stecher M, Dewald F, Gieselmann L, Gruell H, et al. Post-COVID
 475 syndrome in non-hospitalised patients with COVID-19: a longitudinal prospective cohort study.
 476 The Lancet regional health Europe. 2021 Jul;6:100122.
- 37. Riestra-Ayora J, Yanes-Diaz J, Esteban-Sanchez J, Vaduva C, Molina-Quiros C, Larran-Jimenez A, et
 al. Long-term follow-up of olfactory and gustatory dysfunction in COVID-19: 6 months casecontrol study of health workers. European archives of oto-rhino-laryngology. 2021
 Dec;278(12):4831–7.
- 481 38. Aranda J, Oriol I, Martín M, Feria L, Vázquez N, Rhyman N, et al. Long-term impact of COVID-19
 482 associated acute respiratory distress syndrome. The Journal of infection. 2021 Nov;83(5):581–8.
- 483 39. Caruso D, Guido G, Zerunian M, Polidori T, Lucertini E, Pucciarelli F, et al. Post-Acute Sequelae of
- 484 COVID-19 Pneumonia: Six-month Chest CT Follow-up. Radiology. 2021 Nov;301(2):E396–405.
- 485 40. Simani L, Ramezani M, Darazam IA, Sagharichi M, Aalipour MA, Ghorbani F, et al. Prevalence and
 486 correlates of chronic fatigue syndrome and post-traumatic stress disorder after the outbreak of
 487 the COVID-19. Journal of neurovirology. 2021 Feb;27(1):154–9.

488 41. Frontera JA, Yang D, Lewis A, Patel P, Medicherla C, Arena V, et al. A prospective study of long489 term outcomes among hospitalized COVID-19 patients with and without neurological
490 complications. Journal of the neurological sciences. 2021 Jul 15;426:117486.

- 42. Kim Y, Kim S-W, Chang H-H, Kwon KT, Bae S, Hwang S. Significance and Associated Factors of
 492 Long-Term Sequelae in Patients after Acute COVID-19 Infection in Korea. Infection &
 493 chemotherapy. 2021 Sep;53(3):463–76.
- 43. Han X, Fan Y, Alwalid O, Li N, Jia X, Yuan M, et al. Six-month Follow-up Chest CT Findings after
 495 Severe COVID-19 Pneumonia. Radiology. 2021 Apr;299(1):E177–86.
- 496 44. Taboada M, Moreno E, Cariñena A, Rey T, Pita-Romero R, Leal S, et al. Quality of life, functional
 497 status, and persistent symptoms after intensive care of COVID-19 patients. British journal of
 498 anaesthesia. 2021 Mar;126(3):e110–3.
- 499 45. Huang C, Huang L, Wang Y, Li X, Ren L, Gu X, et al. 6-month consequences of COVID-19 in patients
 500 discharged from hospital: a cohort study. Lancet. 2021 Jan 16;397(10270):220–32.
- 501 46. Fernández-de-Las-Peñas C, Palacios-Ceña D, Gómez-Mayordomo V, Rodríuez-Jiménez J, Palacios502 Ceña M, Velasco-Arribas M, et al. Long-term post-COVID symptoms and associated risk factors in
 503 previously hospitalized patients: A multicenter study. The Journal of infection. 2021
 504 Aug;83(2):237–79.
- 505 47. Nguyen NN, Hoang VT, Lagier J-C, Raoult D, Gautret P. Long-term persistence of olfactory and
 506 gustatory disorders in COVID-19 patients. Clinical microbiology and infection. 2021
 507 Jun;27(6):931–2.
- 508 48. Lindahl A, Aro M, Reijula J, Mäkelä MJ, Ollgren J, Puolanne M, et al. Women report more
 509 symptoms and impaired quality of life: a survey of Finnish COVID-19 survivors. Infectious
 510 Diseases. 2021 Aug 19;1–10.
- 49. Qin W, Chen S, Zhang Y, Dong F, Zhang Z, Hu B, et al. Diffusion capacity abnormalities for carbon
 512 monoxide in patients with COVID-19 at 3-month follow-up. The European respiratory journal.
 513 2021 Jul 22;58(1):2003677.
- 50. Schandl A, Hedman A, Lyngå P, Fathi Tachinabad S, Svefors J, Roël M, et al. Long-term
 515 consequences in critically ill COVID-19 patients: A prospective cohort study. Acta
 516 anaesthesiologica Scandinavica. 2021 Oct;65(9):1285–92.
- 517 51. Mei Q, Wang F, Yang Y, Hu G, Guo S, Zhang Q, et al. Health Issues and Immunological Assessment
 518 Related to Wuhan's COVID-19 Survivors: A Multicenter Follow-Up Study. Frontiers in medicine.
 519 2021 May 7;8:617689.
- 520 52. Froidure A, Mahsouli A, Liistro G, de Greef J, Belkhir L, Gérard L, et al. Integrative respiratory
 521 follow-up of severe COVID-19 reveals common functional and lung imaging sequelae. Respiratory
 522 medicine. 2021 May;181:106383.
- 53. González J, Benítez ID, Carmona P, Santisteve S, Monge A, Moncusí-Moix A, et al. Pulmonary
 Function and Radiologic Features in Survivors of Critical COVID-19: A 3-Month Prospective
 Cohort. Chest. 2021 Jul;160(1):187–98.

- 526 54. Qu G, Zhen Q, Wang W, Fan S, Wu Q, Zhang C, et al. Health-related quality of life of COVID-19
 527 patients after discharge: A multicenter follow-up study. Journal of clinical nursing. 2021
 528 Jun;30(11–12):1742–50.
- 55. Stavem K, Ghanima W, Olsen MK, Gilboe HM, Einvik G. Prevalence and Determinants of Fatigue
 after COVID-19 in Non-Hospitalized Subjects: A Population-Based Study. International journal of
 environmental research and public health. 2021 Feb 19;18(4):2030.
- 56. Parry AH, Wani AH, Shah NN, Jehangir M. Medium-term chest computed tomography (CT)
 follow-up of COVID-19 pneumonia patients after recovery to assess the rate of resolution and
 determine the potential predictors of persistent lung changes. The Egyptian Journal of Radiology
 and Nuclear Medicine. 2021;52(1):55.
- 536 57. Mumoli N, Bonaventura A, Colombo A, Vecchié A, Cei M, Vitale J, et al. Lung Function and
 537 Symptoms in Post-COVID-19 Patients: A Single-Center Experience. Mayo Clinic proceedings
 538 Innovations, quality & outcomes. 2021 Oct;5(5):907–15.
- 58. Parente-Arias P, Barreira-Fernandez P, Quintana-Sanjuas A, Patiño-Castiñeira B. Recovery rate
 and factors associated with smell and taste disruption in patients with coronavirus disease 2019.
 American journal of otolaryngology. 2021;42(5):102648.
- 54259.Mattioli F, Stampatori C, Righetti F, Sala E, Tomasi C, de Palma G. Neurological and cognitive543sequelae of Covid-19: a four month follow-up. Journal of neurology. 2021 Dec;268(12):4422–8.
- 544 60. Suárez-Robles M, Iguaran-Bermúdez MDR, García-Klepizg JL, Lorenzo-Villalba N, Méndez-Bailón
 545 M. Ninety days post-hospitalization evaluation of residual COVID-19 symptoms through a phone
 546 call check list. The Pan African medical journal. 2020 Dec 1;37:289.
- 547 61. Jacobson KB, Rao M, Bonilla H, Subramanian A, Hack I, Madrigal M, et al. Patients With
 548 Uncomplicated Coronavirus Disease 2019 (COVID-19) Have Long-Term Persistent Symptoms and
 549 Functional Impairment Similar to Patients with Severe COVID-19: A Cautionary Tale During a
 550 Global Pandemic. Clinical infectious diseases. 2021 Aug 2;73(3):e826–9.
- 551 62. Søraas A, Kalleberg KT, Dahl JA, Søraas CL, Myklebust TÅ, Axelsen E, et al. Persisting symptoms
 552 three to eight months after non-hospitalized COVID-19, a prospective cohort study. PloS one.
 553 2021 Aug 26;16(8):e0256142–e0256142.
- 63. Noel-Savina E, Viatgé T, Faviez G, Lepage B, Mhanna LT, Pontier S, et al. Severe SARS-CoV-2
 pneumonia: Clinical, functional and imaging outcomes at 4 months. Respiratory medicine and
 research. 2021 Nov;80:100822.
- 64. González-Hermosillo JA, Martínez-López JP, Carrillo-Lampón SA, Ruiz-Ojeda D, Herrera-Ramírez S,
 Amezcua-Guerra LM, et al. Post-Acute COVID-19 Symptoms, a Potential Link with Myalgic
 Encephalomyelitis/Chronic Fatigue Syndrome: A 6-Month Survey in a Mexican Cohort. Brain
 sciences. 2021 Jun 8;11(6):760.
- 561 65. Skala M, Svoboda M, Kopecky M, Kocova E, Hyrsl M, Homolac M, et al. Heterogeneity of post562 COVID impairment: interim analysis of a prospective study from Czechia. Virology journal. 2021
 563 Apr 12;18(1):73.

- 564 66. Seeßle J, Waterboer T, Hippchen T, Simon J, Kirchner M, Lim A, et al. Persistent symptoms in
 adult patients one year after COVID-19: a prospective cohort study. Clinical infectious diseases.
 2021 Jul 5;ciab611.
- 567 67. Wallis TJM, Heiden E, Horno J, Welham B, Burke H, Freeman A, et al. Risk factors for persistent
 abnormality on chest radiographs at 12-weeks post hospitalisation with PCR confirmed COVID569 19. Respiratory research. 2021 May 21;22(1):157.
- 57068.P S, Madhavan S, Pandurangan V. Prevalence, Pattern and Functional Outcome of Post COVID-19571Syndrome in Older Adults. Cureus. 2021 Aug 15;13(8):e17189–e17189.
- Motiejunaite J, Balagny P, Arnoult F, Mangin L, Bancal C, Vidal-Petiot E, et al. Hyperventilation as
 one of the mechanisms of persistent dyspnoea in SARS-CoV-2 survivors. The European
 respiratory journal. 2021 Aug 26;58(2):2101578.
- 575 70. Munker D, Veit T, Barton J, Mertsch P, Mümmler C, Osterman A, et al. Pulmonary function
 576 impairment of asymptomatic and persistently symptomatic patients 4 months after COVID-19
 577 according to disease severity. Infection. 2021 Jul 28;1–12.
- 578 71. Liang L, Yang B, Jiang N, Fu W, He X, Zhou Y, et al. Three-month Follow-up Study of Survivors of
 579 Coronavirus Disease 2019 after Discharge. Journal of Korean medical science. 2020 Dec
 580 7;35(47):e418–e418.
- 581 72. Boari GEM, Bonetti S, Braglia-Orlandini F, Chiarini G, Faustini C, Bianco G, et al. Short-Term
 582 Consequences of SARS-CoV-2-Related Pneumonia: A Follow Up Study. High blood pressure &
 583 cardiovascular prevention. 2021 Jul;28(4):373–81.
- 584 73. Wong AW, Shah AS, Johnston JC, Carlsten C, Ryerson CJ. Patient-reported outcome measures
 585 after COVID-19: a prospective cohort study. The European respiratory journal. 2020 Nov
 586 26;56(5):2003276.
- 587 74. Garrigues E, Janvier P, Kherabi Y, le Bot A, Hamon A, Gouze H, et al. Post-discharge persistent
 588 symptoms and health-related quality of life after hospitalization for COVID-19. The Journal of
 589 infection. 2020 Dec;81(6):e4–6.
- 59075.Lu Y, Li X, Geng D, Mei N, Wu P-Y, Huang C-C, et al. Cerebral Micro-Structural Changes in COVID-59119 Patients An MRI-based 3-month Follow-up Study. EClinicalMedicine. 2020 Aug;25:100484.
- Tabatabaei SMH, Rajebi H, Moghaddas F, Ghasemiadl M, Talari H. Chest CT in COVID-19
 pneumonia: what are the findings in mid-term follow-up? Emergency radiology. 2020
 Dec;27(6):711–9.
- Fortini A, Torrigiani A, Sbaragli S, lo Forte A, Crociani A, Cecchini P, et al. COVID-19: persistence of
 symptoms and lung alterations after 3-6 months from hospital discharge. Infection. 2021
 Oct;49(5):1007–15.
- 598 78. Sonnweber T, Sahanic S, Pizzini A, Luger A, Schwabl C, Sonnweber B, et al. Cardiopulmonary
 599 recovery after COVID-19: an observational prospective multicentre trial. The European
 600 respiratory journal. 2021 Apr 29;57(4):2003481.
- 601 79. Tawfik HM, Shaaban HM, Tawfik AM. Post-covid-19 syndrome in egyptian healthcare staff:
 602 Highlighting the carers sufferings. Electronic Journal of General Medicine. 2021;18(3).

603 80. Tleyjeh IM, Saddik B, AlSwaidan N, AlAnazi A, Ramakrishnan RK, Alhazmi D, et al. Prevalence and 604 predictors of Post-Acute COVID-19 Syndrome (PACS) after hospital discharge: A cohort study with 605 4 months median follow-up. PloS one. 2021 Dec 7;16(12):e0260568–e0260568. 606 81. Stewart S, Newson L, Briggs TA, Grammatopoulos D, Young L, Gill P. Long COVID risk - a signal to 607 address sex hormones and women's health. The Lancet regional health Europe. 2021 608 Dec;11:100242. 609 82. Lerner AM, Robinson DA, Yang L, Williams CF, Newman LM, Breen JJ, et al. Toward 610 Understanding COVID-19 Recovery: National Institutes of Health Workshop on Postacute COVID-611 19. Annals of internal medicine. 2021 Jul;174(7):999–1003. 612 83. Rajan S, Khunti K, Alwan N, Steves C, Greenhalgh T, Macdermott N, et al. In the wake of the 613 pandemic Preparing for Long COVID. World Health Organization. 2021; Available from: 614 http://www.euro.who.int/en/about-us/partners/ 615 84. Steinman MA, Auerbach AD. Managing chronic disease in hospitalized patients. JAMA internal 616 medicine. 2013 Nov 11;173(20):1857-8. 617 85. Fofana NK, Latif F, Sarfraz S, Bilal, Bashir MF, Komal B. Fear and agony of the pandemic leading to 618 stress and mental illness: An emerging crisis in the novel coronavirus (COVID-19) outbreak. 619 Psychiatry research. 2020 Sep;291:113230. 620 86. Al-Aly Z, Xie Y, Bowe B. High-dimensional characterization of post-acute sequelae of COVID-19. 621 Nature. 2021;594(7862):259-64. 622 87. Daugherty SE, Guo Y, Heath K, Dasmariñas MC, Jubilo KG, Samranvedhya J, et al. Risk of clinical 623 sequelae after the acute phase of SARS-CoV-2 infection: retrospective cohort study. BMJ (Clinical 624 research ed). 2021 May 19;373:n1098-n1098. 625 88. Korompoki E, Gavriatopoulou M, Hicklen RS, Ntanasis-Stathopoulos I, Kastritis E, Fotiou D, et al. 626 Epidemiology and organ specific sequelae of post-acute COVID19: A narrative review. The Journal 627 of infection. 2021 Jul;83(1):1–16. 628 89. Gavriatopoulou M, Korompoki E, Fotiou D, Ntanasis-Stathopoulos I, Psaltopoulou T, Kastritis E, et 629 al. Organ-specific manifestations of COVID-19 infection. Clinical and experimental medicine. 2020 630 Nov;20(4):493-506. 631 Wang T, Du Z, Zhu F, Cao Z, An Y, Gao Y, et al. Comorbidities and multi-organ injuries in the 90. 632 treatment of COVID-19. Lancet. 2020 Mar 21;395(10228):e52-e52. 633 91. Ramakrishnan RK, Kashour T, Hamid Q, Halwani R, Tleyjeh IM. Unraveling the Mystery 634 Surrounding Post-Acute Sequelae of COVID-19. Frontiers in immunology. 2021 Jun 30;12:686029. 635 92. Hayes LD, Ingram J, Sculthorpe NF. More Than 100 Persistent Symptoms of SARS-CoV-2 (Long 636 COVID): A Scoping Review. Frontiers in Medicine. 2021;8:2028. 637 93. Groff D, Sun A, Ssentongo AE, Ba DM, Parsons N, Poudel GR, et al. Short-term and Long-term 638 Rates of Postacute Sequelae of SARS-CoV-2 Infection: A Systematic Review. JAMA Network Open. 639 2021 Oct 13;4(10):e2128568-e2128568.

- 640 94. Nasserie T, Hittle M, Goodman SN. Assessment of the Frequency and Variety of Persistent
 641 Symptoms Among Patients With COVID-19: A Systematic Review. JAMA network open. 2021 May
 642 3;4(5):e2111417–e2111417.
- 643 95. Lopez-Leon S, Wegman-Ostrosky T, Perelman C, Sepulveda R, Rebolledo PA, Cuapio A, et al. More
 644 than 50 long-term effects of COVID-19: a systematic review and meta-analysis. Scientific Reports.
 645 2021;11(1):16144.
- 646 96. Michelen M, Manoharan L, Elkheir N, Cheng V, Dagens A, Hastie C, et al. Characterising long
 647 COVID: a living systematic review. BMJ Global Health. 2021 Sep 1;6(9):e005427.
- 648 97. Iqbal FM, Lam K, Sounderajah V, Clarke JM, Ashrafian H, Darzi A. Characteristics and predictors of
 649 acute and chronic post-COVID syndrome: A systematic review and meta-analysis.
 650 EClinicalMedicine. 2021 Jun 1;36.
- 651 98. Imrey PB. Limitations of Meta-analyses of Studies With High Heterogeneity. JAMA Network
 652 Open. 2020 Jan 10;3(1):e1919325–e1919325.
- 653 99. Amin-Chowdhury Z, Ladhani SN. Causation or confounding: why controls are critical for
- 654 characterizing long COVID. Nature Medicine. 2021;27(7):1129–30.

Study	Study Design	Location	Sample size	Day zero	Follow-up in days	Assessment Method	Severity
Taquet et al.	Nationwide	USA	236379	Diagnosis date	180	EMR	Mixed IP/OP/ICU
Mei et al.	Multicenter	China	3677	Hospital discharge	144	In person	IP
César Fernández-de-las- Peñaset al.	Multicenter	Spain	1950	Hospital discharge	340	Telephone	Mixed IP/ICU
Chaolin Huang et al.	Single center	China	1733	Hospital discharge	186	In-person	Mixed IP/ICU
Huang et al.	Single center	China	1276	Symptom onset	185, 349	In-person	Mixed IP/ICU
Fernández-de-las-Peñas et al.	Multicenter	Spain	1142	Hospital discharge	213	Telephone, EMR	Mixed IP/ICU
Kim et al.	Single center	South Korea	822	Symptom onset or diagnosis date	195	Online	Mixed IP/OP/ICU
Shang et al.	Multicenter	China	796	Hospital discharge	180	Telephone	Mixed IP/ICU
Søraas et al.	Multicenter	Norway	676	Diagnosis date	132	Online	ОР
Qin et al.	Single center	China	647	Hospital discharge	90	In person	IP
Maestre-Muñiz et al.	Single center	Spain	543	Hospital discharge	365	In person	Mixed OP/IP
Qu et al.	Multicenter	China	540	Hospital discharge	90	Telephone, Online	IP
Knut Stavem et al.	Multicenter	Norway	458	Symptom onset	117.5	Online, Postal/Mail	ОР
Menges et al.	Nationwide	Switzerland	431	Diagnosis date	220	Online	Mixed IP/OP/ICU
Shoucri et al.	Single center	USA	364	Diagnosis date	158	In-person, telephone	Mixed IP/OP/ICU

Table 1. Summar	of all included studies in descend	ing order by sample size.
-----------------	------------------------------------	---------------------------

Zayet et al.	Single center	France	354	Diagnosis date	289.1	Telephone, online	Mixed IP/OP/ICU
Augustin et al.	Single center	Germany	353	Symptom onset	207	In person	Mixed IP/ICU
Yin et al.	Single center	China	337	Symptom onset	203.4	In person	Mixed IP/ICU
Sigfrid et al.	Multicenter	United Kingdom	327	Hospital discharge	222	Telephone, In person, Postal	Mixed IP/ICU
Boscolo-Rizzo et al.	Multicenter	Italy	304	Symptom onset	365	Telephone	OP
DM Lombrado et al.	Single center	Italy	303	Diagnosis date	371	Telephone, EMR	Mixed IP/OP/ICU
Sathyamurthy P et al.	Single center	India	279	Hospital discharge	90	Telephone	Mixed IP/ICU
Blomberg et al.	Single center	Norway	247	Diagnosis date	180	In person	ОР
Clavario et al.	Single center	Italy	200	Hospital discharge	180	In-person	IP
Darcis et al.	Single center	Belgium	199	Hospital discharge	94, 180	In person	Mixed IP/ICU
Riestra-Ayora et al.	Single center	Spain	195	Diagnosis date	180	Telephone	Mixed OP/IP
Jennifer A. Frontera t al.	Multicenter	USA	192	Symptom onset	201	Telephone	Mixed IP/ICU
Pablo Parente-Arias et al	Multicenter	Spain	151	Symptom onset	100.5	Telephone, EMR	Mixed OP/IP
Han et al.	Multicenter	China	144	Symptom onset	180	In-person	Mixed IP/ICU
Sonnweber et al.	Multicenter	Austria	135	Symptom onset	103	In-person	Mixed IP/OP/ICU
Froidure et al.	Single center	Belgium	134	Hospital discharge	95	In person	Mixed IP/ICU
Suárez-Robles et al.	Single center	Spain	134	Hospital discharge	90	Telephone	Mixed IP/ICU

González-Hermosillo et al.	Single center	Mexico	130	Hospital discharge	90, 180	Telephone	Mixed IP/ICU
Nguyen et al.	Single center	France	125	Symptom onset	221.7	Telephone	IP
Garrigues et al.	Single center	France	120	Hospital admission	110.9	Telephone	IP/ICU*
Mattioli et al.	Single center	Italy	120	Diagnosis date	126	In person	Mixed OP/IP
Tawfik et al.	Multicenter	Egypt	120	Diagnosis date	120	In person	Mixed OP/IP
Leila Simani et al.	Single center	Iran	120	Hospital discharge	180	In-person	Mixed IP/ICU
Jacobson et al.	Single center	USA	118	Diagnosis date	119.3	In person	Mixed IP/OP/ICU
Caruso et al.	Single center	Italy	118	Initial CT chest	180	In person	Mixed IP/ICU
Motiejunaite et al.	Single center	France	114	Diagnosis date	90	In-person	Mixed IP/OP/ICU
Schandl et al.	Single center	Sweden	113	ICU discharge	152	In person	ICU
Aranda et al.	Single center	Spain	113	Diagnosis date	240	In person	Mixed IP/ICU
Mechi et al.	Single center	Iraq	112	Diagnosis date	274	In person	OP
Skala et al.	Multicenter	Czech Republic	102	Diagnosis date	90	In-person	Mixed OP/IP
T. J. M. Wallis et al.	Single center	United Kingdom	101	Hospital admission	96	Telephone, in- person	Mixed IP/ICU
Lindahl et al.	Single center	Finland	101	Hospital discharge	180	Online	Mixed IP/ICU
Biadsee et al.	Single center	Israel	97	Diagnosis date	231	Telephone	OP
Seeßle et al.	Single center	Germany	96	Symptom onset	152, 365	In person	Mixed OP/IP

Boari et al.	Single center	Italy	91	Hospital discharge	120	In-person	Mixed IP/ICU
Taboada et al.	Multicenter	Spain	91	ICU discharge	180	In-person	ICU
Mumoli et al.	Single center	Italy	88	Hospital admission	91	In person	IP
Parry et al.	Single center	India	81	Initial CT chest	100.6	EMR	Mixed IP/OP/ICU
Wong et al.	Multicenter	Canada	78	Symptom onset	91	In-person	Mixed IP/ICU
Dieter Munker et al.	Multicenter	Germany	76	Diagnosis date	120	In-person	Mixed IP/OP/ICU
Liang et al.	Single center	China	76	Hospital discharge	90	In-person	Mixed IP/ICU
Noel-Savina et al.	Single center	France	72	Diagnosis date	129	In-person	Mixed IP/ICU
Elkan et al.	Single center	Israel	66	Hospital discharge	270	Online, telephone	IP
Jessica González et al.	Single center	Spain	62	Hospital discharge	90	In-person, EMR	ICU
Yiping Lu et al.	Single center	China	60	Symptom onset	90	In-person	Mixed IP/ICU
Fortini et al.	Single center	Italy	59	Hospital discharge	123	In-person, telephone	IP
Wu et al.	Single center	China	54	Hospital discharge	180	In person	IP
Seyed Mohammad Hossein Tabatabaei et al.	Single center	Iran	52	Initial CT chest	91	EMR	Mixed IP/OP/ICU

IP = inpatient, OP = outpatient, ICU = intensive care unit, EMR = electronic medical records.

*ICU and IP results presented separately

Authors	Study Design (average follow up in days)	COVID-19 group definition	Comparator group definition	Symptom/outcome assessment method	Newcastle- Ottawa Scale (NOS)	Summary of findings
Huang et al.	Ambidirectional cohort (185 days and 349 days).	Patients with laboratory confirmed COVID-19 discharged from Jin Yin-tan Hospital (Wuhan, China). (n = 1164)	Community adults without COVID-19 from two districts of Wuhan city, matched with cases 1:1 by age, sex and comorbidities.* (n=1164)	Interview, physical examination, questionnaires.	7/9	COVID-19 patients had significantly higher prevalence of any of the following symptoms, as well as prevalence for each individual symptom: fatigue or muscle weakness, sleep difficulties, hair loss, smell disorder, palpitations, joint pain, decreased appetite, taste disorder, dizziness, diarrhea or vomiting, chest pain, sore throat or difficulty swallowing, skin rash, myalgia, headache, cough. COVID-19 patients had significantly higher mMRC dyspnea scores and reported significantly more difficulty with mobility, personal care, pain or discomfort, anxiety or depression and overall Quality of Life.
Taquet et al.	Retrospective cohort (180 days).	Patients with confirmed COVID-19 diagnosis, aged >= 10 years and alive at time of analysis. Data collected using the TriNetX Analytics Network, consisting of anonymized data from 81 million patients, primarily in the USA.	Propensity matched patients from the same database, with COVID-19 cases matched separately with influenza or respiratory tract infection (RTI, including influenza). Matched for age, sex, race, ethnicity and co- morbidities. ** (influenza n =	ICD-10 codes, EMR.	9/9	COVID-19 had significantly higher hazard compared to both the matched influenza cohort and RTI cohort for mood disorder, anxiety disorder, psychotic disorder, substance use disorder and insomnia.

Table 2. Summary of studies reporting Long COVID-19 symptom prevalence with a comparator group. mMRC = modified Medical Research

 Council.

		(matched with influenza cases n = 105579, matched with other respiratory tract infections (RTI) n = 236038)	105579, RTI n = 236038)			
Riestra-Ayora et al.	Prospective cohort† (180 days).	Health workers from a tertiary care hospital with suspected and symptomatic COVID-19, confirmed by PCR.(n = 195)	Health workers from a tertiary care hospital with suspected COVID- 19 with negative PCR, matched for sex and age (n = 125)	Interview.	5/9	There was no statistically significant difference in the recovery rate from olfactory dysfunction recovery between those with positive PCR for COVID-19 and those with suspected COVID-19 with negative PCR.
Mattioli et al.	Prospective cohort (126 days).	Healthcare workers at University Hospital of Brescia (Italy) with previous confirmed diagnosis of mild- moderate COVID- 19. (n = 120)	Healthcare workers from the same hospital not previously affected by COVID-19. (n = 30)	Interview, physical examination, questionnaires.	5/9	COVID-19 cases did not differ significantly from non-COVID controls in terms of neurological or cognitive deficits, but had significantly higher scores for anxiety and depression.
Elkan et al.	Retrospective cohort† (270 days).	Adult patients discharged from Shamir Medical Center (Israel) with confirmed COVID-19. (n = 42)	Age and sex matched patients hospitalized during the same period as COVID- 19 patients due to pneumonia or respiratory infection with	Questionnaire.	6/9	Although there are baseline differences in between groups in terms of co-morbidities, COVID-19 cases had significantly lower self- reported "health change" compared to controls.

			negative COVID-19 PCR. (n = 42)			
Søraas et al.	Prospective cohort (132 days).	Adults testing positive for COVID-19 across four laboratories in South-Eastern Norway, excluding participants later hospitalized. (n = 676)	Adults testing negative for COVID-19 across the same sites, excluding participants later hospitalized. (n = 6006)	Questionnaire.	9/9	COVID-19 positive participants were significantly more likely to report a worsening of health compared to one year prior to follow-up when compared to COVID-19 negative participants.***

*Cardiovascular disease, chronic respiratory disease, chronic kidney disease, hypertension, and diabetes.

**obesity, hypertension, diabetes, chronic kidney disease, asthma, chronic lower respiratory diseases, nicotine dependence, substance use disorder, ischaemic heart disease and other forms of heart disease, socioeconomic deprivation, cancer, haematological cancer, chronic liver disease, stroke, dementia, organ transplant, rheumatoid arthritis, lupus, psoriasis, and disorders involving an immune mechanism.

***Multivariate regression model including age, sex, chronic diseases, smoking, health professional occupation, income level, fitness and time from COVID-19 testing to follow-up.

⁺Study design was derived from manuscript method section and not author description.