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a b s t r a c t 

To date, we have scarce information about the relative myelination level of different fiber bundles in the human 

brain. Indirect evidence comes from postmortem histology data but histological stainings are unable to follow 

a specific bundle and determine its intrinsic myelination. In this context, quantitative MRI, and diffusion MRI 

tractography may offer a viable solution by providing, respectively, voxel-wise myelin sensitive maps and the 

pathways of the major tracts of the brain. Then, “tractometry ” can be used to combine these two pieces of 

information by averaging tissue features (obtained from any voxel-wise map) along the streamlines recovered 

with diffusion tractography. Although this method has been widely used in the literature, in cases of voxels 

containing multiple fiber populations (each with different levels of myelination), tractometry provides biased 

results because the same value will be attributed to any bundle passing through the voxel. To overcome this 

bias, we propose a new method - named “myelin streamline decomposition ” (MySD) - which extends convex 

optimization modeling for microstructure informed tractography (COMMIT) allowing the actual value measured 

by a microstructural map to be deconvolved on each individual streamline, thereby recovering unique bundle- 

specific myelin fractions (BMFs). We demonstrate the advantage of our method with respect to tractometry in 

well-studied bundles and compare the cortical projection of the obtained bundle-wise myelin values of both 

methods. We also prove the stability of our approach across different subjects and different MRI sensitive myelin 

mapping approaches. This work provides a proof-of-concept of in vivo investigations of entire neuronal pathways 

that, to date, are not possible. 
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. Introduction 

Brain structural connectivity – which is mediated by the intricate

etwork of axonal bundles connecting different brain regions - is a

ajor determinant of brain function ( Baum et al., 2020 ; Chu et al.,

018 ). Indeed, the morphological characteristics of the axons consti-

uting these bundles (e.g. internal diameter), as well as the thickness

f their myelin sheath, influence the conduction velocity and hence the

ransmission of information ( Goldman and Albus, 1968 ; Rushton, 1951 ;

axman, 1980 ). Thus, methods that permit individual differences in

uch physical attributes are of pivotal importance in understanding
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rain physiology and pathology. Through them we can study individ-

al differences in development or degeneration, and detect disruptions

aused by disease. Being able to infer this information non-invasively

nd in vivo would allow longitudinal studies to be performed which may

e useful to understand subject-specific development and plasticity, and

o monitor treatment efficacy. 

Anatomical studies of the brain’s myelo-architecture and of

hort/long-range fiber systems have yielded remarkable details about

he structural properties and organization of brain connectivity

 Felleman and Essen, 1991 ; Mesulam, 1998 ; Schüz and Braiten-

erg, 2002 ). Animal studies also showed that myelination of axonal
, Italy. 
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undles begins before birth and continues over the life span with a peak

uring the first 2-years of life. Myelination extends progressively from

he caudal brain stem to the rostral forebrain ( Kinney and Volpe, 2017 )

nd develops in the central sensory systems before the central motor

ystems. In addition, myelination in regions involved in higher level as-

ociative functions and sensory discriminations (e.g., association areas,

ntracortical neuropil, and cerebral commissures) occurs well after birth

nd progresses over decades ( Kinney and Volpe, 2017 ). 

To date, there is little evidence of myelination differences among

ber bundles in the human brain. Indirect evidence comes from post-

ortem histology data showing that the relative myelination across cor-

ical regions is highly heterogeneous ( Nieuwenhuys and Broere, 2017 ):

rimary sensory, motor, auditory, and visual regions are densely myeli-

ated ( Nieuwenhuys and Broere, 2017 ), and major fiber tracts origi-

ating/projecting from/to primary cortical areas have higher myelin

ontent than tracts developing from neurons in less myelinated ar-

as ( Nieuwenhuys and Broere, 2017 ). Nevertheless, a histological com-

arison of the myelin content of (i) different fiber bundles project-

ng/originating to/from primary areas, as well as of (ii) other fiber

undles projecting/originating to/from other cortical areas is lacking.

ence, there is a clear need for methods to decouple the myelination

f axons constituting different bundles as, today, this information is not

vailable. 

Magnetic resonance imaging (MRI) allows the computation of myelin

ontent estimates from in vivo data ( West et al., 2018 ) from sources of

RI contrast such as transverse relaxation ( Kucharczyk et al., 1994 ) and

agnetization transfer ( Heath et al., 2018 ). Unfortunately, diffusion-

eighted MRI (dMRI) cannot provide such information. In fact, al-

hough it has been shown that myelin contributes to the anisotropy mea-

ured via dMRI ( Beaulieu, 2002 ), the signal from myelin water (T 2 ∼ 5 -

0 ms) has typically decayed away in dMRI experiments due to the com-

aratively long echo times employed ( Tax et al., 2021 ). Thus, although

ome dMRI derived properties might naturally co-vary with myelin con-

ent ( Jelescu et al., 2016 ; Mancini et al., 2020 ), this technique is not

yelin-specific and need to be complemented with a more specific one

o safely interpret results. Semi-quantitative estimates of magnetization

ransfer include the magnetization transfer ratio (MTR) ( Dousset et al.,

995 ) or MT saturation ( Helms et al., 2008 ; 2010 ; Helms et al., 2019 ;

owley et al., 2021 ). The latter biomarker offers increased specificity to

yelin concentration and is inherently corrected for bias from the radio-

requency fields. MT saturation maps can be scaled to derive maps of the

yelin volume fraction (MVF) in each image voxel ( Mohammadi et al.,

015 ). Alternatively, the water trapped between myelin bilayers and

he water inside or outside of axons have different transverse relaxation

imes T2, and an estimate of the voxel-wise myelin water fraction (MWF,

hich quantifies the signal fraction of the myelin water over the total

ater in a voxel), can be obtained by measuring the relative signal con-

ribution from each component ( Deoni et al., 2008 ; Mackay et al., 1994 ).

he acquisition can be achieved using a number of sequences such as

ulti-echo T2 sequences (MET2) ( Stewart et al., 1993 ; Piredda et al.,

020 ), the recently proposed fast acquisition with spiral trajectory and

2prep (FAST-T2) ( Nguyen et al., 2016 ) or multicomponent driven equi-

ibrium single pulse observation of T1 and T2 (mcDESPOT) ( Deoni et al.,

008 ). 

All contrast mechanisms mentioned above can provide voxel-wise

yelin sensitive maps of brain white matter (WM), and, over the past

ecades, extensive validations against histology have been made to find

he most specific and sensitive ( Lazari and Lipp, 2021 ; Mancini et al.,

020 ). Nevertheless, as each voxel’s value reflects the contribution of

housands of axons belonging to different bundles (at least two in ∼90%

f the white matter voxels ( Jeurissen et al., 2013 )), these maps tend to

how little spatial contrast or intensity variations and cannot resolve

he bundle-specific myelination. Thus, they are mostly used to study

pecific regions of pathological tissues or to perform average measures

long major tracts ( Lipp et al., 2019 ; Yeatman et al., 2014 ). In particu-

ar, the latter is commonly called ‘tractometry’ and, extending the idea
2 
n ( Jones and Deoni, 2006 ), it was introduced by Bells and colleagues in

 Bells et al., 2011 ) to assign a more quantitative meaning to tractograms

ecovered by analyzing dMRI data ( Yeh et al., 2020 ). This method con-

ists of sampling voxel-wise microstructural metrics at each vertex of

he reconstructed tracts and computing the mean of these metrics along

pecific pathways or studying their variability along the bundle’s pro-

les. Very recently, Baumeister et al. applied the same method to inves-

igate average myelin values in sections along fiber bundles rather than

ntegrating over the whole tracts ( Baumeister et al., 2020 ). Although

uch methods provide useful macroscopic information on the quantifi-

ation of myelin of fiber bundles ( Yeatman et al., 2012 ; Yeatman et al.,

014 ; Baumeister et al., 2020 ), we argue that, in cases of voxels con-

aining multiple fiber populations (each possibly with different levels

f myelination), projecting the same voxel’s myelin index on different

athways will provide biased results. To mitigate this problem, recently

oshkovski et al. ( Boshkovski et al., 2020 ) suggested to use the median

long the path instead of the average, showing promising results at the

evel of the connectome, but still not solving the bias of considering the

ame value for each streamline interdigitating in the same voxel. 

On the other hand, Convex Optimization Modelling for Microstruc-

ure Informed Tractography (COMMIT) ( Daducci et al., 2013 ; 2015 ) ad-

resses this problem in the case of dMRI data by deconvolving specific

MRI microstructural features on each fiber so that it is possible to re-

over individual streamline contributions to the measured signal. These

alues represent the effective signal of intra-axonal cross-sectional area

f each streamline ( Raffelt et al. 2015 ) and provide a more ‘biologically-

nformative’ assessment of brain connectivity ( Schiavi et al., 2020 ). In

his work, we propose a novel method called myelin streamline decom-

osition (MySD) to assess the effective myelin cross-sectional area of

ach bundle by decoupling the myelin information measured in each

oxel with MRI using deconvolution in the fibers’ space. In particular,

e modified the COMMIT framework to accommodate maps of MWF

erived from FAST-T2 ( Nguyen et al., 2016 ) and maps of MVF derived

rom MTsat ( Helms et al., 2008 ) data, and compute bundle-specific esti-

ates of myelin fraction (BMF). We show that our method recovers an

verall pattern of BMF estimates that is consistent across MRI markers

f MWF and MVF. We compare our results with existing histopatholog-

cal studies on WM myelination. Finally, by projecting the recovered

M myelin content in the cortex, we also show a good agreement with

revious in vivo measurements of myelin on the cortex. 

. Materials and methods 

.1. Myelin streamline decomposition 

In its original formulation, COMMIT ( Daducci et al., 2013 ; 2015 )

ombines the streamlines estimated with tractography, i.e., a trac-

ogram, with the dMRI signal measured in each voxel to provide en-

anced robustness in structural connectivity mapping. Assuming invari-

nce of the dMRI-derived microstructural parameters along a particular

treamline, such as the intra-axonal signal fraction ( Jelescu and Budde

017 ), COMMIT removes streamlines that are not compatible with the

easured dMRI signal and estimates the actual contribution of the re-

aining ones. In a recent study ( Schiavi et al., 2020 ) it was also high-

ighted how network measures computed on structural connectivity ma-

rices can benefit from the COMMIT application even in the presence of

eurological diseases. 

To infer the individual myelin content of each streamline from the

otal value measured in each voxel with MRI, we extended the original

ormulation to accommodate input maps other than dMRI as input to

he fit. The problem can still be formulated as 

 = 𝑨 x + 𝜼, 

here 𝒚 ∈ ℝ 

𝑛 𝑣 
+ contains the MVF or MWF measures derived from MRI

ata in the n v voxels, the matrix 𝑨 ∈ ℝ 

𝑛 𝑣 ×𝑛 𝑓 encodes the length of the

 streamlines in each image voxel (i.e. the length of the portion of the
f 
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Fig. 1. Description of the input and forward model of the MySD method. The vector y (on the left) contains the values of the myelin map for all the voxels of the 

image. The matrix A (on the right) is built such that each column is associated with a streamline of the input tractogram and the entries contain the length of the 

streamline in each voxel. 
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treamline in that voxel) and η accounts for both acquisition noise and

odeling errors (see Fig. 1 ). The coefficients x i , 𝑖 = 1 , … , n f , of the vec-

or 𝒙 ∈ ℝ 

𝑛 𝑓 
+ are the myelin contribution per unit of length of each of

he n f streamlines (i.e. input MVF or MWF divided by the length of the

treamline in the voxel, which gives the effective myelin cross-sectional

rea) and can be estimated using non-negative least squares (NNLS): 

rgmin 𝒙 ≥ 0 ||𝑨 𝒙 − 𝒚 ||2 2 
here ‖ ‖2 is the Euclidean norm in ℝ 

𝑛 . The convex optimization process

s then the same as in the original COMMIT framework and the novelty

s in how we build the matrix 𝐀 to adapt it to myelin maps instead of

iffusion signal ( Fig. 1 ). Thus, by fitting to the myelin sensitive maps,

ur model allows us to filter out redundant and implausible streamlines

s in the original framework, but at the same time, to decompose the

yelin effective cross-sectional area for each of them. We call this ap-

roach Myelin Streamline Decomposition (MySD). 

To better explain the underlying idea of our approach, let us consider

he example shown in Fig. 2 . The ground-truth configuration of the sim-

lated phantom is illustrated in panel (a) and consists of two bundles

rossing in the voxel at the center with a 90° angle ( Fig. 2 a left). As-

uming that the myelin content of each bundle is constant and equal

o those reported in the table in Fig. 2 a center, we have that the corre-

ponding voxel-wise MWF map measured by MRI would be as follows:

.14 for the voxels crossed only by Bundle 1, 0.16 for those crossed

nly by Bundle 2 and 0.30 in the central voxel containing both bun-

les (see Fig. 2 a right). In Fig. 2 b we show the difference between our

roposed approach and the state-of-the-art method called tractometry

 Bells et al., 2011 ). Starting from the same reconstructed streamlines

nd MWF map ( Fig. 2 b left) tractometry performs the averaging of such

aps along the streamlines, while MySD decomposes the signal on each

ndividual streamline. Tractometry results in a biased over estimation

hereas MySD recovers the correct myelin content of each individual

undle (see table in Fig. 2 b right). Despite being a very simplistic toy

xample, we can appreciate the clear bias created by averaging voxel-

ise microstructural maps instead of decoupling the contribution to the

ignal on the actual streamlines. From the values reported in the two

ables, we also notice how this bias reduces the contrast between the

wo bundles (1.07 for tractometry, 1.14 for MySD). This will become

lso evident on the in vivo results provided below. 

.2. MRI acquisition 

Four healthy volunteers underwent MRI on a Siemens Prisma 3T

hole-body scanner (Siemens Healthineers, Erlangen, Germany) with a

4-channel head coil for signal reception. The MRI protocol included the

ollowing sequences: sagittal T1-weighted 3D magnetization-prepared

apid gradient echo with two Turbo-FLASH GRE readouts between
3 
ach inversion pulse (MP2RAGE) ( Marques et al., 2010 ) (TR = 5000 ms,

I1 = 700 ms TI2 = 2500 ms, spatial resolution 1.0 × 1.0 × 1.0 mm 

3 );

ast acquisition with spiral trajectory and adiabatic T2prep (FAST-T2)

spiral repetition time/echo time = 7.5/0.5 ms, six T2prep times = 0

T2prep turned off), 7.5, 17.5, 67.5, 147.5, 307.5 ms, spatial resolu-

ion 1.25 × 1.25 × 5 mm 

3 , as described in ( Nguyen et al., 2016 ));

hree variants of a 3D FLASH (RF spoiled GRE) sequence were used

ith 1.33 mm 

3 isotropic resolution, matrix size 192 × 186 × 120,

PF = 6/8; SPF = 6/8, GRAPPA_ R = 2 in each phase encoding di-

ection: T1-weighted (TE = 4.92 ms, TR = 11 ms, alpha = 15°), Proton

ensity weighted (TE = 4.92 ms, TR = 25 ms, alpha = 5°), MT-weighted

TE = 4.92 ms, TR = 25 ms, alpha = 5°, Gaussian MT pulse Delta_ f = 2.2KHz

s in ( Helms et al., 2008 )); B1 maps to correct for effects of radio fre-

uency transmit inhomogeneities on the quantitative maps were ac-

uired employing the steady state free precession based B1-TRAP ap-

roach ( Ganter et al., 2013 ); twice-refocused spin echo EPI sequence

or dMRI with a total of 137 directions subdivided in 4 shells with

/20/45/66 measurements for b-value = 700/1000/2000/3000 s/mm 

2 

nd 12 for b = 0 s/mm 

2 (TR/TE:4500/75 ms, spatial resolution

.8 × 1.8 × 1.8 mm 

3 ). In addition, 12 non-diffusion-weighted images

orresponding to b = 0 s/mm 

2 were acquired with reversed phase-

ncode blips, resulting in pairs of images with distortions in opposite

irections. The study was approved by the local Ethics Committee of

asel University Hospital. All subjects gave written consent prior to en-

ollment. 

.3. MRI processing 

dMRI images were pre-processed to remove noise ( Veraart and

ovikov, 2016 ; Veraart et al., 2016 ), eddy currents ( Andersson and

otiropoulos 2016 ; Andersson et al., 2016 ), motion and EPI distortion

rtefacts ( Andersson et al., 2003 ; Smith et al., 2004 ) using MRtrix3

 Tournier et al., 2019 ) and FSL ( https://fsl.fmrib.ox.ac.uk ). Then, we

erformed B1 field inhomogeneity correction using the N4 bias field cor-

ection algorithm in the ANTs software package ( Tustison et al., 2010 )

f MRtrix3 ( Tournier et al., 2019 ). 

After the pre-processing steps, dMRI images were upsampled to

atch the resolution of the MP2RAGE images to improve the ability of

he streamlines to reach the cortex. MP2RAGE images were processed

sing FreeSurfer ( http://surfer.nmr.mgh.harvard.edu ) to obtain subject

pecific gray matter parcellations in 84 regions of interest (ROIs) ac-

ording to the standard Desikan-Killiany atlas ( Desikan et al., 2006 ). To

mprove the connectome creation and consider also the bundles going

own to the spinal column, we also subdivided the brainstem into four

ubregions using ( Iglesias et al., 2015 ) and we added the medulla to

ur collection of ROIs defining the connectome’s nodes. We then reg-

stered the MP2RAGE images and the corresponding parcellations on

https://fsl.fmrib.ox.ac.uk
http://surfer.nmr.mgh.harvard.edu
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Fig. 2. Synthetic example showing the performance of our proposed method against the state-of-the-art tractometry technique. Starting from the left, in the top 

row we show the ground-truth bundle configuration, a table with the MWF of the two bundles and the corresponding MWF map. In the bottom row we present the 

representative streamlines reconstructed by tractography as well as the noiseless MWF map used for both tractometry and MySD approaches. The tables in the last 

column show that by averaging along the tracts we overestimate the MWF of both bundles, whereas by applying MySD we correctly decompose the MWF on each 

bundle. 
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MRIs using FLIRT ( Jenkinson et al., 2002 ) with boundary-based opti-

ization ( Greve and Fischl, 2009 ). Tractography was performed using

Rtrix3 ( Tournier et al., 2019 ). We first performed multi-shell multi-

issue constrained spherical deconvolution ( Jeurissen et al., 2014 ) and

hen, with the recovered fiber orientation distributions, we performed

hole brain deterministic tractography using the SD_STREAM algorithm

 Tournier et al., 2012 ) by seeding in the white matter voxels and im-

osing the maximum length equal to 250 mm, the minimum length

0 mm, the maximum angle between successive steps 60° and the step

ize 0.25 mm. For each subject, we generated 3-million streamlines and,

sing the 85 ROIs of the co-registered parcellation, we subsequently fil-

ered out possible streamlines not reaching the gray matter. This is a

rucial step to be done when using microstructure informed tractogra-

hy methods as discussed in ( Zalesky et al., 2020 ). In our data, each

ractogram eventually consisted of about 2 ′ 825’264 ± 24 ′ 471 connecting

treamlines. 

Myelin water fraction (MWF) maps were reconstructed by fitting the

2 decay of the assumed three water components with the constraint

f spatially local smoothness on the six echoes in FAST-T2 as done

n ( Nguyen et al., 2016 ). Maps of MTsat were computed according to

 Helms et al., 2008 ) using the hMRI toolbox ( Tabelow et al., 2019 ). Maps

f myelin volume fraction (MVF) were then computed by calibrating the

c  

4 
Tsat using a scaling factor, as described in ( Mohammadi et al., 2015 ).

oth these myelin maps were also co-registered to the up-sampled dM-

Is space using linear registration with boundary-based optimization

 Greve and Fischl 2009 ) and visually inspected to guarantee a good

atching also in regions that were highly affected by EPI induced dis-

ortions before the dMRI pre-processing. 

.4. Estimation of bundle-specific myelin content 

After the application of MySD to decompose the myelin effective

ross-sectional area on each streamline, those with zero contribution

ere discarded and those remaining were grouped in bundles according

o the pair of cortical regions they connected. To estimate the resulting

otal myelin content of a bundle, we summed the contributions assigned

y MySD to the streamlines belonging to that bundle. Specifically, to ob-

ain the total myelin water or volume associated with each streamline

using either MWF or MVF as input map in MySD), we multiplied its

ength by the effective cross-sectional area estimated with MySD, sim-

larly to what was proposed in ( Schiavi et al., 2020 ). Then, to obtain

he Bundle Myelin (BM) we summed up the values of all the streamlines

onnecting the same two ROIs multiplied by the volume of a voxel, i.e.,
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or each bundle 

M = 

N streamlines ∑
𝑖 =1 

x i l i V voxel , 

here N streamlines is the number of streamlines composing that bundle,

 i is the effective cross sectional myelin associated by MySD to stream-

ine i, l i is the length of streamline i and V voxel is the volume of a voxel

i.e. the resolution of the myelin sensitive map). However, to report val-

es comparable to those of the voxel-wise maps (which represent the

mount of water or volume associated to myelin within each voxel), we

ivided the obtained BM by the volume of voxels crossed by that bundle,

btaining the Bundle Myelin Fraction (BMF): 

MF = 

BM 

total volume 
= 

BM 

N voxels V voxel 
, 

hich simplifies to 

MF = 

∑N streamlines 
𝑖 =1 x i l i 
N voxels 

, 

here N voxels is the number of voxels crossed by that bundle. This mea-

ure can be obtained using either MWF or MVF as the input map in

ySD and reflects the myelin water or volume fraction associated to

he bundle. 

We compared our proposed method to the “tractometry ” approach

 Bells et al., 2011 ; Yeatman et al., 2012 ), as it represents the state-of-

he-art and is widely used in the field. 

.5. Myelin projection on cortex 

To indirectly validate our procedure, and under the assumption that

t the available MRI resolution all the axons represented by the stream-

ines maintain their total myelin fraction also when entering the cor-

ex, we projected both MySD and tractometry derived values on the

nflated cortical ribbon both MySD and tractometry values and com-

ared the results with the existing literature. Finally, to compare the

esults at the level of different cortical ROIs and verify the agreement

ith anatomy, we used the streamline effective cross-sectional area esti-

ated with MySD and the streamline values assigned by tractometry to

ompute the total myelin content of the projection fibers of each corti-

al region as estimated by both methods. Practically, for each of the 85

OIs of the Desikan-Killany atlas, we summed all the contributions of

he afferent and efferent streamlines (whose direction is indistinguish-

ble using only dMRI and myelin data). Moreover, to avoid biases caused

y the ROI extension, we normalized by the cortical region volume (i.e.,

o prevent that bigger regions reached by more bundles get a larger fi-

al myelin content than regions reached by fewer bundles). The results

btained by the cortical projections allow us to verify that the values we

ecompose on the streamlines using only WM voxels are in agreement

ith what is expected to be measured in the cortex. 

.6. In vivo MySD pipeline 

Fig. 3 illustrates the strategy to evaluate the bundle-specific myelin

ontent estimated with our method. Starting from a whole brain trac-

ogram and a voxel-wise myelin-sensitive map, MySD decomposes the

ctual myelin content on individual streamlines allowing us to estimate

he myelination of separate bundles. From this decomposition, as al-

eady demonstrated in the original COMMIT framework ( Daducci et al.,

015 ), we can reconstruct the voxel-wise map corresponding to these

stimated individual values and compare it to the maps measured with

RI to evaluate the quality of the fit (on the right), as well as project

he values of each streamline on the inflated cortex and compute the

otal amount of myelin reaching distinct cortical regions (on the left). 
5 
. Results 

Fig. 4 reports the myelin content of bundles as estimated with trac-

ometry and our approach. As already shown for the toy example in

ig. 2 , while tractometry produces estimates with very little contrast

etween bundles, with our approach we can distinguish bundles with

ifferent myelin content. We also show a few selected bundles, which

elong to the left motor network, to have a more direct comparison.

n agreement with indirect information from the literature, we found

hat the myelin content associated by MySD results in higher myelina-

ion of the bundles connecting the left and right precentral gyri (PrCG)

nd PrCG with the medulla (blue and dark green arrows in Fig. 4 ) than

hose that connect the PrCG with the subcortical nuclei (thalamus, cau-

ate, putamen - light blue arrow in Fig. 4 ) ( Kimura and Itami 2009 ). We

lso show that the interhemispheric bundle to which MySD assigned the

ighest BMF coincides with the anterior frontal bundle (magenta arrow

n Fig. 4 ). Interestingly, this bundle was already reported as one of the

ore myelinated in ( Stikov et al., 2011 ). The differences in values ob-

ained by tractometry and MySD are clear in the image. As highlighted

n the toy example in Fig. 2 , whenever tractometry computes an average

sing the value of a voxel with more than one bundle interdigitating in

t, the result will be an overestimation of the actual myelin water frac-

ion of the bundle. In particular, since the values of the MWF map are

ather flat while spanning from 0 to ∼20, on average all the bundles

et a value between 9 and 11. On the contrary, the BMF assigned by

ySD is lower than the values in the voxels, because it comes from the

ecomposition of those values on each streamline. 

As indirect validation on the anatomy of the same subject, Fig. 5

eports the cortical (subdivided in regions according to the Desikan-

illany atlas) and inflated (smoothed values of each streamline with

nding points in the same cortical voxel) projections obtained with

ySD and tractometry. We can appreciate that MySD values are in

ery good agreement with those reported in previous histological

 Nieuwenhuys and Broere 2017 ) and imaging studies ( Lutti et al., 2014 ;

arques et al., 2017 ; Sereno et al., 2013 ), which show higher intra-

ortical myelin content in primary motor, sensory, visual and auditory

reas in comparison to other cortical brain regions ( Nieuwenhuys and

roere 2017 ). On the inflated surfaces, high levels of myelination in

he dorsal temporal regions are also evident, as previously reported

n myeloarchitectonic studies ( Nieuwenhuys and Broere 2017 ). Thus,

ased on the fact that the intra-cortical myelination is highly influ-

nced by the myelin content of afferent and efferent axons in that area

 Turner 2019 ), these results show that MySD are in line with the values

lready measured in literature. 

In contrast, results obtained with tractometry do not correspond well

ith the current histological knowledge about cortical myelination char-

cteristics: indeed, this approach recovers higher values in the frontal

oles than in the primary motor cortex. The fact that the higher values

re located at terminations of fibers passing through the corpus callo-

um, seems to suggest that this wrong behavior is due to the overestima-

ion of the value of each streamline as the consequence of assigning the

ame value to streamlines crossing in the same voxel. Thus, termination

reas like the frontal lobes that are reached by bundles crossing a lot

ith others, result in being more myelinated by tractometry. 

Fig. 6 reports the consistency of the results obtained with our ap-

roach across the four volunteer participants using MWF maps. We ob-

erve that the contrast between bundles and projections on the cortical

egions obtained by using MySD and MWF maps are very similar across

ll the subjects. Indeed, the overall pattern is the same with the same

undles (on the right) and cortical areas (on the left) appearing to be

ore highly myelinated than others. However, in both bundles’ decom-

ositions and cortical projections, we can clearly see that the values are

ot exactly the same across the subjects which is in agreement with the

atural inter-subject structural variability. This confirms the stability of

he proposed method, and the same results hold also for MVF (not shown

ere). 
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Fig. 3. Evaluation of the bundle-specific myelin content estimated with our approach. After performing whole brain tractography and estimating voxel-wise myelin- 

sensitive maps from MRI, we estimate the bundle-specific myelin content of different bundles using MySD. Using these estimates, we can either compute the inflated 

cortical projection as well as the cortical projection subdivided according the Desikan-Killany atlas (left) as well as reproject back voxel-wise values and compare 

with the acquired myelin map. Color bars are without units because they refer to fractions of myelin. 

Fig. 4. Comparison of the myelin water fraction of separate bundles as estimated with tractometry (left) and MySD (right) from MWF maps. Results are shown for 

the whole brain as well as for selected bundles of the left motor network: homologues pre-central gyri (blue arrow), right pre-central gyrus with itself (light green 

arrow), right pre-central gyrus – right post-central gyrus (purple arrow), right pre-central gyrus – medulla (dark green arrow), right pre-central gyrus – right thalamus 

(light blue arrow), right pre-central gyrus – right caudate (light blue arrow), right pre-central gyrus – right putamen (light blue arrow) and anterior frontal bundle 

(magenta arrow). In both cases, MySD results show more contrast between different bundles than tractometry. Moreover, in agreement with the previous works, our 

decomposition approach found higher myelination of the bundles connecting the left and right precentral gyri and precentral gyrus with the medulla than those that 

connect the precentral gyrus with the subcortical nuclei. Since MWF maps contained% values, measures on tracts are also reported in%. Color bars are then without 

units of measure. 

6 
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Fig. 5. Cortical and inflated projections obtained for the same subject using MWF maps coupled with tractometry (left) and MySD (right). To enable the visual 

comparison between different cortical areas on the inflated surfaces, we overlayed also the boundaries of Desikan-Killiany parcellation. The contrast obtained with 

MySD is in line with the known pattern of myelin in cortex, while tractometry, because of its assumptions, cannot reproduce the expected behavior. We also note 

that the color bars of cortical projections and inflated surfaces are different because, while cortical projections were computed by summing up all the contributions 

of streamlines starting/ending in those ROIs and dividing by the ROI volume (connectivity-like approach), the inflated surfaces were created by summing up all the 

values of streamlines ending in the same voxel and using 5 mm smoothing (voxel-based approach). Color bars are without units because they refer to fractions of 

myelin. 

Fig. 6. Consistency of our method across the four different subjects who were scanned with the same acquisition protocol. For each subject, on the left we show the 

bundles color-coded by the obtained bundle myelin fraction obtained from MySD, while on the right we present the corresponding cortical projection. In both cases 

the contrast between different bundles and cortical regions obtained using the MySD approach on MWF maps are highly consistent across all the subjects with local 

differences comparable with intrinsic differences in MWF values in the white matter of each subject. Color bars are without units because they refer to fractions of 

myelin and we used the same interval of values for all the subjects. 
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Fig. 7 shows axial, coronal and sagittal views of the streamlines

olor-coded with the myelin content of the bundle they are in as well

s their cortical and inflated projections recovered on the same subject

rom both MWF and MVF. Although the two microstructural maps are

ensitive to different aspects of myelin ( Mancini et al., 2020 ; Lazari and

ipp 2021 ), we observe similar patterns in myelin related values for

undle specific, cortical and inflated projections found with MySD us-

ng the same tractogram but fitting to the two different maps. For the

ame subject used in Fig. 7 , inflated projection maps of the input MVF

nd MWF are reported in supplementary data. 

n  

7 
Lastly, in Fig. 8 we show the correlation between the values obtained

ith MySD applied on MWF and MVF maps. We see very high corre-

ation for both bundle myelin fraction on the left (R 

2 = 0.94, p < 0.001)

nd streamline cross-sectional areas projected on cortex on the right

R 

2 = 0.87, p < 0.001). 

. Discussion 

Over the last decades tractography has been widely used to study the

euronal architecture of healthy and pathological brains. Structural con-
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Fig. 7. Same subject different myelin maps. On the left, axial, coronal, and sagittal views of myelin-sensitive map, bundles color-coded by their BMF as well as 

cortical and inflated projections obtained with the proposed method on the tractogram and the MVF map estimated from the MT sat acquisition. On the right, axial, 

coronal, and sagittal views of myelin-sensitive map, bundles color-coded by their BMF as well as cortical and inflated projections obtained with the proposed method 

on the tractogram and the MWF map estimated from the FAST-T2 spiral acquisition. To facilitate the visual comparison between different cortical areas on the 

inflated surfaces, we also overlaid the boundaries of Desikan-Killiany parcellation. Color bars are without units because they refer to fractions of myelin (between 0 

and 1 for MVF and between 0 and 100 for MWF). 
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ectomic analyses use tractography results to construct a graph, whose

dges (i.e., connections between cortical regions or nodes) are weighted

ccording to some metrics, the most common being the number of

treamlines passing between a pair of nodes. Recent works, however,

uestioned the typical way of weighting white matter connections using

he streamlines count ( Jones et al., 2013 ; Yeh et al., 2020 ; Zhang et al.,

021 ). To define more quantitative edge-weights for the structural con-

ectome, “tractometry ” was introduced in ( Bells et al., 2011 ) and suc-

essfully employed to study brain development, anatomy and pathol-

gy ( Yeh et al., 2020 ; Zhang et al., 2021 ; Yeatman et al., 2014 ). This

nvolves mapping microstructural measures along the tractography-

econstructed pathways and averaging their values for quantitative com-

arisons between metrics. However, tractometry does not provide the

ctual myelination of individual bundles. Indeed, when multiple bun-

les pass through the same voxel, results obtained with tractometry are

iased (as shown in Fig. 2 ) since it is not possible to disentangle the

ndividual contribution of each bundle to the average ( Daducci et al.,

016 ). 

In this study, we have introduced myelin streamline decomposition

MySD), a new method extending COMMIT ( Daducci et al., 2013 ; 2015 ),

hich allows the decoupling of the individual myelin content of separate
8 
undles. Comparing this method with tractometry, we obtained bundle-

pecific myelin contents that are consistent with the known underlying

onnectivity anatomy. Indeed, MySD revealed higher myelination in the

undles connecting the left and right precentral gyri (primary motor

ortex) through the corpus callosum and the precentral gyrus with the

edulla (projecting fibers of the cortico-spinal tract) when compared to

he myelin content of the bundles connecting the precentral gyrus with

ubcortical gray matter nuclei ( Kimura and Itami 2009 ). 

The obtained results not only provide the unique opportunity to un-

erstand the structure – and eventually the structural-function relation-

hip ( Drakesmith et al., 2019 ) – of brain connections, but also open

ew perspectives for the investigation of developmental trajectories in

ealth and disease, aging and pathological processes affecting specific

rain bundles or connections. The proposed MySD appeared to be con-

istent when using different myelin sensitive measures, such as MWF

rom FAST-T2spiral acquisition and MVF from MT sat , in leading to very

imilar quantifications of bundle-related myelin content. A deeper inves-

igation to properly characterize discrepancies and similarities between

he two maps and which one is the most appropriate to study bundle-

ise differences in myelin content will be a subject of future studies

 Mancini et al., 2020 ; Lazari and Lipp 2021 ). Furthermore, the potential
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Fig. 8. Correlations between bundles (defined as connections between cortical ROIs thus resulting in (85 × 85–85)/2 points) and cortical projections values (84 

points) derived with MySD applied on MWF and MVF maps of one subject in our dataset. The linear fit is showed in red with shadowed 95% confidence interval. 
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T  
f MySD to generate voxel-wise fiber specific myelin measure by repro-

ecting back the myelin content to each segment of the streamlines in

 voxel might be exploited also to perform fixel-based analysis studies

 Raffelt et al., 2015 ). Indeed, although to date all fixel-based analysis

tudies have only been limited to the apparent fiber density measure,

 recent work has described how this framework can work with any

ber-specific measure and coupling it with MySD estimates might pro-

ide interesting insight on clinical studies ( Dhollander et al., 2021 ). 

This study has some limitations. First, we decided to employ a de-

erministic tracking algorithm to avoid the presence of a high number

f false positive connections that could bias the results ( Sarwar et al.,

019 ). Although this is a widely accepted option in the field, some

undles might have been underrepresented in our data. A possibility

or future studies could be to investigate the performance of the re-

ently proposed COMMIT2 approach ( Schiavi et al., 2020 ; Ocampo-

ineda et al., 2021 ) coupled with the myelin-specific approach intro-

uced here. COMMIT2 allows introducing the possibility of consider-

ng the notion that fibers are naturally organized in bundles, and then

erforms the fitting by organizing the input streamlines into groups

o achieve superior filtering performances. The same method could

e also used to merge quantitative measures coming from different

odalities (e.g., bundle myelin fraction, bundle-specific axon diam-

ter index ( Barakovic et al., 2021 a), bundle-specific intra-axonal T2

 Barakovic et al., 2021b ), Tax et al., 2021 ), etc.) and simultaneously

ecover all the microstructural properties attached to each bundle. We

peculate that the bundle estimation of all these quantities might pro-

ide a more stable estimation of bundle-wise g-ratio and conduction

elocity ( Drakesmith et al., 2019 ; Campbell et al., 2018 ). Second, we

ecognized that because there is very little evidence on the differential

yelination of different white matter tract, the validation we performed

s at the level of agreement with previous literature on cortical rather

han white matter myelination. Apart from the biological relevance, this

alidation procedure might be affected by the well-known technical is-

ue in tractography of gyral bias ( Schilling et al., 2018 ). To mitigate

his, an extensive quality check was performed on the reconstructed
9 
ractograms. Moreover, because MySD is a fitting procedure, by smooth-

ng the values associated at the end points of the streamlines to project

hem to the surface, this potential bias is reduced compared to tech-

iques that use only the streamline count at each position on the cortex.

owever, for applications to clinical studies we suggest that particu-

ar care is taken when performing cortical projection and methods like

eeding at the gray/white matter interface ( Smith et al., 2012 ), surface-

nhanced tractography ( St-Onge et al., 2018 ) or asymmetric fiber ori-

ntation distributions ( Wu et al., 2020 ) should be considered. Another

ey assumption in our formulation is that, at the current resolution of

RI-derived maps and recalling that streamlines do not represent single

xons, the myelin content of every streamline remains constant along

ts path. We highlight that this assumption is not in contradiction with

hat was recently shown in ( Lee et al., 2019 , 2020 ), however this ef-

ect happens at a resolution that is not detectable with our acquisitions

nd this is why we always refer to “a group of axons sharing the same

rajectory ”, rather than single axons. On the other hand, while this as-

umption might remain reasonable in the case of pathology that affects

ore or less the entire trajectory of certain tracts, it might not hold in

he case of neurological pathologies localized along the bundles. To ac-

ount for that it might be beneficial to couple the myelin estimation with

MRI derived properties (which have been proved to be stable in case of

ultiple sclerosis ( Schiavi et al., 2020 )). Another possibility might be to

dd a supplementary term in the streamline forward model to account

or possible smooth variations of the myelin content along the tracts.

uture work will be dedicated to investigating the behavior of MySD in

resence of pathologies. 

. Conclusions 

For the first time we were able to assess the intrinsic myelin con-

ent of distinct bundles within a voxel by extending the microstructure

nformed tractography formulation to consider myelin-sensitive maps.

his proof of concept opens the possibilities for in vivo investigations
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f the myelination of neuronal pathways that, to date, were partially

ossible only partially postmortem. 
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