Review

Immune Checkpoint Inhibition as a Strategy in the Neoadjuvant Treatment of Locally Advanced Rectal Cancer

Catherine R. Hanna,1–3 Séan M. O’Cathail,2,3 Janet Graham,2,3 Richard Adams,4 Campbell S.D. Roxburgh2,5

1Cancer Research United Kingdom Clinical Trials Unit, Glasgow, Scotland
2Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland
3Beatson West of Scotland Cancer Centre, Glasgow, Scotland
4Centre for Trials Research, Cardiff University and Velindre Cancer Centre, Cardiff, Wales
5Glasgow Royal Infirmary, Glasgow, Scotland

Address correspondence to Catherine R. Hanna (catherine.hanna@glasgow.ac.uk).

Source of Support: None. Conflict of Interest: All authors are investigators for the PRIME-RT trial (NCT04621370) which is supported by Astra-Zeneca.

Received: Nov 10, 2020; Revision Received: Dec 22, 2020; Accepted: Dec 23, 2020

ABSTRACT

The treatment of locally advanced rectal cancer (LARC) has seen major advances over the past 3 decades, with multimodality treatment now standard of care. Combining surgical resection with radiotherapy and/or chemotherapy can reduce local recurrence from around 20% to approximately 5%. Despite improvements in local control, distant recurrence and subsequent survival rates have not changed. Immune checkpoint inhibitors have improved patient outcomes in several solid tumor types in the neoadjuvant, adjuvant, and advanced disease setting; however, in colorectal cancer, most clinical trials have been performed in the metastatic setting and the benefits confined to microsatellite instability–high tumors. In this article, we review the current preclinical and clinical evidence for using immune checkpoint inhibition in the treatment of LARC and discuss the rationale for specifically exploring the use of this therapy in the neoadjuvant setting. We summarize and discuss relevant clinical trials that are currently in setup and recruiting to test this treatment strategy and reflect on unanswered questions that still need to be addressed within future research efforts.

Keywords: neoplasm, rectum, radiotherapy, chemotherapy, immunotherapy, immunology, clinical trials, immune checkpoint inhibitor, colorectal cancer

INTRODUCTION

Colorectal cancer (CRC) is the third most common cancer globally,[1] and approximately one-third of CRC tumors are located in the rectum.[2] Nearly three-quarters of patients diagnosed with rectal cancer present with localized, nonmetastatic disease.[2] Although surgery alone for early-stage tumors is often curative, in locally advanced disease, this approach has historically resulted in unacceptably high rates of local recurrence (16% in stage II and 29% in stage III).[3] Consequently, neoadjuvant treatment is recommended before surgery, based on high-quality magnetic resonance imaging (MRI) staging,[4,5] with the aim of reducing local recurrence rates to approximately 5%.[6] Although very effective from an oncological standpoint, the functional and psychological long-term sequelae of combined therapy incorporating radical surgery (± permanent stoma) are well recognized.[7] The use of multimodality neoadjuvant treatment for locally advanced rectal cancer (LARC) has resulted in three primary response patterns: pathological complete response (pCR) with rates of approximately 14%, some tumor regression in approximately 65%, and no macroscopic regression in approximately 20% of patients.[8–10] Thus, in a small proportion of well-selected patients who achieve complete clinical response (cCR), treatment de-escalation and “organ preservation” are possible, and these patients can potentially avoid the risks and sequelae of surgery.[11,12] Published series have demonstrated similar disease free survival (DFS) and overall survival (OS) for patients who have organ preservation compared with those who undergo surgery,[13,14] with 3-year colostomy-free survival of up to 74%.[14] For patients who respond poorly to neoadjuvant treatment, mortality is driven by distant relapse and up to 30% will die from distant disease.[15] Therefore, increasing the
proportion of patients who achieve cCR and reducing distant recurrence have both been identified as top research priorities.\[16\]

Over the past 2 decades, an improved understanding of the role of the immune system in response to malignant cells has spurred the development of targeted therapies to shape this response for therapeutic benefit.\[17\] Naturally occurring checkpoint molecules within the host immune system, for example PD-1 and CTLA-4, exist, which prevent immune overactivation. These T-cell surface proteins, which bind to PDL-1 on antigen-presenting cells (APCs) and tumor cells (PD-1), or B7-1 and B7-2 on APCs, downregulate immune activation.\[18\] Therapies that inhibit the binding of these checkpoint molecules therefore increase T-cell-mediated antitumor immunity. In clinical practice, immune checkpoint inhibitors (ICIs) have been particularly successful in tumor types such as melanoma, renal cancer, and non–small-cell lung cancer (NSCLC); however, for other solid organ tumors their use has lagged.\[19\]

In CRC, extremely encouraging response rates with immunotherapy treatment have been observed in a select group of patients, predicted in a large part on the presence of microsatellite instability (MSI) within the tumor. Errors in DNA base pairing introduced during cell replication are usually repaired via the mismatch repair (MMR) system and microsatellites are short DNA sequences that are markers of deficient MMR. Disease with MSI is defined by high mutational burden and very low or absent copy number variation, whereas microsatellite stable (MSS) disease is characterized by low mutation burden and high copy number variation.\[20\] MSI-High (MSI-H) disease is enriched in earlier CRC disease stages with rates of 10 to 15% for stage II-III,\[20\] falling to approximately 4% for patients with stage IV CRC.\[21\] Overall, MSI confers improved prognosis in nonmetastatic CRC,\[22\] but there is a trend to worse prognosis for those with stage IV disease.\[23\] An improved understanding of processes underlying MSI response/nonresponse, as well as identification of additional biomarkers, may be the key to unlocking the potential for more widespread treatment of CRC with immune checkpoint therapy by potentiating this beneficial biological effect in MSS CRC. This is particularly true in rectal cancer in which MSI has a low prevalence.\[24\]

This concise review aims to explain the rationale for using immune checkpoint inhibition as part of the neoadjuvant management of LARC. We first describe the current landscape of neoadjuvant therapy for LARC, followed by the clinical evidence for immune checkpoint inhibition in CRC and the biological rationale underpinning the combination of immune checkpoint inhibitors with treatments such as radiotherapy and chemotherapy. Finally, we summarize current clinical studies that are assessing this strategy and reflect on unanswered gaps in knowledge that still need to be addressed.

CONTEMPORARY NEOADJUVANT TREATMENT STRATEGIES FOR LOCALLY ADVANCED RECTAL CANCER

There are two principal radiotherapy strategies in widespread use for LARC: a short-course radiotherapy (SCRT) regimen (25 Gy in 5 fractions) and a long-course chemoradiotherapy (LCRT) regimen (45.0–50.4 Gy in 25–28 fractions) with concurrent fluoropyrimidine chemotherapy\[4,5\] (Fig. 1). Attempts to intensify neoadjuvant radiation sensitivity using additional or alternative cytotoxics, such as oxaliplatin,\[25–30\] have had inconsistent results and no additional agents are widely used concomitantly with radiotherapy as standard of care. The recently reported toxicity results from the phase III ARISTOTLE trial, which has tested LCRT intensification with irinotecan, have shown a modest increase in G3 toxicity, but with no significant difference in pCR rates (20.2 versus 17.4%; \(p = 0.45 \))\[31\] and the full primary outcome of DFS results from this trial are awaited.

Traditionally, SCRT treatment was followed immediately (within 1 week) by surgical resection; however, this approach had inferior tumor downstaging outcomes compared with LCRT,\[9,32\] albeit similar local control. It has since been demonstrated that leaving a gap of 4 to 8 weeks before surgery (SCRT-delay) offers equivalent oncological outcomes to LCRT and delay, or SCRT and immediate surgery, with less postoperative morbidity.\[33\] The SCRT-delay strategy also achieves higher rates of complete response not usually appreciated with SCRT-immediate surgery (pCR 11.8 versus 1.7%).\[33\] LCRT has traditionally been followed by surgery at approximately 6 weeks, as this interval demonstrated improved tumor downstaging compared with an interval of 2 weeks.\[34\] Despite data indicating that a longer interval from LCRT to surgery does not affect outcomes,\[35,36\] there is now a large evidence base to suggest that lengthening the interval between LCRT completion and surgery may enhance response.\[8,37–41\] In a recent analysis of pooled clinical trial data, Gambacorta et al\[42\] demonstrated that cumulative pCR rates were higher in a group of patients with a median interval of 6 weeks or more (18.8%) compared with those with an interval of less than 6 weeks (11.6%; \(p < 0.01 \)), with no significant difference between DFS or OS. There was a significant correlation between pCR and time from LCRT to surgery as a continuous variable (\(p < 0.01 \), linear regression coefficient 2.24) with a significant increase in cumulative pCR rate between week 4 (1%) and 11 (13%), plateauing at week 16 (pCR rate of 14%). Landmark studies in the neoadjuvant management of LARC are summarized in Figure 1.\[9,32,33,37,43–58\]

In addition to the maturation of tumor regression, exploiting the gap between completing SCRT/LCRT and subsequent resection is attractive for a number of reasons. Clinical studies administering adjuvant chemotherapy for rectal cancer have been negative,\[59–61\] closed
early due to poor recruitment[62,63] or were underpowered to define the benefit of adjuvant chemotherapy in patients with LARC treated with radiation[64]. Neoadjuvant chemotherapy appears to have better compliance[65,66] and earlier introduction of systemic therapy may impact on distant relapse. Last, there is the opportunity to further downstage the in situ disease and better understand the tumor biology. The results of a recent meta-analysis of outcomes from trials assessing total neoadjuvant strategies are detailed elsewhere \textit{(n = 28 studies)}.[67] In summary, this study showed the average pCR achieved with the addition of systemic chemotherapy to LCRT across all included studies was 22.4\% and this was increased by 39\% \textit{(p = 0.01)} compared with comparative studies \textit{(n = 10)} using LCRT alone.

Adding FOLFOX (5-fluorouracil and oxaliplatin) chemotherapy sequentially with LCRT produces encouraging pCR rates compared with LCRT alone,[38,68] and 2 randomized phase II trials have indicated that the

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image.png}
\caption{Landmark studies in the treatment of locally advanced rectal cancer. Asterisk (*) indicates awaiting full results. AIO: Arberistsgemeinschaft Internistische Onkologie; CA-POX: capecitabine and oxaliplatin; CRM: circumferential resection margin; CSS: cancer-specific survival; DFS: disease-free survival; EMVI: extramural vascular invasion; EORTC: European Organisation for Research and Treatment of Cancer; FFCD: Federation Francophone de Cancers; FOLFOX: 5-fluorouracil and oxaliplatin; FU: fluorouracil; LCRT: long-course chemoradiation; MFS: metastasis-free survival; MOF: 5-fluorouracil, vincristine and semustine; MRC: Medical Research Council; NCCTG: North Central Cancer Treatment Group; NCIC-CTG: National Cancer Institute of Canada Clinical Trials Group; NSABP: National Surgical Adjuvant Breast and Bowel Project; OPRA: organ preservation in rectal adenocarcinoma; OS: overall survival; OX: oxaliplatin; pCR: pathological complete response; RAPIDO: rectal cancer and preoperative induction therapy followed by dedicated operation; RT: radiotherapy; SCRT: short course radiotherapy; TME: total mesorectal excision; TROG: Trans-Tasman Radiation Oncology Group.}
\end{figure}
sequencing of neoadjuvant treatments may be important.[54,57] Specifically, a German phase II trial (CAO/ ARO/AIO-12) that compared giving chemotherapy before LCRT versus after radiotherapy, showed better treatment compliance and pCR rates for the latter approach.[54] The preliminary results from the Organ Preservation in Rectal Adenocarcinoma (OPRA) trial have shown than offering consolidation chemotherapy after LCRT improves the 3-year organ preservation rate (59%; 95% CI 50–69%; versus 43%; 95% CI 35–54%; log rank $p = 0.007$) compared with induction chemotherapy before LCRT.[57] For SCRT, radiotherapy followed by three cycles of FOLFOX produces similar response rates to oxaliplatin-based LCRT for cT3 and cT4 tumors.[69]

Even more encouraging are the results from a recent Dutch/Scandinavian Rectal cancer And Preoperative Induction therapy followed by Dedicated Operation (RAPIDO) trial, which demonstrated that SCRT followed by chemotherapy (18 weeks of CAPOX [capecitabine plus oxaliplatin]) before surgery improved disease-related treatment failure and pCR rates compared with LCRT with optional adjuvant chemotherapy (standard arm).[58,70,71] Importantly, this is one of the first trials to achieve improvement in distant recurrence rates, with a reduction of almost 7% for the experimental arm (hazard ratio [HR] 0.69; 0.53–0.89; $p = 0.04$). A similar finding in improving the rate of distant metastases was reported in the PRODIGE-23 trial,[55] which compared the addition of a triple chemotherapy combination (FOLFIRINOX: irinotecan 150 mg/m2 day 1 (D1), oxaliplatin 85 mg/m2 D1, 5-fluorouracil 400 mg/m2 bolus plus 2400 mg/m2 infusion over 46 hours) with LCRT in the neoadjuvant setting to LCRT alone, with high compliance rates with chemotherapy (> 90%) and radiotherapy (> 98%) being maintained, despite the intensive approach. In RAPIDO there was similarly good compliance when chemotherapy was delivered preoperatively (and improved compared with postoperatively). Although maturing data will be further interrogated, these data continue to support the argument that using systemic treatment in the neoadjuvant setting, rather than postoperatively, is beneficial when used with SCRT or LCRT.[58,70,71]

Other systemic anticancer agents have been trialed in this space but with minimal success. For example, the multicenter phase II AVACROSS study added anti-vascular endothelial growth factor (bevacizumab) therapy to oxaliplatin-based chemotherapy followed by LCRT.[72] Although feasible, with an encouraging pCR rate of 36% (95% CI 22.3%–51.3%), postoperative complications were unexpectedly high, with two deaths (4%), five anastomotic leaks (11%), and 11 patients requiring second operations (23%). The addition of epidermal growth factor receptor-directed therapy (cemtuzimab)[73,74] also failed to meet pre-specified improvements in pCR-related endpoints. The outcomes from the parallel arm phase II platform trial NRG-GI002, which is testing the addition of radiosensitizers to neoadjuvant radiation as part of a total neoadjuvant approach, are eagerly awaited.[75] A summary of the treatments used and the pCR rates attained from the trials investigating intensification of neoadjuvant treatment is presented in Table 1.

Despite the limited success of targeted agents, the underlying clinical rationale for treatment intensification in the neoadjuvant setting for patients with LARC remains. For example, in the RAPIDO trial, despite an almost doubling of pCR rates in the experimental arm, approximately 10% of patients in both arms had an R1/2 resection, and despite the reduction in distant relapse, more than a fifth of patients developed distant metastatic disease. This underscores an ongoing need to find treatments that improve downstaging and decrease systemic relapse. Biomarkers to identify patients who are likely to be poor responders to radiation and cytotoxic chemotherapy alone are particularly pressing. The molecular landscape of CRC suggests that immunomodulation with ICIs is a logical next step.

CURRENT ROLE OF CHECKPOINT INHIBITION IMMUNOTHERAPY IN COLORECTAL CANCER

Until recently, documented responses to ICIs have largely been confined to colorectal tumors with deficiency in MMR. The MMR status of colorectal tumors can be tested using DNA-based methods, which look for the number of microsatellite markers (2–5: MSI-H, 1: MSI-Low [MSI-L], or 0: MSS), or immunohistochemistry can be used to look for deficiency in one of the MMR proteins (MLH-1, MSH-2, MSH-6, PMS-2). Tumors displaying loss of MMR are known as dMMR and are considered MSI-H, and those without loss of these proteins are known as MMR proficient (pMMR) and are considered MSI-L or MSS.[76] One of the reasons underpinning impressive responses of dMMR tumors to immunotherapy relates to the high mutational burden in MSI-H tumors, which leads to numerous tumor neoantigens that are recognized and targeted by the host immune system, reflected by high levels of tumor-infiltrating lymphocytes (TILs).[77] The marked differences in tumor responses based on MMR status, in CRC and other cancer types, led to the tumor agnostic US Food and Drug Administration approval of immunotherapy for any MSI-H cancers.[78]

Several trials have demonstrated extremely encouraging response rates to immune checkpoint inhibition in patients with metastatic dMMR CRC, even those who were heavily pretreated (Table 2).[79–86] Moving treatment into the first-line setting has improved responses and using doublet immunotherapy treatment has increased response rates even further. For example, recent results from the Checkmate-142 trial reported an objective response rate of 69% in the first-line setting using dual-checkpoint inhibition for patients with dMMR CRC.
<table>
<thead>
<tr>
<th>Trial or Author Name</th>
<th>Year</th>
<th>Type of Study</th>
<th>No. of Patients</th>
<th>Type of Neoadjuvant Treatment</th>
<th>pCR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lyon R90–01[34]</td>
<td>1999</td>
<td>Randomized trial</td>
<td>201</td>
<td>Radiotherapy with surgery after 2 weeks vs radiotherapy with surgery after 6–8 weeks</td>
<td>pCR not reported</td>
</tr>
<tr>
<td>Stein[35]</td>
<td>2003</td>
<td>Prospective cohort</td>
<td>40</td>
<td>LCRT with irinotecan and 5-fluorouracil. Group A: Surgery 4–8 weeks post LCRT. Group B: Surgery 10–14 weeks post LCRT.</td>
<td>21% (4–8 weeks), p = 0.97</td>
</tr>
<tr>
<td>CAO/ARO/AI0–94[47]</td>
<td>2004</td>
<td>Phase III RCT</td>
<td>823</td>
<td>Preoperative vs postoperative LCRT</td>
<td>9% in preoperative LCRT arm</td>
</tr>
<tr>
<td>Polish Trial (Bujko)[9]</td>
<td>2006</td>
<td>Phase III RCT</td>
<td>312</td>
<td>Preoperative SCRT vs LCRT</td>
<td>0.7% (SCRT) (Significance not reported)</td>
</tr>
<tr>
<td>Tulchinsky[40]</td>
<td>2008</td>
<td>Retrospective cohort study</td>
<td>132</td>
<td>LCRT followed by surgery at 7 weeks or less vs > 7 weeks</td>
<td>17% (7 weeks or less)</td>
</tr>
<tr>
<td>ACCORD-12/0405-Prodige 2[25]</td>
<td>2010</td>
<td>Phase III RCT</td>
<td>598</td>
<td>LCRT vs LCRT with oxaliplatin</td>
<td>13.9% (LCRT), p = 0.09</td>
</tr>
<tr>
<td>Kim[74]</td>
<td>2010</td>
<td>Single-arm phase II trial</td>
<td>40</td>
<td>LCRT with concurrent capcitabine, cetuximab and irinotecan</td>
<td>23.10%</td>
</tr>
<tr>
<td>GCR-3[65]</td>
<td>2010</td>
<td>Phase II randomized trial</td>
<td>108</td>
<td>LCRT with neoadjuvant vs postoperative chemotherapy (CAPOX)</td>
<td>13% (postoperative), p = 0.94</td>
</tr>
<tr>
<td>STAR-01[29]</td>
<td>2011</td>
<td>Phase III RCT</td>
<td>747</td>
<td>Induction XELOX and bevacizumab followed by radiotherapy with concomitant XELOX and bevacizumab</td>
<td>16% both arms</td>
</tr>
<tr>
<td>TROG 01.04[32]</td>
<td>2012</td>
<td>Phase III RCT</td>
<td>326</td>
<td>Preoperative SCRT vs LCRT</td>
<td>15% (LCRT)</td>
</tr>
<tr>
<td>CAO/ARO/A10–04[28]</td>
<td>2012</td>
<td>Phase III RCT</td>
<td>1236</td>
<td>LCRT with adjuvant 5-fluorouracil vs LCRT with concomitant and adjuvant FOLFOX</td>
<td>17% (LCRT with FOLFOX), p = 0.038</td>
</tr>
<tr>
<td>EXPERT-C[73]</td>
<td>2012</td>
<td>Randomized phase II trial</td>
<td>165</td>
<td>Induction CAPOX followed by LCRT with adjuvant CAPOX vs the same regimen with CAPOX-cetuximab (CAPOX-C)</td>
<td>9% (CAPOX), 11% (CAPOX-C), p = 1.0</td>
</tr>
<tr>
<td>Sloothaak[39]</td>
<td>2013</td>
<td>Retrospective cohort study</td>
<td>1593</td>
<td>LCRT followed by surgery at < 13 weeks, 13–14 weeks, 15–16 weeks, > 16 weeks after the start of LCRT</td>
<td>10.3% (< 13 weeks), 13.1% (13–14 weeks), 18.0% (15–16 weeks), 11.0% (> 16 weeks), p = 0.013 8.7% (< 8 weeks), 11.7% (6–8 weeks), 13.2% (> 8 weeks), p < 0.001</td>
</tr>
<tr>
<td>Probst[8]</td>
<td>2015</td>
<td>Retrospective cohort study</td>
<td>17,255</td>
<td>Exact treatment unknown. Time from LCRT to surgery < 6 weeks, 6–8 weeks or > 8 weeks.</td>
<td>25% (LCRT + 2 mFOLFOX6), 30% (LCRT + 4 mFOLFOX6), 38% (LCRT + 6 mFOLFOX6), p = 0.0036</td>
</tr>
<tr>
<td>Garcia-Aguilar[38]</td>
<td>2015</td>
<td>Phase III RCT</td>
<td>259</td>
<td>LCRT with surgery at 6–8 weeks vs LCRT + 2 x mFOLFOX6 vs LCRT + 4 x mFOLFOX6 vs LCRT + 6 x mFOLFOX6</td>
<td>14% (Fluorouracil-radiotherapy), 27.5% (mFOLFOX6-radiotherapy), 6.6% (mFOLFOX6)</td>
</tr>
<tr>
<td>FOWARC[30]</td>
<td>2016</td>
<td>Phase III RCT</td>
<td>495</td>
<td>Fluorouracil-radiotherapy vs mFOLFOX6-radiotherapy vs mFOLFOX6</td>
<td>pCR not reported</td>
</tr>
<tr>
<td>PETACC-6[26]</td>
<td>2016</td>
<td>Phase III RCT</td>
<td>1094</td>
<td>LCRT with capcitabine adjuvant chemotherapy vs LCRT with neoadjuvant and adjuvant CAPOX</td>
<td>pCR not reported</td>
</tr>
<tr>
<td>GRECCAR-6[16]</td>
<td>2016</td>
<td>Phase III RCT</td>
<td>265</td>
<td>LCRT followed by surgery at 7 vs 11 weeks</td>
<td>15% (7 week arm), 17.4% (11 week arm), p = 0.5983</td>
</tr>
<tr>
<td>Polish 2 Trial (Bujko)[53]</td>
<td>2016</td>
<td>Phase III RCT</td>
<td>541</td>
<td>SCRT + FOLFOXx3 (Group A) vs LCRT w FU/OX + delay (Group B)</td>
<td>16% (Group A), 12% (Group B), p = 0.17</td>
</tr>
<tr>
<td>Stockholm III[31]</td>
<td>2017</td>
<td>Phase III RCT</td>
<td>840 overall trial, 697 for pCR substudy</td>
<td>SCRT vs SCRT + delay vs LCRT + delay</td>
<td>10.4% (SCRT + delay), 2.2% (LCRT + delay)</td>
</tr>
</tbody>
</table>
Although these responses in both treatment naïve and heavily pretreated patients with metastatic dMMR CRC are exciting, approximately 95% of patients with metastatic CRC have pMMR disease. Traditionally, responses to ICIs in patients with metastatic CRC unscreened for MMR status have been very low (<10%), and the proposed mechanisms of resistance of pMMR colorectal tumors to ICIs are discussed elsewhere. Nevertheless, some encouraging data have recently been presented in abstract form from a trial that recruited patients with pMMR CRC (Table 2). Patients with heavily pretreated metastatic CRC (n = 179) were randomized to receive either a combination of durvalumab (anti-PDL-1) 1500 mg 4 weekly with tremelimumab (anti-CTLA 4) 75 mg on day 1, or best supportive care. Patients in the former group survived longer compared with the control arm (6.6 months median OS versus 4.1 months, p = 0.07, HR 0.72, 95% CI 0.54–0.97). In patients with pMMR tumors, the HR for death was 0.66 (90% CI 0.48–0.89; p = 0.02) and those with a tumor mutational burden achieved significantly longer survival when treated with immunotherapy compared with best supportive care alone (median OS 5.5 versus 3.0 months; p = 0.004). The results of this trial show that using combination treatment is one way in which resistance of pMMR disease to ICIs may be overcome.

Another strategy for overcoming this resistance is to use immunotherapy earlier in the disease trajectory. Recently published evidence from an early-phase trial (NICT 03026140) in the neoadjuvant setting for metastatic colon cancer, has shown improved response rates to immunotherapy compared with those previously seen for metastatic patients, and in particular for those with pMMR disease. Patients with dMMR and pMMR colon cancer were treated with concurrent anti-PDI and anti-CTLA4 therapy. All of those with dMMR disease displayed a pathological response, but, encouragingly, so did 27% (95% exact CI 8%–55%) of those with pMMR disease. Patients with dMMR and pMMR colon cancer were treated with concurrent anti-PDI and anti-CTLA4 therapy.

RATIONALE FOR USE OF IMMUNOTHERAPY AS A NEOADJUVANT STRATEGY FOR RECTAL CANCER

There are important distinctions between the metastatic and neoadjuvant setting that provide a strong...
Table 2.—Selection of clinical trials that have tested immune checkpoint inhibition for dMMR and pMMR CRC

<table>
<thead>
<tr>
<th>Trial</th>
<th>No. of Patients</th>
<th>Disease Setting</th>
<th>MMR Status</th>
<th>Previous Treatment</th>
<th>Trial Treatment</th>
<th>Trial Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checkmate-142</td>
<td>119</td>
<td>mCRC</td>
<td>dMMR</td>
<td>≥1 line of previous treatment</td>
<td>Nivolumab alone</td>
<td>ORR 31% nivolumab</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nivolumab + ipilimumab</td>
<td>ORR 55% nivolumab + ipilimumab</td>
</tr>
<tr>
<td>Checkmate-142</td>
<td>45</td>
<td>mCRC</td>
<td>dMMR</td>
<td>No previous treatment for mCRC</td>
<td>Nivolumab + ipilimumab</td>
<td>ORR 69%</td>
</tr>
<tr>
<td>Keynote-016</td>
<td>41</td>
<td>Cohort A: dMMR mCRC (n = 11) Cohort B: pMMR mCRC (n = 21) Cohort C: dMMR non-CRC (n = 9)</td>
<td>dMMR and pMMR</td>
<td>≥2 prior lines of treatment</td>
<td>Pembrolizumab</td>
<td>dMMR CRC 40% immune-related ORR pMMR 0% immune related ORR</td>
</tr>
<tr>
<td>Keynote-164</td>
<td>63</td>
<td>mCRC</td>
<td>dMMR</td>
<td>≥1 line of previous treatment</td>
<td>Pembrolizumab</td>
<td>ORR 33%</td>
</tr>
<tr>
<td>Keynote-164</td>
<td>61</td>
<td>mCRC</td>
<td>dMMR</td>
<td>≥2 prior lines of treatment</td>
<td>Pembrolizumab</td>
<td>ORR 33%</td>
</tr>
<tr>
<td>Keynote-177</td>
<td>307</td>
<td>mCRC</td>
<td>dMMR</td>
<td>No previous treatment for mCRC</td>
<td>Pembrolizumab versus chemotherapy ± cetuximab or bevacizumab</td>
<td>Overall response 44% (pembrolizumab) Overall response 33% chemotherapy</td>
</tr>
<tr>
<td>NCT01693562</td>
<td>36</td>
<td>mCRC</td>
<td>dMMR</td>
<td>Unknown</td>
<td>Durvalumab</td>
<td>ORR 22%</td>
</tr>
<tr>
<td>NCT02227667</td>
<td>11</td>
<td>mCRC</td>
<td>dMMR</td>
<td>Unknown</td>
<td>Durvalumab</td>
<td>ORR 27%</td>
</tr>
<tr>
<td>Canadian Cancer Trials Group CO.26 study</td>
<td>179</td>
<td>mCRC</td>
<td>dMMR (n = 2), pMMR (n = 166), unknown (n = 12)</td>
<td>Patients had received all available standard therapies</td>
<td>Durvalumab + tremelimumab + best supportive care versus best supportive care</td>
<td>OS 6.6 months versus 4.1 months (HR 0.72, 90% CI 0.54–0.97, p = 0.07) Disease control* 22.7% versus 6.6%. (HR 4.16, 90% CI 1.4–12.3, p = 0.006)</td>
</tr>
<tr>
<td>NICHE</td>
<td>35 evaluable</td>
<td>Neo-adjuvant colon cancer</td>
<td>dMMR (n = 15) and pMMR (n = 20)</td>
<td>Nil (neo-adjuvant setting)</td>
<td>Nivolumab + ipilimumab (with or without celecoxib for pMMR patients)</td>
<td>100% pathological response dMMR disease, 27% pMMR disease</td>
</tr>
</tbody>
</table>

dMMR: mismatch repair deficient; HR: hazard ratio; mCRC, metastatic colorectal cancer; ORR: objective response rate; pMMR: mismatch repair proficient.

* Disease control consists of complete response/partial response or stable disease.
rationale to further investigate the use of immune checkpoint inhibition neoadjuvantly for LARC. With the primary disease in situ, there are differences in the intrinsic tumor biology, as well as extrinsic microenvironment. Also, the combination of immunotherapy with current neoadjuvant treatments of radiation and chemotherapy potentially offer a therapeutic advantage compared with using immune checkpoint inhibition alone.

Favorable Tumor and Host Immune Environment

In vivo and early trial evidence suggest that augmented host antitumor immune responses are triggered when immune checkpoint inhibition is given with the primary tumor in situ. Liu et al. demonstrated stronger expansion of tumor-specific CD8+ T cells in blood and peripheral organs after neoadjuvant treatment with anti-PD-1 and anti-CD137 therapies in a mouse breast cancer model, compared with post-surgery. Half of mice treated with this combination neoadjuvantly displayed long-term survival, versus none in the adjuvant group. In the clinical setting, Blank et al. reported results of a small, early-phase, but translationally rich study, which treated patients with stage III melanoma with combination immune checkpoint inhibition in the neoadjuvant versus adjuvant setting. Again, an increased expansion of T-cell clones was observed preoperatively. Similar results have also been observed in patients with NSCLC and bladder cancer.

In the study by Blank et al., the rate of grade 3/4 immune-related adverse events was much higher (90% in both arms) compared with the expected incidence of toxicity from studies using the same combination in patients with stage IV melanoma. This high level of toxicity combined with the high level of pathological responses seen in this study imply that, whether given neoadjuvantly or adjuvantly, in patients with earlier-stage disease there is less intrinsic suppression of the host immune system. When using immune checkpoint inhibition earlier in the disease trajectory, a lower dose may therefore achieve the same efficacy as in the metastatic setting and may be required to reduce unacceptable levels of adverse events related to immune stimulation.

In summary, this preclinical evidence and clinical results from patients with colon cancer and other cancer types provide an impetus to test neoadjuvant immunotherapy more extensively for treatment of LARC.

Immune Checkpoint Inhibition and Radiation Treatment

Local effects

Traditional radiobiological dogma dictates that radiation-induced tumor cell death is mediated via direct DNA damage, free radical damage, and subsequent DNA double-strand breaks, which if not repaired leads to catastrophic death. But it is increasingly recognized that the tumor response also may be a result of the effects on the immune microenvironment. Radiation stimulates an antitumor immune response via several mechanisms, such as increased antigen release and novel peptide antigen expression on tumor cells, production of interferon type 1 complement activation, translation of calretinin to the tumor cell surface, increased expression of MHC class I, expression of RAE-1, and release of damage-associated molecular patterns such as HMGB1 and ATP leading to dendritic cell recruitment. The aggregate effect is to induce local, tumor-specific T-cell responses. In turn, this may prime the local tumor environment for treatment with immunotherapy. Combination therapy has already achieved success in the clinic for some solid tumor types, such as NSCLC, bladder cancer, and melanoma.

It remains unclear which radiotherapy fractionation offers most synergy in combination with checkpoint inhibition. Dovedi and colleagues found similar combinatorial activity from anti-PD-1 treatment and radiotherapy across a range of radiotherapy fractionation schedules. Others demonstrated that a higher dose per fraction (5 Gy per fraction) increased calreticulin release, stimulating an increase in immune recognition compared with more fractionated regimens. In contrast, they showed that the optimum ratio of effector to T regulatory cells occurs when a dose of 2 Gy per fraction is used.

Several other variables, such as host, tumor, and treatment-related factors influence responses in particular, the scheduling of immunotherapy delivery in relation to radiotherapy. For example, clinical trial evidence from lung cancer has shown that survival is increased when immune checkpoint inhibition is delivered after radiation in the stage III setting. Preliminary findings from the VOLTAGE-A trial in LARC also showed encouraging results with sequential treatment. In contrast, preclinical evidence from Dovedi et al. implies that earlier use of immunotherapy and specifically its combination with radiation may lead to improved responses. Dovedi et al. demonstrated that in vivo treatment with radiation and concurrent anti-PD-L1 inhibition contributed to overcome radiation-induced immune suppression, and correlated with improved survival versus radiotherapy alone. This improvement in survival was not observed when sequential treatment (immune-checkpoint inhibition at day 7 post-radiotherapy) was used. Analysis of tumor-infiltrating CD8+/CD4+ T cells at 24 hours after the last dose of radiotherapy demonstrated an acute increase in PD-1 expression, which was almost eliminated by day 7. This suggests deletion or anergy of tumor-specific CD8+ T cells by the later time point as the mechanism for the differential response dependent on the timing at which immune checkpoint inhibition is delivered.
In summary, radiotherapy alters the local tumor immune microenvironment in a way that could be exploited with immune checkpoint inhibition to produce a synergistic therapeutic response. More work is required in both the preclinical and clinical settings to understand the optimal timing for immune-checkpoint delivery. Clinical evidence implies that improved responses are seen with sequential treatment, but preclinical studies suggest that concomitant treatment may be able to enhance responses further. Last, the binary concept of “immune activation” may need to be supplanted for a more qualitative measure of the type of immune response elicited by different doses, fractionations, and schedules.

Distant effects

The effects of immunotherapy-radiotherapy combinations may not only occur at the local tumor level. Although the immune-stimulatory effects of radiotherapy are predominantly in the radiation field, several case reports on tumor types such as melanoma[116] and NSCLC[117] have demonstrated tumor regression distant to the irradiated site when radiotherapy is combined with immune checkpoint inhibition. These abscopal effects (shrinkage of untreated metastases concurrently with immune checkpoint inhibition) are rarely seen with radiotherapy in isolation.[118] This can be explained in part by considering how the immune system shapes cancer growth. It is hypothesized that the host immune system acts to control malignant growth initially via elimination, in which immunity functions as an extrinsic tumor suppressor or later on, via an equilibrium state, whereby the immune system holds remaining tumor cells in a state of functional dormancy. Finally, tumors become clinically apparent when they escape immune control, a state in which the tumor has learned to evade the host immunity. This three-stage process of elimination, equilibrium, and escape is referred to as immunoeediting.[119]

Radiotherapy can elicit a tumor-specific T-cell response that, when combined with systemic immune checkpoint inhibition, switches immunoeediting by the host immune system back into the elimination and equilibrium phases. This may explain why disease sites may regress even though they are distant to the primary tumor that is being irradiated.[118] Supporting this hypothesis, Dovedi et al.[112] demonstrated that radiotherapy alone increases T cells in an irradiated, but not out-of-field tumor, and that similarly anti-PD-1 therapy alone did not increase T-cell infiltration in either the primary or distant tumor. The combination of radiotherapy and anti-PD-1 therapy led to increased T-cell infiltration in both the irradiated and out-of-field tumor and an increase in T-cell diversity compared with non-treated or anti-PD-1 monotherapy-treated mice. Sequential immune inhibition did not achieve the same level of abscopal effect as concurrent treatment, suggesting that exhaustion of tumor-infiltrating T cells may occur after radiation unless the PD-1/PD-L1 axis is blocked.

In conclusion, combination of radiotherapy and immunotherapy has the potential to improve out-of-field, distant micrometastatic disease by fundamentally resetting the host–tumor immune interaction.

Immune Checkpoint Inhibition and Chemotherapy

There has been concern that cytotoxic chemotherapy, when used concomitantly with immunotherapy in the neoadjuvant setting[120] may kill proliferating T cells and dampen the induction of a broad T-cell response. Despite this, Vincent et al.[121] demonstrated that fluoropyrimidine therapy is capable of eliminating immunosuppressive myeloid-derived cells within the tumor microenvironment, thereby enhancing host antitumor immune responses. Furthermore, Tesniere et al.[122] showed that oxaliplatin elicits immunogenic cell death in microsatellite stable colon tumors. Preclinical data presented in abstract form (Dosset et al, unpublished data, 2018) demonstrated that the combination of fluoropyrimidine and oxaliplatin is capable of increasing PD-L1 and CD8+ T-cell tumor infiltration in animal models.[123] The combination treatment with anti-PD1 and FOLFOX therapy further improved tumor volume reduction compared with chemotherapy or anti-PD1 monotherapy in CT26 and MC38 mice.[124] Evidence of immune activation in patients with rectal cancer after four cycles of FOLFOX has also been demonstrated and quantified by increases in CD3, CD8, MHC1, and PD-L1 in rectal cancer biopsies[124] with similar findings reported by Teng et al.[125] These data suggest, again, that the received wisdom of “immune activation” as a binary switch that is turned off by cytotoxic treatment needs refining. Indeed, combining chemotherapy and immunotherapy in CRC could lead to a synergistic therapeutic effect at both the local and systemic levels.

Overall, evidence from CRC and other tumor types provides a sound rationale to test immune checkpoint inhibition in combination with radiotherapy and/or chemotherapy. Although questions remain over which dose, fractionation, and scheduling of chemo-radiotherapy will produce optimal clinical responses in combination with immunotherapy, these uncertainties can only be addressed with future, translationally rich clinical studies.

CURRENT EVIDENCE AND ONGOING TRIALS INVESTIGATING CHECKPOINT INHIBITORS FOR RECTAL CANCER IN THE NEOADJUVANT SETTING

The intense interest in exploring these questions in vivo has culminated in a wealth of clinical trials that are either currently recruiting, or in set up, that use a named checkpoint inhibitor in this context (Table 3). All of the trials use radiation treatment (6/22 SCRT and 15/22...
Table 3.—Current trials testing the use of immune checkpoint blockade in the neoadjuvant setting for treatment of LARC (search of clinicaltrials.gov October 2020 using terms rectal cancer/adenocarcinoma plus immunotherapy/PD-1/PDL-1/CTLA-4)

<table>
<thead>
<tr>
<th>NCT Number (Study Name)</th>
<th>Trial Phase</th>
<th>Study Intervention</th>
<th>Immune Checkpoint Target</th>
<th>Scheduling of Radiation/ICI</th>
<th>Host Institution</th>
<th>Status</th>
<th>Primary Endpoint</th>
<th>Target Recruitment, n</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT03102047 (II)</td>
<td>II</td>
<td>Durvalumab for patients with MSS rectal cancer (stages II-IV) after completion of LCRT and before surgery.</td>
<td>PD-L1</td>
<td>Sequential</td>
<td>NSABP Foundation Inc.</td>
<td>Recruiting</td>
<td>Median NAR score (compared with historical controls using Wilcoxon test)</td>
<td>47</td>
</tr>
<tr>
<td>NCT02948348 (VOLTAGE)[115]</td>
<td>Ib/II</td>
<td>Nivolumab delivered sequentially after LCRT for patients with LARC.</td>
<td>PD-1</td>
<td>Sequential</td>
<td>Takayuki Yoshino, National Cancer Center Hospital East</td>
<td>Recruiting</td>
<td>pCR. (Phase Ib will determine the RPIID)</td>
<td>50</td>
</tr>
<tr>
<td>NCT03299660 (Avec-Rec)</td>
<td>II</td>
<td>Avelumab delivered post LCRT presurgery in patients with resectable LARC.</td>
<td>PD-L1</td>
<td>Sequential</td>
<td>Peter MacCallum Cancer Centre, Australia</td>
<td>Recruiting</td>
<td>pCR rate as assessed in surgical specimen</td>
<td>45</td>
</tr>
<tr>
<td>NCT04124601 (CHINOREC)</td>
<td>II</td>
<td>Neoadjuvant LCRT with sequential ipilimumab and nivolumab in patients with rectal cancer.</td>
<td>CTLA-4, PD-1</td>
<td>Sequential</td>
<td>State Hospital Wiener Neustadt, Austria and Medical University Vienna, Austria</td>
<td>Recruiting</td>
<td>Incidence of treatment emergent adverse events</td>
<td>80</td>
</tr>
<tr>
<td>NCT04340401</td>
<td>II</td>
<td>3 cycles of CAPOX (capecitabine plus oxaliplatin) and SHR-1210 (anti-PD-1 inhibitor), followed by LCRT, followed by 2 cycles of consolidation CAPOX before surgery for patients with rectal cancer.</td>
<td>PD-1</td>
<td>Concomitant</td>
<td>Beijing Cancer Hospital</td>
<td>Recruiting</td>
<td>pCR rate</td>
<td>25</td>
</tr>
<tr>
<td>NCT03921684</td>
<td>II</td>
<td>LCRT followed by 6 cycles of mFOLFOX6 in combination with nivolumab before surgery for patients with LARC</td>
<td>PD-1</td>
<td>Sequential</td>
<td>Baruch Brenner, Rabin Medical Center</td>
<td>Recruiting</td>
<td>pCR and incidence of treatment emergent adverse events</td>
<td>29</td>
</tr>
<tr>
<td>NCT04017455 (TARZAN)</td>
<td>II</td>
<td>SCRT (5Gy x 5) followed by treatment with bevacizumab (B) and atezolizumab (A). 1 cycle of B, followed by 2 cycles of B and A combination therapy, followed by 1 cycle of A</td>
<td>PD-L1</td>
<td>Sequential</td>
<td>The Netherlands Cancer Institute</td>
<td>Recruiting</td>
<td>Clinical complete and near-complete response rate as assessed by MRI and endoscopy</td>
<td>38</td>
</tr>
<tr>
<td>NCT04293419 (DUREC)</td>
<td>II</td>
<td>Patients with high risk rectal cancer receive 6 cycles of mFOLFOX6, followed by LCRT, followed by 8–12 week rest period before surgery. Durvalumab administered throughout (including in the rest period).</td>
<td>PD-L1</td>
<td>Concomitant</td>
<td>Vall d’Hebron Institute of Oncology (VHIO)</td>
<td>Recruiting</td>
<td>pCR rate</td>
<td>58</td>
</tr>
<tr>
<td>NCT04109755 (PEMREC)</td>
<td>II</td>
<td>Patients with T3–4N0M0 or TanyN1M0 rectal cancer treated with SCRT with pembrolizumab (200mg) starting on the first day of RT, followed by surgery.</td>
<td>PD-1</td>
<td>Concomitant</td>
<td>University Hospital, Geneva, Switzerland</td>
<td>Recruiting</td>
<td>Tumor regression grade using Manndard regression grade score</td>
<td>25</td>
</tr>
<tr>
<td>NCT Number (Study Name)</td>
<td>Trial Phase</td>
<td>Study Intervention</td>
<td>Immune Checkpoint Target</td>
<td>Scheduling of Radiation/ICI</td>
<td>Host Institution</td>
<td>Status</td>
<td>Primary Endpoint</td>
<td>Target Recruitment, n</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------</td>
<td>--------------------</td>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>-----------------</td>
<td>--------</td>
<td>------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>NCT04304209 (AVANA)</td>
<td>II/III</td>
<td>Cohort A: Patients with dMMR/MSI-H LARC receive 3 weekly sintilimab (anti-PD-1), followed by surgery or watch and wait protocol, followed by 4 cycles of adjuvant sintilimab ± CAPOX chemotherapy according to pCR results. Cohort B: pMMR/MSI-L/MSS LARC. All patients receive LCRT with CAPOX chemotherapy, followed by surgery, followed by 4 cycles of adjuvant CAPOX chemotherapy. Patients will be randomised to determine if they receive sintilimab adjuvantly or not.</td>
<td>PD-1</td>
<td>Sequential</td>
<td>Sun Yat-sen University, China</td>
<td>Recruiting</td>
<td>pCR</td>
<td>195</td>
</tr>
<tr>
<td>NCT03854799 (AVANA)</td>
<td>II</td>
<td>Patients with LARC receive LCRT with avelumab followed by TME at 8–10 weeks after the end of LCRT</td>
<td>PD-L1</td>
<td>Sequential</td>
<td>Gruppo Oncologico del Nord-Ovest, Italy</td>
<td>Recruiting</td>
<td>pCR rate</td>
<td>101</td>
</tr>
<tr>
<td>NCT04033365 (PANDORA)</td>
<td>II</td>
<td>Patients with operable rectal cancer treated with LCRT, followed by durvalumab starting 1 week after completion of LCRT. Patients will undergo surgery 10–12 weeks after the end of LCRT.</td>
<td>PD-L1</td>
<td>Sequential</td>
<td>Istituto Scientifico Romagnolo per lo Studio e la cura dei Tumori</td>
<td>Recruiting</td>
<td>pCR rate</td>
<td>60</td>
</tr>
<tr>
<td>NCT02921256</td>
<td>II</td>
<td>Patients with LARC randomized to 1/3 arms. Arm I: mFOLFOX6 up to 8 weeks, followed by LCRT, followed by surgery. Arm II: mFOLFOX6 up to 8 cycles, followed by LCRT with veliparib, followed by surgery. Arm III: mFOLFOX6 up to 8 weeks followed by LCRT in combination with pembrolizumab for up to 6 cycles starting on day 1 of RT.</td>
<td>PD-1</td>
<td>Concomitant</td>
<td>National Cancer Institute (NCI)</td>
<td>Temporarily stopped for assessment</td>
<td>Change in NAR score (baseline up to 3 years)</td>
<td>348</td>
</tr>
<tr>
<td>NCT03127007 (R-IMMUNE)</td>
<td>Ib/II</td>
<td>Atezolizumab delivered concomitantly with LCRT for stage II/III rectal cancer. Phase Ib safety. Phase II efficacy. Randomisation to Experimental arm: Fixed dose 1200 mg/3 weeks atezolizumab given with standard LCRT and until week 12 and surgery planned at week 15 versus standard arm: LCRT followed by surgery.</td>
<td>PD-L1</td>
<td>Concomitant</td>
<td>Grand Hôpital de Charleroi</td>
<td>Recruiting</td>
<td>Rate of adverse events. Rate of pCR</td>
<td>54</td>
</tr>
</tbody>
</table>
Table 3.—Continued

<table>
<thead>
<tr>
<th>NCT Number (Study Name)</th>
<th>Trial Phase</th>
<th>Study Intervention</th>
<th>Immune Checkpoint Target</th>
<th>Scheduling of Radiation/ICI</th>
<th>Host Institution</th>
<th>Status</th>
<th>Primary Endpoint</th>
<th>Target Recruitment, n</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT04518280 II</td>
<td>II</td>
<td>Patients with LARC randomised to SCRT with either induction or consolidation CAPOX plus anti-PD-1 toripalimab. SCRT followed by 6 cycles CAPOX (1000 mg/m² D1-14 3 weekly capecitabine plus 130 mg/m² oxaliplatin 3 weekly) with 240mg toripalimab 3 weekly or 2 cycles of CAPOX with anti-PD-1 followed by SCRT followed by a further 4 cycles of CAPOX with anti-PD-1. Both arms will be followed with TME surgery.</td>
<td>PD-1</td>
<td>Sequential</td>
<td>Fudan University, China</td>
<td>Not yet recruiting</td>
<td>pCR rate</td>
<td>130</td>
</tr>
<tr>
<td>NCT04231552 I/II</td>
<td>I/II</td>
<td>Single arm study recruiting patients with LARC and investigating treatment with SCRT followed by CAPOX (capcitabine 1000 mg/m² BD for 14 days with oxaliplatin 130 mg/m², both 3 weekly) given concomitantly with anti-PD1 camrelizumab (200 mg D1 every 3 weeks) for two cycles.</td>
<td>PD-1</td>
<td>Sequential</td>
<td>Wuhan Union Hospital, China</td>
<td>Recruiting</td>
<td>pCR rate</td>
<td>30</td>
</tr>
<tr>
<td>NCT04558684 I/II</td>
<td>I/II</td>
<td>Single arm study recruiting patients with LARC and investigating treatment with SCRT followed by two cycles of CAPOX (capecitabine 1000 mg/m² BD for 14 days with oxaliplatin 130 mg/m², both 3 weekly) with anti-PD1 camrelizumab (200 mg D1 every 3 weeks) for six cycles. Patients who achieve a pCR will be considered for an organ preservation approach and all others will undergo TME surgery.</td>
<td>PD-1</td>
<td>Sequential</td>
<td>Wuhan Union Hospital, China</td>
<td>Not yet recruiting</td>
<td>Clinical complete response rate</td>
<td>30</td>
</tr>
<tr>
<td>NCT04357587 I</td>
<td>I</td>
<td>Single arm study recruiting patients with dMMR stage II/III rectal adenocarcinoma or patients with oligometastatic stage IV disease who are candidates for surgery. All patients will receive LCRT in combination with pembrolizumab (anti-PD-1).</td>
<td>PD-1</td>
<td>Concomitant</td>
<td>Case Comprehensive Cancer Centre</td>
<td>Recruiting</td>
<td>Rate of adverse events, proportion of patients able to complete planned neoadjuvant treatment protocol and the proportion of patients with any delay in planned surgery more than 30 days.</td>
<td>10</td>
</tr>
</tbody>
</table>
Table 3.—Continued

<table>
<thead>
<tr>
<th>NCT Number (Study Name)</th>
<th>Trial Phase</th>
<th>Study Intervention</th>
<th>Immune Checkpoint Target</th>
<th>Scheduling of Radiation/ICI</th>
<th>Host Institution</th>
<th>Status</th>
<th>Primary Endpoint</th>
<th>Target Recruitment, n</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT04443543</td>
<td>II</td>
<td>Adaptive design cohort study. Patients with LARC will all receive LCRT with 625 mg/m² BD of capecitabine and irinotecan 80mg/m2 (UGT1A128 6/6) or 65mg/m2 (UGT1A128 6/7). Arm 1: patients with MSI-H/dMMR tumours get 3 cycles of Tislelizumab (BGB-A317) 200mg. Arm 2: patients with MSS/pMMR tumors get consolidation chemotherapy according to response to radiation (either XELIRI or FOLFIRINOX). Any patient who achieves a complete clinical response will be managed with a watch and wait approach rather than radical surgery. Doses for XELIRI: capecitabine 1000 mg/m² BD D1–14 with irinotecan 200 mg/m² D1 every 3 weeks. FOLFIRINOX: irinotecan 150 mg/m² D1, oxaliplatin 85mg/m² D1, 5-FU 400mg/m² bolus plus 2400 mg/m² infusion over 46 hours.</td>
<td>PD-1</td>
<td>Sequential</td>
<td>Fudan University, China</td>
<td>Not yet recruiting</td>
<td>Clinical complete response rate</td>
<td>222</td>
</tr>
<tr>
<td>NCT04165772</td>
<td>II</td>
<td>Single arm study treating patients with dMMR stage II/III rectal adenocarcinoma with TSR-02 (anti-PD-1) 500mg flat dose every 3 weeks for 6 months (9 cycles) before standard chemoradiation and surgery. LCRT with an elective dose of 47 Gy and a simultaneous integrated boost to 54 Gy to the primary tumor. Patients who achieve a CR after TSR-02 treatment will proceed to nonoperative follow-up. Those not achieving a cCR will proceed to LCRT.</td>
<td>PD-1</td>
<td>Sequential</td>
<td>Memorial Sloan Kettering Cancer Center</td>
<td>Recruiting</td>
<td>pCR or cCR at 12 months</td>
<td>30</td>
</tr>
<tr>
<td>NCT04621370 PRIME-RT</td>
<td>II</td>
<td>Parallel arm study treating patients with LARC. Arm A: SCRT with concomitant durvalumab followed by mFOLFOX6 with durvalumab. Arm B: LCRT with concomitant durvalumab followed by mFOLFOX6 with durvalumab. Total durvalumab in both arms: 4 × 4 weekly 1500 mg cycles. Safety run-in (n ≥6) may include patients with metastatic disease and primary rectal cancer in situ. Main trial (n = 42): LARC patients only.</td>
<td>PD-L1</td>
<td>Concomitant</td>
<td>Glasgow CRUK Clinical Trials Unit</td>
<td>Not yet recruiting</td>
<td>pCR or cCR at 6 months</td>
<td>48</td>
</tr>
</tbody>
</table>
LCRT) and one trial (PRIME-RT) investigates SCRT and LCRT in two parallel treatment arms. In total, 11 of these trials (50%) use systemic cytotoxic chemotherapy, excluding concomitant radiosensitizing chemotherapy, and one trial (CHINOREC) uses combination immunotherapy (nivolumab and ipilimumab). The most common endpoint is a measure of pathological or clinical complete response (17/22, 77%) and several trials have translational secondary endpoints. Two trials have the neoadjuvant rectal score as the primary endpoint. Although pCR is an outcome that has been very commonly studied in previous neoadjuvant trials (see Table 1), it has not been confirmed to correlate with longer-term outcomes such as DFS or OS.\[56\] If these trials (Table 3) demonstrate an improvement in pCR, larger confirmatory studies will be required to understand how this surrogate endpoint correlates with meaningful differences in patient outcomes.

Given the potential overlapping adverse reactions with combination treatment, the safety data from these trials are eagerly awaited. To date, there have been encouraging results from the VOLTAGE trial (NCT02948348; see Table 2)\[115\] in which of 39 patients, no grade 4 nivolumab-related adverse events were recorded and all severe immune-related adverse events had fully resolved before surgery. Accounting for the one patient who refused surgical resection following a complete clinical response to treatment, 38 (97%) of 39 patients proceeded to radical surgery.

Biomarkers of Response to Immune-Checkpoint Inhibition

Currently, a potential predictive biomarker for response to ICIs in metastatic CRC is MMR, as shown by the KEYNOTE-016 trial,\[81\] but if validated, will be relevant to a minority of rectal patients in the LARC setting. Critical to the success of the outlined studies will be the exploration of existing, and discovery of novel, biomarkers of selection and response. The opportunity to perform on-treatment biopsies of the primary tumor and tumor microenvironment, as well as pathological examination of the resection specimen taken at the time of radical surgery must be grasped. Within the dMMR population, many patients could be expected to not respond or progress despite treatment with immune checkpoint inhibitors. Prognostic (TILs, high frameshift mutation load, and tumor mutational burden) and predictive biomarkers (TILs, CD8\(^+\) as part of Immuno-score) within this group of patients need exploring. Loupakis et al\[126\] recently demonstrated, in a retrospective cohort study of patients with dMMR CRC treated with ICIs, that higher levels of TILs correspond to higher response rates and survival. PD-L1 has shown clear utility as a biomarker to predict response to immunotherapy in other tumor types such as NSCLC,\[127\] but has yet to demonstrate utility for patients with CRC. Neither the KEYNOTE-016 trial, nor the Checkmate-142 trial showed any association between objective response rates
and PD-L expression. Thus, prognostic and predictive biomarkers for pMMR CRC tumors remain elusive. Those under investigation include PD-L1, the Immunoscore, POLE (DNA epsilon polymerase) mutations, major histocompatibility complex class II expression, the consensus molecular subtypes classification, and tumor mutational burden.[92,128–130]

In LARC, there is conflicting retrospective evidence regarding the prognostic value of PD-L1 expression undergoing LCRT, with uncertainty as to whether it represents a marker of improved[131] or poor[132] prognosis. The Immunoscore is a CD3+/CD8+ based method of assessment (performed manually[133] or via image analysis software[134,135]), which groups tumors according to a semiquantitative grade based on presence of high- or low-grade CD3+/CD8+ cell assessments. The Immunoscore has also been retrospectively analyzed in a cohort of LARC[136] and showed that higher scores (I4 versus I0) correlate significantly with improved DFS and OS in patients with operable rectal cancer and may also predict for response to LCRT. The combination of PD-L1 status (≥ 1%) and CD8/Treg ratio (≥ 2.3) predicting for response to neoadjuvant immune checkpoint inhibitor/chemotherapy/radiotherapy combination treatment in pMMR and dMMR LARC has emerged as an exciting novel biomarker candidate, which requires further exploration in a larger patient cohort.[115]

CONCLUSION

The current priorities for improving the outcomes of LARC include reducing distant relapse rates while simultaneously reducing the morbidity associated with multimodality treatment. In this review, we have summarized the key preclinical and clinical evidence that underpins the potential role of ICIs in achieving both of these goals. Using immune checkpoint inhibitors in the neoadjuvant setting, where treatment compliance is likely to be improved, could increase the proportion of patients who respond and avoid surgical resection. Although the gap between radiation and surgery exists to allow for maturation of tumor response, it also provides an obvious opportunity to deliver additional treatments and an excellent platform for translational research. There is good evidence from the metastatic setting that some rectal cancers are responsive to immune checkpoint inhibition. Moving immune-targeted treatment into the neoadjuvant setting, where there is a higher burden of tumor antigens present to incite a host immune response, is a logical progression. Available preclinical evidence suggests that combining immunotherapy with radiation in particular leads to better responses, but questions remain around the optimal dose fractionation of radiation and scheduling of immune checkpoint treatment. Finally, there is a high unmet need to identify biomarkers of response to radiation alone and radiotherapy/immune checkpoint inhibitor combinations in patients with LARC. These are imperative to understand which patients may or may not benefit from treatment intensification and will be critical to the success of this approach. There are a large number of early clinical trials that are currently investigating immune checkpoint inhibition in the treatment of LARC, the results of which are eagerly awaited and will shape the future landscape of immunotherapy research.

Acknowledgments

We thank Lorraine MacLeod at the Beatson West of Scotland Cancer Centre, Greater Glasgow and Clyde library service for her help in performing a literature search.

References

