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Abstract

Age has a major effect on brain volume. However, the normative studies available are

constrained by small sample sizes, restricted age coverage and significant methodo-

logical variability. These limitations introduce inconsistencies and may obscure or dis-

tort the lifespan trajectories of brain morphometry. In response, we capitalized on the

resources of the Enhancing Neuroimaging Genetics through Meta-Analysis

(ENIGMA) Consortium to examine age-related trajectories inferred from cross-

sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum,

and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic

resonance imaging data obtained from 18,605 individuals aged 3–90 years. All sub-

cortical structure volumes were at their maximum value early in life. The volume of

the basal ganglia showed a monotonic negative association with age thereafter; there

was no significant association between age and the volumes of the thalamus, amyg-

dala and the hippocampus (with some degree of decline in thalamus) until the sixth

decade of life after which they also showed a steep negative association with age.

The lateral ventricles showed continuous enlargement throughout the lifespan. Age

was positively associated with inter-individual variability in the hippocampus and

amygdala and the lateral ventricles. These results were robust to potential con-

founders and could be used to examine the functional significance of deviations from

typical age-related morphometric patterns.

K E YWORD S

brain morphometry, ENIGMA, longitudinal trajectories, multisite
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1 | INTRODUCTION

Over the last 20 years, studies using structural magnetic resonance

imaging (MRI) have confirmed that brain morphometric measures

change with age. In general, whole brain, global and regional gray mat-

ter volumes increase during development and decrease with aging

(Brain Development Cooperative Group, 2012; Driscoll et al., 2009;

Fotenos, Snyder, Girton, Morris, & Buckner, 2005; Good et al., 2001;

Pfefferbaum et al., 2013; Pomponio et al., 2019; Raz et al., 2005;

Raznahan et al., 2014; Resnick, Pham, Kraut, Zonderman, &

Davatzikos, 2003; Walhovd et al., 2011). However, most published

studies are constrained by small sample sizes, restricted age coverage

and methodological variability. These limitations introduce inconsis-

tencies and may obscure or distort the lifespan trajectories of brain

structures. To address these limitations, we formed the Lifespan

Working group of the Enhancing Neuroimaging Genetics through

Meta-Analysis (ENIGMA) Consortium (Thompson et al., 2014, 2017)

to perform large-scale analyses of brain morphometric data extracted

from MRI images using standardized protocols and unified quality

control procedures, harmonized and validated across all participating

sites.

Here we focus on ventricular, striatal (caudate, putamen, nucleus

accumbens), pallidal, thalamic, hippocampal and amygdala volumes.

Subcortical structures are crucial for normal cognitive and emotional

adaptation (Grossberg, 2009). The striatum and pallidum (together

referred to as basal ganglia) are best known for their role in action

selection and movement coordination (Calabresi, Picconi, Tozzi,

Ghiglieri, & Di Filippo, 2014) but they are also involved in other

aspects of cognition particularly memory, inhibitory control, reward

and salience processing (Chudasama & Robbins, 2006; Richard, Cas-

tro, Difeliceantonio, Robinson, & Berridge, 2013; Scimeca &

Badre, 2012; Tremblay, Worbe, Thobois, Sgambato-Faure, &

Féger, 2015). The role of the hippocampus has been most clearly

defined in connection to declarative memory (Eichenbaum, 2004;

Shohamy & Turk-Browne, 2013) while the amygdala has been histori-

cally linked to affect processing (Kober et al., 2008). The thalamus is

centrally located in the brain and acts as a key hub for the integration

of motor and sensory information with higher-order functions

(Sherman, 2005; Zhang, Snyder, Shimony, Fox, & Raichle, 2010). The

role of subcortical structures extends beyond normal cognition

because changes in the volume of these regions have been reliably

identified in developmental (Ecker, Bookheimer, & Murphy, 2015;

Krain & Castellanos, 2006), psychiatric (Hibar et al., 2016; Kempton

et al., 2011; Schmaal et al., 2016; van Erp et al., 2016) and degenera-

tive disorders (Risacher et al., 2009).

Using data from 18,605 individuals aged 3–90 years from the

ENIGMA Lifespan working group we delineated the association

between age and subcortical volumes from early to late life in order to

(a) identify periods of volume change or stability, (b) provide normative,

age-adjusted centile curves of subcortical volumes and (c) quantify

inter-individual variability in subcortical volumes which is considered a

major source of inter-study differences (Dickie et al., 2013; Raz,

Ghisletta, Rodrigue, Kennedy, & Lindenberger, 2010).

2 | MATERIALS AND METHODS

2.1 | Study samples

The study data derive from 88 samples comprising 18,605 healthy

participants, aged 3–90 years, with near equal representation of men

and women (48% and 52%) (Table 1, Figure 1). At the time of scan-

ning, participating individuals were screened to exclude the presence

of mental disorders, cognitive impairment or significant medical mor-

bidity. Details of the screening process and eligibility criteria for each

research group are shown in Table S1).

2.2 | Neuroimaging

Detailed information on scanner vendor, magnet strength and acquisi-

tion parameters for each sample are presented in Table S1. For each

sample, the intracranial volume (ICV) and the volume of the basal

ganglia (caudate, putamen, pallidum, nucleus accumbens), thalamus,

hippocampus, amygdala and lateral ventricles were extracted using

FreeSurfer (http://surfer.nmr.mgh.harvard.edu) from high-resolution

T1-weighted MRI brain scans (Fischl, 2012; Fischl et al., 2002). Prior

to data pooling, images were visually inspected at each site to exclude

participants whose scans were improperly segmented. After merging

the samples, only individuals with complete data were included out-

liers were identified and excluded using Mahalanobis distances. All

analyses described below were repeated for ICV-unadjusted volumet-

ric measures which yielded identical results and are only presented as

a separate supplement.

Approximately 20% of the samples had a multi-scanner design.

During data harmonization the scanner was modeled as a site. In each
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TABLE 1 Characteristics of the included samples

Sample

Age, mean,

years

Age, SD,

years Age range Sample size N

Number of

males

Number of

females

ABIDE 17 7.8 6 56 534 439 95

ADHD NF 13 1 12 15 13 7 6

ADNI 76 5.1 60 90 150 70 80

ADNI2GO 73 6.1 56 89 133 55 78

AMC 23 3.4 17 32 92 60 32

Barcelona 1.5T 15 1.8 11 17 30 14 16

Barcelona 3T 15 2.1 11 17 44 24 20

Betula 61 12.9 25 81 234 104 130

BIG 1.5T 28 13.3 13 77 1,288 628 660

BIG 3T 24 7.9 18 69 1,276 540 736

BIL&GIN 27 7.8 18 57 444 217 227

Bonn 39 6.5 29 50 174 174 0

BRAINSCALE 10 1.4 9 15 270 125 145

BRCATLAS 38 15.8 18 80 153 77 76

CAMH 41 17.6 18 86 128 65 63

Cardiff 25 7.4 18 58 316 87 229

CEG 16 1.7 13 19 32 32 0

CIAM 27 5 19 40 30 16 14

CLING 25 5.3 18 58 320 131 189

CODE 40 13.3 20 64 74 31 43

COMPULS/TS Eurotrain 11 1 9 13 53 36 17

Dublin (1) 37 13 17 65 52 23 29

Dublin (2) 30 8.3 19 52 92 51 41

Edinburgh 24 2.9 19 31 55 35 20

ENIGMA-HIV 25 4.4 19 33 31 16 15

ENIGMA-OCD (AMC/Huyser) 14 2.6 9 17 23 9 14

ENIGMA-OCD (IDIBELL) 33 10.1 18 61 65 29 36

ENIGMA-OCD (Kyushu/Nakao) 39 12.5 22 63 40 15 25

ENIGMA-OCD (London Cohort/Mataix-

Cols)

37 11.2 21 63 32 11 21

ENIGMA-OCD (van den Heuvel 1.5T) 31 7.6 21 53 48 18 30

ENIGMA-OCD (van den Heuvel 3T) 39 11.2 22 64 35 16 19

ENIGMA-OCD-3T-CONTROLS 31 10.6 19 56 27 10 17

FBIRN 37 11.2 19 60 173 123 50

FIDMAG 38 10.2 19 64 122 53 69

GSP 26 14.9 18 89 1962 860 1,102

HMS 40 12.2 19 64 55 21 34

HUBIN 42 8.9 19 56 99 66 33

IDIVAL (1) 65 10.2 49 87 31 10 21

IDIVAL (3) 30 7.7 19 50 114 69 45

IDIVAL(2) 28 7.6 15 52 79 49 30

IMAGEN 14 0.4 13 16 1744 864 880

IMH 32 10 20 59 79 50 29

IMpACT-NL 37 12 19 63 134 52 82

Indiana 1.5T 60 11 37 79 41 7 34

Indiana 3T 27 18.8 6 73 197 95 102

(Continues)
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TABLE 1 (Continued)

Sample
Age, mean,
years

Age, SD,
years Age range Sample size N

Number of
males

Number of
females

Johns Hopkins 44 12.5 20 65 87 41 46

KaSP 27 5.7 20 43 32 15 17

Leiden 17 4.8 8 29 565 274 291

MAS 78 4.5 70 89 361 137 224

MCIC 33 12 18 60 93 63 30

Melbourne 20 3 15 26 102 54 48

METHCT 27 7.3 18 53 62 48 14

MHRC 22 2.9 16 28 52 52 0

Moods 33 9.8 18 51 310 146 164

NCNG 50 16.7 19 79 311 92 219

NESDA 40 9.8 21 56 65 22 43

NeuroIMAGE 17 3.7 8 29 376 172 204

Neuroventure 14 0.6 12 15 137 62 75

NTR (1) 15 1.4 11 18 34 11 23

NTR (2) 34 10.3 19 57 105 39 66

NTR (3) 30 5.9 20 42 29 11 18

NU 41 18.8 17 68 15 1 14

NUIG 37 11.5 18 58 89 50 39

NYU 31 8.7 19 52 51 31 20

OATS (1) 71 5.3 65 84 94 27 67

OATS (2) 68 4.4 65 81 33 13 20

OATS (3) 69 4.3 65 81 128 44 84

OATS (4) 70 4.6 65 89 95 23 72

OLIN 36 12.8 21 87 594 236 358

Oxford 16 1.4 14 19 38 18 20

PING 12 4.9 3 21 518 271 247

QTIM 23 3.4 16 30 342 112 230

Sao Paolo 1 27 5.8 17 43 69 45 24

Sao Paolo 3 30 8.1 18 50 83 44 39

SCORE 25 4.3 19 39 44 17 27

SHIP 2 55 12.3 31 84 368 206 162

SHIP TREND 50 13.9 21 81 788 439 349

StagedDep 47 8 27 59 84 20 64

Stanford 37 10.7 19 61 54 20 34

STROKEMRI 42 21.3 18 77 47 17 30

Sydney 37 21.1 12 79 147 58 89

TOP 35 9.8 18 73 296 155 141

Tuebingen 40 12.1 24 61 53 24 29

UMC Utrecht 1.5T 32 12.1 17 66 289 171 118

UMCU 3T 45 15.2 19 81 109 52 57

UNIBA 27 8.7 18 63 130 66 64

UPENN 36 13.6 16 85 185 85 100

Yale 14 2.2 10 18 23 12 11

Total 31 18.4 3 90 18,605 8,980 9,625
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site, the intracranial volume (Figure S1) was used to adjust the subcortical

volumes via a formula based on the analysis of the covariance approach:

“adjusted volume = raw volume – b × (ICV – mean ICV)”, where b is the

slope of regression of a region of interest volume on ICV (Raz et al., 2005).

The values of the subcortical volumes were then harmonized between

sites using the ComBat method in R (Fortin et al., 2017, 2018; Radua

et al., 2020). Originally developed to adjust for batch effect in genetic

studies, ComBat uses an empirical Bayes to adjust for inter-site variability

in the data, while preserving variability related to the variables of interest.

2.3 | Fractional polynomial regression analyses

The effect of age on each ICV- and site-adjusted subcortical volume was

modeled using high order fractional polynomial regression (Royston &

Altman, 1994; Sauerbrei, Meier-Hirmer, Benner, & Royston, 2006) in

each hemisphere. Because the effect of site (scanner and Freesurfer ver-

sion) was adjusted using ComBat, we only included sex as a covariate in

the regression models. Fractional polynomial regression is currently con-

sidered the most advantageous modeling strategy for continuous vari-

ables (Moore, Hanley, Turgeon, & Lavoie, 2011) as it allows testing for a

wider range of trajectory shapes than conventional lower-order polyno-

mials (e.g., linear or quadratic) and for multiple turning points (Royston &

Altman, 1994; Royston, Ambler, & Sauerbrei, 1999). For each subcortical

structure, the best model was obtained by comparing competing models

of up to three power combinations. The powers used to identify the best

fitting model were −2, −1, −0.5, 0.5, 1, 2, 3 and the natural logarithm

(ln) function. The optimal model describing the association between age

and each of the volumes was selected as the lowest degree model based

on the partial F-test (if linear) or the likelihood-ratio test. To avoid over-

fitting at ages with more data points, we used the stricter .01 level of

significance as the cut-off for each respective likelihood-ratio tests,

rather than adding powers, until the .05 level was reached. For ease of

interpretation we centered the volume of each structure so that the

intercept of a fractional polynomial was represented as the effect at zero

for sex. Fractional polynomial regression models were fitted using Stata/

IC software v.13.1 (Stata Corp., College Station, TX). Standard errors

were also adjusted for the effect of site in the FP regression.

We conducted two supplemental analyses: (a) we specified addi-

tional FP models separately for males and females and, (b) we calcu-

lated Pearson's correlation coefficient between subcortical volumes

and age in the early (6–29 years), middle (30–59 years), and late-life

(60–90 years) age-group. The results of these analyses have been

included in the supplemental material.

2.4 | Inter-individual variability

Inter-individual variability was assessed using two complimentary

approaches. First, for each subcortical structure we compared the

early (6–29 years), middle (30–59 years) and late-life (60–90 years)

age-groups in terms of their mean inter-individual variability; these

groups were defined following conventional notions regarding periods

of development, midlife and aging. The variance of each structure in

each age-group was calculated as

ln

P ffiffiffiffiffi
e2i

q

nt

0
@

1
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where e represents the residual variance of each individual (i) around

the nonlinear best fitting regression line, and n the number of

Abbreviations: ABIDE = Autism Brain Imaging Data Exchange; ADNI = Alzheimer's Disease Neuroimaging Initiative; ADNI2GO = ADNI-GO and ADNI-2;

ADHD-NF = Attention Deficit Hyperactivity Disorder-Neurofeedback Study; AMC = Amsterdam Medisch Centrum; Basel = University of Basel;

Barcelona = University of Barcelona; Betula = Swedish longitudinal study on aging, memory, and dementia; BIG = Brain Imaging Genetics; BIL&GIN = a

multimodal multidimensional database for investigating hemispheric specialization; Bonn = University of Bonn; BrainSCALE = Brain Structure and

Cognition: an Adolescence Longitudinal twin study; CAMH = Centre for Addiction and Mental Health; Cardiff = Cardiff University; CEG = Cognitive-

experimental and Genetic study of ADHD and Control Sibling Pairs; CIAM = Cortical Inhibition and Attentional Modulation study; CLiNG = Clinical

Neuroscience Göttingen; CODE = formerly Cognitive Behavioral Analysis System of Psychotherapy (CBASP) study; Dublin = Trinity College Dublin;

Edinburgh = The University of Edinburgh; ENIGMA-HIV = Enhancing NeuroImaging Genetics through Meta-Analysis-Human Immunodeficiency Virus

Working Group; ENIGMA-OCD = Enhancing NeuroImaging Genetics through Meta-Analysis- Obsessive Compulsive Disorder Working Group;

FBIRN = Function Biomedical Informatics Research Network; FIDMAG = Fundación para la Investigación y Docencia Maria Angustias Giménez;

GSP = Brain Genomics Superstruct Project; HMS = Homburg Multidiagnosis Study; HUBIN = Human Brain Informatics; IDIVAL = Valdecilla Biomedical

Research Institute; IMAGEN = the IMAGEN Consortium; IMH=Institute of Mental Health, Singapore; IMpACT = The International Multicentre persistent

ADHD Genetics Collaboration; Indiana = Indiana University School of Medicine; Johns Hopkins = Johns Hopkins University; KaSP = The Karolinska

Schizophrenia Project; Leiden = Leiden University; MAS = Memory and Ageing Study; MCIC = MIND Clinical Imaging Consortium formed by the Mental

Illness and Neuroscience Discovery (MIND) Institute now the Mind Research Network; Melbourne = University of Melbourne; Meth-CT = study of

methamphetamine users, University of Cape Town; MHRC = Mental Health Research Center; Muenster = Muenster University; N = number;

NESDA = The Netherlands Study of Depression and Anxiety; NeuroIMAGE = Dutch part of the International Multicenter ADHD Genetics (IMAGE) study;

Neuroventure: the imaging part of the Co-Venture Trial funded by the Canadian Institutes of Health Research (CIHR); NCNG = Norwegian Cognitive

NeuroGenetics sample; NTR = Netherlands Twin Register; NU = Northwestern University; NUIG = National University of Ireland Galway; NYU = New

York University; OATS = Older Australian Twins Study; Olin = Olin Neuropsychiatric Research Center; Oxford = Oxford University; QTIM = Queensland

Twin Imaging; Sao Paulo = University of Sao Paulo; SCORE = University of Basel Study; SHIP-2 and SHIP TREND = Study of Health in Pomerania; Staged-

Dep = Stages of Depression Study; Stanford = Stanford University; StrokeMRI = Stroke Magnetic Resonance Imaging; Sydney = University of Sydney;

TOP = Tematisk Område Psykoser (Thematically Organized Psychosis Research); TS-EUROTRAIN = European-Wide Investigation and Training Network on

the Etiology and Pathophysiology of Gilles de la Tourette Syndrome; Tuebingen = University of Tuebingen; UMCU = Universitair Medisch Centrum

Utrecht; UNIBA = University of Bari Aldo Moro; UPENN = University of Pennsylvania; Yale = Yale University.
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observations in each age-group (t). The residuals (ei) were nor-

mally distributed suggesting good fit of the model without having

over- or under-fitted the data. Upon calculating the square root of

the squared residuals we used the natural logarithm to account for the

positive skewness of the new distribution. Then the mean inter-

individual variability between early (6–29 years), middle (30–59 years)

and late-life (60–90 years) age-groups was compared using between-

groups omnibus tests for the residual variance around the identified

best-fitting nonlinear fractional polynomial model of each structure.

We conducted 16 tests (one for each structure) and accordingly the

critical alpha value was set at 0.003 following Bonferroni correction for

multiple comparisons.

The second approach entailed the quantification of the mean indi-

vidual variability of each subcortical structure through a meta-analysis

F IGURE 1 ENIGMA lifespan samples. Details
of each sample are provided Table 1 and in the
supplemental material. Abbreviations are provided
in Table 1
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of the SD of the adjusted volumes according to the method proposed

by Senior, Gosby, Lu, Simpson, and Raubenheimer (2016).

2.5 | Centile curves

Reference curves for each structure by sex and hemisphere were pro-

duced from ICV- and site-adjusted volumes as normalized growth centiles

using the parametric Lambda (λ), Mu (μ), Sigma (σ) (LMS) method (Cole &

Green, 1992) implemented using the Generalized Additive Models for

Location, Scale and Shape (GAMLSS) in R (http://cran.r-project.org/web/

packages/gamlss/index.html) (Rigby & Stasinopoulos, 2005; Stasinopoulos

& Rigby, 2007). LMS allows for the estimation of the distribution at each

covariate value after a suitable transformation and is summarized using

three smoothing parameters, the Box-Cox power λ, the mean μ and the

coefficient of variation σ. GAMLSS uses an iterative maximum (penalized)

likelihood estimation method to estimate λ, μ and σ as well as distribution

dependent smoothing parameters and provides optimal values for effec-

tive degrees of freedom (edf) for every parameter (Indrayan, 2014). This

procedure minimizes the Generalized Akaike Information Criterion (GAIC)

goodness of fit index; smaller GAIC values indicate better fit of the model

to the data. GAMLSS is a flexible way to derive normalized centile curves

as it allows each curve to have its own number of edf while overcoming

biased estimates resulting from skewed data

3 | RESULTS

3.1 | Fractional polynomial regression analyses

The volume of the caudate, putamen, globus pallidus and nucleus

accumbens peaked early during the first decade of life and showed a

linear decline immediately thereafter (Figure 2, Figures S2–S4). The

association between age and the volumes of the thalamus, hippocam-

pus and amygdala formed a flattened, inverted U-curve (Figure 3,

Figures S5 and S6). Specifically, the volumes of these structures were

largest during the first 2–3 decades of life, remained largely stable

until the sixth decade and declined gradually thereafter (Table S2).

The volume of the lateral ventricles increased steadily with age bilat-

erally (Figure S7). The smallest proportion of variance explained by

age and its FP derivatives was noted in the right amygdala (7%) and

the largest in the lateral ventricles bilaterally (38%) (Table S2).

Striatal volumes correlated negatively with age throughout the

lifespan with the largest coefficients observed in the middle-life age-

group (r = −0.39 to −0.20) and the lowest (jrj < 0.05) in the late-life

age-group, particularly in the caudate. The volumes of the thalamus,

the hippocampus and the amygdala showed small positive correlations

with age (r ≈ 0.16) in the early-life age-group. In the middle-life age-

group, the correlation between age and subcortical volumes became

negative (r = −0.30 to −0.27) for the thalamus but remained largely

unchanged for the amygdala and the hippocampus. In the late-life

age-group, the largest negative correlation coefficients between age

and volume were observed for the hippocampus bilaterally

(r = −0.44 to −0.39). The correlation between age and lateral ven-

tricular volumes bilaterally increased throughout the lifespan from

r = 0.19 to 0.20 in early-life age-group to r = 0.40 to 0.45 in the late-

life age-group (Table S3). No effect of sex was noted for any pattern

of correlation between subcortical volumes and age in any age-

group.

Inter-individual variability: For each structure, the mean inter-

individual variability in volume in each age-group is shown in

Table S5. Inter-individual variance was significantly higher for the hip-

pocampus, thalamus amygdala and lateral ventricles bilaterally in the

late-life age-group compared to both the early- and middle-life group.

F IGURE 2 Fractional polynomial plots for the volume of the basal ganglia. Fractional Polynomial plots of adjusted volumes (mm3) against age
(years) with a fitted regression line (solid line) and 95% confidence intervals (shaded area)
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These findings were recapitulated when data were analyzed using a

meta-analytic approach (Figure S8).

Normative Centile Curves: Centile normative values for each subcor-

tical structure stratified by sex and hemisphere are shown in Figure 4

and Tables S6–S8.

4 | DISCUSSION

We analyzed subcortical volumes from 18,605 healthy individuals

from multiple cross-sectional cohorts to infer age-related trajectories

between the ages of 3 and 90 years. Our lifespan perspective and our

large sample size complement and enrich previous age-related find-

ings in subcortical volumes.

We found three distinct patterns of association between age and

subcortical volumes. The volume of the lateral ventricles increased

monotonically with age. Striatal and pallidal volumes peaked in child-

hood and declined thereafter. The volumes of the thalamus,

hippocampuus and amygdala peaked later and showed a prolonged

period of stability lasting until the sixth decade of life, before they also

started to decline. These findings are in line with those of Pomponio

et al. (2019), who also used harmonized multi-site MRI data from

10,323 individuals aged 3–96 years, and those reported by Douaud

et al. (2014) who analyzed volumetric data from 484 healthy partici-

pants aged 8 to 85 years. Notably, both studies reported similarity in

the age-related changes of the thalamus, hippocampus and the amyg-

dala. Our results also underscore the significantly steeper negative

association between subcortical volumes and age from the sixth

decade of life onwards. This effect seemed relatively more pro-

nounced for the hippocampus, compared to the other subcortical

regions, as observed in other studies (Jernigan et al., 2001; Pomponio

et al., 2019; Raz et al., 2010).

The trajectories of subcortical volumes are shaped by genetic and

nongenetic exposures, biological or otherwise (Eyler et al., 2011; Somel

et al., 2010; Wardlaw et al., 2011). Our findings of higher inter-

individual variability with age in the volumes of the thalamus, hippo-

campus and amygdala suggest that these structures may be more sus-

ceptible to person-specific exposures, or late-acting genes, particularly

from the sixth decade onwards.

The unique strengths of this study are the availability of age-

overlapping cross-sectional data from healthy individuals, lifespan

coverage and the use of standardized protocols for volumetric data

extraction across all samples. Study participants in each site were

screened to ensure mental and physical wellbeing at the time of scan-

ning using procedures considered as standard in designating study

participants as healthy controls. Although health is not a permanent

attribute, it is extremely unlikely given the size of the sample that the

results could have been systematically biased by incipient disease

A similar longitudinal design would be near infeasible in terms of

recruitment and retention both of participants and investigators.

Although multisite studies have to account for differences in scanner

type and acquisition, lengthy longitudinal designs encounter similar

issues due to inevitable changes in scanner type and strength and

acquisition parameters over time. In this study, the use of age-

overlapping samples from multiple different countries has the theoret-

ical advantage of diminishing systematic biases reflecting cohort and

period effects (Glenn, 2003; Keyes, Utz, Robinson, & Li, 2010) that

are likely to operate in single site studies.

In medicine, biological measures from each individual are typically

categorized as normal or otherwise in reference to a population

F IGURE 3 Fractional polynomial plots for the volume of the thalamus, hippocampus and amygdala. Fractional polynomial plots of adjusted
volumes (mm3) against age (years) with a fitted regression line (solid line) and 95% confidence intervals (shaded area)
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derived normative range. This approach is yet to be applied to neuro-

imaging data, despite the widespread use of structural MRI for clinical

purposes and the obvious benefit of a reference range from the early

identification of deviance (Dickie et al., 2013; Pomponio et al., 2019).

Alzheimer's disease provides an informative example as the degree of

baseline reduction in medial temporal regions, and particularly the hip-

pocampus, is one of the most significant predictors of conversion

from mild cognitive impairment to Alzheimer's disease (Risacher

et al., 2009). The data presented here demonstrate the power of inter-

national collaborations within ENIGMA for analyzing large-scale

datasets that could eventually lead to normative range for brain vol-

umes for well-defined reference populations. The centile curves pres-

ented here are a first-step in developing normative reference values

for neuroimaging phenotypes and further work is required in esta-

blishing measurement error and functional significance (see Supple-

ment). These curves are not meant to be used clinically or to provide

valid percentile measures for a single individual.

In conclusion, we used existing cross-sectional data to infer age-

related trajectories of regional subcortical volumes. The size and age-

coverage of the analysis sample has the potential to disambiguate

uncertainties regarding developmental and aging changes in subcorti-

cal volumes while the normative centile values could be further devel-

oped and evaluated.
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