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Abstract

Mass movement deposit grain-size distributions (GSDs) record initiation, transport

and deposition mechanisms, and contribute to the rate at which sediment is exported

from hillslopes to channels. Defining the GSD of a mass movement deposit is a signif-

icant challenge because they are often difficult to access, are heterogeneous in plan-

form and with depth, contain grain sizes from clay (<63 μm) to boulders (>1 m), and

require considerable time to calculate accurately. There are numerous methods used

to measure mass movement GSDs, but no single method alone can measure the

entire range of grain sizes. This paper compares five common methods for determin-

ing mass movement deposit GSDs to assess how their accuracy may affect their

applicability to different research areas. We applied an automated wavelet analysis

(pyDGS), Wolman pebble counts, survey tape counts, manual photo counts and siev-

ing to three different mass movement deposits (two debris flows, one rockslide) in

Tredegar, Wales and the Longmen Shan, China. We found that pyDGS and survey

tape counts produced comparable GSDs to sieving over a single order of magnitude.

PyDGS required calibration to achieve accurate results, limiting its use for many

applications. In Tredegar, Wolman pebble counts over-estimated grain sizes in the

lower 80% of the distribution relative to the other four methods used. We demon-

strate that method choice can introduce significant uncertainties, particularly at the

edges of the distributions, such that D16 values differ by up to a factor of five. These

methodological uncertainties limit GSD comparisons across studies, particularly

where these are used to infer processes within deposits. To minimize these chal-

lenges, the methods chosen should be both carefully reported and consistent with

the research question.
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1 | INTRODUCTION

Mass movement deposit grain-size distributions (GSDs) can constrain

the source of the material eroded (Dunning, 2006; Marc et al., 2021),

the transport and emplacement mechanisms of the deposit (de Haas

et al., 2015; Makris et al., 2020) and moderate sediment transport

rates in fluvial systems (Neely & DiBiase, 2020; Sklar et al., 2017,

2020). Mass movement deposit GSDs are typically heterogeneous,

can extend up to eight orders of magnitude (from <1 μm to >10 m),

and vary spatially and with depth. These GSD characteristics reflect

source properties, such as lithology or fracture spacing (Attal &

Lavé, 2006; Marc et al., 2021) and processes occurring during transit,

including winnowing (Crosta et al., 2007; Dufresne & Dunning, 2017;

Locat et al., 2006). There remains no single method that can record

GSDs over the range and scale of most mass movement deposits

(Table 1). Hence, different approaches or combinations of approaches
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T AB L E 1 A summary of the key advantages, limitations and resolutions of the methods used to measure mass movement deposit GSDs and
key references for the use of these methods

Method Advantages Limitations Sampling range and size Key references

Volumetric sieving
Frequency/volume

• Can collect subsurface

GSDs by digging pits or

using vertical

exposures.

• Can constrain the

proportion of grains

<1 mm.

• Limit to the maximum

grain size obtained

using sieving directly

(typically 80 mm).

• Time consuming, which

limits its application to

detailed, small sections

of the deposit.

• Difficult to apply to

questions of spatial

variability in deposits.

• May require some larger

grains to be measured

by hand to obtain a full

GSD for each pit.

<0.063–80 mm. We use a

maximum limit of

80 mm and record

grains >80 mm by hand

in the field.

We found a

1 m � 1 m � 0.5 m pit

took �6–8 h to dig and

sieve. As such, only a

small proportion of the

deposit can be

sampled. Here, we

sieved 1000 kg per pit.

Church et al. (1987)

recommend that the

largest particles should

represent no more than

5% of the total sample

mass. However, this

approach is often

unachievable in mass

movement deposits,

where extremely large

boulders are present.

For example, if grains

>50 kg are present,

>950 kg of sediment

must be sieved. As a

result, mass movement

GSDs are often

generated from smaller

than ideal sample sizes,

without the rigorous

reporting of sampling

that is common in

fluvial geomorphology.

Attal and Lavé (2006),

Bunte and Abt (2001a,

b), Casagli et al. (2003),

Chen et al. (2001),

Dunning (2006),

Genevois et al. (2001),

Hubert and

Filipov (1989), Ibbeken

et al. (1998), Major and

Voight (1986), Sosio

et al. (2007), Whipple

and Dunne (1992),

Zhang et al. (2011,

2015)

Pebble count and survey
tape

Frequency/number

• Can record all three

axes of a grain, which is

useful when working

with non-spherical

grains.

• Sampling typically

involves >100 grains.

This is quick relative to

other methods (�1 h)

• Only used to collect

surface GSDs.

• Field intensive.

• Bias towards sampling

only visible grains.

The smallest detectable

grain size is typically

gravel as this is easily

visible. Studies typically

give a minimum grain

size of 4–5 mm (Casagli

et al., 2003; Sklar

et al., 2020). However,

when survey tapes are

used, the minimum

detectable grain size is

thought to be lower

(�2 mm) (Bunte &

Abt, 2001a).

The number of grains

measured can be as low

as 100, however this

value increases with

more heterogeneous

deposits. We used a

sample size of 300 for a

small, heterogeneous

landslide deposit.

Attal and Lavé (2006),

Casagli et al. (2003),

Hubert and

Filipov (1989), Kim and

Lowe (2004), Major and

Voight (1986), Vallance

and Scott (1997),

Zhang et al. (2011)

Manual photo analysis
Frequency/number

• Requires considerably

less time in the field in

comparison to other

methods.

• Only used to collect

surface GSDs.

• Bias towards sampling

coarser grains.

The minimum grain size

depends on the

resolution of the image

and the maximum grain

Attal and Lavé (2006),

Casagli et al. (2003),

Crosta et al. (2007),

Genevois et al. (2001),

(Continues)
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have been used (e.g. Attal & Lavé, 2006; Attal et al., 2015; Casagli

et al., 2003; Crosta et al., 2007; Dunning, 2006; Zhang et al., 2015).

These approaches typically involve measuring the b-axis of grains

using two methods, one of which can capture the finest grains, such

as sieving, and another for the coarsest grains, such as Wolman peb-

ble counts or photo-based techniques, and combining these to pro-

duce a new distribution (Attal & Lavé, 2006; Casagli et al., 2003;

Fripp & Diplas, 1993).

Mass movement deposits often segregate by grain size during

transit, which results in the development of facies within deposits

(Attal & Lavé, 2006; Dufresne & Dunning, 2017; Dunning, 2006; Marc

et al., 2021; Vallance & Savage, 2000). For example, flowing mass

movements create coarse fronts and levees within their deposits due

to kinetic sieving and shear driven size segregation (Attal &

Lavé, 2006; Johnson et al., 2012; Marc et al., 2021). Similarly, rock ava-

lanche deposits often have a finer core and coarse carapace associated

with high shear at the landslide base (Dufresne & Dunning, 2017). As a

result, bimodal and multimodal distributions are often observed in

landslide dams and rock avalanches where comminution and shear are

prevalent (Casagli et al., 2003; Crosta et al., 2007). In these cases,

process-based studies of the emplacement of these deposits may

require high spatial sampling resolutions across all three dimensions

(Casagli et al., 2003; Makris et al., 2020). It is therefore important to

ensure methods can readily characterize spatial and vertical changes

across a range of grain sizes from clay to boulders.

Wide and multimodal GSDs also limit the applicability of single

grain size metrics like D50 to characterize a mass movement deposit

(Casagli et al., 2003). A full GSD is useful for inferring processes

that involve multiple different grain sizes, such as comminution and

kinetic sieving (Dufresne & Dunning, 2017; Makris et al., 2020), and

also provides insight into the textural properties of deposits (Casagli

et al., 2003). It is therefore more useful to use several quartiles,

such as D5, D16, D50, D84 and D95, as opposed to a single metric to

characterize the entire GSD for mass movement deposits (Folk &

Ward, 1957; Purinton & Bookhagen, 2021). The higher percentiles,

such as D95 and D99, are prone to larger uncertainty, which arises

because of the difficulties associated with sampling the coarsest

grains and the often heavy-tailed nature of the distributions. This

uncertainty can be mitigated by increasing the sample size, to

include as much of the coarser grains as possible (Eaton

et al., 2019; Guerit et al., 2018; Purinton & Bookhagen, 2021).

However, increasing sample size subsequently results in increased

sampling time per site.

Automated and semi-automated techniques that obtain GSDs

from static photos may mitigate the large sample sizes required for

wide, multimodal GSDs (Table 2). Photo-based methods are also less

invasive, typically require less field work and can measure surface

GSDs across larger areas over a shorter time period (Table 2;

Purinton & Bookhagen, 2021). These methods include both image

segmentation and texture-based approaches (Table 2). Image

T AB L E 1 (Continued)

Method Advantages Limitations Sampling range and size Key references

• Does not disturb the

surface of the deposit

(this allows the method

to be compared directly

to sieving for the same

area).

• UAV imagery can be

used in less accessible

locations.

• The results can be

reproduced.

• Can only measure

visible axes and some

grains may overlap and

therefore the b-axis will

be measured

incorrectly.

size depends on the

extent of the photo.

This technique can be used

across large surface

areas, for example by

using UAVs. In this

study, photos were

taken with a

50 cm � 50 cm frame

for reference with

resolution >0.12 mm

pi�1.

Ibbeken et al. (1998),

Kellerhals and

Bray (1971), Zhang

et al. (2015)

pyDGS
A texture-based approach

which uses the spatial

and spectral

properties of an image

to generate a GSD

Frequency/number

• Does not require

calibration, though our

results suggest some

calibration is necessary

when choosing the

shape parameter.

• Requires considerably

less time in the field in

comparison to other

methods.

• UAV imagery can be

used in less accessible

locations.

• Does not disturb the

surface of the deposit.

• Only used to collect

surface GSDs.

• Similar to manual photo

counts, can only detect

visible grains.

• Coarsest grain size is

determined by photo

window size.

• Errors may be

generated if grains are

wet, imbricated or

similar in colour.

Minimum grain size is

determined by photo

resolution and number

of pixels required to

clearly identify a grain.

Based on v4.0, pyDGS

detects grains �6 pixels

in length.

Maximum grain size is

dependent on maxscale

parameter. Whilst

UAVs can be used to

survey large surface

areas, to measure

grains 10 mm in size,

photo resolution would

need to be 1.66 mm

pi�1. Here, we use

photos with at least

0.12 mm pi�1

resolution.

Buscombe (2013)

Beach GSDs (Prodger

et al., 2017)

Dryland basin GSDs
(Michaelides

et al., 2018)
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segmentation techniques isolate and measure the visible axes of indi-

vidual grains (e.g Graham et al., 2005; Purinton & Bookhagen, 2019),

whereas texture-based techniques are statistical approaches which

produce GSDs using information about how intensity and colour vary

within 2D and 3D images (Buscombe, 2013; Lang et al., 2021), for

example a high-resolution digital elevation model (DEM).

T AB L E 2 The two main types of automated and semi-automated methods for measuring GSDs from photos; key references refer to the use
of these methods in mass movement deposits as well as other deposits

Method Advantages Limitations Sampling range and size

Key examples and

references

Image segmentation
These techniques aim to

isolate and measure

the visible axes of the

individual grains in an

image

• Requires considerably

less time in the field in

comparison to other

methods.

• Does not disturb the

surface of the deposit.

• Methods may require

extensive calibration

and time to understand,

however once running

they can readily be

applied to large areas.

• UAV imagery can be

used in less accessible

locations.

• Do not require user

intervention, which

reduces operator bias.

• Obtain measurements

for each individual

grain, from which

interpolation is not

required to obtain

percentiles.

• Only used to collect

surface GSDs.

• Most methods need

calibrated detection

algorithms to isolate

individual grains or large

calibration datasets.

Therefore, not

universally applicable.

• Coarsest grain size is

determined by photo

window size, camera

height and resolution.

• Can only measure

clearly visible grains.

• Limited by image

complexity, such as

vegetation, variations in

colour and texture (e.g.

veins) and imbrication.

The minimum grain size

depends on the

resolution of the image

and the maximum grain

size depends on the

extent of the photo.

The PebbleCounts

algorithm can detect

grains ≥20 pixels

(Purinton &

Bookhagen, 2019).

Purinton and

Bookhagen (2021) use

automated

PebbleCounts with

minimum grain size of

2.5 cm.

Automated image

segmentation methods

can use cameras on

tripods or UAVs to

survey large areas. For

example, Purinton and

Bookhagen (2021)

surveyed areas

between 944 and 3470

m2 for sand- and

gravel-bed rivers in the

South-Central Andes.

Graham et al. (2005, 2010),

Storz-Peretz and

Laronne (2013)

Two examples of semi- and

automated image

segmentation

techniques. Both were

developed using fluvial

GSDs.

Basegrain (Detert &

Weitbrecht, 2012)

PebbleCounts (Purinton &

Bookhagen, 2019,

2021)

Texture-based
approaches

These techniques generate

grain-size distributions

and grain-size

percentiles using

statistics based on the

texture of a 2D or 3D

image

• UAV imagery can be

used in less accessible

locations.

• Does not necessarily

require fieldwork,

though often needs to

be calibrated.

• UAVs have been used

successfully in

homogeneous fluvial

environments to obtain

GSDs.

• Does not disturb the

surface of the deposit.

• Once the photos are

taken and the model is

running, larger areas can

be sampled quicker.

• Only used to collect

surface GSDs.

• Requires very high-

resolution DEMs or

images to measure the

finest grains.

• UAVs to generate 3D

point clouds have not

worked well in poorly

sorted environments

(Westoby et al., 2015).

• Typically requires high

computer processing

power.

• Bias towards coarse

grains.

• Coarsest grain size is

determined by photo

window size.

• Generally, requires site-

specific calibration to

establish relationships

between texture and

grain size in each

location.

• May require extensive

measurements of GSDs

in the field to compare

or train the algorithm.

The minimum grain size

depends on the

resolution of the image

and the maximum grain

size depends on the

extent of the photo.

Can be used to survey

larger areas than

sieving and Wolman

pebble counts, based

on the reduced field

time required. Though

high-resolution imagery

is required to detect

the finest grains.

Semivariance (Carbonneau

et al., 2004, 2005)

Autocorrelation
(Rubin, 2004)

Wavelet transforms

(Buscombe, 2013)

Convolutional neural
networks
(Buscombe, 2020; Lang

et al., 2021)

3D-based roughness
(Brasington et al., 2012;

Neverman et al., 2019;

Vázquez-Tarrío

et al., 2017; Westoby

et al., 2015)

Structure from motion and
TLS to produce DEMs
of mass movement

deposits (Bitelli
et al., 2004; Cucchiaro

et al., 2018; Dunning

et al., 2009; Gupta &

Shukla, 2018;

Saunders, 2014)
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Traditional methods used to measure GSDs are often limited by

sampling size, inaccessibility and time constraints, as described in

Table 1. The disadvantages associated with using each method are

likely to introduce uncertainty into the measured GSDs, for example

by excluding fine grain sizes or using small sample sizes (Casagli

et al., 2003). Uncertainty in measured GSDs may affect our ability to

compare across different studies. Whilst the uncertainty associated

with comparing different methods has been widely discussed for flu-

vial GSDs (e.g. Bunte & Abt, 2001a,b; Wohl et al., 1996), the effect of

method choice on comparisons of mass movement deposit GSDs has

been less well explored. The uncertainties associated with different

methods may be more pronounced in mass movement deposits,

which have wider GSDs, greater angularity and grains in excess of

1 m. GSDs may differ in terms of methodological uncertainty, sample

size and sample type, which can affect our ability to accurately

develop process-based conclusions regarding transport and deposi-

tional mechanisms in mass movement deposits. Methodological

uncertainties refer to how much the GSD varies depending on the

method chosen, sample size refers to the number of grains measured

and sample type refers to the region of the deposit considered by

each method (i.e. surface or subsurface). Here we compare and com-

bine GSDs generated for three different deposits using five different

methods. We compare the methods using D16, D50 and D84 percen-

tiles as well as statistically using chi-square tests.

2 | STUDY SITES

We chose mass movements from three field sites, a rockslide deposit

south of Tredegar, Wales and two debris flows in the Longmen Shan,

China (Figure 1).

In Tredegar the rockslide was triggered within the Carboniferous

Deri Formation, a sedimentary unit of interbedded sandstone, mud-

stone and siltstone (Barclay et al., 1989; George, 2015). The rockslide

was triggered in a former quarry face during a winter storm on a 26�

slope and measured as 26.5 m long and 15 m at the widest point

(Figure 1A).

We sampled two large post-seismic debris flow deposits triggered

during a monsoonal storm in 2019 in the Luoquan gully and Liusha

gully, Longmen Shan, China (Figures 1B and C). The abundance of sed-

iment in the channel prior to these events was a result of previous

debris flows and landslides generated during and after the 2008

Wenchuan earthquake. The Luoquan gully consisted mainly of

Mesoproterozoic granitoids of the Penguan massif (Figures 1C and D).

The Luoquan debris flow had a slope of 9� and average width of 42 m

when averaged across the length of the debris flow (�8 km). The

Liusha gully includes both Mesoproterozoic granitoid material and

Palaeozoic greywacke and shale (Figures 1B and D; Ma, 2002). The

Liusha debris flow had a slope of 23� and average width of 8 m across

the 1.5 km length of the debris flow.

3 | METHODS

We applied five methods (Figure 2) to the three different field sites:

sieving, survey tape counts, Wolman pebble counts, pyDGS and man-

ual photo counts.

3.1 | Volumetric sieving

We sieved each deposit using a protocol previously used for fluvial

sediments, landslide deposits and debris flow deposits (Attal &

Lavé, 2006; Attal et al., 2015; Bunte & Abt, 2001a; Zhang

et al., 2014). We measured a 1 m � 1 m pit in the centre of the

deposit and excavated material at 10 cm increments to a depth of

30 cm in Tredegar and 50 cm in Longmen Shan. The shallower depth

in Tredegar was due to the steeper slope and smaller apparent grain

size and failure. We used square sieves to separate the remaining sed-

iment into the following size fractions: >4 cm, 2–4 cm, 1–2 cm and

<1 cm. We weighed all fractions in the field using fishing scales and

separated 1 kg of sediment from the fraction of sediment <1 cm to

analyse in the laboratory (Attal & Lavé, 2006; Hubert & Filipov, 1989).

We sieved approximately 1000 kg of sediment per pit to fulfil the 5%

of total weight limit for the largest grain set out by Church et al. (1987).

The coarser sediment was not air dried in the field as the difference in

weight for large gravels is negligible (Bunte & Abt, 2001b). We

weighed and measured all three axes for grains >8 cm in diameter,

which accounted for up to 35% of grains by weight. By measuring

multiple axes for these grains, we were able to quantify grain shape as

well as size. Where large grains covered multiple layers (e.g. >10 cm

on at least one axis), we consistently sampled the grain from the low-

est layer to avoid disturbing layers unnecessarily. We adjusted our

sieving GSDs to account for this by averaging the weight of grains

with a b-axis >10 cm across the appropriate number of layers. In the

lab, we wet sieved the 8, 4, 2, 1, 0.5, 0.25, 0.125 and 0.063 mm frac-

tions. For samples containing a large proportion of gravels (>2 mm),

we used a sieve shaker to separate the first four fractions. Manual

endpoint tests were carried out to ensure all grains had passed

through each sieve (Dufresne & Dunning, 2017). The tests involved

briefly shaking the sieve into a clean, dry sieve pan to see if any grains

still passed through. We noticed that there were still grains passing

through the five smallest sieves, so we also wet sieve the fraction

<1 mm.

A square sieve correction (Attal & Lavé, 2006) of the form

b¼ 2kmffiffiffiffiffiffiffiffiffiffiffiffiffi
1þk2

p ¼ k
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þk2

p S ð1Þ

where S is the sieve mesh size and k is the ellipse eccentricity, or the

ratio between the b-axis and the c-axis of grains, was applied to our

data. There were a large range of values obtained for k within both

pits, with the sieves potentially over-estimating the b-axis of each

grain by a maximum of 41% in Liusha and 35% in Luoquan. The mean

b-axis over-estimate in Liusha and Luoquan was 21% and 17%,

respectively. This equated to an approximately 0.7 cm difference

between the adjusted size of a 4 cm sieve.

3.2 | Wolman pebble counts and survey tape
counts

We conducted a Wolman (1954) pebble count and survey tape peb-

ble count across the surface of the deposit in Tredegar. Typically, at

least 100 grains are required for a Wolman pebble count

(Wolman, 1954). Due to the heterogeneity of landslide deposits, we
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decided that rather than choose a particular number of samples, we

would measure grains until the mean value converged (i.e. any addi-

tional grain measured did not change the mean beyond 0.1 mm).

We found the mean, D50 and D84 converged when measuring

300 grains, while D90 did not.

The survey tape method involved placing three 50 m tapes hori-

zontally across the deposit and one tape from the scar of the failure

to the toe. We measured the b-axis of the grain directly below the

tape every 0.25 m interval. This spacing was decided based on the

size of grains in the deposit, to ensure no grain covered two points on

the tape (Kellerhals & Bray, 1971). If grains were too small to be mea-

sured, the nearest grain was chosen instead (de Scally &

Owens, 2005; Hubert & Filipov, 1989). If grains were too large the

same protocol would apply, however we did not encounter this in

Tredegar. For this method, we sampled 174 grains in total and

obtained a mean of 17.1 mm, which was 0.7 mm larger than the mean

obtained using random Wolman pebble counts. We included grains as

small as 1 mm (survey tape) and 3 mm (Wolman count) as they were

visible in the field.

3.3 | Manual photo counts

Manual photo counts involved measuring the apparent b-axis of grains

using photos taken parallel to the surface (Attal & Lavé, 2006; Casagli

et al., 2003; Crosta et al., 2007; Genevois et al., 2001; Ibbeken

et al., 1998; Kellerhals & Bray, 1971; Zhang et al., 2011, 2015). We

conducted manual photo counts in all three locations by taking photos

using a smartphone camera (Figure S4, image resolutions ranged from

0.12 mm pi�1 in Tredegar to 0.39 and 0.46 mm pi�1 in Liusha and

Luoquan). We used a tape measure in Tredegar and a 50 cm � 50 cm

frame in the Longmen Shan to determine the resolution of the image.

The tape measure and frame also helped to identify when photos

were not taken parallel to the slope. These images were discarded

alongside photos with inconsistent resolutions and photos of the

same surface to ensure no grains were counted multiple times. We

conducted manual photo counts on six images in Tredegar, measuring

a total of 300 grains. In Longmen Shan, we took photos of the surface

of the pit and used these photographs to conduct a grid-by-number

analysis (Figures 5 and 6). The width and height of the grid were

F I GU R E 1 Map showing the three locations studied. Inset (a) shows the Tredegar landslide in South Wales. Insets (b) and (c) show the Liusha
and Luoquan debris flows in the Longmen Shan, respectively. Inset (d) provides a closer location map for the debris flows in the Longmen Shan
with the geology for the region also shown

6 HARVEY ET AL.



determined by the largest grain in the photo to ensure no grain was

counted twice (Bunte & Abt, 2001b).

3.4 | Automated photo analysis (pyDGS)

We applied a texture-based approach, pyDGS (v4.0), as it allows for

the rapid identification of GSDs from photos and is beneficial for

obtaining a GSD for a large surface area. PyDGS has been successfully

applied to dryland basins (Michaelides et al., 2018), beaches (Prodger

et al., 2017) and bioclastic sediments (Cuttler et al., 2017), as well as a

range of sorted and poorly sorted sediments (Buscombe, 2013). The

algorithm requires minimal calibration and can detect grains �6 pixels

in length (fine gravel) from photos taken using a smartphone camera.

The algorithm works best for coarse, well-sorted grains, where the

brightness of the grains is not positively correlated with size and there

are >100 grains in each image (Buscombe, 2013).

There are three key parameters in pyDGS (July 2020 version); x,

maxscale and resolution. x varies from 1 to �1 and is an exponent that

converts the area-based pyDGS output to a volume-based GSD

(Buscombe, 2013; Cuttler et al., 2017). The x exponent (hereafter

referred to as the shape parameter) relates to the size of the grains,

their porosity and sorting (Bunte & Abt, 2001b; Cuttler et al., 2017;

Diplas & Fripp, 1992; Diplas & Sutherland, 1988). For example, a neg-

ative value of x (�1) can represent poorly sorted coarse gravels with

low porosity and a high sand content, whereas a value of 0 is indica-

tive of well-sorted gravel (Bunte & Abt, 2001b). We tune the shape

parameter in this paper based on our sieving data. In Tredegar, a single

shape parameter consistently represented the GSD obtained using

sieving (Figure 3). However, in the Longmen Shan, a single pyDGS

shape parameter did not fit the GSD obtained using sieving or manual

photo counts (Figures S1 and S2). Therefore, for Liusha and Luoquan

we combined two pyDGS runs with different shape parameters to

obtain a GSD that captured both the finest and coarsest grains

F I GU R E 2 A flow diagram detailing the key steps taken for the methods used in this study. Sieving required field, laboratory and desk work.
The second method, Wolman pebble counts, was split into two approaches, survey tape measurements and more randomized Wolman pebble
counts. The final methods required photos taken in the field. These photos were then analysed using two different methods, automatic grain-size
analysis using pyDGS and manual photo counts

F I G U R E 3 The surface GSDs of the Tredegar rockfall based on
five sampling methods. The sieving GSD is based on a sample taken
within the first 10 cm of the surface near the centre of the deposit.
The survey tape count is based on a total of 181 grains across the
entire deposit. Both the Wolman pebble count and manual photo
count consisted of measuring 300 grains. The manual photo count
was based on six photos taken in different parts of the deposit. The
pyDGS curve is the average of the 60 GSDs generated using
individual photos of the deposit. The adjusted GSD (blue) is calculated
by combining the surface sieving GSD (black) and the survey tape
GSD (grey) using the method outlined by Fripp and Diplas (1993) and
briefly in the main text. We used sieving and survey tape GSDs as

these provided the minimum and maximum grain sizes, respectively
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measured using sieving (Figures S1 and S2). The maxscale parameter

defines the maximum grain size that the algorithm searches for in the

image as a fraction of the greatest dimension (Buscombe, 2013).

We ran a sensitivity analysis to test how the choices of these

three parameters affect the output. For this paper, in Tredegar we use

the average GSD obtained by running 60 photos in pyDGS and using

an average resolution of 0.12 mm pi�1. We vary the shape parameter

and maxscale throughout.

3.5 | Combining GSDs

We combined distributions to obtain the full GSD for each deposit,

following the method of Fripp and Diplas (1993). Each GSD was split

into 13 size fractions (0–0.063, 0.063–0.125, 0.125–0.25, 0.25–0.5,

0.5–1, 1–2, 2–4, 4–8, 8–20, 20–40, 40–80, 80–100 and 100–

200 mm). The two GSDs were compared and the grain-size fraction

with the most similar proportion was chosen to be the match point.

The remaining proportions are then rescaled based on the magnitude

of the match point. In Tredegar, sieve and survey tape-generated

GSDs were combined as these methods covered the largest range of

GSD values. In Liusha and Luoquan, pyDGS GSDs with different

shape parameters were required to create full GSDs compared to

sieving. A shape parameter of �1 in Liusha best represents the coars-

est percentiles and a shape parameter of 0 best fits the finest percen-

tiles. In Luoquan we combine runs with a shape parameter of 1 and �1

(Table S5). We tested the sensitivity of the choice of match point, by

comparing four possible combined GSDs from our Tredegar data, and

found that there was less than a 10% difference in D50 values across

the combined GSDs.

3.6 | Comparing the different methods

We compared the grain size for the 5th, 10th, 16th, 25th, 50th, 75th,

84th, 90th and 95th percentiles (for all individual methods and com-

bined GSDs) using the normalized root mean square error (NRMSE)

(Buscombe, 2013). NRMSE provides a measure of how different two

values are; that is, more robust at higher percentiles than standard

RMSE. Sieving captures the widest range of grain sizes, so we con-

sider it as the measured value. We calculated NRMSE as outlined in

Buscombe (2013):

NRMSE %ð Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qimeas�qiestð Þ2

n

r

qimeas
�100 ð2Þ

where n is the number of observations, qimeas is the percentile grain

size from sieving and qiest is the percentile grain size for the method

that we are comparing.

For continuous datasets (manual photo counts, Wolman pebble

counts and survey tape counts) we also calculated the percentile

uncertainty using the QuantBD function (Eaton et al., 2019;

Purinton & Bookhagen, 2021). The output from QuantBD is a mini-

mum and maximum grain-size range for each percentile based on a

95% confidence interval, which we refer to as percentile uncer-

tainty. Finally, two-sample goodness-of-fit chi-squared (χ2) tests

allowed pairwise comparison of different distributions.

4 | RESULTS

For all deposits, the grain-size range varies with measurement method

(Figures 3, 5 and 6). In Tredegar, sieving measured the widest grain-

size range (from <0.063 mm to 40 mm). Survey tape and pyDGS-

derived GSDs spanned two orders of magnitude, from 1 to 170 mm

and 0.5 to 45 mm, respectively. Wolman pebble count and manual

photo count GSDs recorded an order of magnitude, 3 and 90 mm and

1 and 77 mm, respectively.

Common percentiles used to describe GSDs, D16, D50 and D84, all

varied by at least an order of magnitude across the different methods

(Tables 3 and 4). In Tredegar, the D16 values obtained varied by the

most compared to D50 and D84, as demonstrated by higher NRMSEs

for lower percentiles (>50% error for percentiles smaller than D50)

(Table 3). The D16 value for Wolman pebble counts (7 mm) was five

times larger than the D16 value obtained using pyDGS (1.4 mm) and

sieving (2.2 mm), and exceeded all other D16 values and upper limits

based on percentile uncertainty (Table 3). D16 values for the debris

flow deposits also varied by over a factor of two across the different

methods (5–13 mm in Liusha and 5.9–56 mm in Luoquan) (Table 4).

D50 values differed by over a factor of two in Tredegar (4.5–13 mm)

and over a factor of three in the Longmen Shan (Liusha: 19–83 mm,

Luoquan: 23–150 mm) (Tables 3 and 4). In Tredegar, pyDGS and siev-

ing also obtained the lowest D50 and D16 values. Survey tape counts

and manual photo counts produced similar measurements for both

D16 (4 and 4.1 mm) and D50 (10 and 8.8 mm). Wolman pebble counts

obtained the largest D50 value. In the Longmen Shan, when only con-

sidering the combined pyDGS GSDs, D50 values were largest for siev-

ing GSDs (77 and 100 mm). The variation in D50 values coincides with

the minimum resolutions for each of the respective methods. Larger

percentiles, such as D84, and the maximum grain size obtained also dif-

fered across methods (Figures 3, 5 and 6; Tables 3 and S1). Photo-

based grain-size techniques (both manual and pyDGS) D84 values were

consistently smaller than the other methods in all locations. In Liusha

and Luoquan, manual photo count and pyDGS GSDs under-estimated

the upper 20% of the distribution relative to sieving (Figures 5 and 6,

Table 4). In some instances, visually calibrated pyDGS runs could be

used to produce coarser distributions, however this was at the

expense of lower percentile values (Figure S1, Table S1).

The GSDs measured were significantly different from the sieved

distributions in Tredegar: Wolman pebble counts (χ2 = 64.14, d.f. =

3, p-value < 0.05); survey tape counts (χ2 = 13.03, d.f. = 5, p-value <

0.05); manual photo counts (χ2 = 28.95, d.f. = 3, p-value < 0.05); and

pyDGS (χ2 = 25.95, d.f. = 5, p-value < 0.05) (Table S6). To infer the

magnitude of methodological uncertainty in these values, we trun-

cated the individual distributions in Tredegar to the grain size range

covered by all methods (3–34.4 mm, Figure 4; Church et al., 1987).

Within this range, survey tape counts, pyDGS and sieving GSDs were

similar (sieving and survey tape: χ2 = 6.44, d.f. = 3, p-value > 0.05;

sieving and pyDGS: χ2 = 1.01, d.f. = 3, p-value > 0.05; survey tape

and pyDGS: χ2 = 5.45, d.f. = 3, p-value > 0.05) (Figure 4, Table S6).

Manual photo counts and Wolman pebble counts were significantly

different, with 95% confidence to sieving GSDs (χ2 = 12.64, d.f. =

3, p-value < 0.05; χ2 = 29.91, d.f. = 3, p-value < 0.05) and survey tape

GSDs (χ2 = 8.02, d.f. = 3, p-value < 0.05; χ2 = 21.07, d.f. = 3, p-value

< 0.05). Wolman pebble count GSDs over-predicted grain sizes in the

lower 50% of the distribution when compared with all other methods.
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5 | DISCUSSION

5.1 | Sampling method uncertainty

There are several uncertainties inherent in each sampling method that

can lead to systematic bias in the reported results (Table 1). Bias in

the sieving GSDs may be introduced as each sample integrates the

subsurface and surface grains into a single GSD (Bunte & Abt, 2001b;

Dufresne & Dunning, 2017; Johnson et al., 2012). Where deposits are

vertically stratified, this will lead to under-estimation of coarse

(or fine) surface fractions. We mitigated this issue by choosing sam-

pling locations that showed no evidence of vertical stratification. We

found no systematic change in the grain size with depth, suggesting

that differences in GSD are more likely to reflect primary variability in

the deposits rather than vertical stratification (Figure S5). For exam-

ple, while D16, D50 and D84 values for the uppermost three layers in

Luoquan ranged from 30 to 56 mm, 100 to 137 mm and 248 to

306 mm, respectively, there was no evidence of stratification with

depth. Additionally, the D16 and D50 values obtained for sieving were

consistently lower than the values obtained using Wolman pebble

T AB L E 3 The D16, D50 and D84 grain sizes for the five different methods used in Tredegar. The first half of the table gives the percentiles for
each method across their entire GSD. The second half of the table shows the percentiles for the single-order grain size covered by all five
methods. Values in brackets give the range of grain sizes for each percentile calculated using the three different methods indicated

Percentile

Tredegar entire GSD (mm)

Sievinga Wolman pebble countb Survey tapeb Manual photo countsb pyDGS x = �0.5c

16 2.2 (2–4) 7 (6–8) 4 (3–5) 4.1 (3.6–4.6) 1.4 (1–1.8)

50 6.6 (4–8) 13 (12–14) 10 (8.4–12) 8.8 (7.8–9.5) 4.5 (3.4–5.6)

84 21 (20–40) 25 (22–28) 26 (20–33) 17 (15–20) 16 (12–20)

Percentile

Tredegar truncated (3–34.3 mm) (mm)

Sievinga Wolman pebble countb Survey tapeb Manual photo countsb pyDGS x = �0.5c pyDGS x = 0c

16 4.2 (4–8) 7 (6–7.3) 5 (4–5) 4.9 (4.5–5.4) 4.0 (3–5) 4.8 (3.6–6)

50 7.8 (4–8) 12 (11–13) 10 (8.3–11) 9.1 (8.2–9.9) 8.0 (6–10) 11 (8.3–14)

84 19 (10–20) 21 (20–23) 19 (16–23) 16 (15–18) 20 (15–25) 24 (18–30)

aEach sieving percentile was calculated using an assumed linear relationship between the minimum and maximum values of each grain-size bin. Therefore,

we have also given the minimum and maximum grain-size bin for each percentile in brackets.
bThese percentiles were generated using the QuantBD function developed by Eaton et al. (2019) and translated into Python by Purinton and

Bookhagen (2021). The percentile uncertainty is quantified using binomial theory for each percentile based on the number of measurements. We provide

the minimum and maximum grain-size range for each percentile generated using this technique in brackets for a 95% confidence interval.
cThese percentiles were generated using pyDGS. The range given in brackets is based on a conservative 25% error estimate based on the errors quantified

by Buscombe (2013) for GSDs measured manually and pyDGS GSDs for individual images.

T AB L E 4 Common statistical metrics used to describe GSDs. The Liusha pyDGS percentiles are based on a maxscale of 6; the Luoquan
pyDGS percentiles are based on a maxscale of 4

Percentile

Liusha (mm)

Sievinga Manual photo countsb pyDGS x = �0.5c pyDGS x = 1c pyDGS combinedc

16 13 (12–24) 7.4 (5.1–10.4) 5.0 (3.8–6.3) 36 (27–45) 15 (11–19)

50 77 (49–80) 45 (25–61) 19 (14–24) 83 (62–104) 72 (54–90)

84 130d 104 (82–130) 65 (49–81) 130 (98–163) 122 (92–153)

Percentile

Luoquan (mm)

Sievinga Manual photo countsb pyDGS x = �0.5c pyDGS x = 1c pyDGS combinedc

16 56 (47–80) 33 (28–49) 5.9 (4.4–7.4) 57 (43–71) 49 (37–61)

50 100d 79 (69–89) 23 (17–29) 150 (113–188) 98 (74–123)

84 248 (210–250) 119 (100–190) 89 (67–111) 248 (186–310) 178 (134–223)

aEach sieving percentile was calculated using an assumed linear relationship between the minimum and maximum values of each grain-size bin. Therefore,

we have also given the minimum and maximum grain-size bin for each percentile in brackets.
bThese percentiles were generated using the QuantBD function developed by Eaton et al. (2019) and translated into Python by Purinton and

Bookhagen (2021). The percentile uncertainty is quantified using binomial theory for each percentile based on the number of measurements. We provide

the minimum and maximum grain-size range for each percentile generated using this technique in brackets for a 95% confidence interval.
cThese percentiles were generated using pyDGS. The range given in brackets is based on a conservative 25% error estimate based on the errors quantified

by Buscombe (2013) for manually observed GSDs for individual images and pyDGS-generated GSDs. The pyDGS combined percentiles in Liusha are based

on a full GSD generated in pyDGS with a shape parameter of 0 and maxscale of 8 combined with the GSD for grains >80 mm with a shape parameter of �1

and maxscale of 6. In Luoquan the GSD are based on a full GSD with a shape parameter of 1 and maxscale of 8 combined with the GSD for grains >80 mm

with a shape parameter of �1 and maxscale of 4.
dNo range is given for this percentile as the surrounding grains also have the same b-axis.
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counts, survey tape counts and manual photo counts, demonstrating

that the changes observed with depth should not result in simply a

coarser or finer surface. The D84 values in Luoquan and Liusha were

also larger than all other surface D84 values. Further bias could be

introduced if the pit is not constructed correctly, which we avoided

by consistently measuring the width and depth of the pit when dig-

ging. Whilst sieving presents challenges in terms of efficiency and

accessibility, it is the only method able to successfully measure sand

grains and finer. Where time or equipment is limited, an alternative

method may be chosen, but no other method will be able to sample

this fine fraction, which represents up to 20% of the GSD by weight

(Casagli et al., 2003). For our statistical comparisons we use sieving as

the test statistic due to its larger sample sizes and widest GSDs, mak-

ing it most likely to be representative of the true distribution across

its sampling range.

Photo-based techniques can be limited by photo extent, imbrica-

tion, overlap and mistakenly measuring the c-axis as opposed to the

b-axis (Attal & Lavé, 2006; Casagli et al., 2003; Kellerhals &

Bray, 1971). These limitations can result in GSDs that under-estimate

the coarse end of the distribution (Tables S2 and S3). Furthermore,

small sample sizes can also lead to under-estimating the D84 values.

Despite using the same photos, we found significant differences when

comparing manual photo count and pyDGS GSDs in Tredegar

(Table S6; full GSD: χ2 = 62.04, d.f. = 3, p-value < 0.05; truncated

GSD: χ2 = 22.21, d.f. = 3, p-value < 0.05). pyDGS with a shape param-

eter of 1 also under-estimated the proportion of grains between 5 and

40 mm relative to manual photo counts in Liusha (Figure 6). The dif-

ferences in the GSDs obtained using each method may be attributed

to the lack of contrast between the fine grains in the image. The lack

of contrast results in smaller changes in the texture of the image and

therefore reduces the ability of the pyDGS algorithm to register these

as grains. Images where the fine grains are all of similar colour are dif-

ficult to differentiate, resulting in the individual grains being consid-

ered as single larger grains (Buscombe, 2013; Figures 6, S3 and S4).

This effect may be enhanced by wet grains in Figures S4A and 6

(Buscombe, 2013).

pyDGS was not well suited to the application of mass movement

deposits as it requires calibration and multiple shape factors to cap-

ture complex GSDs (Figures 5 and 6; Tables S2, S3 and S4). Even

when calibrated, the GSD obtained using pyDGS was statistically dif-

ferent from the full GSDs obtained using sieving in all three locations

(Tredegar: χ2 = 25.95, d.f. = 5, p-value < 0.05; Liusha: χ2 = 14.85,

d.f. = 4, p-value < 0.05; Luoquan: χ2 = 22.01, d.f. = 5, p-value < 0.05).

We acknowledge that pyDGS has the major benefit of automatically

generating GSDs from photos, which can enhance our ability to

record GSDs over high spatial and temporal resolutions. However, for

complex, large mass movement deposits, pyDGS-generated GSDs rely

too heavily on the use of another method for calibration that does not

increase efficiency.

Wolman pebble counts and survey tape counts cannot measure

the finest grains and have minimum grain sizes of 3 and 1 mm for each

method, respectively (Figures 3 and 4, Table 3). The statistically differ-

ent, coarser, GSD for random Wolman pebble counts when compared

to survey tape counts (χ2 = 21.07, d.f. = 3, p-value < 0.05) is possibly

due to fine pebbles being overlooked by the technique as a result of

operator bias (Fripp & Diplas, 1993; Strom et al., 2010). Operator bias

may be even more pronounced in heterogeneous, multimodal mass

movement deposits towards the extreme small or large grains

(Daniels & McCusker, 2010; Strom et al., 2010). A limitation of our

approach is the fact that we sampled grains <2 mm using the survey

tape method and <4 mm using the Wolman count method (Bunte &

Abt, 2001a). Whilst these are below the expected minimum grain sizes

in Table 1, we wanted to provide the full GSD of grains visible in the

field. The minimum GSDs often used, 4–8 mm, are dictated by work

on fluvial GSDs, which are likely to be inundated by shallow water

(e.g. Bunte & Abt, 2001a; Kellerhals & Bray, 1971). In a mass move-

ment deposit, the smaller grains on the surface are more likely to be

visible, which may allow for the sampling of smaller grains. The higher

potential to exclude fine grains when conducting pebble counts, par-

ticularly randomly through a Wolman pebble count, will result in mass

movement GSDs, which exclude any silt, sand or clay.

5.2 | Methodological uncertainty, sample size and
sample type

No single method accurately measured the full GSD in any of the

mass movement deposits studied (Figures 3, 5 and 6). In Tredegar, we

combined two GSDs collected using different methods to obtain a full

F I GU R E 4 Comparison of truncated field-derived GSDs and
pyDGS-derived GSDs for the Tredegar rockslide. We found that the
range 3–34.4 mm was covered by all five methods and therefore
adjusted all curves to fit this range. The sieving GSD is based on a
sample taken within the first 10 cm of the surface near the centre of
the deposit. Approximately two-thirds of the sample is within the
truncated grain size range. The survey tape count is based on a total
of 181 grains across the entire deposit. 144 of these grains were
within the truncated range. Both the Wolman pebble count and
manual photo count consisted of measuring 300 grains. In the
Wolman pebble count, 279 grains were within the truncated range.
259 grains from the manual photo count were within the truncated
range. The pyDGS curve is the average of the 60 GSDs generated
using individual photos of the deposit. Approximately 60% of the full
GSD for pyDGS shown in Figure 3 was within the truncated range.
The adjusted GSD (blue) is calculated by combining the surface
sieving GSD (black) and the survey tape GSD (grey) using the method
outlined by Fripp and Diplas (1993) and briefly in the main text. We
used sieving and survey tape GSDs as these provided the minimum
and maximum grain sizes for the location based on their
generated GSDs
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GSD. When selecting which methods to combine, it is important to

consider the differences in the distribution produced based on meth-

odological uncertainty, sample size and sampling method. To identify

differences in the GSDs associated with methodological uncertainties,

we compared the GSDs measured using different methods across a

restricted set of grain sizes, where issues of resolution are likely to be

minimal. Wolman pebble counts and manual photo counts had signifi-

cantly different distributions across this restricted grain size range,

suggesting that these methods are the least comparable to sieving

and survey tape counts, and therefore the least reliable. Survey tape

counts and pyDGS GSDs were consistent with sieving GSDs over a

restricted grain-size range (Table S6), implying that they are strong

candidates for combining to create a full GSD. The statistically similar

relationship between survey tape counts and sieving over a single

order of magnitude suggests that a more systematic approach to peb-

ble counts can be used to represent the fraction of grains larger than

fine gravel in a mass movement deposit better than a random pebble

count (Kellerhals & Bray, 1971). Consequently, any statistical differ-

ences across the full GSD measured by these three methods are likely

to be a result of the sample size and sample range of each method.

The importance of method choice, and grain-size range, was further

reflected in the percentile values for each method. For full GSDs, sur-

vey tape counts, manual photo counts and Wolman pebble counts all

over-estimated D16 relative to the sieving D16 value, due to their

inability to sample grains smaller than gravel (Table 1; Casagli

et al., 2003; Wolman, 1954). Thus, the use of Wolman pebble counts

or manual photo counts introduces methodological uncertainties to

the sampling of mass movement deposits and results in statistically

different, unreliable, GSDs.

Methodological differences in sample size may also affect the

measured GSDs and explain the differences in manual photo count

and Wolman pebble count GSDs (Church et al., 1987; Purinton &

Bookhagen, 2021; Storz-Peretz & Laronne, 2013). Primarily, the issue

of sample size relates to the ability to accurately capture the coarse

end of the distribution (Church et al., 1987). Previous studies have

suggested recommended sample sizes for different methods based on

coarse fluvial deposits (e.g. Eaton et al., 2019; Fripp & Diplas, 1993;

Graham et al., 2010; Kellerhals & Bray, 1971; Purinton &

Bookhagen, 2021). When we applied these methods to large, complex

mass movement deposits, such as Liusha and Luoquan where the

coarse grains were much larger than is typical in fluvial settings, it was

challenging to strictly apply these sample sizes. Recommended sample

sizes vary for survey tape and Wolman pebble count methods based

on the range of grain sizes found in the deposit. Measuring enough

grains for at least the 84th percentile to converge provides a helpful

criterion (Purinton & Bookhagen, 2021). For the finer mass movement

deposit in Tredegar, the 84th percentile converged after 300 measure-

ments, which took approximately 1–2 h of sample time. This timescale

is not significantly different from that required to construct and sieve

a pit in a fine deposit.

Photo counts have a recommended areal coverage of 100–200

times the Dmax to obtain <10% errors (Eaton et al., 2019; Graham

et al., 2010; Purinton & Bookhagen, 2021; Storz-Peretz &

Laronne, 2013). In the Longmen Shan, where the Dmax from the

images used were 189 and 552 mm, respectively, this would require a

photo with a width of 11 m (an area of >100 m2). Such a photo could

only be taken with an unmanned aerial vehicle (UAV) and would sub-

sequently compromise the resolution of the finest grains (unless com-

bined with a higher-resolution photo) (Graham et al., 2010; Storz-

Peretz & Laronne, 2013). This example highlights the primary chal-

lenges of sample size, as it is common to find grains >500 mm in mass

movement deposits that may be smaller than 100 m2 or where larger

areas are not spatially uniform, for example due to segregation.

In fluvial environments, there is a volumetric sieving target where

a maximum of 5% of the total weight limit can be made up of the larg-

est grain (Church et al., 1987). Occasionally, boulders >50 kg were still

recorded in the debris flow deposit pits, which meant this criterion

was not always achievable. Where deposits are small or only a frac-

tion of the deposit needs to be sampled, sieving may be a more

F I GU R E 5 Sieving, manual and automated photo analysis-based
surface GSDs for the Luoquan (Figure 1c) debris flow deposit. The
solid gold line shows the GSD derived by combining two pyDGS runs.
The inset photo shows the pit image used to estimate surface GSDs
from manual photo counts and pyDGS. In total, 76 grains were
measured using a manual photo grid sampling technique

F I GU R E 6 Sieving, manual and automated photo analysis-based
surface GSDs for the Liusha (Figure 1b) debris flow deposit. The solid
red line shows the GSD derived using two pyDGS runs. The inset
photo shows the pit image used to estimate surface GSDs from
manual photo counts and pyDGS. In total, 84 grains were measured
using a manual photo grid sampling technique
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appropriate technique for obtaining a GSD, though it is difficult to

achieve the recommended sample sizes in mass movement deposits

for any individual sampling method. As such, accurate GSDs, which

meet the recommended sample sizes, are more likely to be achieved

by combining multiple methods that are optimized to sample certain

grain-size ranges (Attal & Lavé, 2006; Casagli et al., 2003; Fripp &

Diplas, 1993).

Whilst we chose areas of the deposits that were spatially uniform,

we note that each method has slightly different sampling frequencies

and depths. We refer to the uncertainty associated with differences in

the location of the sample as the sample type. Our field sites were

chosen to minimize differences in sample type. Within the three pits

sampled, there was no vertical stratification by grain size across the

top 50 cm (which we sampled at 10 cm intervals) (Figure S5). Thus,

there is no evidence that a surface sample would be significantly dif-

ferent from a sieved sample (Attal & Lavé, 2006). We combined the

sieving and survey tape GSDs to produce a full distribution. We

assumed that sieving and survey tape GSDs could be merged due to

the fact that they do not produce statistically different distributions

over a truncated range of grain sizes (Figure 4, Table S6). Whilst the

combined GSD will produce the widest GSD, we note that the uncer-

tainties associated with combined methods are likely to be propa-

gated in the adjusted distribution, for example the effect of sample

size. In Luoquan and Liusha it was not necessary to combine multiple

GSDs because sieving recorded the minimum and maximum grain size.

Thus, combining complementary methods that sample different grain

size ranges, but without significant methodological uncertainty

(e.g. sieving and survey tape), may provide the best opportunity to

accurately report the full GSD of mass movement deposits.

5.3 | Applying these methods to different types of
mass movement

A solution to the challenges associated with developing accurate

GSDs across the wide range of mass movement grain sizes is to vary

the method based on the research question being asked. In many

cases, only a portion of the entire GSD is required to identify the

transport and depositional mechanisms occurring within a deposit and

subsequently interpret the types of mass movement (Blair, 1999;

Cruden & Varnes, 1996; Kaitna et al., 2016; McKenna et al., 2012;

Wang & Sassa, 2003). For example, flow-like failures are commonly

associated with processes such as inverse grading and kinetic sieving,

which result in a coarse surface layer, front and levees (Johnson

et al., 2012). The GSD of levees may require characterization of grain

size across a wider spatial scale, using survey tape counts or manual

point counts. In contrast, sieving may be better suited when deposits

have a high proportion of fine material, such as for viscous flows

(Kaitna et al., 2016; Wang & Sassa, 2003).

Measurements of deposit GSDs have been used to infer the

source of the material mobilized from the relationship between bed-

rock strength and the GSD of rock avalanche, rockfall and landslide

deposits (Dunning, 2006; Marc et al., 2021). GSDs can also help to

identify the source of the mobilized material. For example, in Califor-

nia, finer, sandier debris flows were hillslope triggered, whereas the

coarser debris flows mobilized material from within the channel (Kean

et al., 2011). These findings may also be supported in the Longmen

Shan, where rock type variability may explain the higher proportion of

grains <10 mm in Liusha in comparison to Luoquan (Figures 5 and 6).

As the fracture spacing of metasediments is smaller than the granit-

oids found in Luoquan (Figure 1D), this difference may have been

overlooked using a method that is biased towards coarser grain sizes.

Mass movement GSDs are more commonly obtained for rock

avalanches, debris flows and landslides, where grain size plays a role

in controlling mobility through processes such as comminution, frag-

mentation and segregation (Crosta et al., 2007; Dufresne &

Dunning, 2017; Dunning, 2006; Locat et al., 2006). These processes

produce GSDs with potentially large spatial variability, a wide range of

grain sizes and bimodal or multimodal distributions (Crosta

et al., 2007; Dufresne & Dunning, 2017; Makris et al., 2020). An

understanding of the entire GSD of rock avalanche deposits can also

help to understand what controls the rate of different transport and

depositional processes. All grain sizes were found to control segrega-

tion in an experimental setting for dry granular flows, which includes

rock avalanches (Gray & Ancey, 2011). Here, a higher proportion of

fine grains resulted in a longer distance being required for medium

and large particles to segregate (Gray & Ancey, 2011). The efficiency

of fragmentation in deposits is also thought to relate to GSDs. For

example, there is a decrease in the efficiency of fragmentation when

the number of fines increases as the fines act to buffer interactions

between larger grains (Locat et al., 2006). Whilst Locat et al. (2006)

obtained this conclusion using photographs of grains, they did note

that their proportions of fines were likely to be an under-estimate.

Hence, whilst broad patterns can be well captured using more accessi-

ble, common methods (Marc et al., 2021), it is important to capture

full GSDs for deposits, using multiple methods, when identifying

depositional and transport processes.

Examples of where a restricted sampling of the GSD of mass

movement deposits might be useful is when considering their contri-

bution to rockfall hazard and fluvial bedload transport. In rockfalls,

deposited grain volume can predict runout hazards better than the ini-

tial volume, which tends to over-estimate kinetic energy and runout

(Ruiz-Carulla et al., 2015). Subsequently, only the coarse fraction

(rocks >0.01 m3) is required, as this can provide an indication of the

furthest point to which the runout will travel, which is most important

for hazard models. Depending on the nature of the hazard, using a sin-

gle method to rapidly constrain the GSD of coarser boulders may

therefore outweigh the importance of spending considerable time

extracting the entire GSD of the deposit using sieving. In terms of flu-

vial bedload, the GSD > 1 mm of landslides has been successfully

compared directly to the GSD of weathering products to understand

the importance of landslides in hillslope and fluvial sediment budgets

(Roda-Boluda et al., 2018). This was achievable because the study

only focused on the surface material, where most fines have been

washed away. However, the appropriate method will vary depending

on the mass movement deposit sampled and the GSD of the other

processes acting within the catchment. The importance of the entire

GSD has been shown for the Marsyandi River, where the pebble and

suspended/bedload ratio were both affected by hillslope processes,

including landslides (Attal & Lavé, 2006).

The methodological uncertainties associated with comparing

GSDs and percentiles obtained using different methods can have con-

sequences for accurate process interpretation. For example, the factor

of two difference in grain-size percentile estimates from survey tape
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counts relative to sieving for a fine deposit could shift the D50 value

from suspended load to bedload, which would have implications for

estimates of sediment export rates and onward transport (Croissant

et al., 2021; Marc et al., 2021). Similarly, by excluding up to 20% by

weight of the finest grains, all non-sieving methods are unable to find

evidence for processes where the proportion of sand and silt is influ-

ential (de Haas et al., 2015; Kaitna et al., 2016; Makris et al., 2020).

The rates and calibre of hillslope sediment supply to channels have

also been used increasingly to drive landscape evolution and fluvial

modelling (Attal et al., 2015; Croissant et al., 2021; Egholm

et al., 2013; Roda-Boluda et al., 2018). Given that mass movement-

derived sediment is an essential component in these problems

(Sklar & Dietrich, 2006), improvements are needed in our ability to

characterize this material to provide robust conclusions about the

timescales and rates of bedrock incision and sediment transport.

6 | CONCLUSION

Measurements of mass movement GSDs present concerns over accu-

racy, precision and pragmatism. Each study is required to make

choices about methodology, sampling locations and size that suit both

the research question being asked and the practical challenges of field

sites. Here we show that these choices about methodology can intro-

duce up to a factor of five difference in simple metrics like D16 and

D50. This results in GSDs and grain-size percentiles that are not

directly comparable to GSDs measured using different methods, espe-

cially when the same grain-size range is not considered. We demon-

strate that for smaller, finer mass movement deposits, survey tape

counts and pyDGS are a suitable alternative to sieving for measuring

the GSD over a single order of magnitude. Whilst pyDGS could be

used to obtain a representative GSD over a single order of magnitude

for the smaller landslide deposit, once trained, we were unable to

obtain a representative GSD using a single curve for the larger debris

flow deposits. In the larger, coarser debris flow deposits in the

Longmen Shan, manual photo counts were unable to obtain the maxi-

mum resolution measured using sieving. We were also unable to reach

the desired sample size for manual photo counts for coarse deposits.

In all cases clear, detailed descriptions of the protocol are essential so

that uncertainties introduced by different methods can be quantified

and the implications for process interpretation can be better

understood.

ACKNOWLEDGEMENTS

ELH is supported by a NERC GW4+ Doctoral Training Partnership

studentship from the Natural Environment Research Council

[NE/L002434/1]. Many thanks to Bing Xia, Yang Fan, Pasquale

Marino, Oliver Francis and Lucy Coombs who helped with field data

collection. We would like to thank the Associate Editor and two anon-

ymous reviewers for their comments, which improved the quality of

the manuscript.

CONFLICT OF INTEREST

The authors declare that there are no conflicts of interest.

AUTHOR CONTRIBUTIONS

a. Conceptualization: ELH, TCH, DEJH, XF

b. Funding acquisition: ELH, TCH, XF

c. Methodology: ELH, TCH, DEJH, JL

d. Investigation (data collection): ELH, TCH, JL

e. Resources (provision of data): ELH, TCH

f. Software: ELH, TCH, DEJH

g. Supervision: TCH, DEJH, XF

h. Writing (initial draft): ELH, TCH

i. Writing (reviewing and editing): ELH, TCH, DEJH, JL, XF

DATA AVAILABILITY STATEMENT

All data used in this paper is available upon request. The code for

pyDGS was written by Daniel Buscombe and can be freely accessed

at https://github.com/dbuscombe-usgs/pyDGS.

ORCID

Erin L. Harvey https://orcid.org/0000-0002-6167-9438

Tristram C. Hales https://orcid.org/0000-0002-3330-3302

Daniel E. J. Hobley https://orcid.org/0000-0003-2371-0534

REFERENCES

Attal, M. & Lavé, J. (2006) Changes of bedload characteristics along the

Marsyandi River (central Nepal): Implications for understanding hill-

slope sediment supply, sediment load evolution along fluvial net-

works, and denudation in active orogenic belts. Tectonics, Climate,

and Landscape Evolution, 398, 143–171. Available from: https://doi.

org/10.1130/2006.2398(09)

Attal, M., Mudd, S.M., Hurst, M.D., Weinman, B., Yoo, K. & Naylor, M.

(2015) Impact of change in erosion rate and landscape steepness

on hillslope and fluvial sediments grain size in the Feather River

basin (Sierra Nevada, California). Earth Surface Dynamics, 3(1),

201–222. Available from: https://doi.org/10.5194/esurf-3-201-

2015

Barclay, W.J., Jackson, D.I., Mitchell, M., Owens, B., Riley, N.J., White, D.

E., Strong, G.E. & Monkhouse, R.A. (1989) Geology of the South Wales

Coalfield: Memoir for 1:50,000 Geological Sheet 232 (England and

Wales). London: HMSO.

Bitelli, G., Dubbini, M. & Zanutta, A. (2004) Terrestrial laser scanning and

digital photogrammetry techniques to monitor landslide bodies. The

International Archives of the Photogrammetry, Remote Sensing and Spa-

tial Information Sciences, 35, 246–251.
Blair, T.C. (1999) Cause of dominance by sheetflood vs. debris-flow pro-

cesses on two adjoining alluvial fans, Death Valley, California. Sedi-

mentology, 46(6), 1015–1028. Available from: https://doi.org/10.

1046/j.1365-3091.1999.00261.x

Brasington, J., Vericat, D. & Rychkov, I. (2012) Modeling river bed mor-

phology, roughness, and surface sedimentology using high resolution

terrestrial laser scanning. Water Resources Research, 48(11), 1–18.
Available from: https://doi.org/10.1029/2012WR012223

Bunte, K. & Abt, S.R. (2001a) Sampling frame for improving pebble count

accuracy in coarse gravel-bed streams. Journal of the American Water

Resources Association, 37(4), 1001–1014. Available from: https://doi.

org/10.1111/j.1752-1688.2001.tb05528.x

Bunte, K. & Abt, S.R. (2001b) Sampling Surface and Sub-surface Particle Size

Distributions in Wadeable Gravel- and Cobble-Bed Streams for Analysis

in Sediment Transport, Hydraulics, and Streambed Monitoring. Report

No. GTR-74. USDA Forest Service, Rocky Mountain Research Sta-

tion: Fort Collins, CO.

Buscombe, D. (2013) Transferable wavelet method for grain-size distribu-

tion from images of sediment surfaces and thin sections, and other

natural granular patterns. Sedimentology, 60(7), 1709–1732. Available
from: https://doi.org/10.1111/sed.12049

Buscombe, D. (2020) SediNet: A configurable deep learning model for

mixed qualitative and quantitative optical granulometry. Earth Sur-

face Processes and Landforms, 45(3), 638–651. Available from:

https://doi.org/10.1002/esp.4760

HARVEY ET AL. 13

https://github.com/dbuscombe-usgs/pyDGS
https://orcid.org/0000-0002-6167-9438
https://orcid.org/0000-0002-6167-9438
https://orcid.org/0000-0002-3330-3302
https://orcid.org/0000-0002-3330-3302
https://orcid.org/0000-0003-2371-0534
https://orcid.org/0000-0003-2371-0534
https://doi.org/10.1130/2006.2398(09)
https://doi.org/10.1130/2006.2398(09)
https://doi.org/10.5194/esurf-3-201-2015
https://doi.org/10.5194/esurf-3-201-2015
https://doi.org/10.1046/j.1365-3091.1999.00261.x
https://doi.org/10.1046/j.1365-3091.1999.00261.x
https://doi.org/10.1029/2012WR012223
https://doi.org/10.1111/j.1752-1688.2001.tb05528.x
https://doi.org/10.1111/j.1752-1688.2001.tb05528.x
https://doi.org/10.1111/sed.12049
https://doi.org/10.1002/esp.4760


Carbonneau, P.E., Bergeron, N. & Lane, S.N. (2005) Automated grain size

measurements from airborne remote sensing for long profile mea-

surements of fluvial grain sizes. Water Resources Research, 41(11), 1–
9. Available from: https://doi.org/10.1029/2005WR003994

Carbonneau, P.E., Lane, S.N. & Bergeron, N.E. (2004) Catchment-scale

mapping of surface grain size in gravel bed rivers using airborne digi-

tal imagery. Water Resources Research, 40(7), 1–11. Available from:

https://doi.org/10.1029/2003WR002759

Casagli, N., Ermini, L. & Rosati, G. (2003) Determining grain size distribu-

tion of the material composing landslide dams in the Northern Apen-

nines: Sampling and processing methods. Engineering Geology, 69(1–
2), 83–97. Available from: https://doi.org/10.1016/S0013-7952(02)

00249-1

Chen, H., Su, D. & Chen, K. (2001) Some case studies on the engineering

geological characteristics of debris flows in Taiwan. Western Pacific

Earth Sciences, 1, 265–296.
Church, M.A., McLean, D.G. & Wolcott, J.F. (1987) River bed gravels: Sam-

pling and analysis. In: Thorne, C.R., Bathurst, J.C. & Hey, R.D. (Eds.)

Gravel Bed Rivers. Chichester: Wiley, pp. 43–87.
Croissant, T., Hilton, R.G., Li, G.K., Howarth, J., Wang, J., Harvey, E.L.,

Steer, P. & Densmore, A.L. (2021) Pulsed carbon export from moun-

tains by earthquake-triggered landslides explored in a reduced-

complexity model. Earth Surface Dynamics Discussions, 9(4), 823–
844. Available from: https://doi.org/10.5194/esurf-9-823-2021

Crosta, G.B., Frattini, P. & Fusi, N. (2007) Fragmentation in the Val Pola

rock avalanche, Italian Alps. Journal of Geophysical Research – Earth

Surface, 112(F1), 1–23. Available from: https://doi.org/10.1029/

2005JF000455

Cruden, D.M. & Varnes, D.J. (1996) Landslide types and processes. In:

Turner, A.K. & Schuster, R.L. (Eds.) Landslides Investigation and Mitiga-

tion. Special Report 247 of the Transportation Research Board.

Washington, DC: National Academy Press, pp. 36–75.
Cucchiaro, S., Cavalli, M., Vericat, D., Crema, S., Llena, M., Beinat, A.,

Marchi, L. & Cazorzi, F. (2018) Monitoring topographic changes

through 4D-structure-from-motion photogrammetry: Application to

a debris-flow channel. Environmental Earth Sciences, 77(18), 1–21.
Available from: https://doi.org/10.1007/s12665-018-7817-4

Cuttler, M.V.W., Lowe, R.J., Falter, J.L. & Buscombe, D. (2017) Estimating

the settling velocity of bioclastic sediment using common grain-size

analysis techniques. Sedimentology, 64(4), 987–1004. Available from:

https://doi.org/10.1111/sed.12338

Daniels, M.D. & McCusker, M.H. (2010) Operator bias characterizing

stream substrates using Wolman pebble counts with a standard mea-

surement template. Geomorphology, 115(1–2), 194–198. Available

from: https://doi.org/10.1016/j.geomorph.2009.09.038

de Haas, T., Braat, L., Leuven, J.R.F.W., Lokhorst, I.R. & Kleinhans, M.G.

(2015) Effects of debris flow composition on runout, depositional

mechanisms, and deposit morphology in laboratory experiments.

Journal of Geophysical Research – Earth Surface, 120(9), 1949–1972.
Available from: https://doi.org/10.1002/2015JF003525

de Scally, F.A. & Owens, I.F. (2005) Depositional processes and particle

characteristics on fans in the Southern Alps, New Zealand. Geomor-

phology, 69(1–4), 46–56. Available from: https://doi.org/10.1016/j.

geomorph.2004.11.021

Detert, M. & Weitbrecht, V. (2012) Automatic object detection to analyze

the geometry of gravel grains – a free stand-alone tool. River Flow

2012 – Proceedings of the International Conference on Fluvial Hydrau-

lics, 1, 595–600.
Diplas, P. & Fripp, J.B. (1992) Properties of various sediment sampling pro-

cedures. Journal of Hydraulic Engineering, 118(7), 955–970. Available
from: https://doi.org/10.1061/(asce)0733-9429(1992)118:7(955)

Diplas, P. & Sutherland, A.J. (1988) Sampling techniques for gravel-sized

sediments. Journal of Hydraulic Engineering, 114(5), 484–501. Avail-
able from: https://doi.org/10.1061/(asce)0733-9429(1988)114:

5(484)

Dufresne, A. & Dunning, S.A. (2017) Process dependence of grain size dis-

tributions in rock avalanche deposits. Landslides, 14(5), 1555–1563.
Available from: https://doi.org/10.1007/s10346-017-0806-y

Dunning, S.A. (2006) The grain-size distribution of rock avalanche deposits

in valley-confined settings. Italian Journal of Engineering Geology and

Environment, 1, 117–121. Available from: https://doi.org/10.4408/

IJEGE.2006-01.S-15

Dunning, S.A., Massey, C.I. & Rosser, N.J. (2009) Structural and geomor-

phological features of landslides in the Bhutan Himalaya derived

from Terrestrial Laser Scanning. Geomorphology, 103(1), 17–29.
Available from: https://doi.org/10.1016/j.geomorph.2008.04.013

Eaton, B.C., Dan Moore, R. & Mackenzie, L.G. (2019) Percentile-based

grain size distribution analysis tools (GSDtools) – estimating confi-

dence limits and hypothesis tests for comparing two samples. Earth

Surface Dynamics, 7(3), 789–806. Available from: https://doi.org/10.

5194/esurf-7-789-2019

Egholm, D.L., Knudsen, M.F. & Sandiford, M. (2013) Lifespan of mountain

ranges scaled by feedbacks between landsliding and erosion by riv-

ers. Nature, 498(7455), 475–478. Available from: https://doi.org/10.

1038/nature12218

Folk, R.L. & Ward, W.C. (1957) Brazos River bar: A study in the signifi-

cance of grain size parameters. Journal of Sedimentary Petrology,

27(1), 3–26. Available from: https://doi.org/10.1306/74D70646-

2B21-11D7-8648000102C1865D

Fripp, J.B. & Diplas, P. (1993) Surface sampling in gravel streams. Journal of

Hydraulic Engineering, 119(4), 473–490. Available from: https://doi.

org/10.1061/(asce)0733-9429(1993)119:4(473)

Genevois, R., Galgaro, A. & Tecca, P.R. (2001) Image analysis for debris

flow properties estimation. Physics and Chemistry of the Earth, Part C:

Solar, Terrestrial and Planetary Science, 26(9), 623–631. Available

from: https://doi.org/10.1016/S1464-1917(01)00059-9

George, G.T. (2015) The Geology of South Wales, 2nd edition. Maidstone:

Geoserv Publishing.

Graham, D.J., Reid, I. & Rice, S.P. (2005) Automated sizing of coarse-

grained sediments: Image-processing procedures. Mathematical Geol-

ogy, 37(1), 1–28. Available from: https://doi.org/10.1007/s11004-

005-8745-x

Graham, D.J., Rollet, A.J., Piégay, H. & Rice, S.P. (2010) Maximizing the

accuracy of image-based surface sediment sampling techniques.

Water Resources Research, 46(2), 1–15. Available from: https://doi.

org/10.1029/2008WR006940

Gray, J.M.N.T. & Ancey, C. (2011) Multi-component particle-size segrega-

tion in shallow granular avalanches. Journal of Fluid Mechanics, 678,

535–588. Available from: https://doi.org/10.1017/jfm.2011.138

Guerit, L., Barrier, L., Liu, Y., Narteau, C., Lajeunesse, E., Gayer, E. &

Métivier, F. (2018) Uniform grain-size distribution in the active layer

of a shallow, gravel-bedded, braided river (the Urumqi River, China)

and implications for paleo-hydrology. Earth Surface Dynamics, 6(4),

1011–1021. Available from: https://doi.org/10.5194/esurf-6-1011-

2018

Gupta, S.K. & Shukla, D.P. (2018) Application of drone for landslide map-

ping, dimension estimation and its 3D reconstruction. Journal of the

Indian Society of Remote Sensing, 46(6), 903–914. Available from:

https://doi.org/10.1007/s12524-017-0727-1

Hubert, J.F. & Filipov, A.J. (1989) Debris-flow deposits in alluvial fans on

the west flank of the White Mountains, Owens Valley, California,

U.S.A. Sedimentary Geology, 61(3–4), 177–205. Available from:

https://doi.org/10.1016/0037-0738(89)90057-2

Ibbeken, H., Warnke, D.A. & Diepenbroek, M. (1998) Granulometric study

of the Hanaupah Fan, Death Valley, California. Earth Surface Pro-

cesses and Landforms, 23(6), 481–492. Available from: https://doi.

org/10.1002/(SICI)1096-9837(199806)23:6<481::AID-ESP906>3.0.

CO;2-T

Johnson, C.G., Kokelaar, B.P., Iverson, R.M., Logan, M., LaHusen, R.G. &

Gray, J.M.N.T. (2012) Grain-size segregation and levee formation in

geophysical mass flows. Journal of Geophysical Research – Earth Sur-

face, 117(F1), 1–23. Available from: https://doi.org/10.1029/

2011jf002185

Kaitna, R., Palucis, M.C., Yohannes, B., Hill, K.M. & Dietrich, W.E. (2016)

Effects of coarse grain size distribution and fine particle content on

pore fluid pressure and shear behavior in experimental debris flows.

Journal of Geophysical Research – Earth Surface, 121(2), 415–441.
Available from: https://doi.org/10.1002/2015JF003725

Kean, J.W., Staley, D.M. & Cannon, S.H. (2011) In situ measurements of

post-fire debris flows in southern California: Comparisons of the

14 HARVEY ET AL.

https://doi.org/10.1029/2005WR003994
https://doi.org/10.1029/2003WR002759
https://doi.org/10.1016/S0013-7952(02)00249-1
https://doi.org/10.1016/S0013-7952(02)00249-1
https://doi.org/10.5194/esurf-9-823-2021
https://doi.org/10.1029/2005JF000455
https://doi.org/10.1029/2005JF000455
https://doi.org/10.1007/s12665-018-7817-4
https://doi.org/10.1111/sed.12338
https://doi.org/10.1016/j.geomorph.2009.09.038
https://doi.org/10.1002/2015JF003525
https://doi.org/10.1016/j.geomorph.2004.11.021
https://doi.org/10.1016/j.geomorph.2004.11.021
https://doi.org/10.1061/(asce)0733-9429(1992)118:7(955)
https://doi.org/10.1061/(asce)0733-9429(1988)114:5(484)
https://doi.org/10.1061/(asce)0733-9429(1988)114:5(484)
https://doi.org/10.1007/s10346-017-0806-y
https://doi.org/10.4408/IJEGE.2006-01.S-15
https://doi.org/10.4408/IJEGE.2006-01.S-15
https://doi.org/10.1016/j.geomorph.2008.04.013
https://doi.org/10.5194/esurf-7-789-2019
https://doi.org/10.5194/esurf-7-789-2019
https://doi.org/10.1038/nature12218
https://doi.org/10.1038/nature12218
https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
https://doi.org/10.1061/(asce)0733-9429(1993)119:4(473)
https://doi.org/10.1061/(asce)0733-9429(1993)119:4(473)
https://doi.org/10.1016/S1464-1917(01)00059-9
https://doi.org/10.1007/s11004-005-8745-x
https://doi.org/10.1007/s11004-005-8745-x
https://doi.org/10.1029/2008WR006940
https://doi.org/10.1029/2008WR006940
https://doi.org/10.1017/jfm.2011.138
https://doi.org/10.5194/esurf-6-1011-2018
https://doi.org/10.5194/esurf-6-1011-2018
https://doi.org/10.1007/s12524-017-0727-1
https://doi.org/10.1016/0037-0738(89)90057-2
https://doi.org/10.1002/(SICI)1096-9837(199806)23:6%3C481::AID-ESP906%3E3.0.CO;2-T
https://doi.org/10.1002/(SICI)1096-9837(199806)23:6%3C481::AID-ESP906%3E3.0.CO;2-T
https://doi.org/10.1002/(SICI)1096-9837(199806)23:6%3C481::AID-ESP906%3E3.0.CO;2-T
https://doi.org/10.1029/2011jf002185
https://doi.org/10.1029/2011jf002185
https://doi.org/10.1002/2015JF003725


timing and magnitude of 24 debris-flow events with rainfall and soil

moisture conditions. Journal of Geophysical Research – Earth Surface,

116(F4), 1–21. Available from: https://doi.org/10.1029/

2011JF002005

Kellerhals, R. & Bray, D. (1971) Sampling procedures for coarse fluvial sedi-

ments. Journal of the Hydraulics Division, 97(8), 1165–1180. Available
from: https://doi.org/10.1061/JYCEAJ.0003044

Kim, B.C. & Lowe, D.R. (2004) Depositional processes of the gravelly

debris flow deposits, South Dolomite alluvial fan, Owens Valley,

California. Geosciences Journal, 8(2), 153–170. Available from:

https://doi.org/10.1007/BF02910191

Lang, N., Irniger, A., Rozniak, A., Hunziker, R., Wegner, J.D. & Schindler, K.

(2021) GRAINet: Mapping grain size distributions in river beds from

UAV images with convolutional neural networks. Hydrology and Earth

System Sciences, 25(5), 2567–2597. Available from: https://doi.org/

10.5194/hess-25-2567-2021

Locat, P., Couture, R., Leroueil, S., Locat, J. & Jaboyedoff, M. (2006) Frag-

mentation energy in rock avalanches. Canadian Geotechnical Journal,

43(8), 830–851. Available from: https://doi.org/10.1139/T06-045

Ma, L. (2002) Geological Atlas of China. Beijing: Geological Publishing

House.

Major, J.J. & Voight, B. (1986) Sedimentology and clast orientations of the

18 May 1980 southwest-flank lahars, Mount St. Helens,

Washington. Journal of Sedimentary Petrology, 56, 691–705.
Available from: https://doi.org/10.1306/212F8A1C-2B24-11D7-

8648000102C1865D

Makris, S., Manzella, I., Cole, P. & Roverato, M. (2020) Grain size distribu-

tion and sedimentology in volcanic mass-wasting flows: Implications

for propagation and mobility. International Journal of Earth Sciences,

109(8), 2679–2695. Available from: https://doi.org/10.1007/

s00531-020-01907-8

Marc, O., Turowski, J.M. & Meunier, P. (2021) Controls on the grain size

distribution of landslides in Taiwan: The influence of drop height,

scar depth and bedrock strength. Earth Surface Dynamics, 9, 995–
1011. Available from: https://doi.org/10.5194/esurf-9-995-2021

McKenna, J.P., Santi, P.M., Amblard, X. & Negri, J. (2012) Effects of soil-

engineering properties on the failure mode of shallow landslides.

Landslides, 9(2), 215–228. Available from: https://doi.org/10.1007/

s10346-011-0295-3

Michaelides, K., Hollings, R., Singer, M.B., Nichols, M.H. & Nearing, M.A.

(2018) Spatial and temporal analysis of hillslope–channel coupling
and implications for the longitudinal profile in a dryland basin. Earth

Surface Processes and Landforms, 43(8), 1608–1621. Available from:

https://doi.org/10.1002/esp.4340

Neely, A.B. & DiBiase, R.A. (2020) Drainage area, bedrock fracture spacing,

and weathering controls on landscape-scale patterns in surface sedi-

ment grain size. Journal of Geophysical Research – Earth Surface,

125(10), 1–22. Available from: https://doi.org/10.1029/

2020JF005560

Neverman, A.J., Fuller, I.C., Procter, J.N. & Death, R.G. (2019) Terrestrial

laser scanning and structure-from-motion photogrammetry concor-

dance analysis for describing the surface layer of gravel beds. Pro-

gress in Physical Geography, 43(2), 1–22. Available from: https://doi.

org/10.1177/0309133318822966

Prodger, S., Russell, P. & Davidson, M. (2017) Grain-size distributions on

high-energy sandy beaches and their relation to wave dissipation.

Sedimentology, 64(5), 1289–1302. Available from: https://doi.org/10.

1111/sed.12353

Purinton, B. & Bookhagen, B. (2019) Introducing PebbleCounts: A grain-

sizing tool for photo surveys of dynamic gravel-bed rivers. Earth Sur-

face Dynamics, 7(3), 859–877. Available from: https://doi.org/10.

5194/esurf-2019-20

Purinton, B. & Bookhagen, B. (2021) Tracking downstream variability in

large grain-size distributions in the South-Central Andes. Journal of

Geophysical Research – Earth Surface, 126(8), 1–29. Available from:

https://doi.org/10.1029/2021jf006260

Roda-Boluda, D.C., D’Arcy, M., McDonald, J. & Whittaker, A.C. (2018)

Lithological controls on hillslope sediment supply: Insights from land-

slide activity and grain size distributions. Earth Surface Processes and

Landforms, 43(5), 956–977. Available from: https://doi.org/10.1002/

esp.4281

Rubin, D.M. (2004) A simple autocorrelation algorithm for determining

grain size from digital images of sediment. Journal of Sedimentary

Research, 74(1), 160–165. Available from: https://doi.org/10.1306/

052203740160

Ruiz-Carulla, R., Corominas, J. & Mavrouli, O. (2015) A methodology to

obtain the block size distribution of fragmental rockfall deposits.

Landslides, 12(4), 815–825. Available from: https://doi.org/10.1007/

s10346-015-0600-7

Saunders, G. (2014) Development of photogrammetric methods for land-

slide analysis. Available at https://www.duo.uio.no/bitstream/

handle/10852/42338/saunders_thesis.pdf?sequence=1

Sklar, L.S. & Dietrich, W.E. (2006) The role of sediment in controlling

steady-state bedrock channel slope: Implications of the saltation–
abrasion incision model. Geomorphology, 82(1–2), 58–83. Available
from: https://doi.org/10.1016/j.geomorph.2005.08.019

Sklar, L.S., Riebe, C.S., Genetti, J., Leclere, S. & Lukens, C.E. (2020) Down-

valley fining of hillslope sediment in an alpine catchment: Implica-

tions for downstream fining of sediment flux in mountain rivers.

Earth Surface Processes and Landforms, 45(8), 1828–1845. Available
from: https://doi.org/10.1002/esp.4849

Sklar, L.S., Riebe, C.S., Marshall, J.A., Genetti, J., Leclere, S., Lukens, C.L. &

Merces, V. (2017) The problem of predicting the size distribution of

sediment supplied by hillslopes to rivers. Geomorphology, 277, 31–
49. Available from: https://doi.org/10.1016/j.geomorph.2016.

05.005

Sosio, R., Crosta, G.B. & Frattini, P. (2007) Field observations, rheological

testing and numerical modelling of a debris-flow event. Earth Surface

Processes and Landforms, 32(2), 290–306. Available from: https://doi.

org/10.1002/esp

Storz-Peretz, Y. & Laronne, J.B. (2013) Automatic grain sizing of vertical

exposures of gravelly deposits. Sedimentary Geology, 294, 13–26.
Available from: https://doi.org/10.1016/j.sedgeo.2013.05.004

Strom, K.B., Kuhns, R.D. & Lucas, H.J. (2010) Comparison of automated

image-based grain sizing to standard pebble-count methods. Journal

of Hydraulic Engineering, 136(8), 461–473. Available from: https://

doi.org/10.1061/(asce)hy.1943-7900.0000198

Vallance, J.W. & Savage, S.B. (2000) Particle segregation in granular flows

down chutes. In: Rosato, A. & Blackmore, D. (Eds.) International Union

of Theoretical and Applied Mechanics Symposium on Segregation in

Granular Flows. Dordrecht: Springer, pp. 31–51.
Vallance, J.W. & Scott, K.M. (1997) The Osceola mudflow from Mount

Rainier: Sedimentology and hazard implications of a huge clay-rich

debris flow. Bulletin of the Geological Society of America, 109(2), 143–
163. Available from: https://doi.org/10.1130/0016-7606(1997)

109<0143:TOMFMR>2.3.CO;2

Vázquez-Tarrío, D., Borgniet, L., Liébault, F. & Recking, A. (2017) Using

UAS optical imagery and SfM photogrammetry to characterize the

surface grain size of gravel bars in a braided river (Vénéon River,

French Alps). Geomorphology, 285, 94–105. Available from: https://

doi.org/10.1016/j.geomorph.2017.01.039

Wang, G. & Sassa, K. (2003) Pore-pressure generation and movement of

rainfall-induced landslides: Effects of grain size and fine-particle con-

tent. Engineering Geology, 69(1–2), 109–125. Available from: https://

doi.org/10.1016/S0013-7952(02)00268-5

Westoby, M.J., Dunning, S.A., Woodward, J., Hein, A., Marrero, S.M.,

Winter, K. & Sugden, D.E. (2015) Sedimentological characterization

of Antarctic moraines using UAVs and Structure-from-Motion photo-

grammetry. Journal of Glaciology, 61(230), 1088–1102. Available

from: https://doi.org/10.3189/2015jog15j086

Whipple, K.X. & Dunne, T. (1992) The influence of debris-flow rheology

on fan morphology, Owens Valley, California. Geological Society of

America Bulletin, 104(7), 887–900. Available from: https://doi.org/

10.1130/0016-7606(1992)104<0887:TIODFR>2.3.CO;2

Wohl, E.E., Anthony, D.J., Madsen, S.W. & Thompson, D.M. (1996) A com-

parison of surface sampling methods for coarse fluvial sediments.

Water Resources Research, 32(10), 3219–3226. Available from:

https://doi.org/10.1029/96WR01527

HARVEY ET AL. 15

https://doi.org/10.1029/2011JF002005
https://doi.org/10.1029/2011JF002005
https://doi.org/10.1061/JYCEAJ.0003044
https://doi.org/10.1007/BF02910191
https://doi.org/10.5194/hess-25-2567-2021
https://doi.org/10.5194/hess-25-2567-2021
https://doi.org/10.1139/T06-045
https://doi.org/10.1306/212F8A1C-2B24-11D7-8648000102C1865D
https://doi.org/10.1306/212F8A1C-2B24-11D7-8648000102C1865D
https://doi.org/10.1007/s00531-020-01907-8
https://doi.org/10.1007/s00531-020-01907-8
https://doi.org/10.5194/esurf-9-995-2021
https://doi.org/10.1007/s10346-011-0295-3
https://doi.org/10.1007/s10346-011-0295-3
https://doi.org/10.1002/esp.4340
https://doi.org/10.1029/2020JF005560
https://doi.org/10.1029/2020JF005560
https://doi.org/10.1177/0309133318822966
https://doi.org/10.1177/0309133318822966
https://doi.org/10.1111/sed.12353
https://doi.org/10.1111/sed.12353
https://doi.org/10.5194/esurf-2019-20
https://doi.org/10.5194/esurf-2019-20
https://doi.org/10.1029/2021jf006260
https://doi.org/10.1002/esp.4281
https://doi.org/10.1002/esp.4281
https://doi.org/10.1306/052203740160
https://doi.org/10.1306/052203740160
https://doi.org/10.1007/s10346-015-0600-7
https://doi.org/10.1007/s10346-015-0600-7
https://www.duo.uio.no/bitstream/handle/10852/42338/saunders_thesis.pdf?sequence=1
https://www.duo.uio.no/bitstream/handle/10852/42338/saunders_thesis.pdf?sequence=1
https://doi.org/10.1016/j.geomorph.2005.08.019
https://doi.org/10.1002/esp.4849
https://doi.org/10.1016/j.geomorph.2016.05.005
https://doi.org/10.1016/j.geomorph.2016.05.005
https://doi.org/10.1002/esp
https://doi.org/10.1002/esp
https://doi.org/10.1016/j.sedgeo.2013.05.004
https://doi.org/10.1061/(asce)hy.1943-7900.0000198
https://doi.org/10.1061/(asce)hy.1943-7900.0000198
https://doi.org/10.1130/0016-7606(1997)109%3C0143:TOMFMR%3E2.3.CO;2
https://doi.org/10.1130/0016-7606(1997)109%3C0143:TOMFMR%3E2.3.CO;2
https://doi.org/10.1016/j.geomorph.2017.01.039
https://doi.org/10.1016/j.geomorph.2017.01.039
https://doi.org/10.1016/S0013-7952(02)00268-5
https://doi.org/10.1016/S0013-7952(02)00268-5
https://doi.org/10.3189/2015jog15j086
https://doi.org/10.1130/0016-7606(1992)104%3C0887:TIODFR%3E2.3.CO;2
https://doi.org/10.1130/0016-7606(1992)104%3C0887:TIODFR%3E2.3.CO;2
https://doi.org/10.1029/96WR01527


Wolman, M.G. (1954) A method of sampling coarse river-bed material. Eos,

Transactions of the American Geophysical Union, 35(6), 951–956.
Available from: https://doi.org/10.1029/TR035i006p00951

Zhang, L.M., Xu, Y., Huang, R.Q. & Chang, D.S. (2011) Particle flow and

segregation in a giant landslide event triggered by the 2008

Wenchuan earthquake, Sichuan, China. Natural Hazards and Earth

System Sciences, 11(4), 1153–1162. Available from: https://doi.org/

10.5194/nhess-11-1153-2011

Zhang, S., Zhang, L.M. & Chen, H.X. (2014) Relationships among three

repeated large-scale debris flows at Pubugou Ravine in the

Wenchuan earthquake zone. Canadian Geotechnical Journal, 51(9),

951–965. Available from: https://doi.org/10.1139/cgj-2013-0368

Zhang, W., Wang, Q., Chen, J., Li, H., Que, J. & Kong, Y. (2015) Grain-size

analysis of debris flow alluvial fans in Panxi Area along Jinsha River,

China. Sustainability (Switzerland), 7(11), 15219–15242. Available

from: https://doi.org/10.3390/su71115219

SUPPORTING INFORMATION

Additional supporting information may be found in the online version

of the article at the publisher’s website.

How to cite this article: Harvey, E.L., Hales, T.C., Hobley,

D.E.J., Liu, J. & Fan, X. (2022) Measuring the grain-size

distributions of mass movement deposits. Earth Surface

Processes and Landforms, 1–16. Available from: https://doi.

org/10.1002/esp.5337

16 HARVEY ET AL.

https://doi.org/10.1029/TR035i006p00951
https://doi.org/10.5194/nhess-11-1153-2011
https://doi.org/10.5194/nhess-11-1153-2011
https://doi.org/10.1139/cgj-2013-0368
https://doi.org/10.3390/su71115219
https://doi.org/10.1002/esp.5337
https://doi.org/10.1002/esp.5337

	Measuring the grain-size distributions of mass movement deposits
	1  INTRODUCTION
	2  STUDY SITES
	3  METHODS
	3.1  Volumetric sieving
	3.2  Wolman pebble counts and survey tape counts
	3.3  Manual photo counts
	3.4  Automated photo analysis (pyDGS)
	3.5  Combining GSDs
	3.6  Comparing the different methods

	4  RESULTS
	5  DISCUSSION
	5.1  Sampling method uncertainty
	5.2  Methodological uncertainty, sample size and sample type
	5.3  Applying these methods to different types of mass movement

	6  CONCLUSION
	ACKNOWLEDGEMENTS
	  CONFLICT OF INTEREST
	  AUTHOR CONTRIBUTIONS
	  DATA AVAILABILITY STATEMENT

	REFERENCES


