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Addressing materials’ microstructure diversity using transfer
learning
Aurèle Goetz 1,2,7✉, Ali Riza Durmaz 1,3,7✉, Martin Müller4,5, Akhil Thomas 1,3, Dominik Britz 4,5, Pierre Kerfriden2,6 and
Chris Eberl 1,3

Materials’ microstructures are signatures of their alloying composition and processing history. Automated, quantitative analyses of
microstructural constituents were lately accomplished through deep learning approaches. However, their shortcomings are poor
data efficiency and domain generalizability across data sets, inherently conflicting the expenses associated with annotating data
through experts, and extensive materials diversity. To tackle both, we propose to apply a sub-class of transfer learning methods
called unsupervised domain adaptation (UDA). UDA addresses the task of finding domain-invariant features when supplied with
annotated source data and unannotated target data, such that performance on the latter is optimized. Exemplarily, this study is
conducted on a lath-shaped bainite segmentation task in complex phase steel micrographs. Domains to bridge are selected to be
different metallographic specimen preparations and distinct imaging modalities. We show that a state-of-the-art UDA approach
substantially fosters the transfer between the investigated domains, underlining this technique’s potential to cope with materials
variance.
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INTRODUCTION
The inner structure of a material, the so-called microstructure,
determines most properties and shows substantial variance
depending on its composition and process history. Hence, the
quantification and digitization of microstructures play an impor-
tant role in virtual material design as well as objective and
automated quality control. Currently, the quantification of
microstructural constituents is performed on material sections,
which undergo mechanical polishing and chemical etching
routines to expose their inner features in, e.g. light optical
microscopy (LOM) or scanning electron microscopy (SEM). Aside
from the material itself, this process introduces substantial scatter
in the micrographs’ appearance. With evolving materials complex-
ity, not only the quantitative micrograph assessment by metallo-
graphy experts becomes increasingly subjective and costly, but
also conventional computer vision algorithms have reached their
limits. Therefore, the materials science field recently adopted deep
learning (DL) models for this task but is hampered by the amount
of available and specifically labeled data. While annotated data is
scarce, input micrographs are acquired of various materials, with
different settings and optics, by different experts, and with varying
processing. This motivates the need for models that can general-
ize across such data domains without additional labeled data in
the target domains. However, deep learning approaches have
been shown to exhibit poor generalization capability across
miscellaneous data sets1–3 and materials science data sets4,5.
Furthermore, in terms of annotated data, materials parameter
spaces are often sparsely (i.e., disjointly) populated, contributing
to poor model generalization. Advanced generalization techni-
ques could enable model sharing between institutes and their
applicability on diverse data sets. Microstructure characterization
is one of many tasks, which could benefit from such models.

This work addresses DL-based microstructure quantification and
generalization thereof while focusing on a binary segmentation
(pixel-wise classification) task introduced in our last paper5. It
encompasses the binary segmentation of the lath-shaped bainite
phase on topography-contrast SEM images of an etched complex
phase steel surface. Specimens originate from thermomechani-
cally rolled heavy industrial plates. Resulting microstructure is
composed of lath-shaped bainite (later referred to as foreground)
as well as polygonal and irregular ferrite with dispersed granular
carbon-rich 2nd phase and martensite-austenite (MA) islands
(collectively referred to as background). A quick insight into the
binary segmentation task is given in Fig. 1b. In this particular case,
the annotation process is not only expensive but also complex, to
the extent that there is a frequent disagreement between
different experts on the exact nature of some phases6. This
impairs the development of DL models. In our previous work5, an
extensive effort has been made to combine the SEM micrographs
with orientation-contrast from electron back-scatter diffraction
(EBSD) images, facilitating a more repeatable and precise labeling
process. However, this time-consuming procedure emphasizes the
demand for frugal models in terms of labeled training data.
Moreover, this work draws the focus on model transferability to
different target domains in the context of low source data
availability and unavailability of target domain annotations. These
are typical boundary conditions in materials science. As a first step,
having trained a model on a source dataset, we want to give some
insight into the possibility of adopting it to a target domain
(domain generalization experiments). In this case, we investigate
whether pre-training with domain-extrinsic datasets and subse-
quent fine-tuning to the source domain can improve general-
ization to target domains in the low data regime. To this end, we
compare different pre-training datasets with models trained from
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random initialization. Subsequently, we apply a state-of-the-art
unsupervised domain adaptation (UDA) model introduced by Tsai
et al.7 to our phase segmentation task across different domains.
With the aid of additional unlabeled target data, this technique
attempts to learn domain-invariant features to facilitate the domain
transfer. Provided few data, and especially in the materials science
field, it is unresolved whether such advanced deep learning
techniques can facilitate the transfer across different processing
routes or even materials. As example studies, distinct metallo-
graphic surface etchings and different imaging modalities were
investigated as the domains to bridge. The source domain (S) and
the three target domains (T1–T3) are introduced in Fig. 1 and their
similarities as well as differences are described in the results.
Instances where deep learning was applied to solve materials

science tasks, are fairly scarce. For instance, Azimi et al.8 perform a
microstructure segmentation task on SEM images of dual-phase
steels using a fully convolutional deep neural network coupled
with a sort of super-pixel voting approach. Holm et al. investigate

various tasks, amongst others microstructure segmentation, on
their ultra-high carbon steel (UHCS) dataset using an end-to-end
deep learning approach9. Recently, Thomas et al.4 published a
study implementing a U-Net architecture for damage segmenta-
tion, detecting fatigue-induced extrusions and cracks on steel
micrographs. When training with little data, the first prevalent
practice in DL is fine-tuning a pre-trained model10. This procedure
is often used synonymously with transfer learning even though
latter now encompasses many further methods. Pre-training a
neural network is based on the assumption that its first layers
learn similar features regardless of the trained task. Indeed, these
layers act as feature extractors, detecting edges, corners, colors, or
blobs. Thus, carrying over the weights of a model pre-trained on a
large-scale dataset and fine-tuning them on an another task
reduces the demand for training data in the latter task while
accelerating convergence. Different strategies exist, ranging from
full model fine-tuning with a small learning rate to freezing the
initial layers of the model and fine-tuning only the last ones.

Fig. 1 Visualization of the investigated micrograph sets. Input images, same superimposed with the annotation, and a detail view are each
shown for the source (a–c), target 1 (d–f), target 2 (g–i), and target 3 (j–l) domain. Please refer to Table 6 for the technical details about the
different sets. The red frames in the first column highlight the region of interest shown in the third column. Yellow annotations are used in the
section “Dataset processing” for discussing major differences between the domains. The scale bar in (a) applies to the first and second column
and its width corresponds to 10 μm, while the third column scale bar width amounts to 2 μm.
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Utilizing readily available model weights from pre-training with
ImageNet, owing to its apparent size and richness, has become the
status quo for weight initialization in deep learning. Recently, He
et al.11 questioned the undifferentiated ImageNet weight usage,
showing that it only helps in faster convergence but does not enable
performance improvement. However, the low-data regime, i.e., when
little data is available for the final task, was shown to be exempt from
this finding. Specifically, pre-training on ImageNet culminated in
improved COCO object detection12 only when <10k images were
used for fine-tuning. However, in material science, this low-data
regime is a lasting attendant circumstance of both materials diversity
and annotation complexity, making pre-training a suitable strategy
to infer robustness and to raise the performance of the trained
models13. Nevertheless, pre-training dataset selection remains an
unsettled issue. In other domains, this has been the subject of recent
research14,15. The overarching trends seem logical—using a large
pre-training dataset as close as possible to the target task dataset
proves beneficial. However, the trade-off between data quantity and
domain gap is undefined. Cheplygina et al.14 condensed 12 studies
from the medical field in a detailed review, comparing ImageNet
with smaller in-field datasets. The conclusions are not consistent, and
no clear trend could be identified. Romero et al.15 studied the effect
of different pre-training for chest X-ray radiographs classification,
varying the number of target training images from 50 to 2000. Pre-
training was conducted using ImageNet or one of two X-ray datasets
(220k chest images and 40k images of various body parts). They
show that pre-training is always helping in their low-data regime and
emphasize that the chest dataset pre-training yields the best results.
However, their miscellaneous body parts radiography dataset only
performed comparably to ImageNet, showing the trade-off between
data amount and domain gap for choosing a pre-training dataset.
Gonthier et al. studied similar aspects for artwork classification,
where pre-training on ImageNet outperformed another artwork pre-
training dataset containing around 80k images, presumably ascribed
to the low quantity of the artwork pre-training dataset16. Interest-
ingly, a gradual two-step pre-training, using the first ImageNet and
then the intermediate artwork dataset, led to further improvement.
This suggests that successive pre-trainings could help to bridge
domain gaps continuously.
Unsupervised domain adaptation (UDA) describes training a

model with labeled data from a source domain and unlabeled data
from a target domain to perform well on the latter. This is of major
interest when the target domain labeling process is costly or when
source domain annotations are readily available. One very good
example is the well-known GTA517 or SYNTHIA18 (source) to
Cityscapes19 (target) task. In both cases, source datasets provide
synthetic and inherently annotated urban landscapes. A wide
branch of the UDA methods is now improving an adversarial
learning framework, which was initially proposed by Ganin et al.20.
The underlying idea is to force the model to adopt a domain-
independent feature representation. This is achieved by passing
images of both domains into the main model and feeding
intermediate layer feature representations into a discriminator. This
discriminator then guesses whether the initial data comes from the
source or the target domain. Thereby, the discriminator penalizes
internal feature representations when they differ substantially for
both domains. At the same time, the source data is used in a
supervised fashion to train the main model for the task. This
adversarial approach has been adapted to semantic segmentation
by Tsai et al. where matching of internal features and segmenta-
tion masks was performed7. Details about this model are given in
the section “Unsupervised domain adaptation—an adversarial
framework”. To the largest extent, recent articles about UDA report
results on the previously mentioned GTA5 to Cityscape task, and
only a few applications can be found in other fields such as the
adversarial training approach in the medical domain21,22. This
techniques’ potential for the materials science community has
never been showcased to the best of our knowledge. By doing so,

we hope that this work will spark interest in UDA techniques in
this field.
The contributions of this work are the following:

● We study the impact of different data augmentation policies,
models, and pre-trainings on the segmentation performance
reached on the source domain through supervised learning.

● We show the impact of these different training strategies on
the domain generalization (i.e., applicability) of a model to an
alternate target domain. Specifically, the domain general-
ization across SEM micrographs of differently contrasted
complex phase steel microstructures and across different
imaging modalities is addressed.

● We implement a state-of-the-art UDA approach7 and show its
merit in materials science despite data limitations by bridging
the aforementioned domain gaps. The UDA frameworks’
suitability for applications beyond the ones presented here is
discussed.

RESULTS
Supervised learning on the source domain
In this section, models were trained on the source dataset in a
supervised fashion and evaluated on the same domain. The
subsequent section addresses the results of the same models
tested on the target domains (T1–T3 introduced in Fig. 1 and
Table 6). These so-called domain generalizations (DG) results act
as baselines for the unsupervised domain adaptation (UDA) results
addressed later.
In the source domain, the electrolytical Struers A2 etching

conducted on the complex phase steel does not emphasize the
sub-grain boundaries of the lath-bainite regions. The etching
culminates in comparatively slender carbide film appearance
overall in the SEM images (see Fig. 1a).
All models were trained on cropped images (tiles) but tested on

full-frame images. Details of the data processing and of the
investigated segmentation architectures are outlined in the
sections “Dataset processing” and “Segmentation architectures”,
respectively. The mean intersection over union (mIoU) averaged
over foreground (lath-shaped bainite) and background (other
phases) classes are used as a metric for segmentation quality. Five-
fold cross-validation was implemented. A VGG16 U-Net architec-
ture has been used to test pre-training and data augmentation
settings mentioned in the sections “Pre-training and fine-tuning
procedure” and “Data augmentation”, respectively. The objective
was to maximize the phase segmentation task performance. A
batch size of 12 with a constant learning rate of λ= 5E−3 was
utilized. The models were trained for 200 epochs, except for
experiment S.3, which required more iterations due to the random
initialization coupled with the extended augmentation pipeline
(increased data variance). This experiment was thus extended to
400 epochs. Additionally, a ResNet-101 DeepLabv2 model was
trained in a supervised manner. This segmentation architecture
corresponds to the one used in the UDA framework, rendering the
results comparable. For this architecture, only the pre-training on
ImageNet was implemented. The models were trained for 550
epochs with an initial learning rate of λ= 1E−3 and a polynomial
decay with a decay factor of 0.9. Note that a larger epoch number
was required for this architecture because of ResNet-101’s higher
number of model parameters. The mentioned training epoch
numbers were chosen to ensure proper convergence of the
validation mIoU. In practice, verifying convergence was performed
manually and in a cautious manner. The results are given in Table 1.
Please note that given ranges correspond to the five folds’
standard deviations. Additionally, a repeatability study was
conducted where the mean mIoU’s standard deviations for the
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experiments S.6 and S.9 reached 0.4% and 0.2%, respectively,
indicating statistical separability of the results.
The results in Table 1 demonstrate that pre-training helps the

model in this low-data regime. Indeed, we observe the systematic
trend that the two-stage NanoSEM pre-training outperforms the
ImageNet one, which in turn surpasses random initialization,
regardless of the used augmentation pipeline. Similarly, the
extended augmentation pipeline consistently grants better results
than the basic one, which in turn compares favorably to the
unaugmented result. Thus, the best performance is observed with
the NanoSEM pre-training and the extended data augmentation
pipeline, reaching 80.2% mIoU as an average over the five folds
(S.9). Experiment S.10 consists in the supervised training of the
DeepLabv2 architecture on the source domain. Concerning the
ImageNet pre-training case, DeepLabv2 slightly outperforms
the VGG16 architecture on this task (cf. S.10 to S.6).
In the following section, all mIoU values in Table 1 are utilized as

reference values to compute equivalent DG experiments’ relative
domain transferability (RDT) metrics. The RDT metric measures
how the model performance on the target domain compares to
the one on the source relatively and is introduced in the section
“Evaluation metrics”. Analogously, model S.10 serves as the
reference to compute the RDT for all the UDA-based models.

Model generalization and adaptation to target domains
In the following, the main objective is to achieve good
segmentation results on the target datasets introduced in Fig. 1
despite the unavailability of labeled training data in these
domains. The microscopic differences between the source and
three target datasets become evident in the detail views in Fig 1c,
f, i, l. Subsequent passage addresses the three target datasets with
continuously increasing domain shifts consecutively.
In contrast to the source domain, the Nital etchant applied in T1

reveals the hierarchical structure in the lath-bainite regions (see
arrow annotations in Fig. 1f). Moreover, this domain is accom-
panied by minor etching artifacts as indicated by ellipse
annotations there. The contrast of the T1 SEM images is more
pronounced as opposed to the source dataset. Overall, the T1
domain represents a small domain shift with respect to the source
domain. Models trained in the section “Supervised-learning on the
source domain” were tested on this target domain, and the UDA
framework of Tsai et al.7 described in the section “Unsupervised
domain adaptation—an adversarial framework” was used to apply

domain adaptation towards this domain. These UDA models were
trained with a polynomial learning rate (λ= 1E−3, decay factor of
0.9) for 3000 epochs and a batch size of 8 both for source and
target tiles. During this procedure, no target annotations were
supplied to the model. Once again, the number of epochs has
been chosen to reach a satisfying convergence of the validation
mIoU. The results are given in Table 2 and some visualizations are
provided in Fig. 2 to show the advantage of the UDA method over
domain generalization. Looking at the results from Table 2, it first
appears surprising that most source domain trained models
perform excellent on T1, sometimes even exceeding the source
performances (cf. Table 1), resulting in positive RDT values. This
will be discussed in the section “Discussion”. Secondly, the general
tendency that pre-training helps domain generalizability is
evident, as random-initialized models yield the lowest RDT values.
Despite the aforementioned good model transferability between
source and T1, UDA surpasses DG clearly (compare T1.11 to T1.10).
Aside from the 2.5% mIoU increase in favor of the UDA approach,
the obtained model is more balanced in terms of class
mispredictions. Figure 2 illustrates this phenomenon with two
examples. Without UDA, the models transferred from scratch
exhibit a skewed behavior towards the background class, thus
giving substantially more false negatives than false positives. In
Fig. 2b, d, the amount of false negatives is reduced while false
positives increase slightly, giving an overall better segmentation
and an improved phase fraction estimation in the UDA case.
Additionally, it can be observed in Fig. 2 that both models (DG and
UDA) associate the parallel carbide features with lath-bainite
correctly, whereas the DG model particularly struggles to find the
proper instance boundaries. The main improvement offered by
UDA lies in better boundary localization. For instance, on the left
side of Fig. 2d (ellipse annotation), the predicted boundary of the
lath-bainite constituent substantially shifts to the left, improving
the segmentation to a large extent. The rectangle annotation
shows a region example where the phase boundary is localized
very accurately, underlining the enhanced model’s confidence.

Table 2. Performance of the models trained on the source domain
evaluated on the target 1 domain along with the UDA reached
performance.

Model Pre-training Augmentation Exp.# mIoU [%] RDT [%]

DG-
VGG16 U-
Net

Random init. – T1.1 75.7 ± 2.2 −0.1

Basic T1.2 77.5 ± 1.4 −0.4

Extended T1.3 73.5 ± 3.9 −4.2

ImageNet – T1.4 77.2 ± 1.0 1.4

Basic T1.5 79.8 ± 1.1 1.2

Extended T1.6 81.6 ± 1.9 3.1

NanoSEM – T1.7 77.2 ± 0.6 0.4

Basic T1.8 80.6 ± 0.8 1.8

Extended T1.9 81.5 ± 0.7 1.6

DG-ResNet-
101
DeepLabv2

ImageNet Extended T1.10 82.2 ± 1.5 3.6

UDA-
ResNet-101
DeepLabv2

ImageNet Extended T1.11 84.7 ± 0.7 6.7

The given mIoU is always averaged over the five folds used for cross-
validation. NanoSEM refers to the two-step pre-training introduced in the
section “Pre-training and fine-tuning procedure”. Details about the
augmentation pipelines are given in the section “Data augmentation”
and in Supplementary Table 2.

Table 1. Performance of the models trained on the source dataset.

Model Pre-training Augmentation Exp.# mIoU [%]

VGG16 U-Net Random init. – S.1 75.8 ± 2.4

Basic S.2 77.8 ± 2.0

Extended S.3 78.7 ± 2.6

ImageNet – S.4 76.1 ± 3.0

Basic S.5 78.9 ± 2.2

Extended S.6 79.2 ± 2.2

NanoSEM – S.7 76.9 ± 2.6

Basic S.8 79.2 ± 2.2

Extended S.9 80.2 ± 2.4

ResNet-101
DeepLabv2

ImageNet Extended S.10 79.4 ± 1.8

The given mIoU is always averaged over the five folds used for cross-
validation. NanoSEM refers to the two-step pre-training introduced in the
section “Pre-training and fine-tuning procedure”. Details about the
augmentation pipelines are given in the section “Data augmentation”
and in Supplementary Table 2.
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While some error cases persist (see arrow annotations) they can be
explained by misleading peculiarities of relevant regions. For
instance, the false positive in Fig. 2b can be traced back to the
broader morphology of the contained carbon-rich constituents and
their orientation being parallel to the adjacent laths’. On the
contrary, the false-negative region in Fig. 2d shows very slender
carbide films, incentivizing the model to classify the region as
background. Both falsely classified regions remain equally challen-
ging to categorize for metallographers. Furthermore, some checker-
board patterns appear clearly in Fig. 2a and c. These periodic
patterns arise in regions of model uncertainty and originate from
the single bilinear interpolation in the DeepLabv2 architecture used
to restore the input image resolution after the encoding stage23. In
such uncertain areas, the segmentation could be improved by
combining models in a voting scheme (i.e., bagging) for getting
better final predictions. Such a bagging strategy will be briefly
discussed in the section “Discussion”. In contrast, the VGG16 U-Net
results (not shown) do not exhibit such artifacts due to its
comparatively sophisticated decoder architecture composed of
alternating nearest-neighbor interpolation and convolution steps.
Analogous to the T1 domain, the T2 dataset is addressed next,

representing a larger domain shift with respect to the source
domain. Compared to T1, hierarchical sub-grain features are less
visible in T2. Moreover, as highlighted by the rectangle annota-
tions in Fig. 1i, some grain boundaries appear faded due to their
grain boundary inclination and the progressed etching state.
Along with the pronounced contrast and wider carbide films, this
renders it evident that T2 was over-etched. On the other hand,
imaging-induced statistical differences are present particularly in
this domain, where the lath-bainite phase fraction deviates from
the source significantly (see Table 6). Results are given in Table 3

and visualizations in Fig. 3. Regarding domain generalization (DG),
two major observations can be made. First, exactly as for T1, it
appears that pre-training helps. Second, as opposed to T1, the
basic augmentation pipeline improved over the extended one.
Moreover, there is a significant RDT drop in T2, indicating this to
be a more challenging task for the UDA framework compared to
T1. In this case, UDA gives a pronounced advantage, exceeding
the DG DeepLabv2 model by 6.3% mIoU. Figure 3 displays how
UDA corrects the skew towards the background class, leading to a
segmentation that is better and more balanced in terms of
misclassifications. While difficult regions at the top of Fig. 3a, b
remain challenging for the UDA network, larger lath-shaped
regions are segmented more comprehensively (cf. bottom of Fig.
3a and b or c and d). The classification of these difficult regions at
the top of Fig. 3a, b is equally complicated for human experts.
Lastly, the T3 dataset is investigated where the objective is to

bridge the domain gap between imaging modalities. Similar to T2,
the etching state in T3 is advanced as indicated by faded-
appearing grain boundaries highlighted by the rectangle annota-
tions in Fig. 1l. In these bright-field LOM images, carbide film
morphology cannot be resolved and image features differ
substantially due to the modality change. Rather than passing
bright-field images to the different networks, pixel intensities were
inverted for the reason discussed in the section “Discussion”.
Along with the UDA performance, the domain generalization
DeepLabv2 result is reported as the sole baseline in Table 4. The
VGG16 U-Net results on the T3 domain are omitted due to the
observed large mIoU scatter between the five-folds, preventing
any form of conclusion, and overall poor model performance.
While domain generalization seems compromised on this target
dataset, a tremendous improvement of 23.6% mIoU is

a b

c dNFPT NT PF

Fig. 2 Predictions on the target 1 test images. The left column (a), (c) gives the predictions of a DeepLabv2 model trained on the source
dataset (cf. experiment T1.10). The right column (b), (d) give the predictions of a DeepLabv2 model trained with the UDA framework on the
source and target 1 datasets (cf. experiment T1.11). Annotations are used for the description of the results in the text. TP, TN, FP, and FN stand
for true positives, true negatives, false positives, and false negatives, respectively, the positive class being the lath-bainite foreground. The
scale bar width corresponds to 10 μm.
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experienced when using the UDA method. Moreover, the scatter
over the five folds is reduced substantially. Considering the few
prediction examples in Fig. 4, it is apparent that UDA turns a
completely unusable model into a convincing one without
requiring any labeled data in the target domain.

DISCUSSION
Achieving the results above with this source data set (see Table 1)
contrasts the common preconception that DL techniques require
a large training data quantity. Specifically, satisfactory results on
this complex microstructure segmentation task were attained
despite using barely more than 100 tiles (27 native SEM images)
for training. This is aligned with our prior findings5 and can be
explained by two factors. First, the data has been acquired in a
very repeatable manner. Images of each dataset (i.e., domain)
were drawn from an individual etched specimen, and reproduci-
ble imaging conditions were applied among images of the same
domain. It has to be underlined that this results in comparatively

low intra-domain variance, which might not be representative for
large-scale datasets acquired by multiple operators or even
different institutions. Second, the native micrographs exhibiting
a high resolution and rich feature density, 27 such images still
represent an appropriate learning foundation for our binary
segmentation task and the present microstructure variance.
The results in Table 1 emphasize that pre-training improves the

performance of the trained models, giving up to 1.5% mIoU
improvement between the best random-initialized model (S3) and
the best NanoSEM pre-trained model (S9). Moreover, pre-trained
weight initialization led to faster model convergence. Even with
further training, it was observed that random initialized models
did not catch up to the pre-trained ones. Therefore, the dataset is
situated in the low-data regime mentioned by He et al.11, where
pre-training elevates the performance irrespective of training
iterations. In addition, the two-step NanoSEM pre-training shows
better performance compared to ImageNet in all cases. In
contrast, pre-training solely on NanoSEM resulted in poor model
performance (not reported here). These observations are in line
with Gonthier et al.16, who performed a two-step pre-training
process as well to gradually bridge the domain gap between real-
word image datasets and artwork datasets. Please note that this
gradual pre-training procedure, compared to conventional pre-
training, introduces a further learning rate hyperparameter, which
is known to affect the final task performance sensitively. Therefore,
relatively more learning rate optimization is required for the pre-
training and fine-tuning steps. More details on the learning rate
variation are given in Supplementary note 1.
This two-stage pre-training on ImageNet and NanoSEM might

be called into question considering the slight performance
increase over sole ImageNet pre-training (1% improvement from
experiment S6 to S9). However, it has to be emphasized that
NanoSEM is far from being the optimal pre-training dataset for our
target task. Indeed, it entails the following limitations:

● Structures in certain classes such as MEMS, patterned surfaces,
and tips contain shape-related features but barely any
apparent microstructural ones, making the learned weights
possibly sub-optimal for the final task.

● The image formation is complicated in SEM and depends on a
multitude of settings. Most images in the NanoSEM dataset,
depending on the class, were either acquired with an
Everhart–Thornley (SE2) detector or in-lens detector. There-
fore, concerning the detector class, only the latter portion of
the pre-training data matches the acquisition of both source
and target SEM datasets. Generally, the SE2 detector exhibits a

a b

c d

NFPT NT PF

Fig. 3 Predictions on the target 2 test images. The left column (a),
(c) gives the predictions of a DeepLabv2 model trained on the
source dataset (cf. experiment T2.10). The right column (b), (d) give
the predictions of a DeepLabv2 model trained with the UDA
framework on the source and target 2 datasets (cf. experiment
T2.11). TP, TN, FP, and FN stand for true positives, true negatives,
false positives, and false negatives, respectively, the positive class
being the lath-bainite foreground. The scale bar width is equivalent
to 10 μm.

Table 3. Performance of the models trained on the source domain evaluated on the target 2 domain along with the UDA reached performance.

Model Pre-training Augmentation Exp.# mIoU [%] RDT [%]

DG-VGG16 U-Net Random init. – T2.1 51.4 ± 4.9 −32.1

Basic T2.2 57.6 ± 4.9 −26.0

Extended T2.3 52.5 ± 8.5 −31.5

ImageNet – T2.4 58.1 ± 2.4 −23.7

Basic T2.5 63.8 ± 1.1 −19.2

Extended T2.6 52.8 ± 11.8 −33.2

NanoSEM – T2.7 59.7 ± 3.0 −22.3

Basic T2.8 61.2 ± 3.7 −22.7

Extended T2.9 60.3 ± 3.3 −24.8

DG-ResNet-101 DeepLabv2 ImageNet Extended T2.10 61.0 ± 3.7 −23.2

UDA-ResNet-101 DeepLabv2 ImageNet Extended T2.11 67.3 ± 2.0 −15.3

The given mIoU is always averaged over the five folds used for cross-validation. NanoSEM refers to the two-step pre-training introduced in the section “Pre-
training and fine-tuning procedure”. Details about the augmentation pipelines are given in the section “Data augmentation” and in Supplementary Table 2.
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more pronounced topography sensitivity due to its location
and orientation, while the in-lens detector combines surface
topography and, to a lesser extent, material contrast.

● NanoSEM represents a classification task. Hence, only the
encoder of our segmentation model could be pre-trained.
While it can be assumed to be domain gap dependent, there
is no quantitative understanding to which extent and how
many layers of a segmentation model would benefit from
such a decoder pre-training. Conventional pre-training was
reported to primarily help the models’ first layers to learn
general features10.

● For pre-training standards, NanoSEM is comparatively small.

Despite these inadequacies, the underlying rationale of utilizing
this NanoSEM dataset for pre-training was that high-level
characteristics such as noise levels and typical image textures
can be learned. However, we assume that a more extensive
dataset involving a micrograph segmentation task of arbitrary
alloy would prove beneficial over NanoSEM. For instance, the
ultra-high carbon steel micrographs collection subset introduced
in ref. 9 would have been appropriate if not for its low quantity. A
more promising candidate could be the recently published

Aachen–Heerlen annotated steel microstructure dataset24 contain-
ing annotated martensite-austenite islands. While this datasets’
annotations exhibit a systematic offset at instance boundaries
potentially causing adverse effects during learning, such tenden-
cies presumably can be unlearned during fine-tuning. The success
of pre-training and fine-tuning motivates the demand for more
publicly available datasets in the material science field.
With respect to data augmentation, a systematic increase in

performance is observed when applying the two pipelines, which
is not surprising considering the low amount of data used for
training the models.
Lastly, it appears that the DeepLabv2 architecture achieves

better results compared to the U-Net one (compare experiments
S.6 and S.10). However, the improvement is relatively small
considering the model size difference. A possible explanation is
that our segmentation task does not exploit the full representation
power of the ResNet-101 DeepLabv2 architecture. Additional
results (not reported here) suggested that using larger tiles and
thus increasing the context given to the model might enhance the
DeepLabv2’s performance. Indeed, this architecture is built to
learn large receptive fields thanks to its dilated convolutions.
Hence, it can benefit from long-distance correlations on tiles when
learning the segmentation task.
Pre-training not only helps improve performances on the source

domain but also brings generalizability to the trained models.
Generally, pre-trained models perform better on target domains
(cf. RDT values of pre-trained models in Tables 2 and 3 compared
to the corresponding random-initialized experiments). Interest-
ingly, further experiments (not reported here) have shown that
models pre-trained with NanoSEM for 100 epochs outperform the
200-epoch ones in terms of domain generalizability towards T2 by
around 2% mIoU. It can be assumed that, during prolonged
training, weights are tweaked such that very dataset-specific
features are progressively replacing general ones.
Contrary to T1, the basic augmentation pipeline consistently

outperforms the extended one for T2. This poor domain general-
izability (Exp.# T2.3, T2.6, T2.9) suggests that models were
rendered invariant to some task-relevant features of T2 when
trained with the extended pipeline. It should be emphasized again
that this pipeline was optimized for the source domain, which
exhibits a substantially wider domain gap with T2 compared to T1.
Extended data augmentation causing a drop of generalizability
has previously been observed in ref. 4.
Concerning the UDA framework, the obtained results are very

encouraging. For T1, it appeared that due to the minimal domain
shift with respect to the source, transferring source-trained models
was already performing satisfactorily (cf. experiments T1.6, T1.9).
Hence, this problem posed to UDA is not overly challenging. The
DG models’ achieved mIoUs on this target domain even exceed
the source mIoUs. Presumably, this can be attributed to the
additional parallel features introduced by the subgrain boundaries
(see Fig. 1f, arrow annotations), rendering the prediction easier.
This was verified using the GradCAM network visualization
technique, which computes the network gradients at a specific
layer with respect to a target class and thereby estimates pixel-
wise activation. For more information, we refer to ref. 25.

a b

c d

NFPT NT PF

e f

Fig. 4 Predictions on the intensity-inverted target 3 test images.
The left column (a), (c), (e) give the predictions of a DeepLabv2
model trained on the source dataset (cf. experiment T3.1). The right
column (b), (d), (f) give the predictions of a DeepLabv2 model
trained with the UDA framework on the source and target 3 datasets
(cf. experiment T3.2). TP, TN, FP, and FN stand for true positives, true
negatives, false positives, and false negatives, respectively, the
positive class being the lath-bainite foreground. The scale bar width
corresponds to 10 μm.

Table 4. Performance of the DeepLabv2 model trained on the source domain evaluated on the target 3 domain along with the UDA reached
performance.

Model Pre-training Augmentation Exp.# mIoU [%] RDT [%]

DG-ResNet-101 DeepLabv2 ImageNet Extended T3.1 49.7 ± 7.6 −37.4

UDA - ResNet-101 DeepLabv2 ImageNet Extended T3.2 73.3 ± 0.7 −7.7

The given mIoU is always averaged over the five folds used for cross-validation.
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In Fig. 5 this technique has been applied to the source and T1
domain to determine regions that were deemed important by the
(same) ResNet-101 model (trained on source). It is clear that the
activation is more extensive in the T1 domain and additionally
involves the subgrain boundaries inside the laths (red arrow
annotations). This supports the theory that these additional features
induced by Nital etching are beneficial for the model. In our prior
study, we discovered that image downscaling for the source
domain culminates in a performance increase since the pixel gap
between carbides at lath boundaries is reduced, and information
loss is minimal5. Therefore, the parallelism of these features can be
assessed at earlier network layers. The GradCAM results on layer
3_16 indicate that the hierarchical microstructure and internal
subgrain boundary features revealed in T1 can help to bridge the
otherwise feature-sparse bainitic ferrite regions in the source
domain to improve learning. Note that the activation in Fig. 5c is
high where parallel carbide films are in close vicinity. These parallel
carbide films being decisive features indicates that these trained
models’ performance could be compromised when evaluated on
cross-sections in rolling or normal direction due to their distinct
microstructural patterns26. Moreover, considering the small test
sets, it cannot be excluded that the T1 test images potentially being
easier to predict on average compared to the source domain test
set contributes to the better T1 performance. Overall the UDA
framework gave a 2.5% mIoU boost on this target domain (T1.11
compared to T1.10). Furthermore, training the UDA framework with
T1 as the target domain gave models that perform better on the
source domain with 79.7% mIoU, granting a 0.3% boost compared
to experiment S.10. Similarly, such small domain gaps led to the
same observation in the context of urban image segmentation27.
On the other hand, T2 and T3 have broader gaps with respect to

the source domain due to stronger etching and different imaging
modalities, respectively. Despite the large domain gap of the T3
dataset with the source one, UDA performed substantially better
on this dataset than on T2, culminating in a 23.6% mIoU
improvement over the DG experiments, which is mirrored in
Fig. 4. As a reference, fully supervised training on T3 presented in
our prior work5 achieved 79% mIoU. Therefore, employing this
UDA framework falls short only by 6% mIoU compared to this fully
supervised reference, despite not relying on target labels. This
result with respect to bridging modalities is promising and in line

with literature where domain adaptation in the medical field was
successfully applied to transition between computer tomography
and magnetic resonance imaging21. Note that UDA models
trained with T2 and T3 datasets scored 78.8% and 75.8% mIoU
on the source domain, respectively, falling short compared to the
fully supervised source domain training (Exp.# S.10: mIoU=
79.4%). Indeed, UDA reaches a compromise between source and
target, which is detrimental to the source domain when large
domain gaps with the target are involved. This observation
confirms that T1–T3 are gradually increasing the domain shift with
respect to the source domain. The difference between UDA with
respect to T2 and T3 target domain performance could be
attributed to the 5× larger data amount available for the latter set
(see Table 6), where 48 unannotated training tiles for T2 might be
insufficient. Another reason could be the phase fraction of the T2
dataset, which is substantially lower than the source dataset. This
assumption will be discussed later. Lastly, we consider it unlikely
that the SEMs different distortion and noise level characteristics
(see the section “Specimen fabrication and image acquisition
methodology”) are causing this difference since the UDA frame-
work can cope with different modalities and corresponding data
augmentations were applied.
Additionally, to improve over the individually trained UDA

models, we also implemented a bagging strategy. This consists in
averaging the predictions of multiple models to give an improved
segmentation. In our case, we use the models trained with the five
different folds and achieve 85.9%, 70.2%, and 75.0% mIoU, which
results in 1.2%, 2.9%, and 1.7% increase over the best results
presented in the T1–T3 result tables, respectively. The larger
improvement for T2 can be attributed to its comparatively weak
individual classifiers, making the bagging paradigm relatively
more profitable.
Lastly, as opposed to DG models, which are frequently biased

towards a class (cf. Figs. 2 and 3), UDA leads to more balanced
models. Consequently, this characteristic improves the estimation
of phase fractions or other metrics, which do not require full
details of the segmentation mask. As an example, predicted phase
fractions on the different target datasets with DG and UDA are
reported in Table 5. It is evident that UDA improves phase fraction
estimation in all cases and additionally reduces the scatter
substantially (e.g., by a factor of 10 for T3). The large observed

Fig. 5 Network visualizations of the ResNet-101 DeepLabv2 model, on the source (S.10, a–c) and target 1 (T1.10, d–f) domain with lath-
shaped bainite labels (b) and (e) given as reference. The heat maps indicate regions that were taken into consideration at layer 3_16 of the
ResNet-10140 to classify the lath-shaped bainite regions. In the detail views (c), (f), which are the same as in Fig. 1, heat maps in the target 1
domain are more extensive and additionally incorporate subgrain boundaries (red arrow annotations). The scale bar in (a) applies to the first
and second column and its width corresponds to 10 μm, while the third column scale bar width amounts to 2 μm.
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scatter of DG models for T2 and T3 predictions can be explained
by the different training folds each leading to skewed predictions
in favor of either background or foreground class. Using UDA
systematically reduced the skewed behavior and yielded models
that are only slightly biased towards the background class. This
suggests that UDA-based models, when applied to the target
domains, misinterpret some foreground class features. One
potential cause could be incompletely bridged gaps with the
source domain. Another possibility for this slight, consistent lath-
bainite underestimation could be the labeling process. Unlike the
target domains, the source was labeled with supporting EBSD
images, which could conceivably result in different annotation
patterns. Lastly, one should recall that the fairly small test set size
renders the results very sensitive concerning any labeling
inconsistencies. For these reasons, the impact of intra-rater
reliability is presumably elevated.
In the following, limitations and potentials of the implemented

unsupervised domain adaptation framework are discussed. Firstly,
it has to be emphasized that adversarial-based frameworks such
as AdaptSegNet suffer from training instability, rendering them
rather laborious to tune and affecting training repeatability. Facing
these training pitfalls while working with low quantity data
hampers the deduction of relationships from ablation studies and
hyperparameter studies. Furthermore, given the implementations
and hardware at hand, typical UDA training runs for 6 h, whereas a
DeepLabv2 supervised fine-tuning takes only 45 min.
Another constraint was witnessed when trying to bridge the

gap between SEM and LOM data (T3). Indeed, the learning process
failed when feeding the model with bright-field LOM tiles,
motivating us to invert their pixel values. As the segmentation
architecture shares weights between source and target data, it
might be difficult to learn filters, which perform well on both
modalities while keeping internal features independent of the
originating domain.
Moreover, this AdaptSegNet7 framework is built on the strong

prior assumption that the source and target datasets are sharing
the same label space distribution. This poses a boundary condition
for the segmentation model to give good predictions and fool the
discriminator simultaneously. In case of pronounced label space
deviations between the source and target datasets, the discrimi-
nator should hypothetically quickly learn how to differentiate the

segmentation masks, hampering the transfer learning process.
Such a label distribution shift could be due to different phase
morphology or phase fractions. For this purpose, the phase
fractions are provided in Table 6. Aside from generally low data
quantity in the T2 domain, the lath bainite phase was not
oversampled during image acquisition as opposed to the other
domains. Therefore, selecting a suitable training tile subset to
match the source domains’ 53% mean lath-bainite phase fraction
was unfeasible. Taking the phase fraction histograms of the
training tiles (based on expert-reviewed pseudo-labels) into
consideration, the discriminator seemingly should learn the
tendency that the images from the T2 domain generally show a
smaller lath-bainite content. Initially, we considered this to be the
primary reason for UDA being more beneficial for T3 compared to
T2. However, an additional experiment where we varied the lath-
bainite phase fraction of the LOM training dataset provided to the
UDA framework invalidated this hypothesis. Specifically, we
sampled another target 3v train set with a lower mean phase
fraction (ϕtrain;3v ¼ 0:28 similar to T2) and trained a model with it
in the UDA framework. A common test set exempt from both LOM
training sets was created for testing purposes consisting of 12 test
images with a mean phase fraction of 40%. This LOM test set
phase fraction was chosen to be the average between the training
phase fractions such that the influence of target train-test shifts
could be excluded and domain phase fraction shifts during
training could be investigated. The results showed that models
trained with T3 reached 78.0 ± 1.0 mIoU, whereas those trained
with T3v scored 77.4 ± 1.8. Note that the former value deviates
from the result provided in Table 4 due to the distinct test set. This
suggests that distinct phase fraction training data of the different
domains does not hamper the UDA training. One thing to
underline is that the discriminator receives predictions from the
segmentation model (see Fig. 7) rather than actual annotation
masks, which complicates the distinction based on phase fraction
histogram separability. Definitely, the robustness of this adversar-
ial process concerning space label non-conformity is highly
auspicious for materials science tasks. For instance, this appears
promising for generalizing to different alloys or processing routes,
as the phase topology and morphology then can be altered
significantly between the source and target sets. Alternatively, if
problems due to too different phase distributions were to arise,
these could be overcome by feeding the discriminator with tile
sub-patches selected based on pseudo-labels to balance both
sets’ apparent tile phase fractions artificially.
Despite the aforementioned limitations of AdaptSegNet, this

framework has been successfully applied as part of this work, even
in a low-data amount scenario. Substantial improvements in
performance on the target datasets were observed despite only
providing few tens of unlabeled micrographs. Even modality
transfers from SEM to LOM could be facilitated successfully with
such data. The UDA frameworks’ insensitivity with respect to
different phase fractions in source and target domains yields hope
to enable generalization across different alloys and heat
treatments. We consider this framework a good trade-off between

Table 5. Estimated phase fractions on the test sets of the different
target domains with DG and UDA models.

Target domain ϕDG [%] ϕUDA [%] ϕlabel [%]

Target 1 (T1) 39.8 ± 1.0 41.3 ± 0.9 43.6

Target 2 (T2) 48.4 ± 10.7 44.6 ± 4.9 46.7

Target 3 (T3) 51.3 ± 21.8 42.8 ± 2.6 44.6

Values are averaged over the five models trained on the different folds and
standard deviations are provided.

Table 6. Micrograph set descriptions.

Set name Etching Imaging setup # train tiles # test images ϕtrain

Source (S) Struers A2 electrolytic etching; o SEM setup 1 112 7 (28 tiles) 0.53

Target 1 (T1) Nital (2 vol.% HNO3); o SEM setup 1 80 5 (20 tiles) 0.54

Target 2 (T2) Nital (2 vol.% HNO3); + SEM setup 2 48 3 (12 tiles) 0.29

Target 3 (T3) Nital (2 vol.% HNO3); + LOM 234 50 (200 tiles) 0.53

Mean lath-bainite phase fractions ϕtrain of the train tiles are given. Note that no annotation was available for the target 1 and target 2 training sets. Hence, their
phase fractions were estimated based on pseudo-labels and confirmed by a metallography expert. Symbols “o” and “+” refer to normal and deliberately
prolonged etching duration, respectively.
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complexity and reached performance, and therefore an excellent
introduction to UDA for the material science community.
However, in view of the fast-paced ML research, it has been
outperformed on the GTA5-to-cityscape task. Several improve-
ments have been published over the past 3 years, most of the
time using the work of Tsai et al.7 as a reference and starting
point28–32. All these studies rely on the GTA5-to-Cityscapes
reference task, and some of them exploit specific characteristics
of these datasets29. Therefore, the approaches in these works are
not directly applicable for our binary segmentation task but
potentially relevant for other material science tasks. Nevertheless,
some models could potentially improve over AdaptSegNet in our
setting. One example is the ADVENT model of Vu et al.30, which
makes use of entropy maps instead of segmentation maps as
input for the discriminator. It encourages entropy minimization in
the target domain by matching the source and target entropy
distributions. This entropy minimization paradigm is borrowed
from semi-supervised learning. Also inspired by semi-supervised
techniques, Pan et al.28 implement the AdaptSegNet framework
with an extra pseudo-labeling step. The easiest-to-predict half of
the target data is pseudo-labeled in a first training iteration and
then utilized as “source” domain data for a second training, using
the rest of the target data as the target domain. This is motivated
by the intra-domain variance in the target domain. In our case, this
approach would probably not be overly beneficial as our intra-
domain variance has been reduced to the minimum by repeatable
data acquisition. Potentially, such an approach can take intra-
domain variance emerging from grain morphology differences
due to different imaging locations on the rolled sheet cross-
sections into account. Recently, Yu et al. published an improve-
ment of AdaptSegNet7 including an attention mechanism in order
to focus domain adaptation on the parts of the images that are
the most difficult to transfer from the source to the target. While
the work at hand has focused on adversarial UDA techniques only,
promising style transfer GAN approaches are also good candidates
for UDA methods and are currently an active research topic33.
Whether to employ UDA for training a model depends on three

criteria. First, the effort associated with labeling source and target
domain data needs to be considered since UDA avoids this cost
for the target. For instance, UDA is especially favorable when
synthetic source data (e.g., simulation data) with inherent labels
and expensive target annotations are concerned. Second, the
features contained in the source and target input data determine
the attainable annotation accuracy. A setting where significantly
more precise labels can be obtained in a source domain compared
to the target proves beneficial to UDA. Thus, assuming
comparatively poor-quality target labels, the performance gap
between a UDA training and the direct supervised training on the
target domain diminishes. The transfer from SEM to LOM provides
a good example as SEM image features not only render the phase
annotation process easier but also the bainite sub-class differ-
entiation possible in the first place. Therefore, considering that a
SEM acquires data substantially slower and is not affordable for
every research laboratory, training a UDA model with external
annotated SEM data to transfer to LOM can increase accessibility
to high-quality models and potentially even enable specific tasks.
Lastly, the domain gap to bridge has to remain maintainable.
Source and target domains need to share enough common image
features for the model to learn a domain-independent representa-
tion of the data. While this work gives first insights into the UDA
scope of application, its precise limits still need to be explored.
The variety of materials and characterization methodologies

utilized in materials science and engineering is boundless. This
along with the increasing degree of automation and image
acquisition rates, will very likely cause a drastic discrepancy
between labeled and unlabeled data quantities in the future.
Presumably, this will further raise the interest for unsupervised-
learning methods such as UDA since these hold the potential to

alleviate the demand for expensive annotations. Given the virtual
materials design acceleration we currently undergo through the
digital transformation, unsupervised methods will be indispensa-
ble to foster the efficient experimental confirmation of computa-
tionally optimized microstructures.

METHODS
Specimen fabrication and image acquisition methodology
This work is based on SEM images of low-carbon complex-phase steel
which was the subject of our last work5. Samples were obtained from
thermomechanically rolled heavy industrial plates. Their microstructure
encompasses lath-shaped bainite surrounded by polygonal and irregular
ferrite with dispersed granular carbon-rich 2nd phase and MA islands.
Micrographs were taken in the plate’s transversal direction (TD), between
quarter- and mid-thickness of the plate. Rolling-induced stress and cooling
rate gradients result in a small microstructure variance, wherein some
images taken from comparatively surface-near regions, the polygonal
ferrite grains are elongated in the rolling direction (RD). During imaging,
segregation zones in the plate core were avoided. The specimens were
ground using 80–1200 grid SiC papers, and then subjected to polishing
with 6, 3, and finally, 1 μm diamond grain sizes. Using different etching and
imaging conditions as well as image modalities, four image sets were
drawn from these specimens. The configurations are presented in Table 6.
The etching duration was controlled by a metallographer waiting for a

macroscopic contrast to be visible to the naked eye. The etching reveals
grain boundaries since the reaction kinetics depend on the local chemical
composition and crystallographic orientation. Therefore, carbide films and
a few MA constituents are exposed. An example input image, the same
with the superimposed label, and a detailed view of each data set (i.e.,
domain) is presented in Fig. 1.
In terms of imaging conditions, the SEM setup 1 was utilizing a Zeiss

Merlin FEG-SEM using secondary electron contrast (in-lens) at a
magnification of ×2000 with an image size of 2048 × 1433 (annotation
bar cropped), which represents 56.7 × 42.5 μm2 (pixel size= 27.7 nm). The
SEM was set at an acceleration voltage of 5 kV, a probe current of 300 pA,
and a working distance of 5 mm. Small acceleration voltages reduce the
interaction volume and increase surface sensitivity. In SEM setup 2, the
micrographs were recorded in a Zeiss Supra FEG-SEM with another in-lens
detector. The acceleration voltage, the probe current and the working
distance were the same as in the first setup. The magnification was set at
×1000 with a higher image resolution, giving virtually identical physical
pixel size compared to the first setup. Due to subsequent stitching and
cropping, images of SEM setup 2 ultimately had the same size as others.
Contrast and brightness settings differed from the first imaging setup, see
Fig. 1. Within each domain, micrographs were acquired with the same
image contrast and brightness settings in the SEM. Lastly, the LOM images
were recorded in an Olympus LEXT OLS 4100. Micrographs were taken at a
magnification of ×1000 with an image resolution of 1024 × 1024 pixels,
corresponding to an area of 129.6 × 129.6 μm2 (pixel size= 126.6 nm). All
LOM images were acquired with the same exposure settings.
Segmentation masks were drawn manually by human experts on a

digital drawing tablet (Wacom). Correlative EBSD maps on the source
domain micrographs rendered the annotation more reproducible and
accurate. For more details on the acquisition, multi-modal registration and
annotation process we refer to ref. 5. Note that for the target domains, with
the exception of T3, annotations were only available for a small portion, i.e.
the test images.

Dataset processing
The LOM images were assimilated to the native SEM datasets in terms of
physical pixel size and field of view by scaling and cropping operations (cf.
Fig. 1a and j). Subsequent processing was identical for all datasets. Images
were mirror-padded to make them square so four tiles can be extracted
per image. Following the results of our last paper5, the images were
downscaled by a factor ×0.5 before tiling, effectively increasing the context
passed to the models’ receptive field34. The obtained training tiles are then
of size 636 × 636 (512 × 512 plus an additional 62-pixel overlap extending
into the adjacent tiles at each tile border). This overlap-tile strategy was
introduced by Ronneberger et al.35 to cope with memory restrictions and
helps the model to circumvent tile border effects. For segmentation loss
computation, the overlap regions extending in neighboring tiles were
discarded (i.e., 512 × 512 center region was used solely). To align the
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domains’ phase fractions as much as possible, few training tiles of the
target domains were discarded, ultimately resulting in the tile numbers
and phase fractions listed in Table 6. The source dataset was split in five
folds for cross-validation. In contrast, the annotated portion in the target
domains was too small to perform cross-validation. Therefore, only a single
train and test set has been built for the target datasets. While training was
performed with tiles, the model evaluation was conducted on full images.
Bright-field LOM images (T3) pixel values were inverted to give them a
dark background similar to SEM.

Pre-training datasets
The first pre-training dataset used in this study is ImageNet36. Further, the
apparent domain gap between ImageNet and our target datasets
motivated us to test an additional pre-training dataset with a smaller
domain gap. Therefore, we selected a SEM dataset of nanoscientific
objects37, which comprises ~22k images, non-uniformly distributed in 10
classes: biological, fibers, films, and coated surfaces, microelectromecha-
nical systems (MEMS) and electrodes, nanowires, particles, porous sponges,
pattern surfaces, powders, and tips. In the following, we refer to this pre-
training dataset with “NanoSEM". Before using the NanoSEM dataset, a pre-
processing cleaning step was performed. Images with many burned-in
measurement annotations were discarded and SEM annotation bars were
cropped to avoid spurious correlations between annotation bars and class
predictions, known to occur otherwise. Finally, the pre-training dataset
amounted to 18,750 images. More details about the pre-training
methodology and results are supplied in the section “Pre-training and
fine-tuning procedure”.

Segmentation architectures
As part of this work, two main segmentation architectures are
implemented. The well-established U-Net35 is used in the first place to
investigate different pre-training strategies. This fully convolutional
architecture is, as its name implies, composed of an encoder–decoder
structure with skip connections between the corresponding levels of the
encoder and decoder. It gave outstanding results on medical segmenta-
tion tasks even with very little training data.
Among many different segmentation models that were proposed after

the U-Net, one series of models marked a turning point in this field. Chen
et al. published the first version under the name DeepLab38. In this work,
the second DeepLab version is implemented (DeepLabv2). This architec-
ture uses so-called dilated convolutions (or atrous convolutions), which
help the model to enlarge its field of view (receptive field) and take
patterns at larger scales into account appropriately. The main idea of
DeepLabv2 is to learn and aggregate patterns at different scales with
dilated convolutions having different dilation rates. This aggregation of
dilated convolutions effectively causes a more uniform distribution in the
effective receptive field34.
The encoder used for the U-Net is a portion of the VGG16 classification

network39, while DeepLabv2 was built with a ResNet-10140 encoder. The
exact architecture for both cases are given in Supplementary Fig. 1 and in
ref. 7, respectively.
For segmentation training, a binary cross-entropy loss and an Adam

optimizer was employed. Learning rates, batch sizes and training times
vary along this study. Thus, these parameters are specified in the section
“Results” directly for the different experiments. Reported learning rates

were selected by grid-search optimization. The models were trained on a
GPU cluster node consisting of four parallel NVIDIA Ampere A100 GPUs.

Pre-training and fine-tuning procedure
For the ImageNet pre-training, we used pre-trained weights provided by
the python package “Segmentation models pytorch”41.
Concerning our self-performed NanoSEM pre-training, we passed the

U-Net encoder output to an auxiliary classification head41. This head
consists of a global average pooling layer, followed by 50% dropout and a
linear layer with a sigmoid activation. The auxiliary classification head
facilitates encoder training on classification datasets. ImageNet weights
were used as an initialization for the trainings, making this process a two-
step pre-training (from ImageNet to NanoSEM to the final task). The 18,750
NanoSEM images were split into 15k images for training and 3750 images
for testing purposes. Pre-training used an Adam optimizer with a constant
and encoder-layer independent learning rate and was run for 100 epochs.
The obtained pre-trained models were transferred to the segmentation
task by just copying the weights of the model performing best on the pre-
training classification task. The full model was then fine-tuned on the
source dataset (without frozen layers) with a reduced learning rate for the
pre-trained encoder (10× lower than the decoder learning rate). The two-
stage pre-training process along with fine-tuning is summarized in Fig. 6.
Please note that the individual learning rates applied at the pre-training
and fine-tuning stage are of major importance. An optimization of the
learning rate used for pre-training on NanoSEM has been carried out
(details are given in Supplementary note 1).
In case of the VGG16 U-Net model, aside from random initialization,

either the two-stage pre-training or ImageNet pre-trained weights were
used as initial conditions before pursuing fine-tuning to the source
domain. In contrast, for the DeepLabv2 models solely ImageNet pre-
trained weights were used. Testing these models on target datasets
(T1–T3) allowed to investigate the impact of pre-training on the domain
generalization (DG) capability of the models.

Unsupervised domain adaptation—an adversarial framework
To additionally take advantage of unlabeled target domain data, which
often can be created in abundance effortlessly, the UDA method of Tsai
et al.7 has been implemented. This adversarial framework can be used to
train a semantic segmentation unsupervised domain adaptation task. It is
based on the original idea proposed by Ganin et al.20 The code of7 was
adapted to make it compatible with our data. Figure 7 depicts the training
process in a simplified fashion.
As proposed in the original framework7, we utilize a DeepLabv2 with a

ResNet-101 as the segmentation architecture, which facilitates compar-
ability with the corresponding domain generalization experiments
described at the end of the section “Pre-training and fine-tuning
procedure”. In the UDA framework, annotated source and unannotated
target domain data are fed into this segmentation model (shared weights).
The source domain prediction is used for training the segmentation model
in a supervised manner, given that labels are available in this domain. This
gives a first part of the loss function (Lseg), evaluated as a binary cross-
entropy. Furthermore, source and target domain predictions are passed to
a discriminator model, which attempts to classify from which domain the
prediction comes. The second part of the loss, the so-called adversarial loss
(Ladv), quantifies the ability of the segmentation model to fool the

Fig. 6 Summary of the pre-training and fine-tuning procedure. Starting from ImageNet pre-trained weights (1), we optionally use the
NanoSEM dataset37 for pre-training the encoder of the model on this classification task (2). The weights of the encoder are then directly
transfered for the final fine-tuning on the source domain (3), while the decoder is random-initialized.
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discriminator. It is also computed as a binary cross-entropy for the domain
classification. Additional to the segmentation outputs, network-internal
feature representations of both domains are extracted from an auxiliary
segmentation head, reshaped to segmentation mask size (auxiliary
segmentation), and passed to the discriminator (Laux

adv). This is not
represented in Fig. 7 for the sake of simplicity. Moreover, the source
domain auxiliary segmentation is compared to the annotation mask (Laux

seg).
The different loss parts are weighted so emphasize can be put on either of
the segmentation or adversarial losses introducing three further hyper-
parameters. Note that the loss portions related to the auxiliary feature
output are typically less weighted, making Fig. 7 representation a good
first approximation of the model. The four aforementioned loss parts
(Lseg;Ladv;Laux

adv;Laux
seg) compose the training loss of the segmentation

model, whereas the discriminator is optimized based on a domain-
classification cross-entropy loss. When back-propagating the combined
loss of the segmentation model, the weights of the discriminator
are temporarily frozen. Both the segmentation and discriminator models
are trained in an end-to-end fashion. Complementary technical details are
given in the Supplementary note 2.

Data augmentation
Data augmentation is a common practice in ML for increasing the labeled
data amount without additional annotation cost. It consists in applying
transformations to the data before passing it to the model. The main
objective is to render the network invariant to specific transformations. As
part of this work, a simple flip and 90° rotation pipeline (with probability
0.5) were first tested (marked as basic). Moreover, an extended pipeline
making use of, amongst others, elastic transformation and optimized for
the source domain in our last publication5 was implemented (marked as
extended). Both pipelines have been built with the Albumentations
package42. Full details about the pipelines are given in Supplementary
Table 2. Data augmentation was applied to train all our models except for
the NanoSEM pre-training. In the UDA framework, both source and target
datasets were augmented using the optimized pipeline.

Evaluation metrics
For the segmentation models evaluation, we use an intersection over
union (IoU) metric (see Eq. (1)), averaged over background and foreground
classes (mIoU). In order to evaluate the trained models’ generalizability, we
used a relative mIoU deviation between the source domain performance
with sole supervised learning and the target domain performance with the
concerned generalization method (either domain generalization or UDA).
We refer to this metric as relative domain transferability (RDT; see Eq. (2)).
Using a relative deviation avoids overrating models that are performing
better on the target domains because of their inherent advantage on the
source domain. For instance, a hypothetical model with 70% and 65%
mIoU on the source and target (RDT=−0.07) generalizes better than one
yielding 80% and 70% mIoU (RDT=−0.13), despite latters’ better target

performance.

IoU ¼ TP
TPþ FPþ FN

: (1)

RDT ¼ mIoUT �mIoUS

mIoUS
: (2)

TP, TN, FP, and FN represent true positive, true negative, false positive,
and false negative pixels, respectively. mIoUT and mIoUS are the class-
averaged model performance on the target domain and reference source
domain, respectively.
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