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Abstract 

Laminated composite plates are used extensively in the aerospace industry because of their 

light weight, high strength and stiffness. Additionally, the use of panel structures leads to a 

reserve of postbuckling strength which allows more load to be carried than the initial critical 

buckling load. This enables the weight of the aircraft to be further reduced by fully utilising 

this stable postbuckling phase. 

Postbuckling is a highly nonlinear process incurring high computational costs for conventional 

numerical methods particularly when the plate is manufactured from composite material or 

subject to shear loading. For many years, researchers and engineers have been searching for a 

fast yet reliable analysis technique to extend the design envelope as far as possible into the 

postbuckling region. However, most of the commercial design software is characterized by 

either low computational efficiency or lack of accuracy. This work is motivated by the need 

for an alternative to such software. 

The coupled wavelength postbuckling analysis (CWPAN) presented in this thesis is based on 

the use of a series of sinusoidal solutions representing in-plane displacements, strains and 

stresses for a composite plate under any combination of in-plane loading based on the exact 

strip method. By incorporating classical plate theory and large deflection theory, the governing 

equilibrium equations are assembled and solved analytically at each postbuckling equilibrium 

state. The in-plane distributions of displacements, strains and stresses are therefore obtained as 

a means of observing postbuckling behaviour. 

A convergence procedure consisting of a modified Newton iteration scheme and its supporting 

strategies is also developed to capture progressive postbuckling behaviour. With such a 

procedure, successive equilibrium states can be connected and enabling a full postbuckling 

analysis considering postbuckling stiffness. Postbuckling behaviours such as stress 

redistribution can therefore be observed. 

CWPAN is illustrated using appropriate practical examples and numerical results including 

symmetric balanced, unsymmetric, unbalanced composite plates under in-plane compression, 

shear and combined loading under three different in-plane boundary conditions, and is 

validated against the most widely used numerical technique, finite element analysis (FEA).  
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𝑤,𝜓  out-of-plane displacements and rotations  

𝑥, 𝑦, 𝑧  longitudinal, transverse and lateral directions  

𝛼 constant strain increment ratio 

𝛽 tolerance of modified Newton iteration scheme 

𝛾 constant shear strain increment ratio 

𝛾̅ constant shear strain 
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𝜀  ̅ constant normal strain 

𝜀𝑥 , 𝜀𝑦, 𝛾𝑥𝑦  middle surface strain  

𝜅𝑥 , 𝜅𝑦, 𝜅𝑥𝑦  curvatures  

𝜆  longitudinal out-of-plane half-wavelength  

𝜉 longitudinal repetition parameter 

𝟎 null matrix 

Subscripts  

c cosine terms 

k sequence of in-plane half-wavelengths 

𝑖 node reference number 

𝑗,𝑚, 𝑛 half-wavelength reference number 

s sine terms 

𝑥, 𝑦, 𝑥𝑦 longitudinal, transverse, shear 

Superscripts  

−1 inverse matrix 

′ derivative with respect to transverse direction 

 

 

  



1 
 

Chapter 1. Introduction  

1.1 Background 

Mass minimisation is a crucial objective in aircraft design to reduce the cost of manufacturing, 

environmental impact and fuel consumption (Che et al., 2010). Industrial strategic research 

objectives demand a reduction in aviation fuel consumption and CO2 emission by 1.39% per 

annum to 2045 and 21% reduction in full flight nitrogen oxide in the long term(Fleming and 

Lepinay, 2019). This objective can be realized in many ways. 

Firstly, materials such as composites which exhibit better performance than traditional metals 

in terms of strength and stiffness to weight ratio can be used to reduce the amount of material 

needed and thus the weight of an aircraft. They may also have additional benefits such as a 

high resistance to fatigue and corrosion. Composites are increasingly adopted in industries 

including aerospace, shipbuilding and the automotive sector. However, such materials often 

incur significantly high manufacturing costs.  

From a structural perspective, the use of panels is well known to increase the critical buckling 

strength whilst reducing weight. More than this however they have the potential to provide a 

postbuckling reserve of strength, allowing  compressive and shear loads exceeding the initial 

buckling load to be carried (Anderson and Kennedy, 2008). If this reserve can be employed 

safely, the weight of composite structures can be further reduced and the structure becomes 

even more efficient.  

Postbuckling analysis however is characterized by non-linearity and is therefore 

computationally expensive.  On the other hand it is almost impossible to conduct the analytical 

and numerical analysis of non-linear composite plates using algebraic expressions manually, 

especially for increasingly complex structures.  An efficient computer aided engineering (CAE) 

software for non-linear problems therefore becomes exceedingly valuable. Researchers and 



Chapter 1 

2 
 

designers have been searching for such reliable computational theories and techniques to 

increase design efficiency for many decades.  

CAE software including finite element analysis (FEA) is widely used in industry. However, 

when it comes to highly non-linear problems, FEA often results in high computational costs 

with discretisation problems due to the large stiffness matrices used. In this context, alternative 

approaches such as the finite strip and exact strip methods which reduce degrees of freedom 

and levels of discretisation have proved particularly valuable.  

VICONOPT is a software for designing prismatic structural components developed at Cardiff 

University in 1990. By utilizing the exact strip method and Wittrick-Williams algorithm, 

VICONOPT can solve critical buckling and free vibration problems analytically with 

considerably high speed. However, for postbuckling analysis, an incomplete capture of in-

plane behaviour leads to conservative results for composite materials or shear. Previous authors 

including Che (2010) and Zhang (2018), have begun to address this by developing an exact 

solution to capture in-plane distributions. This new approach however is still relatively 

inaccurate for composite material and shear loaded plate problems.  

In this thesis, a new numerical method, coupled wavelength postbuckling analysis (CWPAN) 

based on the exact strip method is presented to overcome these limitations and allow accurate 

postbuckling analysis for a wider range of load and boundary conditions, and for anisotropic 

materials. The method uses classical plate theory and von Kármán large deflection theory to 

account for the additional strains generated from lateral deflection. By assuming displacements 

can be represented using a series of trigonometric terms, equilibrium equations can be solved 

analytically and in-plane displacements, stresses and strains can be identified. To find the 

postbuckling equilibrium path, a modified Newton-type iteration scheme and corresponding 

convergence method is developed. The method is validated against results obtained using the 

finite element method to further understand its advantages and limitations.  
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1.2 Thesis scope 

This thesis addresses the limitations of the previous postbuckling analysis (Che 2010; Zhang 

2018) based on improved exact strip analysis and VICONOPT.  

The ‘Improved exact strip analysis’ developed by (Zhang, 2018) provides an efficient approach 

to postbuckling analysis for isotropic plate assemblies in the preliminary design of aircraft 

structures. It improves previous exact strip postbuckling analysis by capturing in-plane 

displacements. However it has drawbacks when it comes to isotropic material or shear loading 

cases resulting skewed mode shape, as it gives unrealistic results or fails to solve the 

equilibrium equations. This is because it represents the postbuckling mode with one single half-

wavelength which despite being efficient is often inaccurate. In this thesis, a series based 

postbuckling analysis is presented which successfully overcome previous limitations utilising 

a number of half wavelengths and therefore more accurately representing the postbuckling for 

composite materials and shear loaded plates. 

VICONOPT uses a Newton type iteration scheme to capture the changing mode from previous 

postbuckling analysis.  It can successfully obtain the mode shape for regular and symmetric 

mode shapes but has not thus far considered any circumstances under which the mode shape is 

skewed due to composite material or shear loading. The previous improved analysis does not 

implement the Newton iteration from VICONOPT and can only therefore analyse a 

postbuckling scenario at one particular equilibrium point. Therefore for a plate that has a 

skewed mode shape, none of the above methods could achieve a full postbuckling analysis. In 

this thesis, a series based Newton iteration scheme and corresponding convergence scheme are 

developed to allow a full postbuckling analysis. 
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1.3 Thesis aims and objectives 

The aim of this thesis is to develop an accurate and efficient methodology for predicting the 

postbuckling behaviour of composites under combined loading. 

The objectives are as follows: 

1. To review the composite postbuckling theories of other researchers and understand their 

limitations when analysing composite plates or for shear loading.  

2. To develop a postbuckling analysis which addresses these limitations while retaining 

the advantages of the fast and reliable VICONOPT. 

3. To develop a convergence procedure allowing the equilibrium path to be found. 

4. To investigate the sensitivity of the developed method ‘CWPAN’ based on a series of 

parametric studies.  

5. To validate CWPAN against the finite element method by modelling using the 

commercial software ABAQUS. 

 

1.4 Thesis overview 

The thesis is presented in the following Chapters.  

Chapter 2: Background theory and literature review 

This chapter provides a review of the postbuckling analysis of plates. Formulations for 

buckling and postbuckling based on classical plate theory are presented to establish a basic 

understanding of the methods utilized in this thesis. A review of composite material and its 

mechanisms is included. Finally, a review of recent advances in the postbuckling analysis of 

composite plates is presented.  

Chapter 3: Exact strip method and VICONOPT 
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This chapter presents the exact strip method and its implementation through the VIPASA and 

VICON analysis options of VICONOPT. Formulations are given for each method highlighting 

the differences between the basic theories of the two. The previous ‘Improved exact strip 

analysis’ postbuckling method developed based on VIPASA analysis is presented and its 

limitations highlighted. 

Chapter 4: CWPAN: in-plane solutions  

This chapter develops a coupled wavelength postbuckling analysis (CWPAN) for composite 

plates using VICON analysis to address the limitations of the previous method. Inspired by 

Stein’s assumptions and employing VICON analysis, a series of trigonometric functions are 

developed based on von Kármán large deflection theory and finite difference approximations. 

By solving the governing in-plane equilibrium equations analytically, accurate in-plane 

variables can be obtained.  

Chapter 5: CWPAN: Newton iteration and convergence procedure 

This chapter introduces a modified Newton iteration scheme and its supporting convergence 

procedure into CWPAN. The postbuckling analysis requires the buckling mode to be provided 

as an input to each cycle. Whilst accurate representation of this mode requires plate 

deformation to be represented as varying sinusoidally with a series of half-wavelengths the 

previously implemented Newton iteration schemes only calculate the buckling mode for a 

single half-wavelength. A new Newton iteration is therefore developed. 

Chapter 6: Parameter selection  

Four parameters influence the proposed analysis significantly and suitable values for them are 

required to be selected. This chapter studies the sensitivity of the results to each of these 

parameters.  

Chapter 7: Illustrative results and validation 

As the most widely used finite element software, results from analyses carried out using the 

ABAQUS  Riks method for nonlinear analysis are used to validate the method. For cases where 

this is not possible, differences in the two modelling approaches are discussed.  

Chapter 8: Conclusions and future work  

The final chapter concludes the thesis and summarises contributions made to the research area. 

It also provides suggestions for future work. 
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Chapter 2. Background Theory 

and Literature Review 

Problems relating to the stability of plate and shell structures have drawn a great deal of 

attention from industry and academia since the 1880s. Driven by increasing shell structure 

applications, large numbers of studies and experiments from isotropic metal plates to laminated 

composite panels, have been conducted and published. On one hand, researchers are searching 

for suitable theories and techniques to efficiently and accurately capture buckling and 

postbuckling behaviour. On the other, using these techniques, materials such as composites can 

be optimised to meet certain requirements. In this chapter, a comprehensive summary of 

previous research on the stability of laminated composite plates including basic structural 

buckling and postbuckling theory is given. The chapter is organised as follows:  Section 2.1 

reviews some of the most widely used thin plate theories. Section 2.2 provides basic 

formulations for the buckling analysis of plates. Section 2.3 summarises the development of 

composite materials and their basic mechanisms. Section 2.4 discusses some of the important 

literature on the postbuckling of composite plates.  

2.1. Review of thin plate buckling theory   

Thin walled plates, defined as 3-dimensional structures having a thickness which is small 

compared to their other two dimensions (Timoshenko, 1959), are very common engineering 

structural components. Such structures when subject to in-plane loading can be analysed using 

two-dimensional stress theory. Since the 19th century, numerous plate theories have been 

developed, of which two are the most widely used: 
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1) The Kirchhoff-Love theory, also called Classical Plate Theory (CPT) (Love, 1888). 

2) The Reissner-Mindlin theory, also called First-order Shear Deformation Theory 

(FSDT) (Uflyand 1948). 

If deflections in the plate’s lateral direction are small compared to its thickness, classical plate 

theory is usually applied. This makes the following assumptions: 

1. The midplane is considered to be the neutral plane. 

In-plane deformations of the mid-plane of the plate due to bending are zero. Subsequently, 

in-plane stresses/strains due to bending are zero as well. The bending of a plate only causes 

the plane above and below this mid-plane to deform in-plane, see Figure 2.1. 

2. Line elements normal to the mid-plane remain normal to it after deformation 

Line elements are the straight lines normal to the mid-plane which remain straight after 

bending. Such a hypothesis can be applied when the transverse shear force is small in 

comparison with compression. A larger transverse shear force will cause the element lines 

to skew (first-order shear deformation theory) or even become curved (higher-order shear 

deformation theory, and example being third-order shear deformation theory (TSDT)). In 

this case, other plate theories need to be applied. 

3. Strains and stresses in the thickness direction remain zero 

The lengths of line elements remain the same after deformation. 

When the ratio of plate thickness to width is comparably large, first-order shear plate theory is 

normally applied.  As with the Kirchhoff-Love theory, first-order shear deformation theory 

assumes the plate’s thickness remains unchanged after deformation and its midplane is taken 

as the neutral plane. However, the element lines may not remain normal to the neutral plane 

due to transverse shear forces (Uflyand, 1948, Mindlin, 1951), see Figure 2.1.  

Higher-order shear deformation theory is a further extension of classical plate theory where 

element lines are no longer straight after deformation due to the nonlinear distribution of in-

plane displacements in the lateral direction (D’Ottavio and Polit, 2017), see Figure 2.1. Higher-

order theory was first studied by Vlasov (1957a, 1957b). Later, in 1977 Lo, Christensen and 

Wu developed the required formulations by considering the variation of displacements and 

stresses in the thickness direction. Such theory is naturally suitable for analysing laminated 

composite where plies are stacked in the thickness direction (Hanna and Leissa, 1994). The 

development of higher-order plate theory for composite plates has continued ever since. 
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Figure 2.1. Deformation of a typical transverse normal line in various plate theories (Wang, 

2007) 

2.2. Buckling of plates 

 

Combining Kirchhoff-Love and Euler buckling theory (1759), Bryan (1890) investigated the 

buckling of a simply supported rectangular plate under axial compression using an energy 

approach. Timoshenko (1936) extended this plate stability analysis to include more boundary 

conditions and presented the theory with kinematic behaviour.   

Applying classical plate theory, in-plane deflections can be represented in terms of lateral 

deflection w as follows 

𝑢 =  𝑢0 − 𝑧
𝜕𝑤

𝜕𝑥
, 𝑣 =  𝑣0 − 𝑧

𝜕𝑤

𝜕𝑦
  …(2.1) 
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where w, u and v represent displacements within the plate and 𝑢0 and 𝑣0 are in-plane 

displacements of the neutral plane. Based on these in-plane displacements, direct strains 𝜀𝑥, 

𝜀𝑦 and shear strain 𝛾𝑥𝑦 can be obtained by plane elasticity theory 

𝜀𝑥 = 
𝜕𝑢

𝜕𝑥
,   𝜀𝑦 = 

𝜕𝑣

𝜕𝑦
,    𝛾𝑥𝑦 = 

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
   …(2.2) 

Substituting Equations 2.1 into Equations 2.2,  

𝜀𝑥 = 𝜀𝑥
0 − 𝑧𝜅𝑥, 𝜀𝑦 = 𝜀𝑦

0 − 𝑧𝜅𝑦 , 𝛾𝑥𝑦 = 𝛾𝑥𝑦
0 − 𝑧𝜅𝑥𝑦    …(2.3) 

where 𝜀𝑥
0 , 𝜀𝑦

0 and 𝛾𝑥𝑦
0  are the strains in the neutral plane and 𝜅𝑥, 𝜅𝑦 and 𝜅𝑥𝑦 are the changing 

curvature with respect to x, y and shear directions  

𝜀𝑥
0 =

𝜕𝑢0

𝜕𝑥
, 𝜀𝑦

0 =
𝜕𝑣0

𝜕𝑦
 , 𝛾𝑥𝑦

0 =
𝜕𝑢0

𝜕𝑦
+

𝜕𝑣0

𝜕𝑥
    …(2.4) 

𝜅𝑥 = 
𝜕2𝑤

𝜕𝑥2
, 𝜅𝑦 = 

𝜕2𝑤

𝜕𝑦2
, 𝜅𝑥𝑦 =  2

𝜕2𝑤

𝜕𝑥𝜕𝑦
 …(2.5) 

According to classical plate theory, the stress and moment resultants can be obtained by 

integrating strains through the thickness, as follows 

𝑁𝑥 = ∫ 𝜎𝑥

ℎ/2

−ℎ/2

𝑑𝑧,𝑁𝑦 = ∫ 𝜎𝑦

ℎ/2

−ℎ/2

𝑑𝑧,𝑁𝑥𝑦 = ∫ 𝛾𝑥𝑦

ℎ/2

−ℎ/2

𝑑𝑧 …(2.6) 

𝑀𝑥 = ∫ 𝜅𝑥𝑧
ℎ/2

−ℎ/2

𝑑𝑧,𝑀𝑦 = ∫ 𝜅𝑦𝑧
ℎ/2

−ℎ/2

𝑑𝑧,𝑀𝑥𝑦 = ∫ 𝜅𝑥𝑦

ℎ/2

−ℎ/2

𝑧𝑑𝑧 …(2.7) 

Simplifying Equations 2.6 and 2.7, the relationship between strains and stresses in the neutral 

plane can be written in matrix form as 

[
 
 
 
 
 
 
𝑁𝑥

𝑁𝑦

𝑁𝑥𝑦

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦]
 
 
 
 
 
 

=

[
 
 
 
 
 
𝐴11

𝐴12

𝐴16

  
𝐴12

𝐴22

𝐴26

  
𝐴16

𝐴26

𝐴66

  
𝐵11

𝐵12

𝐵16

  
𝐵12

𝐵22

𝐵26

  
𝐵16

𝐵26

𝐵66

𝐵11

𝐵12

𝐵16

  
𝐵12

𝐵22

𝐵26

  

𝐵16

𝐵26

𝐵66

  
𝐷11

𝐷12

𝐷16

  
𝐷12

𝐷22

𝐷26

  

𝐷16

𝐷26

𝐷66]
 
 
 
 
 

[
 
 
 
 
 
𝜀𝑥

𝜀𝑦

𝜀𝑥𝑦

𝜅𝑥

𝜅𝑦

𝜅𝑥𝑦]
 
 
 
 
 

 …(2.8) 

where the matrix containing 𝐴𝑖𝑗, 𝐵𝑖𝑗 and 𝐷𝑖𝑗 is known as the stiffness matrix which is related 

only to the properties of the structure. There are many characteristics of this matrix. For 
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example, it is  perfectly symmetric. For particular materials, certain terms in the above matrix 

may be equal to zero which can significantly reduce the complexity of the analysis.  

Having the stresses in the neutral plane, the equilibrium equations can be assembled as follows 

𝜕𝑁𝑦

𝜕𝑦
+

𝜕𝑁𝑥𝑦

𝜕𝑥
= 0 …(2.9) 

𝜕𝑁𝑥𝑦

𝜕𝑦
+

𝜕𝑁𝑥

𝜕𝑥
= 0 …(2.10) 

𝜕2𝑀𝑥

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+

𝜕2𝑀𝑦

𝜕𝑦2
+ 𝑁𝑥

𝜕2𝑤

𝜕𝑥2
+ 2𝑁𝑥𝑦

𝜕2w

𝜕𝑥𝜕𝑦
+ 𝑁𝑦

𝜕2w

𝜕𝑦2
= 0 …(2.11) 

Substituting Equations 2.6-2.7 into Equation 2.11, the governing equation can be obtained 

𝐷(
𝜕4w

𝜕𝑥4
+ 2

𝜕4w

𝜕𝑥2𝜕𝑦2
+

𝜕4w

𝜕𝑦4
) + 𝑁𝑥

𝜕2𝑤

𝜕𝑥2
+ 2𝑁𝑥𝑦

𝜕2w

𝜕𝑥𝜕𝑦
+ 𝑁𝑦

𝜕2w

𝜕𝑦2
= 0 …(2.12) 

where D is the flexural rigidity of the plate 

𝐷 =  
𝐸ℎ2

12(1 − 𝑣2)
 …(2.13) 

where E is the Young’s modulus, 𝑣 is the Poisson’s ratio and h the thickness of the plate. 

Equations 2.11 and 2.12 describe a case in which stress resultants 𝑁𝑥, 𝑁𝑦 and 𝑁𝑥𝑦 are constant 

throughout the plate and no body forces are applied within. For a plate that is simply supported 

and uniformly axially loaded, the function of out-of-plane displacement can be assumed to be 

a series of trigonometrical functions 

𝑤 = ∑ ∑ 𝐴𝑚𝑛𝑠𝑖𝑛
𝑚𝜋𝑥

𝑎
𝑠𝑖𝑛

𝑛𝜋𝑦

𝑏

∞

𝑛=1

∞

𝑚=1

 …(2.14) 

where m and n are the integer numbers of half-waves of a buckling response in the x and y-

directions respectively.  Out-of-plane assumptions are made regarding the boundary conditions 

and loading conditions. Substituting Equation 2.14 into Equation 2.12 the equation can be 
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solved analytically, noting that  𝑁𝑥𝑦 = 𝑁𝑦 = 0 if the plate is loaded only in compression. The 

critical stress  resultant 𝑁𝑥 can therefore be achieved 

𝑁𝑥 = 
𝑘𝐷𝜋2

𝑏2
 …(2.15) 

where k is the critical buckling load factor  

𝑘 = (
𝑚𝑏

𝑎
+

𝑛2𝑎

𝑚𝑏
)2 …(2.16) 

. From Equation 2.16 it can be seen that the buckling load depends on 𝑎/𝑏, m and n. 

2.3. Review of composite material  

A composite material is two or more different materials which are brought together to achieve 

properties such as high strength and stiffness to weight ratios but remain separate and distinct 

(Gibson, 2016). The advantages of composites have enabled them to make a significant 

contribution to engineering development, especially in the aerospace industry. The use of 

composite material before the 19th century was mainly in structural constructions and masonry 

such as bricks and Japanese swords to achieve desirable properties (Nagavally, 2017), while 

modern laminated composites cover a much wider range of engineering applications, e.g. 

aerospace structures, biomedical products, sports equipment, automotive components and 

many others.   

The first use of glass fibre reinforced composite was at the time of the Second World War in 

1942 on a boat. Reinforced plastic was invented in the same year and utilised in the electrical 

components of aircraft. Later in the 1960s, boron and high strength carbon fibres, considered 

as the basis of today’s advanced composites were developed, and have been used in aircraft 

components since 1970 (Herakovich. 2012).  

The mechanics of laminated composites have been developed alongside their introduction. 

Lekhnitskii in 1947 derived the earliest form of constitutive equations for composites, 
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demonstrating the number of independent constant required to describe different materials e.g. 

a monoclinic material has 13 independent constants, an orthotropic one has 9, and an isotropic 

material has two independent constants, etc.  

The general form of these constitutive equations is  

[
 
 
 
 
 
𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑧𝑧
𝜏𝑦𝑧

𝜏𝑧𝑥

𝜏𝑥𝑦]
 
 
 
 
 

=

[
 
 
 
 
 
 
𝐶11 𝐶12 𝐶13 𝐶14 𝐶15 𝐶16

𝐶21 𝐶22 𝐶23 𝐶24 𝐶25 𝐶26

𝐶31 𝐶32 𝐶33 𝐶34 𝐶35 𝐶36

𝐶41 𝐶42 𝐶43 𝐶44 𝐶45 𝐶46

𝐶51 𝐶52 𝐶53 𝐶54 𝐶55 𝐶56

𝐶61 𝐶62 𝐶63 𝐶64 𝐶65 𝐶66]
 
 
 
 
 
 

[
 
 
 
 
 
𝜀𝑥𝑥

𝜀𝑦𝑦

𝜀𝑧𝑧
𝛾𝑦𝑧

𝛾𝑧𝑥

𝛾𝑥𝑦]
 
 
 
 
 

 
…(2.17) 

where 𝜀𝑖𝑗, 𝛾𝑖𝑗, 𝜎𝑖𝑗 and 𝜏𝑖𝑗 are normal and shear strains and stresses, respectively. 𝐶𝑖𝑗 are the 21 

unique components of a symmetric stiffness matrix. 

The mechanics of laminated composites became mature when classic lamination theory (CLT) 

was developed. Based on the work of Pister and Dong(1959), Reissner and Stavsky(1961) and 

Dong et.al. (1962), CLT describes the properties of an assembly of laminas, which are 

unidirectional fibrous composites with fibres in the kth layer oriented at an angle 𝜃𝑘, see Figure 

2.2.  

 

Figure 2.2. Laminated composite 

Considering laminated composites are comparably thin such that classical plate theory is valid, 

the strains that relate to the lateral direction i.e. 𝜀𝑧𝑧, 𝛾𝑦𝑧 and 𝛾𝑧𝑥 are zero, and taking bending 

effects into account the stiffness matrix can be written as 

[
 
 
 
 
 
 
𝑁𝑥

𝑁𝑦

𝑁𝑥𝑦

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝐴11 𝐴12 𝐴16 𝐵11 𝐵12 𝐵16

𝐴21 𝐴22 𝐴26 𝐵12 𝐵22 𝐵26

𝐴16 𝐴26 𝐴66 𝐵16 𝐵26 𝐵66

𝐵11 𝐵12 𝐵16 𝐷11 𝐷12 𝐷16

𝐵12 𝐵22 𝐵26 𝐷12 𝐷22 𝐷26

𝐵16 𝐵26 𝐵66 𝐷16 𝐷26 𝐷66]
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…(2.18) 
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Here 𝑁𝑖  and 𝑀𝑖  are stress and moment resultants within the plate and 𝜀𝑖 , 𝛾𝑖  and 𝜅𝑖  are the 

corresponding strains and curvatures. 𝐴𝑖𝑗 , 𝐵𝑖𝑗 , 𝐷𝑖𝑗  are components of the stiffness matrix 

related to stiffness, thickness and lateral location of each ply.  

In Equation 2.18, 𝐴𝑖𝑗 are in-plane stiffnesses  relating to in-plane strains 𝜀𝑥, 𝜀𝑦, 𝛾𝑥𝑦 to stresses 

𝑁𝑥, 𝑁𝑦, 𝑁𝑥𝑦; 𝐷𝑖𝑗 are out-of-plane stiffnesses relating moments 𝑀𝑥, 𝑀𝑦, 𝑀𝑥𝑦 to curvatures 𝜅𝑥, 

𝜅𝑦, 𝜅𝑥𝑦; 𝐵𝑖𝑗 couple in-plane and out-of-plane stiffness relating in-plane stresses 𝑁𝑥, 𝑁𝑦, 𝑁𝑥𝑦 

to curvatures 𝜅𝑥, 𝜅𝑦, 𝜅𝑥𝑦 and moments 𝑀𝑥, 𝑀𝑦, 𝑀𝑥𝑦 to in-plane strains 𝜀𝑥, 𝜀𝑦, 𝛾𝑥𝑦. 

Within the stiffness matrix,  𝐴16, 𝐴26 describe shear extension coupling, i.e. if 𝐴16, 𝐴26 are 

zeros, normal strains 𝜀𝑥 and 𝜀𝑦 do not cause shear stresses 𝑁𝑥𝑦, and shear strains 𝛾𝑥𝑦 do not 

cause extension stresses 𝑁𝑥 , 𝑁𝑦 . 𝐷16, 𝐷26 represent bend twist coupling. If these terms are 

zeros, the twist of a composite 𝜅𝑥𝑦 does not cause bending moments 𝑀𝑥, 𝑀𝑦, and vice versa. 

The stiffness elements 𝐵𝑖𝑗 describe in-plane and out-of-plane coupling, i.e., in-plane strains 

causing bending moments 𝑀𝑥 , 𝑀𝑦 , 𝑀𝑥𝑦  and out-of-plane curvatures 𝜅  causing in-plane 

stresses 𝑁𝑥, 𝑁𝑦, 𝑁𝑥𝑦. 

From the material point of view, laminated composites are normally categorized according to 

the arrangement of their plies which has consequences in terms of their behaviours e.g. 

symmetrical, balanced and orthotropic laminates. In a symmetric laminate, plies arranged in 

symmetric positions with respect to the mid-plane are identical. Such laminates haves no in-

plane-out-of-plane coupling and stiffness matrix B is a null matrix. If a laminate is balanced 

every unidirectional ply has a ply with the opposite direction to balance it. It is characterized 

by having no extension-shear coupling and stiffness elements 𝐴16 and  𝐴26 are zero. For an 

orthotropic laminate, plies run in two mutually perpendicular directions meaning that forces 

and bending moments applied in those directions don’t cause any shear or twist. In other words, 

there are no bend twist, extension shear or extension twist couplings. A laminated composite 

is often characterised by combinations of these characteristics for example being balanced and 

symmetric and therefore having neither out-of-plane-in-plane coupling nor extension-shear 

coupling. It is worth noting that for unsymmetric unbalanced layups, all of the stiffness 

elements can be non-zeros.  



  Background Theory and Literature Review 

15 
 

2.4. Review of postbuckling theory 

It is well known that after a plate reaches its critical buckling load, increasing the applied load 

does not instantly cause failure (Bloom and Coffin, 2009). Instead, the plate starts to undergo 

a lateral deflection which is relatively large compared to its thickness. Most plate structures 

have such postbuckling reserve of strength, allowing them to carry compressive and shear loads 

exceeding the initial buckling load. If this reserve can be fully exploited, the weight of a 

structure can be reduced by different amounts depending on their properties. This would be 

exceptionally beneficial for the aerospace industry where saving a small amount of mass could 

result in reducing manufacturing cost, environmental impact and fuel consumption (Mrazova, 

2013).  

Figure 2.3 shows the behaviour of plate structures during buckling and postbuckling. With 

increasing in-plane load P, a perfect plate follows path A which shows no out-of-plane 

displacement w until the critical buckling load is reached. After the bifurcation point B, the 

curve follows path C for a linear idealization. For large deflection analysis, the curve follows 

the non-linear path D with an increasing slope. Path E indicates the buckling and postbuckling 

behaviour of an imperfect plate.    

 

Figure 2.3. Load-displacement graph for postbuckling problem (Zhao, 2019). 

As reported by Hutchinson and Koiter (1970) different types of postbuckling phenomena  can 

occur. Figure 2.4 shows  typical load-deflection curves for structures with a unique buckling 



Chapter 2 

16 
 

mode corresponding to their classical buckling load. In all three cases the perfect structure 

remains stable prior to buckling, i.e. 𝑃 < 𝑃𝑐𝑟, becoming unstable in postbuckling (indicated by 

the solid curve).. The first case illustrates a structure with a stable postbuckling path which can 

support loads in excess of the critical  load. The dashed curve indicates the behaviour of the 

same structure with a slight imperfection. The second case depicts a structure which can follow 

into either a stable or an unstable postbuckling path resulting in the load either increasing or 

decreasing after the critical buckling load. This is an example of asymmetric postbuckling 

where the route taken after buckling depends on factors such as initial imperfections. The path 

for an imperfect structure is again shown by the dashed line. The third case is an example for 

a structure which has possible postbuckling paths which are symmetric with respect to buckling 

deflection. In this case postbuckling behaviour is always unstable. 

 

Figure 2.4. Load-deflection curves for single-mode bifurcation behaviour (Hutchinson and 

Koiter, 1970) 
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Research into the postbuckling phenomenon has been carried out for more than a  century. As 

lateral deflection during postbuckling cannot be neglected, i.e. it is relatively large compared 

to the structure’s thickness, the key difference between prebuckling and postbuckling, based 

on the work of von Kármán et al. (1932) who established large deflection theory, lies in the 

compatibility equations. 

[
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 …(2.19) 

Compared to Equation 2.2,  the extra terms in Equation 2.19 are due to the elongation related 

to out-of-plane deflection w. Substituting Equations 2.19 into the equilibrium equations, the 

postbuckling equations can be solved analytically. By establishing the interaction between 

membrane and flexural effects computational cost can be reduced significantly.  

Another important postbuckling phenomenon discovered by von Kármán is the stress 

redistribution that occurs in a plate loaded with a uniformly distributed load (von Kármán et 

al. 1932; Winter 1947). The out-of-plane deflection in the postbuckling regime reduces the 

axial stiffness, redistributing the compression towards the edges of the plate. Under von 

Kármán’s effective width theory these compressive forces at the edges of the plate are assumed 

to be uniformly distributed and concentrated within a width be, while the forces in the middle 

are assumed to be zero or near zero, see Figure 2.5.  

 

Figure 2.5. Von Kármán’s effective width concept: (a) non-uniform distribution of axial 

stress in the postbuckling stage and (b) assumed uniform stress distribution over an effective 

width 𝑏𝑒𝑒 
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Based on von Kármán’s large deflection theory, Cox et al. (1933) used energy considerations 

to determine postbuckling behaviour. In their research, the total potential energy is expressed 

in terms of in-plane and out-of-plane displacements which are then evaluated by minimizing 

total energy.  

Later Koiter (1943), proving that large deflections which cause stiffness reductions cannot be 

ignored, developed classical nonlinear bifurcation theory, accelerating the development of 

nonlinear buckling analysis.  

Prior to numerical analysis becoming mature, analytical methods were widely used. Levy 

(1942) continued von Kármán’s large deflection theory utilizing double Fourier trigonometric 

functions which could be broken down and solved individually. Following on from Levy’s 

research, Coan (1951) took imperfections into consideration, analysing the postbuckling of a 

plate under axial compression. Yamaki (1960) extended this work  to cover rectangular and 

circular plates under different boundary and loading conditions.  

Johns (1970) studied the shear buckling of isotropic and orthotropic plates. Both infinitely long 

and short plates under uniform shear and compression were investigated based on classic plate 

theory. Although analytical equations were assembled, equations were only found for possible 

buckling stress by thresholding shear and compression. 

Marshall et al (1977) studied the postbuckling behaviour of thin orthotropic panels under 

compression. Based on von Kármán large deflection theory, they derived the non-linear 

equilibrium equations along the postbuckling path by representing deflections and forces with 

general Fourier series. To solve such complex equations, the Ritz technique was used to 

minimize the total energy in the midplane although the extent of the nonlinearity between the 

applied load and the lateral deflection resulted in a large number of deflection function 

coefficients and a high computational cost. Their method was successful in following the snap-

through of the load-deflection curve which was validated experimentally.  

During World War II, advanced fibres drew great attention in the aerospace industry, leading 

to the development of the theoretical and applied mechanics of composite materials and 

structures. Pister (1959) and Reissner (1961) developed a system to determine the elements of 

the compliance matrix for laminated composites known as Classical Lamination theory.   
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The buckling and vibration of cross-ply laminated composites were investigated by Jones 

(1973). An exact solution and numerical results were presented for simply supported composite 

plates. Harris (1975) derived the in-plane postbuckling stiffness of a rectangular composite 

plate immediately after critical buckling. He accounted for the coupling effects between 

bending and extension when a biaxial load is applied in the longitudinal direction and found  

the reduction of stiffness due to the change in postbuckling mode shape.  

Stein (1983, 1985) formulated large-deflection equations based on von Kármán theory for 

orthotropic composite plates under compression based on earlier work on the buckling and 

postbuckling of isotropic materials employing von Kármán strains in an infinite set (Stein, 

1959a, 1959b). Following this idea, lateral deflections were assumed to be in the form of 

trigonometric functions in the loading direction.  

𝑢 =  −𝑢̅𝑐𝑛 (
𝑥
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−
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2
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…(2.20) 

where −𝑢̅𝑐𝑛 is the applied longitudinal end shortening displacement, lateral deflection w is 

sinusoidally periodic with half-wavelength 𝜆, and in-plane deflections u and v are sinusoidally 

periodic with half-wavelength 𝜆/2 . This work enabled the equilibrium equations to be 

converted into ordinary nonlinear differential equations which were solved numerically using 

a two-point boundary problem solution by Lentini and Pereyra (1977). The results were 

validated against experimental results and the work of other researchers’ and shown to be 

efficient and accurate for certain problems. The displacement assumptions however were found 

to adequately represent the buckling mode only for isotropic and orthotropic plates. In addition 

to this, the twenty unknowns led to a large number of differential equations resulting in 

difficulties in implementing different boundary conditions. Despite these limitations, this work 

has provided a basis for further research into postbuckling by Che (2010) and Zhang (2018) 

who performed postbuckling analyses based on Stein’s method for composite plates (more 

detail on this can be found in Chapter 3). In this thesis, Stein’s work also plays an important 

role in the displacement assumptions.  
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Research into postbuckling analysis of composite material after 1990 is mostly based around 

the search for suitable plate theories to incorporate into either the finite element or finite strip 

methods. Librescu and Stein (1991) developed a higher-order geometrically non-linear theory 

for postbuckling analysis. By modifying the first-order shear deformation theory, their method 

analysed transversely isotropic symmetrically laminated composite plates focussing 

particularly on transverse shear deformation, transverse normal stress and higher-order effects. 

However, the equations derived from this work were limited to simply supported shear-

deformable plates and did not consider the effect of in-plane boundary conditions.  

Sundaresan et al. (1996) employed first-order shear deformation theory and von Kármán  

displacement assumptions to investigate the postbuckling of a moderately thick laminated 

composite plate. The resulting formulations were incorporated into eight-noded isoparametric 

plate finite elements with five degrees of freedom per node and used to solve the problem of a 

plate subject to uniform or biaxial compression in which the plate edges are allowed to move 

in the loading direction. Results showed good agreement with Dym (1974) for simply 

supported isotropic plates under compression.  Three conclusions were drawn from this 

research. It was found that the postbuckling characteristics of the composite plate were very 

sensitive to boundary conditions, which was also shown by Librescu and Stein (1991), thick 

plates can withstand large loads after buckling and orthotropic plates exhibit a higher post-

buckling strength compared to angle-ply plates. These conclusions made are not surprising, 

and validate the use of first-order shear deformation theory in finite elements for these 

particular boundary conditions, although more investigation is needed for general boundary 

conditions and materials. 

Kim and Voyiadjis (1999) studied the non-linear behaviour of composite shell structures using 

an eight-noded shell element formulated based on a Lagrangian method. Unlike the previous 

finite element methods, the transverse shear deformation effect was considered and included 

in the linear stiffness matrix. Thus large deflections and small strains could be considered for 

postbuckling analysis. The advantage of this method is that it increases the accuracy of highly 

nonlinear problems and allows the modelling of relatively thick plates. It does not however 

consider the reduction of buckling capability caused by geometric imperfections. Note however 

that for thin plates, the use of shear deformation theory does not make much difference 

compared to CPT while the complexity of the method is increased to another level.  
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The arc length method in finite element was first proposed by Riks (1972; 1979) and Wempner 

(1971) to solve snap-through problems which the Newton-Raphson method was unable to solve. 

In this method, at each iteration, the load factor is perturbed to converge on an equilibrium path 

where iterative changes are made orthogonal to the predicted solution. Ramm (1981) adjusted 

such changes to secant iteration changes.  These techniques however, linearise the arc-length 

method where constraint equations lead to unique solutions i.e. where there are no selection of 

root issues. This may result in missing the equilibrium path and causing numerical difficulties 

(Memon and Su, 2004). Therefore, Fafard and Massicotte (1993) modified the arc-length 

method based on Ramm (1981) and updated the hyper-plane technique to evaluate the arc 

length. Later, Teng and Luo (1998) extended the method using an accumulated arc length to 

optimize the convergence. Ferreira and Serpa (2005) found that the conventional arc length 

method obtains a limit point for snap-back and snap-through phenomenon due to the highly 

nonlinear load-displacement path. Therefore, Sousa and Pimenta (2010) introduced a new 

parameter with a function to add all previous arc lengths and generate a new load step. This 

efficiently overcomes the difficulties in the control of the load increment to reach convergence 

at specific locations of the equilibrium path.  

Weaver (2004, 2006) observed that a skewed buckling mode is induced by anisotropy for 

infinitely long laminated composite plates subject to compression or shear loading and formed 

a closed-form solution. Later Diaconu and Weaver (2005, 2006), extended this solution for the 

postbuckling of such plates with both symmetric and unsymmetric laminate configurations. 

Their method represents the postbuckling mode using non-dimensional parameters to cover a 

wide range of dimensions and material properties with the solutions then written in terms of 

non-dimensional buckling coefficients and load factors. By doing so, the importance of the 

terms appearing in the equations or solutions can be easily clarified.  The method was validated 

for an infinitely long plate with two long edges simply supported and compared with solutions 

obtained from a finite element method. The paper also highlighted that ‘postbuckling results 

for infinitely long plates are important because they provide a practical estimation and useful 

information on the postbuckling behaviour of finite length rectangular plates’. 

Bisagni and Vescovini (2009) developed an analytical formulation for the buckling and 

postbuckling of isotropic and laminated stiffened panels subjected to axial compression. For 

buckling, two approaches were proposed employing the Kantorovich method (Kantorovich and 

Krylov, 1958) and a rigorous closed-form solution. Following critical buckling analysis, a 

localized postbuckling problem was formulated based on trigonometric shape functions and 
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non-linear governing equations derived by the Ritz method. The whole analytical technique 

was further coded into a computer program called Stiffened Panels Analysis (StiPAn) (Bisagni 

and Vescovini, 2009). The authors later refined the postbuckling part of the analysis (Vescovini 

and Bisagni, 2012) to cover curved stiffened panels and combined loading. In Vescovini and 

Bisagni (2006), this analysis was further developed into a semi-analytical procedure. By 

implementing the arc-length method, the analysis was able to solve for unsymmetric laminates. 

An optimization technique based on a genetic algorithm was also developed and employed.  

Developments in postbuckling analysis techniques in recent years have examined novel 

materials or manufacturing approaches. Raju et al. (2013) used first-order shear deformation 

theory to derive the postbuckling equilibrium equations for a functionally graded plate and 

variable angle tow composite. Raju et al. (2013, 2015) developed a postbuckling technique 

based on the differential quadrature method (DQM) for variable angle tow composite plates 

under in-plane shear loading. Compared to the conventional finite element method, DQM 

showed good agreements and required few grid points and hence less computational effort to 

achieve converged results. Raju et al. (2015) developed a semi-analytical variational approach 

to investigate linear variable angle tow composite plates. Based on the this approach and  the 

Rayleigh-Ritz method, nonlinear equilibrium equations were assembled and solved 

analytically using trigonometric functions or Legendre polynomials. The load-end shortening 

curves and load-transverse deflection curves for such plates were drawn under uniform axial 

compression loading.  

Song et al. (2017) investigated the postbuckling behaviour of functionally graded multilayer 

composite plates reinforced with randomly oriented graphene nanoplatelets (GPLs) uniformly 

dispersed in the polymer matrix. The analysis was formulated based on von Kármán nonlinear 

kinematics to take into account geometric imperfections and first-order shear deformation 

theory. The method used a two-step perturbation technique to find the postbuckling equilibrium 

paths of composite plates with all edges simply supported.  

The Rayleigh-Ritz solution is one of the most successful methods for the analysis of the 

postbuckling of composite plates. Oliveri and Milazzo (2018) investigated the postbuckling of 

variable angle tow composite stiffened panels using a Rayleigh-Ritz method. Postbuckling 

equilibrium equations were found based on first-order shear deformation theory and von 

Kármán’s large displacement assumptions. Penalty techniques were used to enforce the 

https://www.sciencedirect.com/topics/engineering/deflection-curve
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structural continuity of the assembled thin-walled structures and the kinematical boundary 

conditions. The solution was further validated by the finite element method.   

Li et al. (2020) developed an element-free Galerkin method for the postbuckling analysis of 

variable stiffness composite plates with circular cut-outs. Their method used weighted 

orthogonal basis functions to represent of the field of displacements. Classical laminate plate 

theory and von Kármán large deflection theory were then employed to find nonlinear strain 

components on the midplane. The postbuckling equilibrium path was found by an incremental 

loading step control method. The method was validated against conventional finite element 

analysis and achieved good agreement.  

Chen and Qiao (2021) investigated the postbuckling behaviour of rotationally-restrained 

laminated composite plates under shear based on the Galerkin method. The trigonometric 

function proposed by Beslin and Nicolas (1997) and two other kinds of series functions based 

on the Airy functions were combined to uniquely satisfy the arbitrary rotationally-restrained 

boundary conditions.  

Wang and Qiao (2021) investigated the postbuckling behaviour of stiffened laminated 

composite plates using a spline finite strip method. The method formulated the plates and 

stiffeners individually using first-order shear deformation theory and Timoshenko beam theory 

respectively. As the stiffeners were modelled as beams attached to the plate they did not add 

any extra additional degrees of freedom thereby increasing computational efficiency. 

Nonlinear governing equations were solved based on the Newton-Raphson method. Such a 

beam-plate model is capable of analysing both global and local postbuckling for both 

transversely- and orthogonally-stiffened plates. 

The exact strip method was first proposed by Wittrick (1968a) to determine the elastic stability 

of plate assemblies. The buckling mode is assumed to vary sinusoidally in the longitudinal 

direction Wittrick and Williams (1971) developed the W-W algorithm to overcome the 

transcendental problem arising from the exact strip method  by counting the number of 

eigenvalues which lie between zero and any trial value without obtaining them explicitly.  

Using the exact strip method and incorporating the W-W algorithm to overcome the 

transcendental eigenvalue problem, in the 1970s. VIPASA was developed to carry out vibration 

and buckling analyses for a range of prismatic plate assemblies (Wittrick and Williams, 1973). 

However, results are very conservative for panels with anisotropy or shear loading (Wittrick 

and Williams, 1974). VICON (VIPASA with Constraints) is an enhanced version of VIPASA 
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which couples together sinusoidal modes to represent more complicated waveforms (Anderson 

et al., 1983). In the 1990s, VICONOPT,  developed at Cardiff University in cooperation with 

Airbus, BAE Systems and NASA combined VIPASA and VICON analyses with optimum 

design to carry out initial buckling, free vibration and optimisation design of prismatic plate 

assemblies. The first non-linear local postbuckling analysis in VICONOPT was developed by 

Powell et al. (1998). Kennedy and Anderson (2008) created the Newton iteration method for 

accurate convergence on the postbuckling mode for VICONOPT postbuckling. Later on, Che 

(2010) and Zhang (2018) developed an improved VIPASA postbuckling method by solving 

the differential equations analytically to determine in-plane displacement distributions. 

However, the  postbuckling analysis in VICONOPT remains limited to isotropic material and 

compressive loading.  

Research on the stability of laminated composite plates has continued for centuries. 

Postbuckling of the shell structures in particular draw attention among designers and engineers 

in recent years. However, most of the postbuckling analysis techniques are characterized by 

either low computational efficiency or lack of accuracy. To address those limitations, this thesis 

proposes a fast yet reliable postbuckling analysis technique for preliminary design. 
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Chapter 3. Exact Finite Strip 

Method and VICONOPT  

This chapter introduces the computer program VICONOPT, its fundamental theories and 

applications for buckling and postbuckling analysis. It is organized as follows: Section 3.1 

presents a general review of the basic theory for the exact strip method. Section 3.2 reviews 

the theory of the Wittrick-Williams algorithm (W-W algorithm) and its application in the exact 

strip method. Sections 3.3-3.5 introduce the theory underpinning the buckling and vibration 

analysis software VIPASA, VICON and VICONOPT, the platforms used in this research. 

Sections  3.6-3.8 review recent research into postbuckling analysis based on VIPASA, 

addressing the limitations of the methods developed and introduce the research background to 

this thesis.  

3.1.  Exact strip method 

The exact strip method is an alternative numerical analysis method to the finite strip method 

(Wittrick, 1968a, 1968b) for buckling and undamped natural frequency analysis of prismatic 

plate assemblies, providing faster and more accurate analysis by reducing the partial 

differential governing equations to ordinary differential equations which are solved 

analytically. The method assumes plates to be divided into strips with arbitrary width in the 

longitudinal direction, as identified by the n nodes at the strip edges. At each node, the out-of-

plane deflection D is assumed to vary in a series of trigonometric terms. According to classical 

plate theory, the governing equations of each node, therefore, are transformed into 

transcendental ordinary differential equations. As in many structural analysis methods, a global 

stiffness matrix K is assembled using element stiffness matrices. The elements of K are highly 
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transcendental functions of the loads and/or vibration frequency. The relationship between 

nodal displacements, global stiffness matrix and perturbation loads vector P is then: 

KD = P …(3.1) 

 

Thus critical buckling loads and natural frequencies can be determined explicitly by solving 

the eigenvalue problem 

KD = 0 …(3.2) 

where the displacement amplitude vector D contains four degrees of freedom, as explained 

Section 3.3. 

Wittrick and Curzon (1968) later extended the exact strip method to include the effect of in-

plane shear loading leading to skewed nodal lines and mode shapes. To address the spatial 

phase differences across the transverse direction of the plate caused by these skewed nodal 

lines, displacements are represented by complex quantities. Later on, Viswanathan et al. 

(1973;1974) extended the research to cover anisotropic material in flat and curved plate 

assemblies which also causes skewed nodal lines.  

In the exact strip method, the sinusoidal variation assumption converts a buckling problem to 

a single-term type analysis at the node level.  It provides accurate results by assuming the plate 

to be infinitely long with no anisotropy or shear loading and solving the governing equations 

explicitly rather than using the energy approach. In this way, the global stiffness matrix is 

reduced to a much lower order than that of the finite element method. The computational effort 

is therefore reduced significantly, with an accuracy that is more than enough for preliminary 

aircraft design. A disadvantage compared to finite element and finite strip methods is that 

buckling or free vibration requires the solution of a transcendental, rather than linear eigenvalue 

problem. However transcendental eigenvalue problems can be solved accurately, quickly and 

reliably using the Wittrick-William algorithm (Wittrick and Williams, 1971, 1973). 
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3.2. Wittrick-Williams algorithm 

Solving eigenvalue problems is essential to finding the natural frequencies or the critical 

buckling loads of plate and shell structures. Techniques for finding the eigenvalues of a matrix 

are widely developed. However, the solution of transcendental eigenvalue problems can be 

computationally expensive. Wittrick and Williams (1971) developed the Wittrick-Williams 

algorithm (W-W algorithm) which efficiently finds the transcendental eigenvalues needed to 

determine the undamped natural frequencies of vibration problems or the critical buckling load 

factor for elastic structures. 

Rather than finding the eigenvalues directly, the W-W algorithm counts the number of 

eigenvalues that lie below any trial value f* of f, the load factor or frequency of the vibration 

from Equation 3.2. The general form of the algorithm can be written as 

𝐽 = 𝐽0 + s{𝐊(𝑓∗)} …(3.3) 

where J is the number of eigenvalues lying between zero and the trial value 𝑓∗; 𝐽0 is the number 

of eigenvalues which would still be exceeded by 𝑓∗ if constraints were imposed so as to make 

all the displacements D zero and s{𝐊(𝑓∗
)} is known as the sign count of K, i.e. the number of 

negative diagonal elements of the upper triangular matrix 𝐊∆(𝑓∗
) obtained from  𝐊(𝑓∗

) by 

Gauss elimination (Wittrick and Williams, 1973). 𝐽0 can be calculated from 

𝐽0 = ∑𝐽𝑚
𝑚

 …(3.4) 

where  𝐽𝑚 is the number of eigenvalues of member m exceeded at the trial value 𝑓∗ when its 

ends are fully restrained, which can be obtained analytically or by numerical procedures 

(Wittrick and Williams, 1974). 

After obtaining 𝐽0 and s{𝐊(𝑓∗
)}, eigenvalues can be found by using parabolic interpolation or 

the bisection method within any desired accuracy and consequently the structures’ natural 

frequencies or critical buckling load factors can be obtained.  
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3.3. VIPASA 

VIPASA is a powerful analysis program developed in the 1970s. By using the exact strip 

method incorporating the W-W algorithm to solve the transcendental eigenvalue problem, 

VIPASA can solve vibration and buckling problems for prismatic plate assemblies under pure 

or combined loadings such as those shown in Figure 3.1. The characteristic simple form 

calculation of the exact strip method with the W-W algorithm allows fast and reliable analysis 

in VIPASA within any acceptable level of accuracy (Stroud et al. 1984). It has been proven 

that for certain component plates, VIPASA is 1000 times faster than the conventional finite 

element program STAGS (Almroth et al. 1981). 

 

Figure 3.1(a) Examples of prismatic plate assemblies. (b) a component strip, showing the 

applied uniform stress resultants 𝑁𝐿 , 𝑁𝑇 and 𝑁𝑠 (Wittrick and Williams, 1971) 

VIPASA analysis assumes the displacements u, v and w in the x, y and z directions respectively 

vary sinusoidally in the longitudinal direction with half-wavelength  as shown in Figure 3.2. 

The amplitudes of the perturbation force and displacement vectors 𝑷𝑗 and 𝒅𝑗  at edges of j=1 or 

2 of a strip are defined by; 

𝑷𝑗 = [𝑚𝑗 , 𝑝𝑧𝑗, 𝑝𝑣𝑗 , 𝑖𝑝𝑥𝑗  ] …(3.5) 

𝒅𝑗 = [𝜓𝑗 , 𝑤𝑗 , 𝑣𝑗 , 𝑖𝑢𝑗   ]  
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Terms in the above vectors are multiplied by exp (𝑖𝜋𝑥/𝜆)𝑐𝑜𝑠 (2𝜋𝑛𝑥) to allow for possible 

phase differences. Solving the transcendental eigenvalue problem in Equation 3.2, substituting 

Equation 3.5 leads to; 

𝐏1 = 𝐤11𝐝𝟏 + 𝐤12𝐝2 …(3.6) 

𝐏2 = 𝐤21𝐝1 + 𝐤22𝐝2  

The stiffness matrices 𝐤𝑖𝑗 can be further expanded to give 

𝐤11 = [

𝑠𝑀𝑀 −𝑠𝑀𝑄

−𝑠̅𝑀𝑄 𝑠𝑄𝑄

0       0
0       0

0        0
0        0

𝑠𝑁𝑁 −𝑠𝑁𝑇

−𝑠𝑁𝑇 𝑠𝑇𝑇

 ] …(3.7) 

𝐤22 = [

𝑠𝑀𝑀 𝑠̅𝑀𝑄

𝑠𝑀𝑄 𝑠𝑄𝑄

0       0
0       0

0        0
0        0

𝑠𝑁𝑁 𝑠𝑁𝑇

𝑠𝑁𝑇 𝑠𝑇𝑇

 ] …(3.8) 

𝐤12 = 𝐤̅12
𝑡 =

[
 
 
 
𝑓𝑀𝑀 𝑓𝑀𝑄

−𝑓𝑀𝑄 −𝑓𝑄𝑄

0       0
0       0

0        0
0        0

−𝑓𝑁𝑁 −𝑓𝑁𝑇

𝑓𝑁𝑇 𝑓𝑇𝑇

 

]
 
 
 

 …(3.9) 

where superscript t denotes the transpose of a matrix and the bar denotes the possible complex 

conjugate. Explicit expressions for the coefficients in the stiffness matrix of the strip are 

explained and can be found in the work by Wittrick and Williams (1971)  . 
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Figure 3.2  A strip of a component plate, showing the perturbation edge forces and 

displacements, and nodal lines (Wittrick and Williams, 1971) 

 

For an orthotropic panel with simply supported boundary conditions (shown in Figure 3.3), 

straight nodal lines (nodes with zero displacements) are located at sinusoidal intervals equal to 

the half-wavelength . Therefore simply supported end conditions are automatically satisfied 

if  divides exactly into the panel length l.  

 

Figure 3.3 An infinitely long plate. Nodal lines in (a) are straight and perpendicular to the 

longitudinal direction, which is consistent with simply supported end conditions. Nodal lines 

in (b) are skewed due to anisotropy or shear loads, approximating the simply supported end 

condition. 
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VIPASA also allows other boundary conditions, which can be any combination of degrees of 

freedom, i.e. in-plane u and v and out-of-plane w and ψ, to be applied to the transverse edges 

of the panel by adding line supports in the longitudinal direction. A limitation of VIPASA 

analysis is that it is restricted to isotropic plates or composites with symmetric and balanced 

layups, i.e. those for which in-plane membrane stiffness matrix terms 𝐴16 and 𝐴26 are zero and 

there is no coupling with the out-of-plane bending stiffness matrix D (Wittrick and Williams, 

1974). Anisotropy or the application of shear however results in solutions which are 

increasingly inaccurate, because such plates have skewed mode shapes which lead to skewed 

nodal lines as shown in Figure 3.3(b) so that the simply supported end conditions implied by 

VIPASA are not satisfied. These skewed nodal lines cannot be satisfied by the single sine wave 

assumption. To overcome this VIPASA allows the terms 𝑠𝑀𝑄, 𝑓𝑀𝑀, 𝑓𝑀𝑄 and 𝑓𝑄𝑄 to be complex. 

However, this presents increasingly conservative results.  

Buckling loads can be found for a range of half-wavelengths λ which divide into the panel 

length l. The smallest such buckling load is taken as the critical buckling load. To ensure that 

all possible overall and local buckling possibilities have been considered, analysis should be 

performed for λ = l, l/2, l/3, …, l/m, where l/m is smaller than the width of the narrowest 

component plate. 

3.4. VICON 

Inheriting all the capabilities and functionalities of VIPASA, VICON (VIpasa with 

CONstraints) analysis was developed to overcome the limitations of VIPASA analysis in 

relation to shear load and anisotropy.  Instead of representing mode shapes using one half-

wavelength, VICON analysis couples the stiffness matrices of different half-wavelengths using 

Lagrangian multipliers to minimise the total energy of a panel subject to point constraints, to 

approximate the required end conditions. It can therefore handle assemblies of plates which 

carry shear load or are made from anisotropic material, or which have a variety of boundary 

conditions including attachments to beam-type supporting structures (Anderson et al., 1983).  
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As illustrated in the previous section, due to the simple support assumption, VIPASA presents 

conservative results for shear load and anisotropy, representing mode shapes with one single 

term analysis. VICON however presents more accurate solutions. Figure 3.4 shows the 

differences between VIPASA and VICON at initial buckling and a prediction of the VICON 

postbuckling path when shear or anisotropy is present. 

 

Figure 3. 4 Load and strain paths of VICON and VIPASA for shear or anisotropy 

 

To interpolate infinitely long plate assemblies with point supports along their transverse edges, 

Fourier series of  combinations of several half-wavelengths are chosen 

𝐃𝑎 = ∑ 𝐃𝑚

∞

𝑚=∞

exp (
𝑖𝜋𝑥

𝜆𝑚
) 

…(3.10) 

𝐏𝑎 = ∑ 𝐊𝑚𝐃𝑚

∞

𝑚=∞

exp (
𝑖𝜋𝑥

𝜆𝑚
) 

…(3.11) 

where 𝐃𝑎 is the nodal deflection vector of an infinitely long plate assembly consisting of a 

series of deflection modes 𝐃𝑚 from VIPASA analyses. 𝐏𝑎 is the force vector applied at nodes. 

𝐊𝑚 is the stiffness matrix for half-wavelength 𝜆𝑚. 

An infinitely long panel, with end supports repeating at longitudinal intervals of the panel 

length l, is shown in Figure 3.5. Its mode shapes are assumed to repeat in the longitudinal 

direction at intervals of 𝐿 = 2𝑙 𝜉⁄ , where 𝜉 is a parameter in the range 0 ≤ 𝜉 ≤ 1. Mode shapes 

can therefore be represented (Anderson et al., 1983) by a series of responses with half-
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wavelengths 𝑙 (𝜉 + 2𝑚)⁄  where m is any integer. Sufficient accuracy is obtained by 

considering a finite series of half-wavelengths: 

λm =
𝑙

(ξ + 2m)
(m = 0,±1,±2, … , ±𝑞) …(3.12) 

where the integer q determines the number of terms in the series. 

 

Figure 3.5 Graphical explanation of an infinitely long plate assembly with the end supports 

repeating at longitudinal intervals of the panel length l (a) plan view (b) isometric view 

(Anderson et al., 1983). 

 

To couple multiple half-wavelengths,  Lagrangian multipliers (Williams and Anderson, 1983) 

are applied. The total energy can be written as the energy of the plate without constraints plus 

the Lagrangian multipliers times the energy of the constraints. It can be written as a target 

function in terms of the nodal deflections Dm and the stiffness matrices Km: 

𝜑 = ∑
1

2

∞

𝑚=−∞

𝐃𝑚
𝑇 𝐊𝑚𝐃𝑚 + 𝐏𝐿

𝑇 ∑ 𝐄𝑚

∞

𝑚=−∞

𝐃𝑚 (m = 0,±1,±2,… ,±𝑞) …(3.13) 

where 𝐏𝐿 is the vector of Lagrangian multipliers, 𝐄𝑚 are matrices of the constraints and the 

superscript T denotes the transpose. 

To find the minimum energy, setting the derivatives of the energy function φ with respect to 

the stiffness matrices Km and the Lagrangian multipliers 𝐏𝐿 equal to zero gives 
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𝐿𝐊𝑚𝐃𝑚 + 𝐄𝑚
𝐻 𝐏𝐿 = 𝟎 …(3.14) 

∑ 𝐄𝑚

∞

𝑚=−∞

𝐃𝑚 = 𝟎 …(3.15) 

where H denotes the Hermitian transpose. 

For programming purposes, Equations 3.14 and 3.15 can be written as 

[
 
 
 
 
 
 
 

𝐿𝐊0 𝐄0
𝐻

𝐿𝐊1 𝐄1
𝐻

𝐿𝐊−1      𝐄−1
𝐻

𝐿𝐊2       𝐄2
𝐻

𝐿𝐊−𝟐        𝐄−2
𝐻

⋱        ⋮
𝐄0 𝐄1 𝐄−1 𝐄2 𝐄−2 … 𝟎 ]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
𝐃0

𝐃1

𝐃−1

𝐃2

𝐃−2

⋮
𝐏𝐿 ]

 
 
 
 
 
 

= 0 …(3.16) 

where the negative sign in the subscript denotes the complex conjugate. The reorganized 

stiffness matrix consists of a block matrix comprising the stiffness matrix 𝐊𝑚 and a block 

matrix of all the constraints 𝐄𝑚 added to the right and bottom of the main matrix. A similar 

approach to organizing the stiffness matrix will be used again in the VICON type Newton 

iteration scheme, presented in Chapter 5. 

To obtain the eigenvalues from the complex transcendental matrix in equation 3.16 efficiently, 

a modified form of the W-W algorithm in VICON is developed and given by 

𝐽 = ∑(𝐽0𝑚 + 𝑠{𝐊𝑚})

𝑚

+ 𝑠{𝐑} − 𝑟 …(3.17) 

where 𝐽0𝑚 and 𝑠{𝐊𝑚} are the sign count of the eigenvalues for each half-wavelength 𝜆𝑚, and 

R is given by 

𝑹 = −
1

𝐿
∑𝑬𝑚𝑲𝑚

−1

𝑚

𝑲𝑚
𝐻  …(3.18) 
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r is the number of constraints, i.e. the order of R, and s denotes the sign count of a matrix. 

Then similar to VIPASA’s W-W algorithm, the eigenvalues can be found by bisection or 

parabolic interpolation.  

By coupling more half-wavelengths through the use of Lagrangian multipliers, VICON 

analysis improves the accuracy of the buckling problem for plate assemblies with shear loading 

or anisotropy, as shown in  Figure 3.6. The results are more accurate than those obtained using 

VIPASA analysis although this is at the sacrifice of computational time. However, it is still 

150 times faster than the finite element program STAGS [Butler and Williams 1992].  

 

Figure 3.6 Buckling analysis, out-of-plane displacement contours from (a)VIPASA analysis 

and (b) VICON analysis(Williams and Anderson, 1983). 

3.5. Exact strip software VICONOPT 

VICONOPT (VIpasa with CONstraints and OPTimization) is a Fortran 77 computer software 

consisting of more than 50,000 lines of code developed at Cardiff University in 1990 in 

cooperation with NASA and Airbus (William et al. 1990, 1991). It incorporates VIPASA and 

VICON to cover the analysis of elastic buckling and undamped natural frequencies for 

prismatic assemblies including isotropic and anisotropic material under any combination of in-

plane loadings and constraints. It also features multi-level optimization analysis enabling it to 
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minimise panel mass subject to buckling, stiffness and geometric constraints. The development 

of VICONOPT has never stopped. Continuous design optimization was introduced and coded 

into VICONOPT in 1992 by Butler and Williams. Later on, Kennedy et al. developed discrete 

optimisation for VICONOPT. In 1998, Powell developed the first non-linear local postbuckling 

analysis for shell structure assemblies and in 2008, Kennedy and Anderson created the Newton 

iteration for accurate convergence on postbuckling modes for VICONOPT postbuckling 

analysis. Later on, Che (2010) and Zhang (2018) developed an improved VIPASA 

postbuckling method to capture in-plane displacements for each postbuckling increment by 

solving the in-plane equilibrium equations analytically.  

Overall, as a numerical modelling software, VICONOPT is highly efficient, taking advantage 

of a smaller stiffness matrix compared to finite element software. Implementing the exact strip 

method in VICONOPT means it is less likely to have discretization problems and enables it to 

perform much faster analyses of prismatic assemblies for both buckling and postbuckling 

analysis. The combination of VIPASA and VICON enables accurate results to be obtained for 

any material, loading and boundary conditions for critical buckling analysis. However, the 

postbuckling analysis in VICONOPT is at present unable to handle anisotropy and shear 

loading due to the limitations of VIPASA.  

3.6. VIPASA Postbuckling 

Stiffened wing and fuselage panels often have a post-buckling reserve of strength, enabling 

them to carry loads far in excess of their critical buckling loads. Therefore allowing for 

postbuckling in design can reduce the weight of such structures, and hence fuel consumption 

and environmental impact. The feature of postbuckling analysis is therefore of paramount 

important for VICONOPT (Zhao, 2019).  

Powell et al. (1998) developed the first postbuckling analysis for thin-walled structures as an 

extension of VICONOPT. Assuming the component plates are isotropic or anisotropic, 

infinitely wide and simply supported, the plate buckles locally with a half-wavelength λ which 
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divides exactly into the panel length l.  As shown in Figure 3.7, a plate with width b and uniform 

thickness t is divided equally into ns strips along the longitudinal direction. 

𝑏𝑠 =
𝑏

𝑛𝑠
 …(3.19) 

 

Figure 3.7 Typical flat plate of width b, subdivided into 𝑛𝑠 strips of width 𝑏𝑠(Powell et al. 

1998). 

 

It is well known that postbuckling behaviour is significantly influenced by geometric 

imperfections. To account for this the method assumes a plate with geometric imperfections 

defined by its maximum out-of-plane displacement 𝛾𝑜. At the buckling load 𝑃𝑐, the initial stress 

resultant at each strip is calculated by 

𝑁𝑥𝑠 = 𝑁𝐿 =
𝑃𝑐

𝑏
 …(3.20) 

The analysis consists of a user-defined number of cycles. At each cycle, the out-of-plane 

displacement  𝛾2 is increased by a user-defined ratio and the applied load P and longitudinal 

end-shortening strain  𝜀𝑥  are obtained. Because the postbuckling mode is represented by a 

single wavelength, the mode shape stays the same as the buckling mode at each cycle. So the 

applied load at each cycle is 

𝑃 = (1 −
𝛾0

𝛾2
)𝑃𝑐 …(3.21) 

 The longitudinal strain due to the applied load P is 𝑃 𝑆1⁄ , where 𝑆1 is given by 
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𝑆1 = 𝑏(𝐴11 −
𝐴12

2

𝐴22
) …(3.22) 

where 𝐴𝑖𝑗 are the in-plane elastic properties. 

Thus the longitudinal strain 𝜀𝑥0 at the buckling load 𝑃𝑐 is given by 

𝜀𝑥0 =
𝑃𝑐

𝑆1
 …(3.23) 

Now consider the flexural strain  𝜀𝐹𝑥  due to bending at out-of-plane displacement 𝑤2 . As 

shown in Figure 3.8, the change in projected length of a linear element of length dx in the 

longitudinal direction can be written as (𝜕𝑤2 𝜕𝑥⁄ )2𝑑𝑥. Thus the flexural strain 𝜀𝐹𝑥  can be 

obtained by differentiating the change between the initial and final projected lengths from 0 to 

the half-wavelength λ: 

𝜀𝐹𝑥 =
1

2𝜆
∫ [(

𝜕𝑤2

𝜕𝑥
)
2

+ (
𝜕𝑣2

𝜕𝑥
)
2

− (
𝜕𝑤0

𝜕𝑥
)
2

− (
𝜕𝑣0

𝜕𝑥
)
2

]
𝜆

0

 …(3.24) 

 

Figure 3.8 Cross-section of part of a thin rectangular plate having an initial imperfection 𝑤𝑜 

with maximum value 𝛾𝑜: (a) unloaded; (b) loaded(Powell et al. 1998). 

 

where the v displacement is included to allow for the alignment of stiffeners along the v 

direction. 
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Similar to the exact strip method, the mode can be written as a sinusoidal function 

𝑤2 = 𝑤̅2sin (𝜋𝑥 𝜆⁄ ) …(3.25) 

where 𝑤̅2 is the amplitude of the mode shape. Thus Equation 3.24 can be further simplified as 

𝜀𝐹𝑥 = (
𝜋2

4𝜆2
)( 𝑤̅2

2 + 𝑣̅2
2−𝑤̅0

2 − 𝑣̅0
2) …(3.26) 

From Equation 3.23, the stress resultant due to flexure is 

𝑁𝐹𝑥 = 𝜀𝐹𝑥

𝑆1

𝑏
 …(3.27) 

After initial buckling, the stresses along the transverse edges are no longer uniform i.e. stress 

redistribution takes place. As shown in Figure 3.9, 𝑁𝐹𝑥𝑠 is the mean value of 𝑁𝐹𝑥 along the two 

edges of strip s and 𝑁𝐿 is the average stress resultant which equals P/b. At the edges where the 

stress resultants for flexure are zero, the stress is taken as 𝑆2𝑁𝐿 , where  

𝑆2 = 1 + (
1

𝑃
)∑(𝑏𝑠𝑁𝐹𝑠)

𝑠

 …(3.28) 

The overall stress resultant 𝑁𝑥𝑠 for each strip is given by; 

𝑁𝑥𝑠 = 𝑆2𝑁𝐿 − 𝑁𝐹𝑥𝑠 …(3.29) 

The end shortening strain at the same cycle can be obtained by; 

𝜀𝑥 =
𝑆2𝑃

𝑆1
 …(3.30) 
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Figure 3.9 Variation of stress resultants across a plate(Powell et al. 1998). 

To ensure accurate results, a convergence procedure is required to converge on the maximum 

displacement 𝛾2 , applied load P and end shortening strain 𝜀𝑥. At each iteration of the procedure, 

the above calculations are executed and the convergence of the iteration is assumed to occur 

when the following criterion is met. 

𝑃𝑖 − 𝑃𝑝𝑖

𝑃𝑐
≤ 𝛽 …(3.31) 

where 𝑃𝑖  is the current applied load, 𝑃𝑝𝑖  is the previous iteration’s applied load and β is a 

predefined small positive number. 

For each new cycle, the previous converged mode is considered as the new imperfection, 

representing the worst possible shape and the maximum out-of-plane displacement is rescaled 

by increasing the value of 𝛾2.  For the new buckling load 𝑃𝑐𝑥, instead of using VIPASA, a 

simple linear extrapolation based on the previous two buckling loads is applied to calculate 𝑃𝑐𝑥. 

Hence by substituting 𝑃𝑐𝑥  into Equation 3.21 the applied load can be obtained for the first 

iteration of the new cycle. 

An alternative boundary condition - simply supported with longitudinal edges able to move in 

the transverse direction but required to remain straight is also considered in Powell’s method. 

Such a condition requires the transverse load obtained by integrating the transverse stress 

resultant to equal zero.  



  Exact Finite Strip Method and VICONOPT 

41 
 

 

Figure 3.10 Typical applications for postbuckling analysis: (a) cross-section of a perfect 

isotropic infinitely wide panel with simply supported ends, showing the local buckling mode, 

and dimensions of a typical repeating portion (ABCA_); (b) curved simply supported panel, 

showing repeating portion and local buckling mode; and (c) longitudinally stiffened cylindrical 

shell(Powell et al. 1998). 

 

The method can be applied not just to plates but to panels. In the application shown in Figure 

3.10(a), the panel is divided into repeating portions of identical geometry. Since the panel is a 

perfect isotropic infinitely wide panel with simply supported ends, the calculation of one 

divided plate can normally represent the overall structure. Stiffened panels can also be analysed 

by altering the out-of-plane displacement of the plate to the in-plane displacement of the 

stiffeners as illustrated in Figure 3.10(b). Figure 3.10(c) shows a longitudinal stiffened 

cylindrical shell that can also be analyzed by VICONOPT. 

Powell’s method provides a lower bound local postbuckling analysis based on VIPASA and 

implemented into VICONOPT.  It uses a simple linear extrapolation to obtain the buckling load 

for each cycle. It, therefore, assumes the buckling load paths follow an approximately linear 

relationship through the cycles. Such an assumption gives poor accuracy in terms of mode 

shape and follow-up calculations. To overcome this limitation, Kennedy and Anderson (2008) 
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created a Newton iteration scheme for accurate convergence on the critical buckling mode for 

VICONOPT postbuckling. 

3.7. Newton iteration scheme 

Instead of obtaining the buckling load and associated mode shape using the exact strip method 

and the W-W algorithm, a convergence scheme using Newton type iteration was developed for 

local postbuckling analysis.  

The buckling problem for the exact strip method is to solve the transcendental eigenvalue 

problem; 

𝐊 𝐃 = 𝟎 …(3.32) 

Here, 𝐃 = {𝐷𝑗; 𝑗 = 1,… 𝑛} is the mode vector for the structure, which includes displacements 

and rotations at the longitudinal plate edges. 𝐃 also includes displacements and rotations at the 

strip edges within each plate, and is ordered to permit elimination of these internal degrees of 

freedom by substructuring. 𝐊 = {𝐾𝑖𝑗; 𝑖, 𝑗 = 1,…𝑛} is the corresponding exact stiffness matrix, 

which is a transcendental function of the stress resultants in each strip, and hence also of 𝐃. 

Note that, although 𝐊 and 𝐃 have finite order 𝑛, the formulation effectively retains an infinite 

number of internal degrees of freedom because the governing differential equations for each 

strip are solved exactly. Suppose that 

𝐃 = 𝐃∗ + 𝐝 …(3.33) 

where 𝐃∗ is a trial mode vector and 𝐝 = {𝑑𝑗; 𝑗 = 1,…𝑛} is the adjustment to 𝐃∗ needed to  

solve Equation 3.32, The Newton iteration is expressed in matrix form as  

(𝐊∗ + ∑
𝜕𝐊∗

𝜕𝐷𝑗

𝑛

𝑗=1

𝑑𝑗)(𝐃
∗ + 𝐝) = 𝟎 …(3.34) 

where 𝐊∗ = 𝐊(𝐃∗). Neglecting higher order terms, Equation 3.34 becomes 
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∑(𝐾𝑖𝑗
∗ + ∑

𝜕𝐾𝑖𝑘
∗

𝜕𝐷𝑗

𝑛

𝑘=1

𝐷𝑘
∗)𝑑𝑗

𝑛

𝑗=1

= −∑𝐾𝑖𝑗
∗ 𝐷𝑗

∗

𝑛

𝑗=1

        (𝑖 = 1,…𝑛) …(3.35) 

Equation 3.35 is solved to obtain 𝑑, and substitution in Equation 3.33 gives a new trial mode 

vector 𝑫, which is used as 𝑫 ∗ in the next Newton iteration. The derivatives needed in Equation 

3.35 are found using finite difference approximations using suitably small perturbations about 

the trial values 𝐷𝑗 = 𝐷𝑗
∗. It should be noted that when an element 𝐷𝑗  is perturbed, the only non-

zero derivatives in Equation 3.35 are those of the plates (or for some loading conditions, strips) 

immediately adjacent to 𝐷𝑗 , and this is allowed for in the logic of the computer coding.  

The Newton iteration reduces the level of approximation when performing postbuckling cycles. 

It gives accurate predictions of overall postbuckling stiffness and the stress distribution among 

plate assemblies. However, both this method and the previous local postbuckling analyses 

assume that in-plane deflections vary sinusoidally with the same half-wavelength λ as the out-

of-plane displacements resulting in a failure to predict the in-plane displacements and strain 

distributions accurately.  

3.8. Improved exact strip postbuckling analysis 

The previous analysis can efficiently predict the postbuckling path and mode shape at each 

cycle approximately. However, there is a lack of deeper exploration of in-plane displacements, 

strains and stresses within the plates. Che (2010) and Zhang (2018) developed an improved 

VIPASA postbuckling method by assuming in-plane displacement to vary in a sinusoidal mode 

with half-wavelengths λ and λ/2. By solving the differential equations analytically, in-plane 

displacements and follow-up calculations for strains and stresses are captured more accurately. 

This ‘Improved exact strip method’ is a VIPASA postbuckling analysis method aimed at 

obtaining more accurate stress resultant distributions and capturing in-plane displacements 

along the plate by extending the Stein method (1985).  In the same way as for VIPASA initial 

buckling analyses, the plate is divided into longitudinal strips and all displacements vary 
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sinusoidally along the length with wavelength λ. Therefore the out-of-plane displacements at 

node i can be written as 

𝑤𝑖 = 𝑤𝑖𝑐 cos (
𝜋𝑥

𝜆
) + 𝑤𝑖𝑠 sin (

𝜋𝑥

𝜆
);   𝜓𝑖 = 𝜓𝑖𝑐 cos (

𝜋𝑥

𝜆
) + 𝜓𝑖𝑠 sin (

𝜋𝑥

𝜆
) …(3.36) 

The in-plane displacements are assumed to vary as the sums of linear, constant and sinusoidal 

terms with two half-wavelengths λ and λ/2. 

𝑢𝑖 = 𝜀 (𝑥 −
𝑎

2
) 

        +𝑢𝑖0 + 𝑢𝑖𝑐 cos (
𝜋𝑥

𝜆
) + 𝑢𝑖𝑠 sin (

𝜋𝑥

𝜆
) + 𝑢𝑖𝐶 cos (

2𝜋𝑥

𝜆
) + 𝑢𝑖𝑆 sin (

2𝜋𝑥

𝜆
)  

…(3.37) 

  

𝑣𝑖 = 𝑣𝑖0 + 𝑢𝑖𝑐 cos (
𝜋𝑥

𝜆
) + 𝑣𝑖𝑠 sin (

𝜋𝑥

𝜆
) + 𝑣𝑖𝐶 cos (

2𝜋𝑥

𝜆
) + 𝑣𝑖𝑆 sin (

2𝜋𝑥

𝜆
) …(3.38) 

where the linear term 𝜀 (𝑥 −
𝑎

2
) denotes the end shortening strain due to compression and the 

constant term 𝑢𝑖0 denotes a product related only to w which is considered as a known value 

from VICONOPT. 

Using von Kármán large deflection theory (von Kármán et al., 1932), expressions for the 

neutral surface strains and curvatures can be obtained. Then the stresses and derivatives of 

these stresses can be obtained by introducing the membrane stiffness matrix. Since the method 

assumes the displacements vary sinusoidally along the longitudinal direction, any of the 

derivatives with respect to the longitudinal direction can be obtained analytically, but those 

with respect to the transverse direction in the calculation are required to be computed by first 

or second order finite difference approximation. Hence the equilibrium equations can be 

assembled using previous expressions and solved analytically. Figure 3.11 shows the improved 

method embedded into VIPASA postbuckling analysis.   

VIPASA type exact strip postbuckling analysis provides an efficient approach to postbuckling 

analysis for isotropic plate assemblies in the preliminary design of aircraft structures (Zhang 

2018). Instead of representing the in-plane mode with a single term, the improved exact strip 

method couples not just half-wavelengths from the out-of-plane displacement assumptions but 

also half-wavelengths generated by von Kármán large deflection theory. The new postbuckling 

analysis improves previous exact strip analyses by capturing in-plane displacements. However, 
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it has very similar drawbacks to VIPASA in term of buckling analysis. When it comes to 

anisotropic material or shear loading cases which lead to skewed mode shapes, it gives 

unrealistic results or fails to converge. Furthermore, although previous research provided 

explicit formulations for in-plane displacements and equivalent uniform stress resultants 

calculations, the improved exact strip method still predicts out-of-plane displacements and end 

shortening strains based on linear extrapolation from the critical buckling load. Subsequent 

chapters describe how the ‘Improved exact strip method’ has been implemented into the 

Newton iteration scheme and extended to VICON analysis.  

 

Figure 3.11 Implementation scheme of the improved VIPASA postbuckling analysis (Zhang 

2018). 
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Chapter 4. CWPAN: In-plane 

Solutions 

This chapter introduces a novel postbuckling simulation technique for flat plate structures – a 

series solution for postbuckling analysis. The proposed approach takes the previous exact strip 

postbuckling analysis and extends it, covering much more general cases, e.g. plates under pure 

shear or anisotropy, by representing modes using a series of any number of predefined half-

wavelengths.  The chapter is organized as follows: Section 4.1 outlines the main aims of the 

proposed method and the calculation process. Section 4.2 introduces the assumptions made in 

relation to out-of-plane and in-plane displacements. Sections 4.3 and 4.4 outline the 

development of explicit expressions for strains, curvatures, stress resultants and bending 

moments including a detailed explanation of the in-plane displacement assumption and finite 

difference approximation. Sections 4.5 and 4.6 outline the formulation of the equilibrium 

equations and boundary conditions for the proposed method. Section 4.7 concludes the chapter.  

4.1. Description and assumptions of the analysis 

The ‘Improved exact strip postbuckling method’ (Che, 2012) agrees well with other simulation 

techniques for flat plate structures for isotropic plates in the absence of shear loading. It reduces 

the computational modelling time significantly by discretising the structure into longitudinal 

strips rather than rectangular elements. By incorporating expressions for in-plane 

displacements and solving the corresponding equilibrium equations analytically, the sinusoidal 

variation of stress resultants and strains can be predicted. It does not, however, provide accurate 

results for anisotropic plates or when shear loads are applied due to the resulting skewing in 

the mode shape which cannot be represented by the assumption of sinusoidal variation by 
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longitudinal half-wavelengths λ and λ/2. In such cases, the solutions tend to be conservative 

compared with the finite element method. For extreme cases like pure shear, the method fails 

even to converge.  

In this chapter, a series solutions for prismatic plate assemblies is presented.  Whilst 

maintaining the advantage of smaller meshes from the exact strip method, the method improves 

accuracy when solving prismatic plates with anisotropy or under shear load, and enables the 

study of composite plates under pure shear which cannot be analysed using the improved exact 

strip postbuckling method. Inheriting the functionality of the previous postbuckling analysis, 

this new approach adopts VICON analysis and the method developed by Stein (1983; 1985) to 

enable the coupling of any number of half-wavelengths to represent the variation of in-plane 

displacements in the longitudinal direction. In this way, in-plane displacements and 

distributions of strains, curvatures, stress resultants and bending moments for any load 

condition or material can be captured with the desired level of accuracy.   

As described in Chapter 3, VICON can solve buckling analyses for shear loaded and 

anisotropic plates more accurately than VIPASA by coupling responses with more than one 

half-wavelength. The new approach utilizes out-of-plane displacements and buckling loads 

from VICON buckling analyses to calculate in-plane displacements with a series of 

corresponding half-wavelengths. As in VICON analysis, the plate is assumed to be infinitely 

long and the modes are assumed to repeat at regular intervals along the longitudinal direction 

at the node level. Once expressions for the in-plane displacements are obtained, expressions 

for strains, curvatures,  stress resultants and bending moments are calculated using von Kármán  

large deflection theory. Derivatives with respect to the transverse direction are calculated using 

finite difference approximations, enabling the in-plane equilibrium equations to be assembled. 

Finally, different boundary conditions including free edges, fixed edges and straight edges are 

applied on the longitudinal edges by modifying the in-plane equilibrium equations. Hence a 

full iteration of postbuckling analysis for a particular end shortening strain stage is solved 

analytically, see Figure 4.1. 
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Figure 4.1. Diagram showing the full process for one iteration of postbuckling analysis 

 

The main purpose of this process is to find the in-plane displacements and distributions of in-

plane and out-of-plane forces at cycle one along the postbuckling path. It is worth noting that 

the process shown in Figure 4.1 is only for the first cycle of postbuckling after the critical 

buckling point. For the following cycles, the displacements are calculated by a Newton type 

iteration scheme and a corresponding convergence procedure, more detail of which will be 

presented in Chapter 5. 

The following assumptions are made: 

Perform VICON Buckling analysis 

Calculate half-wavelengths for in-

plane displacements 

1. Half-wavelengths 𝜆𝑚 
2. Out-of-displacements 𝑤𝑖 and rotations 𝜑𝑖  
3. End shortening strains 𝜀𝑥, 𝜀𝑦 and 𝛾𝑥𝑦 

1. In-plane displacements assumption 𝑢𝑖  and 𝑣𝑖  

Von Kármán large deflection theory 

and finite difference approximation 

1. Strains and curvatures 𝜀𝑥𝑖, 𝜀𝑦𝑖, 𝛾𝑥𝑦𝑖, 𝜅𝑥𝑖, 𝜅𝑦𝑖 and 𝜅𝑥𝑦𝑖 

2. Stress resultants and bending moments 𝑁𝑥𝑖, 𝑁𝑦𝑖,𝑁𝑥𝑦𝑖, 𝑀𝑥𝑖, 𝑀𝑦𝑖  and 𝑀𝑥𝑦𝑖 

3. Derivatives of stresses 𝑁𝑥𝑖
′ , 𝑁𝑦𝑖

′  and 𝑁𝑥𝑦𝑖
′  

Assemble in-plane governing equations 

Apply boundary conditions  

In-plane displacements 𝑢𝑖  and 𝑣𝑖   
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1. The series solutions are based on classical plate theory in which transverse shear deformation 

is assumed to be zero. 

2. No imperfections are introduced. 

3. The plate is assumed to be infinitely long in the longitudinal direction. The mode shapes 

repeat regularly in the longitudinal direction in a pattern which can be represented by a series 

of sinusoidal terms with predefined half-wavelengths.  

4. If shear and compression are applied to the plate at the same time, the ratio between 

compressive end shortening strains and constant shear strains remains unchanged throughout 

all the postbuckling cycles.  

The first assumption is justified when the plate is comparably thin (more detail is described in 

Chapter 2) and is mostly suitable for thin laminated composites. Having made such an 

assumption, the von Kármán large deflection theory can be applied and equilibrium equations 

can be assembled by neglecting higher order derivatives. As displacements along the plate’s 

longitudinal direction vary in a regular pattern, the plates are naturally assumed to be perfectly 

flat. Hence the modelling in the proposed analysis has to assume the plate without any 

imperfections. The third assumption is inherited from the VICON analysis, and more detail 

will be illustrated in Chapter 7. The fourth assumption is based on the nature of CWPAN. More 

investigation has been presented in Chapter 7. 

4.2. Displacement assumptions 

Assume the plates are divided into n-1 strips with arbitrary width, as identified by the n nodes 

at the strip edges, as shown in Figure 4.2. At each node i, the out-of-plane deflections 𝑤𝑖 and 

rotations 𝜑𝑖 about the x axis are assumed to vary as the sum of the sinusoidal responses in the 

longitudinal direction with half-wavelengths 𝜆𝑚, and can be written in the form 
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[
𝑤𝑖

𝜑𝑖
] =

[
 
 
 
 ∑𝑤𝑖𝑚𝑐𝑐𝑜𝑠

𝜋𝑥

𝜆𝑚
+ 𝑤𝑖𝑚𝑠𝑠𝑖𝑛

𝜋𝑥

𝜆𝑚
𝑚

∑𝜑𝑖𝑚𝑐𝑐𝑜𝑠
𝜋𝑥

𝜆𝑚
+ 𝜑𝑖𝑚𝑠𝑠𝑖𝑛

𝜋𝑥

𝜆𝑚
𝑚 ]

 
 
 
 

 …(4.1) 

where the amplitudes 𝑤𝑖𝑚𝑐 , 𝑤𝑖𝑚𝑠 , 𝜑𝑖𝑚𝑐  and 𝜑𝑖𝑚𝑠  are obtained from a VICON eigenvalue 

analysis at the previous iteration. 

According to classical plate theory, it is assumed that 𝜑𝑖 = 𝑤𝑖
′, where the prime indicates the 

derivative with respect to the transverse direction y. The subscript m denotes the sequence of 

out-of-plane half-wavelengths. 

 

Figure 4.2. An example square plate with width a divided into n-1 strips of equal width b, 

showing the datum and axes used in this thesis 

In terms of the in-plane displacements, when applying von Kármán large deflection theory, the 

calculations for strains and curvatures will lead to squared trigonometric terms which can be 

simplified to summations or subtractions of out-of-plane trigonometric terms, e.g. cos(𝛼) ∗

cos(𝛽) = [cos(𝛼 + 𝛽) + cos(𝛼 − 𝛽)]/2 . In-plane displacements, therefore, have to be 

assumed to have all the terms that could appear in the expressions for strains and stress 

resultants. A detailed explanation and calculation will be addressed in the Section 4.3.  

As described above, the in-plane displacements are assumed to be:  
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[
𝑢𝑖

𝑣𝑖
] =

[
 
 
 
 𝜀𝑥 (𝑥 −

𝑙

2
) + 𝛾𝑥𝑦 (𝑦 −

𝑎

2
) + ∑ 𝑢𝑖𝑘𝑐𝑐𝑜𝑠

𝜋𝑥

𝜆𝑘
+ 𝑢𝑖𝑘𝑠𝑠𝑖𝑛

𝜋𝑥

𝜆𝑘
𝑘

𝜀𝑦 (𝑦 −
𝑎

2
) + 𝛾𝑥𝑦 (𝑥 −

𝑙

2
) + ∑𝑣𝑖𝑘𝑐𝑐𝑜𝑠

𝜋𝑥

𝜆𝑘
+ 𝑣𝑖𝑘𝑠𝑠𝑖𝑛

𝜋𝑥

𝜆𝑘
𝑘 ]

 
 
 
 

 …(4.2) 

where the linear terms 𝜀𝑥 ,𝜀𝑦  and 𝛾𝑥𝑦 denote the progressive uniform longitudinal, transverse 

and shear strains respectively. The subscript k denotes the sequence of in-plane half-

wavelengths, subscript c denotes cosine terms and subscript s denotes sine terms. l is the plate 

length and a is its width.  

In contrast to VIPASA postbuckling, CWPAN considers not only compressive loading but also 

shear loading and combined loading i.e. 𝛾𝑥𝑦 is not zero. It is worth noting that the linear strain 

terms are pre-defined values based on the end shortening strains at the critical buckling load 

i.e. the postbuckling analysis is controlled by the ratio of the linear strain increments α, so if 

the linear strain at initial buckling is 𝜀𝑥, the first postbuckling cycle’s linear strain will be (1 +

𝛼)𝜀𝑥 . This assumption is very similar to that implemented in the deflection controlled 

simulation of the finite element method, where the structure is subject to proportional 

progressive in-plane displacements rather than uniform stresses or concentrated forces. It is 

actually considered to be closer to the approach taken in experiments in the laboratory where 

displacements are much easier to control compared to the application of uniform stress 

resultants. Moreover, in terms of complexity during experiments, running a test under load 

control leads to the possibility of the test machine to suddenly accelerating if the stiffness 

reduces in order to try to maintain constant load which can lead to accidents or potentially 

cause the machine to break, particularly for unstable responses like postbuckling. The term 𝜀𝑦 

denotes the transverse end shortening strain resulting from transverse compressive loading. In 

this thesis, this is considered to be zero. In terms of strain, it should be noted that as we move 

further into the postbuckling analysis, the ratio between the longitudinal strain and the shear 

strain will remain the same as the ratio at initial buckling e.g. if the plate is loaded in combined 

compression in equal amounts (𝑁𝑥 𝑁𝑥𝑦⁄ = 1) along the transverse edges, the ratio of end 

shortening compressive strain and end shortening shear strain for the whole postbuckling 

analysis will remain the same (𝜀𝑥 𝛾𝑥𝑦⁄ = 1).  

Postbuckling analysis starts from solutions obtained from a VICON analysis for which the 

number of half-wavelengths can be any predefined integer. Hence the half-wavelengths for the 
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out-of-plane deflections naturally become those from the coupled wavelength postbuckling 

analysis. However increasing the number of wavelengths can affect the calculation speed of 

the whole postbuckling analysis significantly. Adding one more half-wavelength into the out-

of-plane deflection may lead to a doubling of the computational time. Therefore choosing the 

number of wavelengths can be crucial to balancing the desired accuracy with computational 

effort. More detailed on this is presented in the factor affecting both the results of the analysis 

and the computational efficiency Chapter 6. 

Another factor affecting both the results of the analysis and the computational efficiency is the 

number of strips the plates are divided into. This can range from a minimum of five strips to 

an unlimited number of strips where the minimum is defined by the use of the finite difference 

approximation. The decision on a suitable number of strips must be made at the beginning of 

the analysis. More detail on this is presented in the Chapter 6. 

4.3. Calculation of strains and derivatives of strains 

Based on von Kármán’s large deflection theory, strains and curvature at the neutral surface are 

given by 

[
 
 
 
 
 
𝜀𝑥𝑖

𝜀𝑦𝑖

𝛾𝑥𝑦𝑖

𝜅𝑥𝑖

𝜅𝑦𝑖

𝜅𝑥𝑦𝑖]
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 𝜕𝑢𝑖

𝜕𝑥
+

1

2
(
𝜕𝑤𝑖

𝜕𝑥
)

2

𝜕𝑣𝑖

𝜕𝑦
+

1

2
(
𝜕𝑤𝑖

𝜕𝑦
)

2

𝜕𝑢𝑖

𝜕𝑦
+

𝜕𝑣𝑖

𝜕𝑥
+

𝜕𝑤𝑖

𝜕𝑥

𝜕𝑤𝑖

𝜕𝑦

−
𝜕2𝑤𝑖

𝜕𝑥2

−
𝜕2𝑤𝑖

𝜕𝑦2

−2
𝜕2𝑤𝑖

𝜕𝑥𝜕𝑦 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
𝜀𝑥𝑖0 𝜀𝑥𝑖1𝑐 𝜀𝑥𝑖1𝑠

𝜀𝑦𝑖0 𝜀𝑦𝑖1𝑐 𝜀𝑦𝑖1𝑠

𝛾𝑥𝑦𝑖0 𝛾𝑥𝑦𝑖1𝑐 𝛾𝑥𝑦𝑖1𝑠

     

⋯
⋯
⋯

𝜅𝑥𝑖0 𝜅𝑥𝑖1𝑐 𝜅𝑥𝑖1𝑠

𝜅𝑦𝑖0 𝜅𝑦𝑖1𝑐 𝜅𝑦𝑖1𝑠

𝜅𝑥𝑦𝑖0 𝜅𝑥𝑦𝑖1𝑐 𝜅𝑥𝑦𝑖1𝑠

     

⋯
⋯
⋯]

 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

cos (
𝜋𝑥

𝜆1
)

sin (
𝜋𝑥

𝜆1
)

cos (
𝜋𝑥

𝜆2
)

sin (
𝜋𝑥

𝜆2
)

cos (
𝜋𝑥

𝜆3
)

sin (
𝜋𝑥

𝜆3
)

⋮ ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 …(4.3) 

Substituting from Equation 4.2 into Equation 4.3 gives 
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𝜺𝒊 = 𝜺0(𝒘𝑖) + 𝜺1𝒖𝑖 + 𝜺2 ∗ 𝒇 ∗ 𝒖𝑖 …(4.4) 

𝜿𝒊 = 𝜿0(𝒘𝑖) …(4.5) 

𝒘𝑖 =

[
 
 
 
 
𝑤𝑖1𝑐

𝑤𝑖1𝑠

𝑤𝑖2𝑐

𝑤𝑖2𝑠

⋮ ]
 
 
 
 

, 𝒖𝑖 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑢1,0

𝑢1,1𝑐

𝑢1,1𝑠

𝑢1,2𝑐

⋮
𝑣1,0

𝑣1,1𝑐

𝑣1,1𝑠

𝑣1,2𝑐

⋮
𝑢2,0

𝑢2,1𝑐

𝑢2,1𝑠

𝑢2,2𝑐

⋮
𝑣2,0

𝑣2,1𝑐

𝑣2,1𝑠

𝑣2,2𝑐

⋮
𝑢𝑛,0

𝑢𝑛,1𝑐

𝑢𝑛,1𝑠

𝑢𝑛,2𝑐

⋮
𝑣𝑛,0

𝑣𝑛,1𝑐

𝑣𝑛,1𝑠

𝑣𝑛,2𝑐

⋮ ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 𝜺𝑖 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜀𝑥1,0

𝜀𝑥1,1𝑐

𝜀𝑥1,1𝑠

𝜀𝑥1,2𝑐

⋮
𝜀𝑦1,0

𝜀𝑦1,1𝑐

𝜀𝑦1,1𝑠

𝜀𝑦1,2𝑐

⋮
𝛾𝑥𝑦1,0

𝛾𝑥𝑦1,1𝑐

𝛾𝑥𝑦1,1𝑠

𝛾𝑥𝑦1,2𝑐

⋮
𝜀𝑥𝑛,0

𝜀𝑥𝑛,1𝑐

𝜀𝑥𝑛,1𝑠

𝜀𝑥𝑛,2𝑐

⋮
𝜀𝑦𝑛,0

𝜀𝑦𝑛,1𝑐

𝜀𝑦𝑛,1𝑠

𝜀𝑦𝑛,2𝑐

⋮
𝛾𝑥𝑦𝑛,0

𝛾𝑥𝑦𝑛,1𝑐

𝛾𝑥𝑦𝑛,1𝑠

𝛾𝑥𝑦𝑛,2𝑐

⋮ ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 𝜿𝑖 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜅𝑥1,0

𝜅𝑥1,1𝑐

𝜅𝑥1,1𝑠

𝜅𝑥1,2𝑐

⋮
𝜅𝑦1,0

𝜅𝑦1,1𝑐

𝜅𝑦1,1𝑠

𝜅𝑦1,2𝑐

⋮
𝜅𝑥𝑦1,0

𝜅𝑥𝑦1,1𝑐

𝜅𝑥𝑦1,1𝑠

𝜅𝑥𝑦1,2𝑐

⋮
𝜅𝑥𝑛,0

𝜅𝑥𝑛,1𝑐

𝜅𝑥𝑛,1𝑠

𝜅𝑥𝑛,2𝑐

⋮
𝜅𝑦𝑛,0

𝜅𝑦𝑛,1𝑐

𝜅𝑦𝑛,1𝑠

𝜅𝑦𝑛,2𝑐

⋮
𝜅𝑥𝑦𝑛,0

𝜅𝑥𝑦𝑛,1𝑐

𝜅𝑥𝑦𝑛,1𝑠

𝜅𝑥𝑦𝑛,2𝑐

⋮ ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 …(4.6(a),(b),(c)) 

 

In Equation 4.4, 

𝜺1̅ = [
𝑱

𝟎2𝐾−1

𝟎2𝐾−1

   
𝟎2𝐾−1

𝟎2𝐾−1

𝑱
], 𝜺2̅̅ ̅ = [

𝟎2𝐾−1  
𝟎2𝐾−1  
𝑰2𝐾−1  

𝟎2𝐾−1

𝑰2𝐾−1

𝟎2𝐾−1

] …(4.7(a), (b)) 

𝜺1 =

[
 
 
 

𝜺𝟏̅̅ ̅ 𝟎3𝐾∗2𝐾 …
𝟎3𝐾∗2𝐾 𝜺𝟏̅̅ ̅ …

⋮ ⋮ ⋱
     

𝟎3𝐾∗2𝐾

𝟎3𝐾∗2𝐾

𝟎3𝐾∗2𝐾 
   𝟎3𝐾∗2𝐾  𝟎3𝐾∗2𝐾       𝟎3𝐾∗2𝐾 𝜺𝟏̅̅ ̅]

 
 
 

,  …(4.8(a), (b)) 
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where 𝑰2𝐾−1 and 𝟎2𝐾−1 are one and zero matrices of order of 2𝐾 − 1, respectively and K is the 

number of unique values of k found from Tables 4.1 and 4.2. 

Where 𝟎3𝐾∗2𝐾 is a zero matrix having the same size as 𝜺1̅ and 𝜺2̅̅ ̅ i.e. 3𝐾 ∗ 2𝐾. 

Derivatives with respect to the transverse direction y in the terms 𝜀𝑦𝑖 and 𝜀𝑥𝑦𝑖 in Equation 4.4 

are calculated at target nodes using a finite difference approximation. At node i, the derivative 

is expressed as the central difference:    

𝑢𝑖
′ =

𝑢𝑖+1 − 𝑢𝑖−1

2𝑏
 …(4.10) 

This expression works for all nodes where there are adjacent nodes before and after the central 

node. For the first and last nodes, at which an adjacent node is missing on one side, derivatives 

are found using the backward difference expression. For the first node: 

𝑢𝑖
′ = 𝑢

𝑖+
𝑏
2

′ −
1

2
(𝑢

𝑖+
3𝑏
2

′ − 𝑢
𝑖+

𝑏
2

′) 

𝑢𝑖
′ =

𝑢𝑖+1 − 𝑢𝑖

𝑏
−

1

2
(
𝑢𝑖+2 − 𝑢𝑖+1

𝑏
−

𝑢𝑖+1 − 𝑢𝑖

𝑏
) 

𝑢𝑖
′ =

−3𝑢𝑖 + 4𝑢𝑖+1 − 𝑢𝑖+2

2𝑏
 

…(4.11) 

 

𝜺2 =

[
 
 
 

𝜺𝟐̅̅ ̅ 𝟎3𝐾∗2𝐾 …
𝟎3𝐾∗2𝐾 𝜺𝟐̅̅ ̅ …

⋮ ⋮ ⋱
     

𝟎3𝐾∗2𝐾

𝟎3𝐾∗2𝐾

𝟎3𝐾∗2𝐾 
     𝟎3𝐾∗2𝐾 𝟎3𝐾∗2𝐾    𝟎3𝐾∗2𝐾 𝜺𝟐̅̅ ̅]

 
 
 

 

𝑱 =

[
 
 
 
 
 
 
 
 𝜆1

𝜋

𝑙
0
0
0
0
⋮
0
0

 

0
0

−𝜆2𝜔𝑖

0
0
⋮
0
0

 

0

𝜆2

𝜋

𝑙
0
0
0
⋮
0
0

 

0
0
0
0

−𝜆3

𝜋

𝑙
⋮
0
0

 

0
0
0

𝜆3

𝜋

𝑙
0
⋮
0
0

⋯
⋯
⋯
⋯
⋯
⋱
0
0

0
0
0
0
0
0
0

−𝜆𝑘

𝜋

𝑙

0
0
0
0
0
0

𝜆𝑘

𝜋

𝑙
0 ]

 
 
 
 
 
 
 
 

       …(4.9) 
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Similarly for the last node 

𝑢𝑖
′ =

3𝑢𝑖 − 4𝑢𝑖−1 + 𝑢𝑖−2

2𝑏
 …(4.12) 

Applying Equations 4.10 to 4.12 with von Kármán large deflection theory gives: 

where f denotes the first order finite difference approximation matrix and 𝑰2𝐾∗2𝐾  and 𝟎2𝐾∗2𝐾  

denote the identity matrix and a zero matrix of size 2𝐾 ∗ 2𝐾 respectively. 

The vectors 𝜺0(𝒘𝑖) and 𝜿0(𝒘𝑖) are functions of the out-of-displacements w which can be 

obtained by substituting w into von Kármán large deflection theory. These displacements are 

obtained by the modified Newton iteration scheme and can be considered as constant values 

when solving the in-plane equilibrium equations. 

The vector 𝜺0(𝒘𝑖) in Equation 4.4 can be written [

𝜺0𝑥(𝒘𝑖)

𝜺0𝑦(𝒘𝑖)

𝜺0𝑥𝑦(𝒘𝑖)
], where 

 

 

 

 

 

 

𝒇 =  

1

2𝑏

[
 
 
 
 
 
 
 
−3 ∗ 𝑰2𝐾∗2𝐾 

𝑰2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

⋮
𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

    

4 ∗ 𝑰2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

𝑰2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

⋮
𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

    

−𝑰2𝐾∗2𝐾

−𝑰2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

𝑰2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

⋮
𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

    

𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

−𝑰2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

𝑰2𝐾∗2𝐾

⋮
𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

  

𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

−𝑰2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

⋮
𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

⋯
⋯
⋯
⋯
⋯
⋱

𝑰2𝐾∗2𝐾

−𝑰2𝐾∗2𝐾

  

𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

4 ∗ 𝑰2𝐾∗2𝐾

 

]
 
 
 
 
 
 
 

       

…(4.13) 
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𝜺0𝑥(𝒘𝑖) =
1

2
(
𝜕𝑤

𝜕𝑥
)2 = 

1

2
∑∑

(

 
 
 
 
 
 
 

−𝑤𝑖𝑚𝑐𝑤𝑖𝑛𝑐

𝜋2

𝜆𝑚𝜆𝑛
sin (

𝜋𝑥

𝜆𝑚
)sin (

𝜋𝑥

𝜆𝑛
)

+𝑤𝑖𝑚𝑠𝑤𝑖𝑛𝑠

𝜋2

𝜆𝑚𝜆𝑛
cos (

𝜋𝑥

𝜆𝑚
)cos (

𝜋𝑥

𝜆𝑛
)

−𝑤𝑖𝑚𝑐𝑤𝑖𝑛𝑠

𝜋2

𝜆𝑚𝜆𝑛
sin (

𝜋𝑥

𝜆𝑚
)cos (

𝜋𝑥

𝜆𝑛
)

−𝑤𝑖𝑚𝑠𝑤𝑖𝑛𝑐

𝜋2

𝜆𝑚𝜆𝑛
cos (

𝜋𝑥

𝜆𝑚
)sin (

𝜋𝑥

𝜆𝑛
)
)

 
 
 
 
 
 
 

𝑛𝑚

 

…(4.14) 

 

 
 

𝜺0𝑦(𝒘𝑖) =
1

2
(
𝜕𝑤

𝜕𝑦
)2 = 

1

2
∑∑

(

 
 
 
 
 
 
 

𝜑𝑖𝑚𝑐𝜑𝑖𝑛𝑐

𝜋2

𝜆𝑚𝜆𝑛
cos (

𝜋𝑥

𝜆𝑚
)cos (

𝜋𝑥

𝜆𝑛
)

+𝜑𝑖𝑚𝑠𝜑𝑖𝑛𝑠

𝜋2

𝜆𝑚𝜆𝑛
sin (

𝜋𝑥

𝜆𝑚
)sin (

𝜋𝑥

𝜆𝑛
)

+𝜑𝑖𝑚𝑐𝜑𝑖𝑛𝑠

𝜋2

𝜆𝑚𝜆𝑛
cos (

𝜋𝑥

𝜆𝑚
)sin (

𝜋𝑥

𝜆𝑛
)

+𝜑𝑖𝑚𝑠𝜑𝑖𝑛𝑐

𝜋2

𝜆𝑚𝜆𝑛
sin (

𝜋𝑥

𝜆𝑚
)cos (

𝜋𝑥

𝜆𝑛
)
)

 
 
 
 
 
 
 

𝑛𝑚

 

 

 

 

 

 

…(4.15) 

  

𝜺0𝑥𝑦(𝒘𝑖) =
𝜕𝑤

𝜕𝑥
∙
𝜕𝑤

𝜕𝑦
= 

∑∑
𝜋

𝜆𝑚

(

 
 
 
 
 
 
 

𝑤𝑖𝑚𝑠𝜑𝑖𝑛𝑐

𝜋2

𝜆𝑚𝜆𝑛
cos (

𝜋𝑥

𝜆𝑚
)cos (

𝜋𝑥

𝜆𝑛
)

−𝑤𝑖𝑚𝑐𝜑𝑖𝑛𝑐

𝜋2

𝜆𝑚𝜆𝑛
sin (

𝜋𝑥

𝜆𝑚
)cos (

𝜋𝑥

𝜆𝑛
)

+𝑤𝑖𝑚𝑠𝜑𝑖𝑛𝑠

𝜋2

𝜆𝑚𝜆𝑛
cos (

𝜋𝑥

𝜆𝑚
)sin (

𝜋𝑥

𝜆𝑛
)

−𝑤𝑖𝑚𝑐𝜑𝑖𝑛𝑠

𝜋2

𝜆𝑚𝜆𝑛
sin (

𝜋𝑥

𝜆𝑚
)sin (

𝜋𝑥

𝜆𝑛
)
)

 
 
 
 
 
 
 

𝑛𝑚

 

…(4.16) 

  

Substituting 𝜆𝑚 = 𝑙 𝑚⁄ , 𝜆𝑛 = 𝑙 𝑛⁄  into Equations (4.14)-(4.16) and simplifying, 
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𝜺0𝑥(𝒘𝑖) = 

𝜋2

4𝑙2
∑∑𝑚𝑛

(

 
 
 
 
 

(𝑤𝑖𝑚𝑐𝑤𝑖𝑛𝑐 + 𝑤𝑖𝑚𝑠𝑤𝑖𝑛𝑠)cos[(𝑚 − 𝑛)
𝜋𝑥

𝑙
]

+(𝑤𝑖𝑚𝑠𝑤𝑖𝑛𝑠 − 𝑤𝑖𝑚𝑐𝑤𝑖𝑛𝑐)cos[(𝑚 + 𝑛)
𝜋𝑥

𝑙
]

+(−𝑤𝑖𝑚𝑠𝑤𝑖𝑛𝑐 − 𝑤𝑖𝑚𝑐𝑤𝑖𝑛𝑠)sin[(𝑚 + 𝑛)
𝜋𝑥

𝑙
]

+(−𝑤𝑖𝑚𝑐𝑤𝑖𝑛𝑐 + 𝑤𝑖𝑚𝑠𝑤𝑖𝑛𝑠)sin[(𝑚 − 𝑛)
𝜋𝑥

𝑙
])

 
 
 
 
 

𝑛𝑚

 
…(4.17) 

  

𝜺0𝑦(𝒘𝑖) =
1

4
∑∑

(

 
 
 
 
 

(𝜑𝑖𝑚𝑐𝜑𝑖𝑛𝑐 + 𝜑𝑖𝑚𝑠𝜑𝑖𝑛𝑠)cos[(𝑚 − 𝑛)
𝜋𝑥

𝑙
]

+(𝜑𝑖𝑚𝑐𝜑𝑖𝑛𝑐 − 𝜑𝑖𝑚𝑠𝜑𝑖𝑛𝑠)cos[(𝑚 + 𝑛)
𝜋𝑥

𝑙
]

+(𝜑𝑖𝑚𝑠𝜑𝑖𝑛𝑐 − 𝜑𝑖𝑚𝑐𝜑𝑖𝑛𝑠)sin[(𝑚 − 𝑛)
𝜋𝑥

𝑙
]

+(𝜑𝑖𝑚𝑐𝜑𝑖𝑛𝑠 + 𝜑𝑖𝑚𝑠𝜑𝑖𝑛𝑐)sin[(𝑚 + 𝑛)
𝜋𝑥

𝑙
])

 
 
 
 
 

𝑛𝑚

 …(4.18) 

  

𝜺0𝑥𝑦(𝒘𝑖) = 

𝜋

2𝑙
∑∑𝑚

(

 
 
 
 
 

(𝑤𝑖𝑚𝑐𝜑𝑖𝑛𝑐 + 𝑤𝑖𝑚𝑠𝜑𝑖𝑛𝑠)cos[(𝑚 − 𝑛)
𝜋𝑥

𝑙
]

+(𝑤𝑖𝑚𝑠𝜑𝑖𝑛𝑐 − 𝑤𝑖𝑚𝑐𝜑𝑖𝑛𝑠)cos[(𝑚 + 𝑛)
𝜋𝑥

𝑙
]

+(−𝑤𝑖𝑚𝑐𝜑𝑖𝑛𝑐 + 𝑤𝑖𝑚𝑠𝜑𝑖𝑛𝑠)sin[(𝑚 + 𝑛)
𝜋𝑥

𝑙
]

+(−𝑤𝑖𝑚𝑐𝜑𝑖𝑛𝑐 + 𝑤𝑖𝑚𝑠𝜑𝑖𝑛𝑠)sin[(𝑚 − 𝑛)
𝜋𝑥

𝑙
])

 
 
 
 
 

𝑛𝑚

 
…(4.19) 

 

Here c and s denote the cosine and sin components respectively. The values of (m-n) and (m+n) 

define the number of in-plane half-wavelengths 𝜆𝑚 to be used, which are generalized from 

summations and subtractions of the out-of-plane wavelength terms. For example, if 𝜉 = 1 and 

𝑞 = 2  in Equation 3.12, the out-of-plane half-wavelengths are m=l/m, m=(1,3,5) and the 

summations and subtractions are shown in Tables 4.1 and 4.2, respectively. 

Considering the unique values in Tables 4.1 and 4.2, the half-wavelengths for the in-plane 

displacements will be 𝜆𝑗 =  𝑙/𝒌𝑗 , k = (0,1,2,3,4,5,6,8,10). When (m-n) = 0, i.e. the half-

wavelength j = ∞, its cosine term is a constant term while its sine term is zero and is omitted 

from the analysis. 
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Summations n=1 n=3 n=5 

m=1 2 4 6 

m =3 4 6 8 

m =5 6 8 10 

             

Table 4.1. Summations of half-wavelengths l/m and l/n, m, n = (1,3,5) 

 

Subtractions n=1 n=3 n=5 

m=1 0 -2 -4 

m =3 2 0 -2 

m =5 4 2 0 

            

Table 4.2. Subtractions of half-wavelengths l/m and l/n, m, n = (1,3,5) 

The vector 𝜿0(𝒘𝑖) in Equation 4.5 can be written [

𝜿0𝑥(𝒘𝑖)

𝜿0𝑦(𝒘𝑖)

𝜿0𝑥𝑦(𝒘𝑖)
], where 

𝜿0𝑥(𝒘𝑖) =  −
𝜕2𝑤𝑖

𝜕𝑥2
= ∑

𝜋2

𝜆2
(𝑤𝑖𝑚𝑐𝑐𝑜𝑠

𝑚𝜋𝑥

𝑙
+ 𝑤𝑖𝑚𝑠𝑠𝑖𝑛

𝑚𝜋𝑥

𝑙
)

𝑚

 …(4.20) 

𝜿0𝑦(𝒘𝑖) =  −
𝜕2𝑤𝑖

𝜕𝑦2
= ∑(𝜑𝑖𝑚𝑐

′ 𝑐𝑜𝑠
𝑚𝜋𝑥

𝑙
+ 𝜑𝑖𝑚𝑠

′ 𝑠𝑖𝑛
𝑚𝜋𝑥

𝑙
)

𝑚

 …(4.21) 

𝜿0𝑥𝑦(𝒘𝑖) =  −2
𝜕2𝑤𝑖

𝜕𝑥𝜕𝑦
=  ∑2

𝜋

𝜆
(𝜑𝑖𝑚𝑐𝑠𝑖𝑛

𝑚𝜋𝑥

𝑙
+ 𝜑𝑖𝑚𝑠𝑐𝑜𝑠

𝑚𝜋𝑥

𝑙
)

𝑚

 …(4.22) 

An analogous procedure can be used to find the curvatures 𝜿i as shown in Equations 4.20-4.22. 

Observing Equations 4.5, 4.20-4.22, curvatures 𝜿i are functions only of out-of-plane deflection 

w which is equivalent to 𝜺0(𝒘𝑖). Their calculation therefore only requires the half-wavelengths 

for out-of-plane displacement which are pre-defined in VICON. Therefore the half-

wavelengths for the in-plane displacement are considered as pre-defined for the whole 

postbuckling analysis. 
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If m = l/m, m = [1], i.e. the plate is assumed to vary with one single sinusoidal term along the 

longitudinal direction, the half-wavelengths for the in-plane variations are, based on the above 

calculation procedure, (0, 1, 2). This is the assumption made for the previous ‘Improved exact 

strip method’ (Che, 2010; Zhang 2018) for in-plane displacements. Therefore, the improved 

exact strip method can be considered as a special case in CWPAN which is appropriate when 

the plate is loaded only in compression and is made from isotropic material. 

The following calculations for the derivatives with respect to y of strains and curvatures will 

be involved in the equilibrium equations that will be described in the next chapter. These 

derivatives can be directly calculated from Equations 4.17-4.19 and Equations 4.20-4.22. 

 

𝜺0𝑥(𝒘𝑖) =
𝜋2

4𝑙2
∑∑𝑚𝑛 ∗

𝑛𝑚

 

(

 
 
 
 
 

(𝜑𝑖𝑚𝑐𝑤𝑖𝑛𝑐 + 𝑤𝑖𝑚𝑐𝜑𝑖𝑛𝑐 + 𝜑𝑖𝑚𝑠𝑤𝑖𝑛𝑠 + 𝑤𝑖𝑚𝑠𝜑𝑖𝑛𝑠)cos[(𝑚 − 𝑛)
𝜋𝑥

𝑙
]

+(𝜑𝑖𝑚𝑠𝑤𝑖𝑛𝑠 + 𝑤𝑖𝑚𝑠𝜑𝑖𝑛𝑠 − 𝜑𝑖𝑚𝑐𝑤𝑖𝑛𝑐 + 𝑤𝑖𝑚𝑐𝜑𝑖𝑛𝑐)cos[(𝑚 + 𝑛)
𝜋𝑥

𝑙
]

+(−𝜑𝑖𝑚𝑠𝑤𝑖𝑛𝑐 − 𝑤𝑖𝑚𝑠𝜑𝑖𝑛𝑐 − 𝜑𝑖𝑚𝑐𝑤𝑖𝑛𝑠 − 𝑤𝑖𝑚𝑐𝜑𝑖𝑛𝑠)sin[(𝑚 + 𝑛)
𝜋𝑥

𝑙
]

+(−𝜑𝑖𝑚𝑐𝑤𝑖𝑛𝑐−𝑤𝑖𝑚𝑐𝜑𝑖𝑛𝑐 + 𝜑𝑖𝑚𝑠𝑤𝑖𝑛𝑠 + 𝑤𝑖𝑚𝑠𝜑𝑖𝑛𝑠)sin[(𝑚 − 𝑛)
𝜋𝑥

𝑙
] )

 
 
 
 
 

 

 

 

…(4.23) 

  

𝜺0𝑥(𝒘𝑖) =
1

4
∑∑

𝑛𝑚

 

(

 
 
 
 
 

(𝜑𝑖𝑚𝑐
′ 𝜑𝑖𝑛𝑐 + 𝜑𝑖𝑚𝑐𝜑𝑖𝑛𝑐

′ + 𝜑𝑖𝑚𝑠
′ 𝜑𝑖𝑛𝑠 + 𝜑𝑖𝑚𝑠𝜑𝑖𝑛𝑠

′ )cos[(𝑚 − 𝑛)
𝜋𝑥

𝑙
]

+ (𝜑𝑖𝑚𝑐
′ 𝜑𝑖𝑛𝑐 + 𝜑

𝑖𝑚𝑐
𝜑𝑖𝑛𝑐

′ − 𝜑𝑖𝑚𝑠
′ 𝜑𝑖𝑛𝑠 − 𝜑𝑖𝑚𝑠𝜑𝑖𝑛𝑠

′ ) cos[(𝑚 + 𝑛)
𝜋𝑥

𝑙
]

+(𝜑𝑖𝑚𝑠
′ 𝜑𝑖𝑛𝑐 + 𝜑𝑖𝑚𝑠𝜑𝑖𝑛𝑐

′ − 𝜑𝑖𝑚𝑐
′ 𝜑𝑖𝑛𝑠 − 𝜑𝑖𝑚𝑐𝜑𝑖𝑛𝑠

′ )sin[(𝑚 − 𝑛)
𝜋𝑥

𝑙
]

+ (𝜑𝑖𝑚𝑐
′ 𝜑𝑖𝑛𝑠 + 𝜑

𝑖𝑚𝑐
𝜑𝑖𝑛𝑠

′ + 𝜑𝑖𝑚𝑠
′ 𝜑𝑖𝑛𝑐 + 𝜑𝑖𝑚𝑠𝜑𝑖𝑛𝑐

′ ) sin[(𝑚 + 𝑛)
𝜋𝑥

𝑙
])

 
 
 
 
 

 

 

 

…(4.24) 
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𝜺0𝑥𝑦(𝒘𝑖) =
𝜋

4𝑙
∑∑𝑚

𝑛𝑚

 

(

 
 
 
 
 

(𝜑𝑖𝑚𝑐𝜑𝑖𝑛𝑐 + 𝑤𝑖𝑚𝑐𝜑𝑖𝑛𝑐
′ + 𝜑𝑖𝑚𝑠𝜑𝑖𝑛𝑠 + 𝑤𝑖𝑚𝑠𝜑𝑖𝑛𝑠

′ )cos[(𝑚 − 𝑛)
𝜋𝑥

𝑙
]

+(𝜑𝑖𝑚𝑠𝜑𝑖𝑛𝑐 + 𝑤𝑖𝑚𝑠𝜑𝑖𝑛𝑐
′ − 𝜑𝑖𝑚𝑐𝜑𝑖𝑛𝑠 − 𝑤𝑖𝑚𝑐𝜑𝑖𝑛𝑠

′ )cos[(𝑚 + 𝑛)
𝜋𝑥

𝑙
]

+(−𝜑𝑖𝑚𝑐𝜑𝑖𝑛𝑐 − 𝑤𝑖𝑚𝑐𝜑𝑖𝑛𝑐
′ + 𝜑𝑖𝑚𝑠𝜑𝑖𝑛𝑠 + 𝑤𝑖𝑚𝑠𝜑𝑖𝑛𝑠

′ )sin[(𝑚 + 𝑛)
𝜋𝑥

𝑙
]

+(−𝜑𝑖𝑚𝑐𝜑𝑖𝑛𝑐 − 𝑤𝑖𝑚𝑐𝜑𝑖𝑛𝑐
′ + 𝜑𝑖𝑚𝑠𝜑𝑖𝑛𝑠 + 𝑤𝑖𝑚𝑠𝜑𝑖𝑛𝑠

′ )sin[(𝑚 − 𝑛)
𝜋𝑥

𝑙
])

 
 
 
 
 

 

…(4.25) 

 

𝜿0𝑥
′ (𝒘𝑖) =  ∑

𝜋2

𝜆2
(𝜑𝑖𝑚𝑐𝑐𝑜𝑠

𝑚𝜋𝑥

𝑙
+ 𝜑𝑖𝑚𝑠𝑠𝑖𝑛

𝑚𝜋𝑥

𝑙
)

𝑚

 …(4.26) 

𝜿0y
′ (𝒘𝑖) =  ∑(𝜑𝑖𝑚𝑐

′′ 𝑐𝑜𝑠
𝑚𝜋𝑥

𝑙
+ 𝜑𝑖𝑚𝑠

′′ 𝑠𝑖𝑛
𝑚𝜋𝑥

𝑙
)

𝑚

 …(4.27) 

𝜿0𝑥𝑦
′ (𝒘𝑖) =  ∑2

𝜋

𝜆
(𝜑𝑖𝑚𝑐

′ 𝑠𝑖𝑛
𝑚𝜋𝑥

𝑙
+ 𝜑𝑖𝑚𝑠

′ 𝑐𝑜𝑠
𝑚𝜋𝑥

𝑙
)

𝑚

 …(4.28) 

where 𝜑𝑖𝑚𝑐
′ , 𝜑𝑖𝑛𝑐

′  and 𝜑𝑖𝑚𝑐
′′ , 𝜑𝑖𝑛𝑐

′′  are calculated by multiplying φ by the first and second 

order of finite difference approximations. 

4.4. Calculation of stresses and derivatives of stresses 

The stress resultants 𝑁𝑥𝑖 , 𝑁𝑦𝑖  ,𝑁𝑥𝑦𝑖  and bending moment 𝑀𝑥𝑖 , 𝑀𝑦𝑖  ,𝑀𝑥𝑦𝑖  are needed for the 

equilibrium equations and final analysis 

[
 
 
 
 
 
 
𝑁𝑥𝑖

𝑁𝑦𝑖

𝑁𝑥𝑦𝑖

𝑀𝑥𝑖

𝑀𝑦𝑖

𝑀𝑥𝑦𝑖]
 
 
 
 
 
 

=

[
 
 
 
 
 
𝐴𝑖11

𝐴𝑖12

𝐴𝑖16

  
𝐴𝑖12

𝐴𝑖22

𝐴𝑖26

  
𝐴𝑖16

𝐴𝑖26

𝐴𝑖66

𝐵𝑖11

𝐵𝑖12

𝐵𝑖16

  
𝐵𝑖12

𝐵𝑖22

𝐵𝑖26

  
𝐵𝑖16

𝐵𝑖26

𝐵𝑖66

𝐵𝑖11

𝐵𝑖12

𝐵𝑖16

  

𝐵𝑖12

𝐵𝑖22

𝐵𝑖26

  

𝐵𝑖16

𝐵𝑖26

𝐵𝑖66

𝐷𝑖11

𝐷𝑖12

𝐷𝑖16

  

𝐷𝑖12

𝐷𝑖22

𝐷𝑖26

  

𝐷𝑖16

𝐷𝑖26

𝐷𝑖66]
 
 
 
 
 

[
 
 
 
 
 
𝜀𝑥𝑖

𝜀𝑦𝑖

𝜀𝑥𝑦𝑖

𝜅𝑥𝑖

𝜅𝑦𝑖

𝜅𝑥𝑦𝑖]
 
 
 
 
 

 …(4.29) 

Substituting Equation 4.29 into Equations 4.4 and 4.5 gives 
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𝑵𝒊 = 𝑨 ∗ [𝜺0(𝒘𝑖) + 𝜺1𝒖𝑖 + 𝜺2 ∗ 𝒇 ∗ 𝒖𝑖] + 𝑩 ∗ 𝜿0(𝒘𝑖)  …(4.30) 

𝑴𝒊 = 𝑩 ∗ [𝜺0(𝒘𝑖) + 𝜺1𝒖𝑖 + 𝜺2 ∗ 𝒇 ∗ 𝒖𝑖] + 𝑫 ∗ 𝜿0(𝒘𝑖)  …(4.31) 

where 

𝑵𝑖 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑁𝑥1,0

𝑁𝑥1,1𝑐

𝑁𝑥1,1𝑠

𝑁𝑥1,2𝑐

⋮
𝑁𝑦1,0

𝑁𝑦1,1𝑐

𝑁𝑦1,1𝑠

𝑁𝑦1,2𝑐

⋮
𝑁𝑥𝑦1,0

𝑁𝑥𝑦1,1𝑐

𝑁𝑥𝑦1,1𝑠

𝑁𝑥𝑦1,2𝑐

⋮
𝑁𝑥𝑛,0

𝑁𝑥𝑛,1𝑐

𝑁𝑥𝑛,1𝑠

𝑁𝑥𝑛,2𝑐

⋮
𝑁𝑦𝑛,0

𝑁𝑦𝑛,1𝑐

𝑁𝑦𝑛,1𝑠

𝑁𝑦𝑛,2𝑐

⋮
𝑁𝑥𝑦𝑛,0

𝑁𝑥𝑦𝑛,1𝑐

𝑁𝑥𝑦𝑛,1𝑠

𝑁𝑥𝑦𝑛,2𝑐

⋮ ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ,  𝑴𝑖 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑀𝑥1,0

𝑀𝑥1,1𝑐

𝑀𝑥1,1𝑠

𝑀𝑥1,2𝑐

⋮
𝑀𝑦1,0

𝑀𝑦1,1𝑐

𝑀𝑦1,1𝑠

𝑀𝑦1,2𝑐

⋮
𝑀𝑥𝑦1,0

𝑀𝑥𝑦1,1𝑐

𝑀𝑥𝑦1,1𝑠

𝑀𝑥𝑦1,2𝑐

⋮
𝑀𝑥𝑛,0

𝑀𝑥𝑛,1𝑐

𝑀𝑥𝑛,1𝑠

𝑀𝑥𝑛,2𝑐

⋮
𝑀𝑦𝑛,0

𝑀𝑦𝑛,1𝑐

𝑀𝑦𝑛,1𝑠

𝑀𝑦𝑛,2𝑐

⋮
𝑀𝑥𝑦𝑛,0

𝑀𝑥𝑦𝑛,1𝑐

𝑀𝑥𝑦𝑛,1𝑠

𝑀𝑥𝑦𝑛,2𝑐

⋮ ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 …(4.32(a),(b)) 

𝐀̅ = [

𝐴11 ∗ 𝟎2𝐾−1∗2𝐾−1 𝐴12 ∗ 𝟎2𝐾−1∗2𝐾−1 𝐴16 ∗ 𝟎2𝐾−1∗2𝐾−1

𝐴21 ∗ 𝟎2𝐾−1∗2𝐾−1 𝐴22 ∗ 𝟎2𝐾−1∗2𝐾−1 𝐴26 ∗ 𝟎2𝐾−1∗2𝐾−1

𝐴61 ∗ 𝟎2𝐾−1∗2𝐾−1 𝐴62 ∗ 𝟎2𝐾−1∗2𝐾−1 𝐴66 ∗ 𝟎2𝐾−1∗2𝐾−1

], …(4.33(a),(b)) 
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𝐀 =

[
 
 
 
 

𝐀̅ 𝟎6𝐾−3∗6𝐾−3 …

𝟎6𝐾−3∗6𝐾−3 𝐀̅ …
⋮ ⋮ ⋱

            

𝟎6𝐾−3∗6𝐾−3

𝟎6𝐾−3∗6𝐾−3

𝟎6𝐾−3∗6𝐾−3 
𝟎6𝐾−3∗6𝐾−3  𝟎6𝐾−3∗6𝐾−3     𝟎6𝐾−3∗6𝐾−3 𝐀̅ ]

 
 
 
 

 

where 𝟎6𝐾−3∗6𝐾−3  is a zero matrix with the same size as 𝐀̅ 

Similarly 

 

𝑩̅ = [

𝐵11 ∗ 𝟎2𝐾−1∗2𝐾−1 𝐵12 ∗ 𝟎2𝐾−1∗2𝐾−1 𝐵16 ∗ 𝟎2𝐾−1∗2𝐾−1

𝐵21 ∗ 𝟎2𝐾−1∗2𝐾−1 𝐵22 ∗ 𝟎2𝐾−1∗2𝐾−1 𝐵26 ∗ 𝟎2𝐾−1∗2𝐾−1

𝐵61 ∗ 𝟎2𝐾−1∗2𝐾−1 𝐵62 ∗ 𝟎2𝐾−1∗2𝐾−1 𝐵66 ∗ 𝟎2𝐾−1∗2𝐾−1

], 

𝐁 =

[
 
 
 
 

𝑩̅ 𝟎6𝐾−3∗6𝐾−3 …

𝟎6𝐾−3∗6𝐾−3 𝑩̅ …
⋮ ⋮ ⋱

       

𝟎6𝐾−3∗6𝐾−3

𝟎6𝐾−3∗6𝐾−3

𝟎6𝐾−3∗6𝐾−3 
  𝟎6𝐾−3∗6𝐾−3  𝟎6𝐾−3∗6𝐾−3      𝟎6𝐾−3∗6𝐾−3 𝑩̅]

 
 
 
 

 

…(4.34(a),(b)) 

𝑫̅ = [

𝐷11 ∗ 𝟎2𝐾−1∗2𝐾−1 𝐷12 ∗ 𝟎2𝐾−1∗2𝐾−1 𝐷16 ∗ 𝟎2𝐾−1∗2𝐾−1

𝐷21 ∗ 𝟎2𝐾−1∗2𝐾−1 𝐷22 ∗ 𝟎2𝐾−1∗2𝐾−1 𝐷26 ∗ 𝟎2𝐾−1∗2𝐾−1

𝐷61 ∗ 𝟎2𝐾−1∗2𝐾−1 𝐷62 ∗ 𝟎2𝐾−1∗2𝐾−1 𝐷66 ∗ 𝟎2𝐾−1∗2𝐾−1

], 

𝐃 =

[
 
 
 
 

𝑫̅ 𝟎6𝐾−3∗6𝐾−3 …

𝟎6𝐾−3∗6𝐾−3 𝑫̅ …
⋮ ⋮ ⋱

       

𝟎6𝐾−3∗6𝐾−3

𝟎6𝐾−3∗6𝐾−3

𝟎6𝐾−3∗6𝐾−3 
  𝟎6𝐾−3∗6𝐾−3 𝟎6𝐾−3∗6𝐾−3      𝟎6𝐾−3∗6𝐾−3 𝑫̅]

 
 
 
 

 

…(4.35(a),(b)) 

 

The derivatives of the stress resultants are given by 

𝑵𝒊
′ = 𝑨 ∗ [𝜺0

′ (𝒘𝑖) + 𝜺1 ∗ 𝒇 ∗ 𝒖𝑖 + 𝜺2 ∗ 𝒔 ∗ 𝒖𝑖] + 𝑩 ∗ 𝜿0
′ (𝒘𝑖) …(4.36) 
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where  

𝑵𝒊
′ =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑁𝑥1,0
′

𝑁𝑥1,1𝑐
′

𝑁𝑥1,1𝑠
′

𝑁𝑥1,2𝑐
′

⋮
𝑁𝑦1,0

′

𝑁𝑦1,1𝑐
′

𝑁𝑦1,1𝑠
′

𝑁𝑦1,2𝑐
′

⋮
𝑁𝑥𝑦1,0

′

𝑁𝑥𝑦1,1𝑐
′

𝑁𝑥𝑦1,1𝑠
′

𝑁𝑥𝑦1,2𝑐
′

⋮
𝑁𝑥𝑛,0

′

𝑁𝑥𝑛,1𝑐
′

𝑁𝑥𝑛,1𝑠
′

𝑁𝑥𝑛,2𝑐
′

⋮
𝑁𝑦𝑛,0

′

𝑁𝑦𝑛,1𝑐
′

𝑁𝑦𝑛,1𝑠
′

𝑁𝑦𝑛,2𝑐
′

⋮
𝑁𝑥𝑦𝑛,0

′

𝑁𝑥𝑦𝑛,1𝑐
′

𝑁𝑥𝑦𝑛,1𝑠
′

𝑁𝑥𝑦𝑛,2𝑐
′

⋮ ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 …(4.37) 

s is the matrix of second order finite differences 
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This matrix is obtained by differentiation of Equation 4.10 at node i. Similar to the previous 

differentiations the middle nodes are given by 

𝑢𝑖
′′ =

𝑢
𝑖+

𝑏
2

′ − 𝑢
𝑖−

𝑏
2

′

𝑏
 

𝑢𝑖
′′ =

𝑢𝑖+1 − 𝑢𝑖

𝑏
−

𝑢𝑖 − 𝑢𝑖−1

𝑏
𝑏

 

𝑢𝑖
′′ =

𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖+1

𝑏2
 

…(4.39) 

For the first node 

𝑢𝑖
′′ = 𝑢𝑖+1

′′ − (𝑢𝑖+2
′′ − 𝑢𝑖+1

′′) 

𝑢𝑖
′′ = 2𝑢𝑖+1

′′ − 𝑢𝑖+2
′′ 

𝑢𝑖
′′ =

2𝑢𝑖 − 5𝑢𝑖+1 + 4𝑢𝑖+2 − 𝑢𝑖+3

𝑏2
 

…(4.40) 

And for the last node: 

𝒔 = 

=
1

𝑏2

[
 
 
 
 
 
 
 
2 ∗ 𝑰2𝐾∗2𝐾

𝑰2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

⋮
𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

    

−5 ∗ 𝑰2𝐾∗2𝐾

−2 ∗ 𝑰2𝐾∗2𝐾

𝑰2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

⋮
𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

    

4 ∗ 𝑰2𝐾∗2𝐾

−𝑰2𝐾∗2𝐾

−2 ∗ 𝑰2𝐾∗2𝐾

𝑰2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

⋮
𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

    

−𝑰2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

−𝑰2𝐾∗2𝐾

−2 ∗ 𝑰2𝐾∗2𝐾

𝑰2𝐾∗2𝐾

⋮
𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

  

𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

−𝑰2𝐾∗2𝐾

−2 ∗ 𝑰2𝐾∗2𝐾

⋮
𝟎2𝐾∗2𝐾

−𝑰2𝐾∗2𝐾

⋯
⋯
⋯
⋯
⋯
⋱

𝑰2𝐾∗2𝐾

4 ∗ 𝑰2𝐾∗2𝐾

   

𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

−2 ∗ 𝑰2𝐾∗2𝐾

−5 ∗ 𝑰2𝐾∗2𝐾

 

𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

𝟎2𝐾∗2𝐾

−1 ∗ 𝑰2𝐾∗2𝐾

    2 ∗ 𝑰2𝐾∗2𝐾]
 
 
 
 
 
 
 

 

…(4.38) 
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𝑢𝑖
′′ =

−𝑢𝑖−3 + 4𝑢𝑖−2 − 5𝑢𝑖−1 + 2𝑢𝑖

𝑏2
 …(4.41) 

Finite difference approximation is a numerical technique that is widely used for solving 

differential equations in modern numerical analysis. It aims to find the derivatives at discrete 

points based on finite difference and the values from adjacent points. It is proven to be reliable 

in solving complex differential equations for buckling and postbuckling analysis (Groosmann 

et.al. 2007). However the accuracy of the finite difference approximation depends largely on 

the distance between neighbouring nodes (b) (Liszka and Orkisz, 1980). It can be seen from 

the above equations that decreasing the distance can lead to a better accuracy, especially for 

the second derivative which  has a quadratic relation with 𝑏2. On the contrary, increasing the 

spacing can lead to less accurate solutions. The number of nodes and therefore the width of the 

strips b is another predefined value for the whole of the postbuckling analysis, increases or 

decreases to which can affect the accuracy and computational efficiency of the calculation 

significantly. More investigation and discussion on the effect of changes to the number of nodes 

and the width of the strips is presented Chapter 6. 

 

 

4.5. Equilibrium equations 

According to classical plate theory the equilibrium equations at the neutral surface are written 

as 

𝜕𝑁𝑦𝑖

𝜕𝑦
+

𝜕𝑁𝑥𝑦𝑖

𝜕𝑥
= 0 …(4.42) 

𝜕𝑁𝑥𝑦𝑖

𝜕𝑦
+

𝜕𝑁𝑥𝑖

𝜕𝑥
= 0 …(4.43) 

which can be simplified in matrix form as  
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𝑻 ∗ 𝑵𝒊
′ + 𝑹 ∗ 𝑵𝒊= 0 …(4.44) 

where 

𝑻̅ = [
𝟎2𝐾−1∗2𝐾−1 𝟎2𝐾−1∗2𝐾−1 𝐈2𝐾−1∗2𝐾−1

𝟎2𝐾−1∗2𝐾−1 𝐈2𝐾−1∗2𝐾−1 𝟎2𝐾−1∗2𝐾−1
],  

𝑹̅ = [
𝑱 𝟎2𝐾−1 𝟎2𝐾−1

𝟎2𝐾−1 𝟎2𝐾−1 𝑱
] 

𝑻 =

[
 
 
 
 

𝑻̅ 𝟎3𝐾∗2𝐾 …

𝟎3𝐾∗2𝐾 𝑻̅ …
⋮ ⋮ ⋱

     
𝟎3𝐾∗2𝐾

𝟎3𝐾∗2𝐾

𝟎3𝐾∗2𝐾 
   𝟎3𝐾∗2𝐾  𝟎3𝐾∗2𝐾       𝟎3𝐾∗2𝐾 𝑻̅]

 
 
 
 

,  

𝑹 =

[
 
 
 
 

𝑹̅ 𝟎3𝐾∗2𝐾 …

𝟎3𝐾∗2𝐾 𝑹̅ …
⋮ ⋮ ⋱

     
𝟎3𝐾∗2𝐾

𝟎3𝐾∗2𝐾

𝟎3𝐾∗2𝐾 
     𝟎3𝐾∗2𝐾 𝟎3𝐾∗2𝐾     𝟎3𝐾∗2𝐾 𝑹̅]

 
 
 
 

 

 

…(4.45(a),(b),(c),(d)) 

Substituting Equations 4.30 and 4.36  into Equation 4.44, 

or 

[𝑻 ∗ 𝑨 ∗ [𝜺1 ∗ 𝒇 + 𝜺2 ∗ 𝒔] + 𝑹 ∗ 𝑨 ∗ (𝜺1 + 𝜺2 ∗ 𝒇)] ∗ 𝒖𝑖 = 

−𝑻 ∗ 𝑨 ∗ 𝜺0
′ (𝒘𝑖)−𝑹 ∗ 𝑨 ∗ 𝜺0(𝒘𝑖) − 𝑻 ∗ 𝑩 ∗ 𝜿0

′ (𝒘𝑖) − 𝑹 ∗ 𝑩 ∗ 𝜿0(𝒘𝑖) 

…(4.47) 

To solve for in-plane displacements 𝒖𝒊, Equation 4.47 can be written in a simpler form as: 

𝑳𝒖𝒊 = 𝑯(𝒘)  …(4.48) 

𝑻 ∗ 𝑨 ∗ [𝜺1 ∗ 𝒇 ∗ 𝒖𝑖 + 𝜺2 ∗ 𝒔 ∗ 𝒖𝑖] + 𝑹 ∗ 𝑨 ∗ (𝜺1𝒖𝑖 + 𝜺2 ∗ 𝒇 ∗ 𝒖𝑖) 

= −𝑻 ∗ 𝑨 ∗ 𝜺0
′ (𝒘𝑖) − 𝑹 ∗ 𝑨 ∗ 𝜺0(𝒘𝑖) − 𝑻 ∗ 𝑩 ∗ 𝜿0

′ (𝒘𝑖) − 𝑹 ∗ 𝑩 ∗ 𝜿0(𝒘𝑖) 

 

…(4.46) 
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Therefore 𝒖𝒊 can be obtained by; 

𝒖𝒊 = 𝑳−1𝑯(𝒘)  …(4.49) 

Where superscript -1  denotes the inverse of the matrix. 

From Equation 4.48, the matrix on the left hand side L is square and contains only constant 

coefficients, whilst on the right hand side H(w) is a non-linear function of out-of-plane 

displacements which changes at every postbuckling cycle.  To avoid repetitive calculations, 

the matrix L is assembled and 𝑳−1 calculated before starting the postbuckling analysis with 

𝑳−1  remaining constant throughout the whole calculation. Thus whenever the equilibrium 

equations are required to be solved,  the calculations are simplified , finding the function of the 

out-of-plane displacements w, H(w), by multiplying with the pre-calculated matrix 𝑳−1. 

Hence, the equilibrium equations in terms of u and v at the neutral surface are assembled. To 

finish the analysis, boundary conditions need to be considered before the equations are solved.  

4.6. Boundary and loading conditions 

To apply different in-plane boundary conditions, the equilibrium equations at the edges need 

to be modified correspondingly. Three in-plane boundary conditions are considered in this 

thesis: free edges, fixed edges and straight edges. In each case the longitudinal plate edges are 

constrained in the out-of-plane direction with no in-plane constraints applied to the transverse 

edges.  

Unlike in-plane boundary conditions, out-of-plane boundary conditions are applied through the 

modified Newton iteration scheme rather than the equilibrium equations, more detail of which 

is provided in Chapter 5. 

Free edges: The free edge case has no in-plane constraints applied i.e. the four boundaries are 

free to move and rotate in-plane as shown in Figure 4.3. Therefore the stress resultants 𝑵𝒙 and 
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𝑵𝒚 are zero at the longitudinal boundaries. So in the equilibrium equations (Equations 4.42 and 

4.43), the equations that represent the constraints along the four edges should be replaced by: 

 

𝑵𝒙𝟏 = 0 and 𝑵𝒙𝒏 = 0 

…(4.50) 

𝑵𝒚𝟏 = 0 and 𝑵𝒚𝒏 = 0 

 

Figure 4.3. Initial postbuckling of a rectangular plate with  longitudinal free edges under 

combined uniform compressive and shear stresses. The black rectangles indicate rigid bodies 

that control the displacements applied to the plate in the postbuckling analysis 

Fixed edges: Fixed edges have displacement constraints applied to all the transverse 

components  i.e. 𝒖1 ≠ 0 ,  𝒖𝑛 ≠ 0 and  𝒗1 = 0 ,  𝒗𝑛 = 0, see Figure 4.4. Therefore stress 

resultants 𝑵𝑥 at the boundaries are zero and the following equations replace the equilibrium 

equations; 

𝑵𝒙𝟏 = 0 and 𝒗1 = 0 

…(4.51) 

𝑵𝒚𝟏 = 0 and 𝒗𝑛 = 0 
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Figure 4.4. Initial postbuckling of a rectangular plate with  longitudinal fixed edges under 

combined uniform compressive and shear stresses 

 

Straight edges: This boundary condition requires the longitudinal edges to stay straight 

throughout the postbuckling analysis whilst allowing them to move towards or away from each 

other, see Figure 4.5. This results in the constant transverse displacement terms being nonzero, 

i.e. 𝑣1,0 ≠ 0 and 𝑣𝑛,0 ≠ 0, the constant transverse stress terms being equal to zero, i.e. 𝑁𝑦1,0 =

0 and 𝑁𝑦𝑛,0 = 0, and all other transverse displacement amplitudes on the edges, corresponding 

to the longitudinally varying terms, being equal to zero. Since the edges are allowed to move 

freely in the u direction, the equations for u displacements are replaced by: 

𝑵𝒙𝟏 = 0 and 𝑵𝒙𝒏 = 0 …(4.52) 
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Figure 4.5. Initial postbuckling of a rectangular plate with  longitudinal straight edges under 

combined uniform compressive and shear stresses 

 

However these three cases all have the problem of free rigid body movement, causing the in-

plane equilibrium equations to be singular. To avoid this, two alternative methods are proposed 

here: 

1. Replace the equations representing all the displacement components terms at the central node 

by 𝒗 = 𝟎 and 𝒖 = 𝟎. or 

2. Replace just two equations for the constant part of the in-plane displacement at edges 𝑢1,0 =

0 and  𝑢𝑛,0 = 0. 

The first method is easy to apply and efficiently avoids the problem. However it constrains all 

the displacements in both directions at the middle node, causing redundant constraints.  This 

may lead to inaccurate results. 

The second method is more accurate. It has been found that for the assembled equilibrium 

equations, rigid body movement is caused by the equations for the constant part of the in-plane 

displacements 𝑢𝑖,0 and 𝑣1,0 which are singular at all nodes. The most efficient way to avoid 

this is to set one of these displacements to zero. In order to retain symmetry, two equations 

representing the constant part of the in-plane displacements at the first and last nodes 

respectively are replaced by 𝑢1,0 = 0 and  𝑢𝑛,0 = 0.  
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In terms of loading conditions, three different loading conditions are considered along the 

transverse edges: compression, pure shear and combined shear and compression. In the method 

presented, compressive loading along the longitudinal edges is not considered. It is well known 

that with more shear or anisotropy in the plate, the mode shape becomes more skewed and this 

makes it hard to converge on the postbuckling mode. Therefore composite plates loaded in pure 

shear are considered as the most extreme case. CWPAN also gives a good agreement with other 

numerical techniques when solving these extreme cases. A model has been built and analysed 

in chapter 6. 

When the equilibrium equations are fully assembled and modified, the in-plane displacements 

u and v can be solved analytically.  Since u and v are expressions of a series of trigonometric 

terms multiplied by coefficients, see Equation 4.2, equilibrium equations are solved to obtain 

these coefficients for the in-plane displacements. After obtaining u and v, substituting solutions 

back into Equations 4.4-4.5 and Equations 4.30-31 the stress resultants, bending moments and 

strains can all be obtained. Stress resultants and bending moments can also be obtained by 

substituting strains into Equation 4.29. It is worth noting that all the outputs have the same 

format as the initial assumptions, which are trigonometric terms at node level. To illustrate and 

compare the results with other methods, all results need to be converted to actual values at 

specified points. Solving equilibrium Equations 4.42 and 4.33 involves the derivatives of stress 

resultants 𝑁𝑥, 𝑁𝑦 and 𝑁𝑥𝑦 with respect to x or y. Those expressions for stress resultants consist 

of  constant terms 𝑁𝑥0, 𝑁𝑦0, and 𝑁𝑥𝑦0 respectively, which are not included in the in-plane 

equilibrium equations, and sinusoidal terms relating to half-wavelengths that are calculated in 

the initial calculation, see Equation 4.2. By breaking down these constant terms, it can be seen 

that they are only related to the end shortening strains 𝜀𝑥  and strains 𝛾𝑥𝑦  which contribute 

mostly to the in-plane displacements. Therefore there are no terms relating to end shortening 

stresses in the equilibrium equations, i.e. equations are only assembled to solve the sinusoidal 

part of the in-plane displacements (variation of displacements). Besides the strains and stresses 

are considered to be the second order derivatives of the in-plane displacements and the linear 

terms involving end shortening strain in Equation 4.2 are considered to be the first order of x 

and y. The end shortening strains therefore disappear in the equilibrium equations. To obtain 

the actual in-plane displacements, solutions solving the equilibrium equations are required to 

add end shortening stresses 𝜀𝑥 and strains 𝛾𝑥𝑦  back into equation 4.2 based on the locations of 

the points in the plate. Similarly since strains and stresses are obtained from substituting u and 

v into equation 4.4, it is necessary to add end shortening strains into the expressions for strains 
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as well. For stress resultant calculations, they can be directly obtained from  Equation 4.19 after 

calculations of the strains.  

 

4.7. Conclusions  

This chapter shows the full process of one iteration of postbuckling analysis from 

displacements assumptions to solving the in-plane equilibrium equations. Distributions of the 

stresses and strains can be obtained. Compared with the previous postbuckling analysis method 

the analysis assumes the component strips vary according to a sinusoidal series with a 

predefined set of half-wavelengths, rather than just two half-wavelengths. It achieves good 

accuracy when solving any anisotropic or shear load plates even for the most extreme cases 

like a plate under pure shear. With distributions of stresses obtained, uniform stress resultants 

can be calculated as the current equilibrium state’s applied load. These calculations are 

essential for postbuckling stiffness with more details provided in the next chapter. 

It is well known that postbuckling is normally considered as a large deflection regime in which 

non-linear terms in the governing equilibrium equations are required to capture the 

postbuckling mode accurately. Although von Kármán’s large deflection theory is used and 

higher order terms are considered in this approach, the equilibrium equations are still linear 

since the out-of-plane displacements and rotations are taken as known variables, significantly 

increasing computational efficiency.  

This process is referred to as the in-plane solutions for the rest of the thesis. However the in-

plane solutions requires out-of-plane displacements including rotations as known quantities. A 

technique to obtain the out-of-plane mode for each cycle of postbuckling is therefore required 

and presented in the next chapter. 
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Chapter 5. CWPAN: Newton 

Iteration and Convergence 

Procedure 

 

This chapter introduces a modified Newton iteration scheme and its supporting convergence 

procedure into CWPAN. Under the theory of the exact strip method, VICON assumes plate 

deformation varies as the sum of a series of sinusoidal terms with specified half-wavelengths, 

and solves the equilibrium equations analytically. It requires the out-of-plane buckling mode 

to be provided as input for each postbuckling cycle. The previously implemented Newton 

iteration schemes however only calculate the buckling mode for a single half-wavelength. Thus 

a new Newton iteration scheme is developed. The chapter is organized as follows. Section 5.1 

introduces the general background. Sections 5.2-5.3 present an overview and detailed 

explanations of the convergence procedure and a short introduction to the strategies applied in 

the procedure. Section 5.4 introduces the predefined parameters. Section 5.5 illustrates the new 

VICON type Newton iteration scheme. Section 5.6 describes the method of obtaining the 

approximation amplitude for the buckling mode. Section 5.7 presents the formulations of the 

equivalent uniform stress resultant calculations. The last section concludes the chapter. 

5.1. Overview 

In the previous chapter, a postbuckling analysis based on the use of the distributions of out-of-

plane displacements and the corresponding half-wavelengths for an assumed mode is presented. 

By solving the in-plane equilibrium equations analytically, the method can accurately capture 

the in-plane displacements and distributions of strains and stresses for any loading condition 

for symmetric laminates. However since out-of-plane displacements are required to obtain the 
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buckling mode at each cycle of the postbuckling process, a convergence method capable of 

calculating these out-of-plane displacements needs to be developed.  

It is well known that the mode of postbuckling of a structure changes as the applied load 

increases. While for a rectangular flat  structure that is isotropic and under only compressive 

load,  the regions of maximum displacement expand from the centre of the plates towards the 

unloaded edges and the postbuckling mode merely changes in shape.  For a composite or shear 

loaded plate however, the mode shape is increasingly skewed, due to the lack of symmetry 

within the structure, see Figure 5.1.  

 

 

(a) 

 

(b) 

Figure 5.1. Postbuckling mode shape analysed by CWPAN at cycles 1,10 and 20, showing 

contour plots of growing out-of-plane displacements. (a) Isotropic plate under compression, no 

skewing at any point of postbuckling cycles. (b) Composite plate under compression with small 

amount of shear, growing skewed mode. 

 

The previous postbuckling analysis, based on the theory of VIPASA, i.e. in which the buckling 

mode is assumed to vary sinusoidally with one half-wavelength λ, can capture non-skewed 

modes or small amounts of skew by applying the Newton iteration scheme, as described in 
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Section 3.7. However the coupled wavelengths postbuckling analysis assumes the plate to vary 

as the sum of sinusoidal terms with a series of  half-wavelengths enabling it to represent more 

complex mode shapes. In this context the Newton iteration and previous convergence 

procedure is not suitable for CWPAN.  

CWPAN comprises a number of cycles, each characterised by a pre-defined increment of 

longitudinal and/or shear strain, α/γ. Within each cycle, the total applied load, the variation of 

stress resultants across the plate, and the amplitude and shape of the postbuckling mode, are 

determined using in-plane solutions. In order to obtain an accurate postbuckling mode at each 

of these cycles, a recursive Newton method is introduced. The Newton iteration scheme was 

first developed to capture the buckling mode for VIPASA analyses where the buckling mode 

is assumed to vary sinusoidally with one half-wavelength, and is therefore not suitable for 

CWPAN. In this chapter, a detailed modified Newton iteration and its supporting convergence 

procedure is presented. 

5.2. Convergence procedure overview 

CWPAN assumes plates to be subjected to in-plane loading which can be compression, 

combined compression and shear or pure shear loading, with end shortening occurring 

uniformly across the width. The material can be either isotropic, anisotropic, a balanced or 

unbalanced composite. The method of analysis comprises a number of cycles, each 

characterised by a pre-defined increment  of longitudinal and/or shear strain, 𝛼/ 𝛾. Within 

each cycle the total applied load, the variation of stress resultants across the plate, and the 

amplitude and shape of the postbuckling mode are determined using the in-plane solutions. The 

essential part of the analysis is to obtain the mode shape before starting the in-plane calculations. 

The first cycle’s out-of-plane displacements are obtained from a VICON initial buckling 

analysis. For subsequent cycles, the recursive Newton method and its supporting calculation 

are used.  

Assume a plate has an initial critical buckling load, 𝑃cr, its end shortening strain is 𝜀0 and its 

shear shortening strain is 𝛾0. For the first cycle of the first iteration, the end shortening strain 

will be 𝜀1 = (𝛼 + 1) × 𝜀0 and the shear strain 𝛾1 = (𝛼 + 1) × 𝛾0. Note that in this analysis the 
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ratio between end shortening strain and end shortening shear strain remains the same as at the 

buckling point, where 𝛼  is the postbuckling increment ratio. Importing 𝜀1 and the out-of-plane 

displacements into the in-plane solutions, the in-plane displacements, strains and stresses at the 

current cycle can be obtained. Then equivalent longitudinally invariant stresses can be obtained 

to facilitate the calculations in the next cycle.  

For the following cycles, instead of subjecting the plate to a compressive load P, the equivalent 

uniform stresses are applied to the plate. Therefore, a new buckling load 𝑃cr and out-of-plane 

displacements for the new cycle are obtained. Repeating the procedure above will result in a 

full postbuckling analysis. 

5.3. Convergence procedure 

A flow diagram illustrating the calculation procedure is shown in Figure 5.2. Each step is 

elaborated below: 

1, Four predefined values are required to be defined including the number of out-of-plane half-

wavelengths m, the number of strips/nodes, n, the ratio of the increment of end shortening 

strain, α (which determines the number of cycles required to reach a pre-defined maximum 

level of strain),  and the tolerance in the Newton iteration, β. 

2, The analysis starts with a VICON initial buckling analysis based on the plate properties and 

predefined variables including the number of half-wavelengths and the number of strips. The 

outputs from this stage are the out-plane displacements and rotations, the critical buckling load 

and the end shortening strains and possible shear strains. 

3, The in-plane half-wavelengths are calculated, as described in Section 4.3. 

4. The inverse matrix 𝐋−1 in Equation 4.36 is then calculated as illustrated in Section 4.5. This 

will not change once the properties of the structure are decided. To efficiently proceed with the 

postbuckling analysis, this matrix is therefore considered as a constant matrix, and is calculated 

once, before the convergence starts. 
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5. The end shortening strain for a certain cycle is obtained by multiplying by the pre-defined 

variable α. This defines the postbuckling analysis and increases the strain by α at every cycle.  

6. This step calculates an approximate amplitude for the buckling mode from the previous cycle 

which helps the Newton iteration scheme to converge more efficiently. The first cycle uses the 

VICON buckling mode. More detail will be provided in Section 5.4. 

7-12. These steps constitute the in-plane solution which calculates the right hand side of 

Equation 4.34 in Chapter 4. The input values for this process are the out-of-plane displacements 

at the critical buckling load for the first cycle or the calculated out-of-plane displacements from 

the previous iteration or cycle, the properties of the plate and the end shortening strains.  

13. The last chapter described a method to solve the equilibrium equations for postbuckling 

analysis using the exact strip method. This allows the calculation of the in-plane displacements 

and distributions of stresses and strains within the plate. However to find the applied load for 

the next cycle, these distributions cannot be used. Therefore this step calculates equivalent 

uniform stresses resultants using the previous distributions of stresses, see Section 5.6. 

14. This step is a part of the VICON type Newton iteration scheme. As described in the Newton 

iteration scheme in Chapter 3, the stiffness matrix is assembled by coupling the stiffness 

matrices obtained by increasing the displacements at each degree of freedom by a small 

amount. Therefore, in the Newton iteration scheme, the in-plane solutions are run a number of 

times equal to the total number of degrees of freedom, counted over all the out-of-plane half-

wavelengths, see Section 5.5. 

15. Adjustments to the displacements d* are found by solving Equation 3.35 and added to the 

previous D to get the new displacements D.  

16. The convergence check described in the VICON Newton iteration scheme in section 5.5 

is applied. 

17. The solutions from steps 11-13 are tabulated. 
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Figure 5.2. Flow of diagram for the method of analysis: red boxes indicate in-plane solutions, 

yellow boxes indicate Newton Iteration scheme 

14. Find stiffness matrix for plate under equivalent 

stresses calculated from above step  

15. Find displacements adjustment d* and D  

13. Calculate equivalent uniform stresses and total load 

5. Calculate end shortening strain 𝜀0 and end 

shortening shear strain 𝛾0 

3. Calculate number of wavelengths for in-plane displacement 

assumption 

10. Apply boundary conditions by modifying matrix L and H 

No, move to next iteration 

4. Assemble matrix L and Calculate inverse matrix 𝐋−1 

in equ 4.49 

9. Assemble right hand side matrix H 

11. Solve displacements u =𝐋−1𝐇 

12. Calculate strains and stresses 

17.Data tabulation and contour plots 

6. Calculate approximate amplitude 

yes 
Move to next cycle 

16. If (max(d*) -

max(D))/max(D) < β   

 

2. VICON initial buckling solver for critical buckling 

1. Choose predefined values 

8. Calculate expressions for stresses and derivatives of stresses 

7. Calculate expressions for strains 
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Steps 1 to 5 are completed before starting the analysis, calculating constants used throughout 

the whole analysis. Steps 4 to 12 are the series solution for postbuckling introduced in Chapter 

4. This process can be used not only for capturing in-plane displacements and stress 

distributions but also equivalent uniform stress resultants to be used in the next cycle. It is 

worth noting that steps 6 and 14 also include the full process of the in-plane solutions in order 

to obtain the equivalent stress resultants. Steps 14 to 16 are the VICON Newton iteration 

scheme. The red arrows indicate that in the in-plane solutions the stresses and strains are 

obtained by substituting the solutions of the equilibrium equations back into the explicit 

expressions. 

5.4. Pre-defined variables 

Before starting the analysis, four pre-defined variables are required to be determined.  

1. The number of half-wavelengths for the out-of-plane displacement, m, from the VICON 

analysis. The VICON analysis couples a series of wavelengths to represent more complex 

mode shapes using Lagrange multipliers which cannot be modelled using VIPASA analysis. 

Theoretically increasing the number of wavelengths leads to more accurate solutions. However 

it can be seen that, from Equation 4.2 - Equation 4.30, the addition of each half-wavelength 

results in an increase of the number of calculations and therefore the computational time. It is 

critical therefore to determine a suitable number of half-wavelengths in order to minimize the 

effect on the speed of the calculation. This is investigated in the next chapter. 

2. The number of strips or the number of nodes. Plates are divided into n-1 strips of arbitrary 

width, identified by n nodes at the strip edges where n is a user defined parameter.  The number 

of strips is equivalent to the mesh in the finite element method. Increasing the number of nodes 

n can increase accuracy but will decrease computational efficiency. The effect of the number 

of strips is also investigated in the next chapter. 

3. The ratio of the linear strain increment, α, which controls the step size for postbuckling. If 

the chosen value of α is  too big, the Newton iteration scheme may not capture changes in the 

mode. The right step size is therefore crucial especially for some extreme cases, e.g. composite 



Chapter 5 

80 
 

plates under pure shear loading. Combined with the number of cycles, the strain increment 

controls how far the postbuckling analysis goes.  As we move further from initial buckling, 

mode jumping may occur. This has not been incorporated into this analysis. Therefore the 

number of cycles must be chosen to avoid the stage at which mode jumping might occur.  

Further investigation of this is presented in the next chapter.  

4. The tolerance for the Newton iteration, β. This variable is explained in Section 5.5 and 

investigated in Chapter 6. 

5.5. Newton Iteration scheme 

As described in Chapter 4, out-of-plane displacements are considered as known variables and 

the first cycle’s out-of-plane displacements are taken from a VICON initial buckling analysis. 

For the rest of the cycles, using VICON analysis to solve for buckling is inefficient as to do 

this VICON would have to be incorporated as a subroutine solver. To overcome this limitation, 

mode shapes are obtained through a VICON type Newton iteration scheme. 

The Newton iteration scheme was first developed for VIPASA postbuckling analysis. It 

replaced the linear approximations applied in the first VIPASA postbuckling analyses and 

provided accurate convergence on critical buckling loads and associated buckling modes (see 

Section 3.7). However it was based on the assumption that the out-of-plane deformation varies 

sinusoidally along the longitudinal direction with a single half-wavelength. It is therefore 

unsuitable for complex buckling modes which need to be modelling with multiple half-

wavelengths. Therefore a Newton iteration scheme based on VICON analysis is developed here 

enabling CWPAN by modifying the stiffness matrix, displacement and force vectors in 

Equation 3.34.  

Since for CWPAN, more than one half-wavelength is needed to represent more complex mode 

shapes, the D and K matrices in Equation 3.34 are m times bigger than for VIPASA 

postbuckling (where m is the number of out-of-plane half-wavelengths) and need to be 

assembled using complex arithmetic. Convergence on the amplitude and shape of the mode 
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vector 𝐃 implies convergence on the adjustments d* to the stress resultants due to flexure, and 

hence the postbuckling in-plane displacements, stresses and strains can be calculated.  

Since the new Newton iteration scheme is adopted within VICON analysis, there is also the 

possibility to include point supports at nodes on the transverse edges. Therefore the stiffness 

matrix in the new Newton iteration scheme has to be modified to take these point supports into 

account. Similar to VICON buckling analysis, the stiffness matrix is modified by adding zero 

displacements at points corresponding to the supports for all wavelengths. Figure 5.3 shows a 

three wavelength stiffness matrix example of a simply supported plate in the VICON Newton 

iteration scheme. Each identity matrix indicates corresponding point constraints on the 

transverse edges and all identity matrices have the same dimensions since the three half-

wavelengths are coupled to create one mode. Boundary conditions on longitudinal edges are 

applied by deleting corresponding rows. In Figure 5.3, the null matrix is a square matrix and 

the RHS vector denotes the applied forces in Equation 3.35. The force vector also needs to be 

added to indicate the reaction forces. For other more general cases, i.e. point constraints applied 

at arbitrary location within plates, the identity matrices on the left hand side are modified 

accordingly. 

 

 

Figure 5.3. Three wavelength stiffness matrix transverse boundary conditions example 

The purpose of the Newton iteration scheme is to obtain the mode shapes for each cycle except 

for the first one for which the out-of-plane displacements are obtained directly from a VICON 

buckling analysis. At each cycle, the Newton iteration solves Equation 3.35 by finding the 

stiffness matrix and the derivatives of the stiffness matrix using finite difference 

approximations to converge on the required adjustments to the displacements. To obtain these 
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stiffness matrices the equivalent uniform stresses which are considered as the loading 

conditions are required as shown in Figure 5.4. However the coupled wavelength postbuckling 

analysis only captures the distributions of the stresses within the plate. A series of calculations 

are therefore required to derive equivalent uniform stresses from the distribution of stresses 

within the plate.  

The convergence of the Newton iteration procedure is achieved when the difference between 

the maximum of the displacement adjustments 𝐝∗  and the maximum of the previous 

displacements D is small enough. It is assumed to occur when the criterion below is met; 

|𝑚𝑎𝑥(𝐝∗)−𝑚𝑎𝑥 (𝐃)|

𝑚𝑎𝑥 (𝐃)
≤ 𝛽  …(5.1) 

where 𝛽  is a small positive number ( 𝛽 ≪ 0 ), 𝐝∗  and D are out-of-plane displacement 

adjustments and the out-of-plane displacements from the previous iteration respectively. max() 

indicates a function of maximum value of given vector or matrix. 

 

Figure 5.4. Implementation of Newton iteration in CWPAN 

 

When the Newton iteration procedure has converged, the buckling mode for that particular 

cycle can be obtained. Compared with the previous Newton iteration scheme, the presented 

one can capture much more skewed mode shapes such as those resulting from anisotropy or 

shear load. However it has been found that if  the shape of the buckling mode is not considered, 

the difference between the previous cycle’s maximum displacement and the calculated one 
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may be too big, and the Newton iteration scheme will fail to converge or take a long time to 

converge. Therefore a convergence method to find the approximate amplitude is also required. 

5.6. Approximate buckling mode amplitude  

In CWPAN, the buckling mode for one cycle is used as a basis to converge on the next cycle’s 

bucking mode. It has been found that the VICON type Newton iteration can converge only if 

the amplitude of buckling mode is not too far from the real buckling mode. Therefore it is 

necessary to find an approximate buckling mode before moving into the next Newton iteration.  

The method for achieving this is based on a modified binary search which enables convergence 

on the buckling mode corresponding to a particular predefined end-shortening strain. To 

accurately locate the amplitude of the out-of-plane displacements, the W-W algorithm is used 

to examine whether the resulting applied load exceeds the actual buckling load. This process 

is illustrated in Figure 5.5 and corresponds to the following steps: 

1.Out-of-plane displacements including rotations are obtained from VICON (for the first cycle) 

or from previous cycles.  

2.A trial amplitude of the out-of-plane displacement is calculated from the previous iteration, 

either a lower bound or an upper bound. For the first iteration the trial amplitude is chosen as 

1. 

3.The resulting displacements are calculated from the displacements multiplied by the 

amplitude. This step only scales the buckling mode rather than changing the shape of it.  

4-5.The resulting buckling mode is input into the in-plane solutions to obtain the stress 

distributions within the plate.  

6.The equivalent stress resultants are calculated using the method described in section 5.7. 

7-9.This calculation only utilizes a part of W-W algorithm to examine if the applied equivalent 

uniform stresses exceed the critical buckling load. If the applied load is higher than the critical  

buckling load, the corresponding amplitude will be taken as an upper bound  and restored as 

𝐴𝑚𝑢 and vice versa for convergence check 10. If both upper and lower bound are found, the 
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convergence check is able to proceed, evaluating the difference between the lower and upper 

bounds from the previous iterations. For the first iteration of every postbuckling cycle, the 

converged amplitude from the last cycle is taken as a lower bound as the increase in amplitude 

of the cycle decreases. Convergence is achieved if following criteria is met: 

|𝐴𝑚𝑢 − 𝐴𝑚𝑙|

𝐴𝑚𝑢
< 0.001 …(5.16) 

where 0.001 is a predefined default value. This value remains the same for all cycles and 

iterations since the purpose of the calculation is only to obtain an approximate buckling mode  

in order to converge on a better buckling mode during the Newton iteration procedure. Once 

convergence is achieved, the resulting buckling mode is used as a temporary mode for the 

Newton iteration scheme enabling it to converge on a final mode shape.  

11.If the convergence check fails or either the upper or lower bound are not found, lower/upper 

bound is multiplied/divided by 1.5 for the next iteration. 

By using the  W-W algorithm and the in-plane solutions, the approximate amplitude is 

converged on at each postbuckling cycle. As described above, this solution cannot be used for 

postbuckling analysis directly since it fails to capture the progressive changes of mode shape 

caused by anisotropy or shear load. The purpose of this strategy is to reduce the computational 

time or possibility of failing to converge using the modified Newton iteration scheme due to 

large increment strains. Although such modes are only multiples of the previous cycle’s 

postbuckling mode,  the strategy can  reduce the number of modified Newton iterations 

significantly while taking less than one second to converge itself. Furthermore since large 

increment strains are allowed during the analysis, fewer cycles are required to reach the target 

postbuckling equilibrium state, therefore reducing the execution time. 
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Figure 5.5. Flow diagram for the method of analysis 

 

4. In-plane solutions  

1.  Out-of-plane displacements 𝑤𝑖 and rotations 𝜑
𝑖
  

5. a). In-plane displacements 𝑢𝑖 and 𝑣𝑖  
    b). strains 𝜀𝑥𝑖 , 𝜀𝑦𝑖 and 𝜀𝑥𝑦𝑖 
    c). stresses 𝑁𝑥𝑖, 𝑁𝑦𝑖 and 𝑁𝑥𝑦𝑖 

6.  Equivalent uniform stress resultant calculation 

8. If buckling load above or below applied stresses 𝑁𝑥𝑖, 𝑁𝑦𝑖 and 𝑁𝑥𝑦𝑖 

9(a). restore as lower bound 𝐴𝑚𝑙 

2. Trial out-of-plane displacement amplitude 𝐴𝑚 

 Convergence check 

Lower 

9(b). restore as upper bound 𝐴𝑚𝑢 

Higher 

Output the amplitude  

Yes 

No 

3. Resulting out-of-plane displacements 𝑤𝑖 and rotations φ𝑖.  

7. W-W algorithm 

11. Increase amplitude by 1.5 times/ Decrease amplitude by 1.5 
times 

10.If both 𝐴𝑚𝑙 and 𝐴𝑚𝑢 are found 

No 
Yes 
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5.7. Stress resultants calculation 

A stress redistribution occurs at each postbuckling cycle due to changes in the buckling mode. 

The loading condition therefore changes along with the stress redistribution. As shown in 

Figure 5.6 the applied stresses at the edges are normally continuous. To perform the Newton 

iteration however, these continuous stress resultants need to be converted into discontinuous 

equivalent stress resultants at strip level, see the dashed lines in Figure 5.5. Since the in-plane 

solutions captures a continuous distribution of stresses within the plate, an energy approach is 

provided to convert the stress distribution to a set of effective uniform stress resultants at each 

strip.  

 

Figure 5.6. Stress distribution of a postbuckling analysis from a rectangular flat plate where 

solid line indicates normal stress distribution and dashed line is the equivalent uniform stress 

distribution. 

In the buckling analysis, the work done by the applied loading can be obtained from  

𝑉 = 𝑉𝒙𝒊 + 𝑉𝒚𝒊 + 𝑉𝒙𝒚𝒊 …(5.2) 

where the components of total energy V at each node are written as: 

𝑉𝑥𝑖 = 𝑁̅𝑥 ∫ 𝜀𝑥𝑑𝑥
𝐿

0

= ∫ 𝑁𝑥𝜀𝑥𝑑𝑥
𝐿

0

 …(5.3) 
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𝑉𝒚𝒊 = 𝑁̅𝑦 ∫ 𝜀𝑦𝑑𝑥
𝐿

0

= ∫ 𝑁𝑦𝜀𝑦𝑑𝑥
𝐿

0

 
…(5.4) 

𝑉𝑥𝑦𝑖 = 𝑁̅𝑥𝑦 ∫ 𝛾𝑥𝑦𝑑𝑥
𝐿

0

= ∫ 𝑁𝑥𝑦𝛾𝑥𝑦𝑑𝑥
𝐿

0

 
…(5.5) 

where 𝑁̅𝑥 , 𝑁̅𝑦  and 𝑁̅𝑥𝑦  are uniform longitudinal, transverse and shear stresses respectively.  

𝑁𝑥, 𝜀𝑥, 𝑁𝑦, 𝜀𝑦, 𝑁𝑥𝑦 and 𝛾𝑥𝑦,  can be written as  

𝑁𝑥 = ∑ (𝑁𝑥𝑛𝑐cos
𝑛𝜋𝑥

𝐿
+ 𝑁𝑥𝑛𝑠sin

𝑛𝜋𝑥

𝐿
)

∞

𝑛=0

 …(5.6) 

𝜀𝑥 = ∑ (𝜀𝑥𝑚𝑐cos
𝑚𝜋𝑥

𝐿
+ 𝜀𝑥𝑚𝑠sin

𝑚𝜋𝑥

𝐿
)

∞

𝑚=0

 …(5.7) 

𝑁𝑦 = ∑ (𝑁𝑦𝑛𝑐cos
𝑛𝜋𝑥

𝐿
+ 𝑁𝑦𝑛𝑠sin

𝑛𝜋𝑥

𝐿
)

∞

𝑛=0

 
…(5.8) 

𝜀𝑦 = ∑ (𝜀𝑦𝑚𝑐cos
𝑚𝜋𝑥

𝐿
+ 𝜀𝑦𝑚𝑠sin

𝑚𝜋𝑥

𝐿
)

∞

𝑚=0

 
…(5.9) 

𝑁𝑥𝑦 = ∑ (𝑁𝑥𝑦𝑛𝑐cos
𝑛𝜋𝑥

𝐿
+ 𝑁𝑥𝑦𝑛𝑠sin

𝑛𝜋𝑥

𝐿
)

∞

𝑛=0

 
…(5.10) 

𝛾𝑥𝑦 = ∑ (𝛾𝑥𝑦𝑚𝑐cos
𝑚𝜋𝑥

𝐿
+ 𝛾𝑥𝑦𝑚𝑠sin

𝑚𝜋𝑥

𝐿
)

∞

𝑚=0

 
…(5.11) 

 

Note that all the results (displacements, strains and stresses) can be represented by sinusoidal 

components.  

Substituting Equations 5.6-5.11 into Equations 5.3-5.5 gives 
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𝑁̅𝑥

=
∫ ∑ ∑ (𝑁𝑥𝑛𝑐cos

𝑛𝜋𝑥
𝐿 + 𝑁𝑥𝑛𝑠sin

𝑛𝜋𝑥
𝐿 )∞

𝑚=0 (𝜀𝑥𝑚𝑐cos
𝑚𝜋𝑥

𝐿 + 𝜀𝑥𝑚𝑠sin
𝑚𝜋𝑥

𝐿 )∞
𝑛=0 𝑑𝑥

𝐿

0

∫ ∑ (𝜀𝑥𝑚𝑐cos
𝑚𝜋𝑥

𝐿
+ 𝜀𝑥𝑚𝑠sin

𝑚𝜋𝑥
𝐿

)∞
𝑚=0 𝑑𝑥

𝐿

0

 
…(5.12) 

𝑁̅𝑦

=
∫ ∑ ∑ (𝑁𝑦𝑛𝑐cos

𝑛𝜋𝑥
𝐿

+ 𝑁𝑦𝑛𝑠sin
𝑛𝜋𝑥
𝐿

)∞
𝑚=0 (𝜀𝑦𝑚𝑐cos

𝑚𝜋𝑥
𝐿

+ 𝜀𝑦𝑚𝑠sin
𝑚𝜋𝑥

𝐿
)∞

𝑛=0 𝑑𝑥
𝐿

0

∫ ∑ (𝜀𝑦𝑚𝑐cos
𝑚𝜋𝑥

𝐿 + 𝜀𝑦𝑚𝑠sin
𝑚𝜋𝑥

𝐿 )∞
𝑚=0 𝑑𝑥

𝐿

0

 

…(5.13) 

𝑁̅𝑥𝑦

=
∫ ∑ ∑ (𝑁𝑥𝑦𝑛𝑐cos

𝑛𝜋𝑥
𝐿 + 𝑁𝑥𝑦𝑛𝑠sin

𝑛𝜋𝑥
𝐿 )∞

𝑚=0 (𝛾𝑥𝑦𝑚𝑐cos
𝑚𝜋𝑥

𝐿 + 𝛾𝑥𝑦𝑚𝑠sin
𝑚𝜋𝑥

𝐿 )∞
𝑛=0 𝑑𝑥

𝐿

0

∫ ∑ (𝛾𝑥𝑦𝑚𝑐cos
𝑚𝜋𝑥

𝐿
+ 𝛾𝑥𝑦𝑚𝑠sin

𝑚𝜋𝑥
𝐿

)∞
𝑚=0 𝑑𝑥

𝐿

0

 

…(5.14) 

Thus the equivalent uniform stress distribution is calculated at node level based on the stress 

distribution within the plate for the current cycle. To apply these stresses at the strip level, 

they have to be transformed into equivalent uniform stresses by averaging the two adjacent 

nodes for that strip: 

𝑁̅𝑘 =
𝑁̅𝑖 + 𝑁̅𝑖+1

2
 …(5.15) 

Once the current loading conditions are defined they are used as the next cycle’s trial applied 

load for the Newton iteration scheme in order to converge on the next cycle’s buckling mode. 

5.8. Conclusions   

This chapter introduces a convergence procedure that allows the analysis to observe 

progressive postbuckling equilibrium states of balanced and unbalanced laminated composite 

plates. The analysis consists of a number of cycles, each defined by an applied constant 

longitudinal or shear strain. At each cycle, the in-plane solution is utilized to find the 

distributions of in-plane displacements, strains and stresses, and further transform these into 

equivalent uniform stress resultants as the current cycle’s applied load. The postbuckling 
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stiffness and out-of-plane displacements can thus be obtained based on a modified Newton 

iteration scheme. To accelerate the execution time of the Newton iteration scheme, an 

amplitude calculation is developed incorporating the binary search and W-W algorithms. 

The proposed convergence approach is used to obtain the postbuckling modes corresponding 

to a particular value of end shortening strain input into the in-plane displacement calculations 

for each postbuckling cycle. This is in contrast to the previous postbuckling analysis by Che 

2010; Zhang 2018) based on assumptions regarding out-of-plane displacements and requires 

the modification of the previous Newton iteration scheme to make it suitable for the analysis 

of complex composite structures and loading conditions. Compared with the previous method, 

the modified Newton iteration scheme allows not only formulations of single half-wavelength 

but also a series of half-wavelengths coupled together. In this way CWPAN can capture any 

shape of buckling mode accurately. An amplitude calculation is developed to assist the 

modified Newton iteration scheme. With such a strategy, it is possible to significantly reduce 

the number of iterations in the scheme, and convergence problems due to large strain 

increments are avoided allowing a small number of cycles to reach the target postbuckling 

equilibrium state.  

By implementing the above methods into the VICON in-plane solutions, the out-of-plane 

displacements in the governing equations are no longer unknown variables. The equilibrium 

equations are transformed into linear equations but retain the nature of non-linearity by using 

von Kármán’s large deflection theory. Hence the computational time is significantly reduced. 

As described in this chapter, four re-defined variables affect the speed and accuracy of the 

analysis significantly. In the next chapter, more explorations and explanations will be presented 

to understand the effect of changes to these variables.  
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Chapter 6. Parameter Selection 

Chapters 4 and 5 describe the development of a method for carrying out postbuckling analysis 

for composite plates. To apply this method four parameters, not related to the properties of the 

structures being analysed, are required to be selected. Before investigating the postbuckling 

behaviour of a range of different structures using CWPAN, it is therefore necessary to evaluate 

the optimum values for these predefined parameters for different scenarios. This chapter is 

organized as follows: Section 6.1 discusses the calculation of in-plane half-wavelengths and 

their influence on the governing equilibrium equations. The influence of the selected number 

of half-wavelengths on computational efficiency is also investigated as part of the search for 

the optimal out-of-plane half-wavelengths for certain problems. Section 6.2 investigates the 

influence of the number of strips that plates are divided into. Finally Sections 6.3 and 6.4 

illustrate the effect of strain increment ratio and iteration tolerance of the Newton iteration 

scheme. The last section concludes the chapter. 

6.1. Number of half-wavelengths  

One of the key differences between the previous postbuckling analysis and CWPAN is the 

number of half-wavelengths used to represent the out-of-plane deflections resulting in 

differences in in-plane half-wavelengths.  

Based on the theory in VICON, the selection of half-wavelengths is mainly related to the 

parameter ξ. Theoretically, ξ can be any number between zero and one and VICONOPT 

evaluates all these possibilities to search for the minimum buckling factor. The corresponding 

half-wavelengths for the out-of-plane displacements can be found from Equation 3.13 and for 

the in-plane displacements, by counting unique values of summations and subtractions from 

the out-of-plane half-wavelengths as follows.  
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For a general value of ξ the out-of-plane half-wavelengths are given by 𝑙 =  𝑙/𝑚, with the 

values of m given by ξ ±  2𝑞 where q is an integer 0, 1, 2,…, see Chapter 3. Taking 𝑞 =

 0, ±1,±2 as an example, ξ = 1 and ξ = 0 are special cases because the negative values of q 

give the same values of m as the positive values (but with the opposite sign) so that only the 

positive values of m need to be considered in the VICON analysis. 

When 𝜉 = 1: 

For out-of-plane half-wavelengths 𝑙 =  𝑙/𝑚 and 𝑙/𝑛, for the 3 values 𝑚, 𝑛 =  (1, 3, 5) the 9 

unique resulting values are highlighted in Tables 6.1, 6.2 and 6.3. 

Summations n=1 n=3 n=5 

m=1 2 4 6 

m=3 4 6 8 

m=5 6 8 10 

Table 6.1. Summations of half-wavelengths l/m and l/n, m, n = (1,3,5) 

 

Subtractions n=1 n=3 n=5 

m=1 0 -2 -4 

m=3 2 0 -2 

m=5 4 2 0 

Table 6.2. Subtractions of half-wavelengths l/m and l/n, m, n = (1,3,5) 

The out-of-plane half-wavelengths are then: 

Own values m=1 m=3 m=5 
 

1 3 5 

Table 6.3. Out-of-plane half-wavelengths l/m, m = (1,3,5) 

 

When 𝜉 = 0: 

For out-of-plane half-wavelengths 𝑙 =  𝑙/𝑚 and 𝑙/𝑛, for the 3 values of 𝑚, 𝑛 =  (0, 2, 4) 

there are now only 5 unique resulting values, again shown highlighted in Tables 6.4, 6.5 and 

6.6. 
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Summations n=0 n=2 n=4 

m=0 0 2 4 

m=2 2 4 6 

m=4 4 6 8 

Table 6.4. Summations of half-wavelengths l/m and l/n, m, n = (0,2,4) 

 

Subtractions n=0 n=2 n=4 

m=0 0 -2 -4 

m=2 2 0 -2 

m=4 4 2 0 

Table 6.5. Subtractions of half-wavelengths l/m and l/n, m, n = (0,2,4) 

 

The out-of-plane half-wavelengths are then: 

Own values m=0 m=2 m=4 
 

0 2 4 

Table 6.6. Out-of-plane half-wavelengths l/m, m = (0,2,4) 

 

When 0 < 𝜉 < 1: 

By analogy with the previous cases we consider 𝑞𝑚 and 𝑞𝑛  =  0, −1,+1,−2,+2, i.e. there are 

now 5 out-of-plane half-wavelengths instead of 3. Note that m and n are no longer integers. 

For out-of-plane half-wavelengths 𝑙 =  𝑙/𝑚 and 𝑙/𝑛, with the 5 values 𝑚, 𝑛 = (𝜉, 𝜉 ± 2, 𝜉 ±

 4) there are now 23 unique resulting values, again shown highlighted in Tables 6.7, 6.8 and 

6.9. 
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Summations qn=-2,  

n= -4 

qn=-1,  

n= -2 

qn=0,  

n= 

qn=+1,  

n= +2 

qn=+2,  

n= +4 

qm=-2, m= -4 2  - 8 2  - 6 2 - 4 2  - 2 2  

qm=-1, m= -2 2  - 6 2 - 4 2  - 2 2  2  + 2 

qm=0, m= 2 - 4 2  - 2 2  2  + 2 2  + 4 

qm=+1, m= +2 2  - 2 2  2  + 2 2  + 4 2  + 6 

qm=+2, m= +4 2  2  + 2 2  + 4 2  + 6 2  + 8 

Table 6.7. Summations of half-wavelengths l/m and l/n, 𝑚, 𝑛 = (𝜉, 𝜉 ± 2, 𝜉 ±  4) 

 

Subtractions qn=-2,  

n= -4 

qn=-1,  

n= -2 

qn=0, 

 n= 

qn=+1,  

n= +2 

qn=+2,  

n= +4 

qm=-2, m= -4 0 -2 -4 -6 -8 

qm=-1, m= -2 2 0 -2 -4 -6 

qm=0, m= 4 2 0 -2 -4 

qm=+1, m= +2 6 4 2 0 -2 

qm=+2, m= +4 8 6 4 2 0 

Table 6.8. Subtractions of half-wavelengths l/m and l/n, 𝑚, 𝑛 = (𝜉, 𝜉 ± 2, 𝜉 ± 4) 

 

The out-of-plane half-wavelengths are then: 

Own values qm=-2,  

m= -4 

qm=-1,  

m= -2 

qm=0,  

m= 

qm=+1,  

m= +2 

qm=+2,  

m= +4 
 

  - 4   - 2    + 2   + 4 

Table 6.9. Out-of-plane half-wavelengths l/m 𝑚 =  (𝜉, 𝜉 ± 2, 𝜉 ± 4) 

 

Resulting in total of 23 unique values: 9 from Table 6.7; 9 from Table 6.8 and 5 from Table 

6.9. 

These relationships between the number of in-plane and out-of-plane wavelengths are 

summarised  in Table 6.10,  
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Case 
Out-of-plane 

half-

wavelengths 

Summations  Subtractions  

Out-of-

plane half- 

wavelengths 

In-plane 

half-

wavelengths 

 =  Q 2Q-1 1 Q 3Q 

     2Q-1 2(2Q-1)-1 = 4Q-3 2(2Q-1)-1 = 4Q-3 2Q-1 10Q-7 

 =  Q 2Q-1 0 0 2Q-1 

Table 6.10. Relationships between in-plane and out-of-plane half-wavelengths 

 

The equilibrium equations are solving for the coefficients of a series of trigonometric terms 

representing in-plane displacements and the size of these coefficients is highly dependent on 

two parameters: the parameter Q defining the number of out-of-plane half-wavelengths and the 

number of nodes n. Considering both imaginary and real parts of the in-plane variables, noting 

there is no imaginary part if the half-wavelength is zero, the numbers of unknown variables 

including in-plane displacements in both the longitudinal and transverse directions are 

therefore: 

2 ∗ (6𝑄 − 1) ∗ 𝑛, 𝜉 = 1 

2 ∗ (20𝑄 − 15) ∗ 𝑛, 0 < 𝜉 < 1 

2 ∗ (4𝑄 − 3) ∗ 𝑛, 𝜉 = 0 

…(6.1) 

 

The above equations indicate the extent to which the complexity increases as the number of 

out-of-plane half-wavelengths increases. To further investigate the influence on the 

computational efficiency of the number of half-wavelengths, two models, composite plates 

under combined loading and pure shear, are tested. To limit any effects noted to the choice of 

number of wavelengths, all plates are divided into 10 strips. 
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Figure 6.1. Out-of-plane deflections calculated using different numbers of half-wavelengths 

for a composite plate under combined loading, divided into 10 strips 

  

 

Figure 6.2. Execution time for different numbers of half-wavelengths from a composite plate 

under combined loading, divided into 10 strips 

 

Figure 6.1 shows the out-of-plane deflection against the number of half-wavelengths, at 10% 

applied strain for a composite plate under combined loading for analysis with 𝜉 = 1 . 

Theoretically, increasing the number of half-wavelengths will result in more accurate results. 

From the figure the deflection increases as the number of wavelengths increases with a 

noticeable change of slope at Q = 3 above which the path tends to be flatter converging on a 

value of 0.78 mm which can therefore be taken as an estimate of the exact value in this case. 
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Equation 6.1 indicates a linear relationship between the unknown variables and out-of-plane 

half-wavelengths which can be seen in Figure 6.2.  From Q=2 to Q=3, the execution time 

increases slightly and the accuracy increases the most, while when Q is 4 or 5, the accuracy 

does not alter much and the computational time increases almost three times, see Figures 6.1 

and 6.2. It can be predicted that higher numbers of half-wavelengths will result in solutions 

which are very similar to those for Q = 3, 4 or 5 but which will incur significantly increased 

execution times and are therefore not worth being considered. Therefore for composite plates 

under compression or combined loading, three out-of-plane half-wavelengths can be 

considered adequate for postbuckling analysis. 

For prebuckling analysis on the other hand for the above case of 5 half-wavelengths, the first 

half-wavelength 𝑙/1 makes 93% of the contribution to the buckling mode and 𝑙/3 and 𝑙/5 

most of the other 7% between them. The rest of the half-wavelengths make less than 1% 

contribution to the buckling mode. It is therefore not surprising to see higher half-wavelengths, 

namely half-wavelengths smaller than 𝑙/3,  only slow the computational efficiency. 

 

Figure 6.3. Out-of-plane deflections calculated by different half-wavelengths from a 

composite plate under shear loading, divided into  10 strips 
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Figure 6.4. Execution time of different half-wavelengths from a composite plate under shear 

loading, divided by 10 strips 

Figures 6.3 and 6.4 plot of out-of-plane deflection and execution time against the number of 

half-wavelengths respectively, at 5% constant strain above critical buckling for a composite 

plate under pure shear. The figures show very similar trends to those for the plate under 

combined loading with the deflection increasing rapidly up to a certain point and then levelling 

off. In the pure shear case, this happens at 4 half-wavelengths instead of the 3 found for the 

combined loading case. However, the increase in execution time between 4 and 5 half-

wavelengths  remains linear  even though the increase in accuracy is quite small . From a 

prebuckling point of view, the fifth half-wavelength still makes a 3% contribution to the 

buckling mode (calculated from VICONOPT) and is therefore worth taking into account. This 

will be increasingly true as we move further along the postbuckling path and the contributions 

of each of the half-wavelengths will change with higher half-wavelengths making a higher 

contribution due to mode changes. Hence composite plates under pure shear require five out-

of-plane half-wavelengths. 

For unbalanced and unsymmetric composite plates where critical buckling has 𝜉 = 0 or 0 <

𝜉 < 1 , and the current analysis is only capable of analysing one cycle of postbuckling, 

recommendations on the required number of half-wavelengths cannot currently be made. 
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6.2. Number of nodes/strips 

The number of nodes/strips is another important parameter which needs to be determined 

before analysis. Similar to the number of half-wavelengths, it influences the computational 

efficiency, see Equation 6.1, and accuracy. Observing Equations 4.13 and 4.38, the width of 

the strip determines the spacing of finite difference approximations between nodes. Decreasing 

the width of a strip, i.e. increasing the number of nodes, results in larger s and f matrices 

affecting the governing equilibrium equations, see Equations 4.46 and 4.47. Further influence 

on solutions, however, is hard to quantify based on explicit expressions. The number of strips 

required therefore, needs to be based on modelling experience.   

 

Figure 6.5. Max out-of-plane deflections calculated based on 3 half-wavelengths for a 

composite plate under combined loading, divided into different numbers of strips 
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Figure 6.6. Execution time of 3 half-wavelengths for a composite plate under combined 

loading, divided into different numbers of strips 

 

Figures 6.5 and 6.6 present curves of displacement and execution times against number of strips 

for a composite plate under combined load. As the exact solution of such a plate is around 0.78 

mm, see Figure 6.1,  the closest solution to this is when the plate is divided into 10 strips. Figure 

6.5 shows that as the number of strips increases, the solutions converge on a value of 0.76 mm. 

Dividing the plate into more than 10 strips however changes the solution slightly at the cost of 

increased execution time, see Figure 6.6. For plates divided into less than 10 strips,  the curve 

of the deflection against number of strips indicates that they are still unstable. Therefore 10 

strips are found to be more than adequate to obtain the required accuracy and to represent 

postbuckling modes while retaining a comparably good efficiency. For other types of 

composite plates or under other loading conditions, 10 strips are also selected as the number of 

strips.  
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6.3. The ratio of linear strain increment α and the number 

of cycles 

As described in Chapter 5, the increments along the postbuckling path are determined by an 

applied linear strain, defined by a ratio α. At each postbuckling equilibrium state, out-of-plane 

deflections are converged on the corresponding linear strain along which the in-plane 

displacements are found. The number of iterations required to converge on the equilibrium 

state is largely governed by the strain increment. If the increment is large, more iterations are 

required to converge and vice versa. An appropriate increment ratio α increases the 

computational efficiency and avoids convergence issues. Tests have shown that for composite 

plates under compression and combined loading, a 10%  increment can achieve an average of 

two iterations to converge for all cycles (detailed solutions can be found in Chapter 7). 10% is, 

therefore, considered a suitable value for these types of loading. A similar investigation for 

pure shear has shown that 10% is too large for such cases to converge as the mode changes are 

more significant than for combined loading. A 5% stain increment ratio however has been 

found to be suitable for  analysing such cases. Multiplying by the strain increment ratio, the 

number of cycles results in the farthest point of the postbuckling equilibrium state. It provides 

an option for researchers to select the range of the postbuckling regime. 

6.4. The tolerance for Newton iteration scheme β 

The modified Newton iteration scheme is developed to find out-of-plane displacements at 

certain applied strains, see Chapter 5. It uses the previous cycle’s deflection as a trial value and 

accounts for changes in postbuckling stiffness to find the required adjustments to the 

displacements. Convergence is achieved when the difference between the maximum of the 

displacement adjustments 𝐝∗  and the maximum of the previous displacements D is small 

enough as described in Chapter 5. Now bringing equation 5.1 here, this is assumed to occur 

when the criterion below is met. 
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|𝑚𝑎𝑥(𝐝∗)−𝑚𝑎𝑥 (𝐃)|

𝑚𝑎𝑥 (𝐃)
≤ 𝛽  …(6.2) 

where 𝛽  is a small positive number (𝛽 ≪ 0), 𝐝∗  and D, are the out-of-plane displacement 

adjustments and out-of-plane displacements from the previous iteration respectively.  

𝛽 is a parameter that can be pre-set and has a default value of 0.1%. This  value has been found 

to be small enough to converge on acceptable solutions with no convergence problems.  

 

6.5. Conclusions  

Similar to commercial simulation software, application of the coupled wavelength 

postbuckling analysis in this thesis requires a number of parameters to be selected when 

modelling. This chapter investigates the sensitivity of the results obtained to four parameters 

that have the potential to significantly affect accuracy and computational efficiency. The key 

findings are as follows. 

The number of out-of-plane half-wavelengths is the most crucial parameter that affects the in-

plane half-wavelengths and further decides the size of the governing equilibrium equations. 

For three values of ξ, it has been found that the influence of out-of-plane half-wavelengths is 

different. Investigations based on both explicit expressions and modelling experience are 

described in section 6.1. For plates under any in-plane loading other than pure shear, three out-

of-plane half-wavelengths can achive more than 99% accuracy without losing too much 

computational efficiency. For plates under pure shear, the optimal choice is increased to five 

out-of-plane half-wavelengths.  

The number of strips that plates are divided by is equivalent to mesh size in finite element 

analysis. A similar analysis to that for the number of half-wavelengths has been conducted and 

found 10 strips to be adequate for the load cases tested.  



Chapter 6 

102 
 

For the ratio of constant strain increment, 10% allows the solution to reach to the late stages of 

postbuckling at fastest rate without losing accuracy for non-pure shear plates while for plates 

under pure shear, since it is found that 10% would sometimes fail to converge, 5% is chosen. 

Finally, 0.1% is selected as the tolerance for the Newton iteration scheme and no convergence 

problems are found. 
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Chapter 7. Illustrative Results and Validation 

A study of sensitivity to parameter choices for the coupled wavelength postbuckling analysis 

was presented in chapter 6. CWPAN is capable of analysing the postbuckling behaviour of a 

wide range of composite plates with the desired speed and accuracy by adjusting predefined 

parameters, providing information on out-of-plane displacement,  in-plane stress and strain 

distributions. In this chapter results for a number of illustrative cases are presented and 

validated against those obtained using the finite element analysis ABAQUS based on the Riks 

method. By comparing to the results obtained using the Riks method a deeper understanding 

of the capabilities and postbuckling behaviours of CWPAN can be gained. The chapter is 

organized as follows: Section 7.1 presents the problem definition for an isotropic plate under 

combined loading, Section 7.2 presents the solutions for such a plate and demonstrates the 

method’s capability in terms of analysing various boundary conditions. Section 7.3 presents 

the modelling of symmetric and balanced composites plates under compression and validates 

the results obtained using FEA. Sections 7.4 and 7.5 solve the case of a composite plate under 

combined loading and pure shear respectively, which are again compared with results obtained 

from FEA. Section 7.6 illustrates the method’s capability to analyse more general cases such 

as unsymmetric and unbalanced laminated composite. Section 7.7 presents the computational 

efficiency of the method for a range of typical composite plates.  Section 7.8 concludes the 

chapter. 

7.1. Overview 

Chapters 4 and 5 presented CWPAN in which the buckling mode is represented by a series of 

sinusoidal terms with any predefined half-wavelengths. By combining different half-

wavelengths to achieve the required mode shape, as in the VICON analysis, CWPAN is able 
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to analyse modes which are skewed due to anisotropy or shear loading. In this chapter, both 

isotropic and composite plates involving these skewed mode shapes are modelled and analysed 

using CWPAN. To compare different materials and loading conditions, all models have the 

same geometry - square plates with edge length 300mm, thickness 2mm, as shown in Figure 

7.1.  

 

Figure 7.1.The CWPAN model: in-plane boundary conditions and loading conditions 

 

Cases studied include isotropic plates, balanced symmetric composites, unbalanced symmetric 

composites and unbalanced unsymmetric composites, with each tested under three different in-

plane longitudinal boundary conditions - free edges, straight edges and fixed edges, see Section 

4.6. Focusing on cases where skewing is present, isotropic plates under compression and shear, 

composite plates under compression, composite plates under pure shear and unbalanced 

symmetric and unbalanced unsymmetric laminated composites are modelled and analysed in 

this chapter. 

Before starting the analysis, as mentioned in the previous chapter, a number of parameters must 

be decided upon in order to ensure the optimum accuracy and speed. First is the number of half 

wavelengths to be used. All analysis is with 𝜉 = 1 in VICON as it is adequate for most of the 

cases, and other choices of 𝜉  are explained in the section 7.5. Three half-wavelengths are 

therefore selected for out-of-plane displacements which are l/(1,3,5), the justification for such 

choices being explained in Section 6.1. The in-plane displacements are represented by 

l/(0,1,2,3,4,5,6,8,10). Next is the number of strips in the model. Here 10 strips (11 nodes) are 
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considered to be sufficient for this size of plate. The ratio of the increment of end shortening 

strain is chosen as 10%, noting here that for the case of a plate under pure shear this is changed 

to 5% since 10% may not sufficiently capture the changing buckling modes and fail to 

converge. Finally 10 cycles and 0.1%  are chosen as the number of cycles and the tolerance in 

the modified Newton iteration scheme. Detailed discussion regarding such choices is presented 

in Chapter 6. 

All models are run in VICONOPT first to obtain the initial buckling mode to be used in the 

first iteration of the first cycle in the postbuckling analysis. In VICONOPT, the plate is 

modelled with the same boundary conditions as the postbuckling analysis to ensure consistency 

on both transverse and longitudinal edges.  

7.2. Isotropic plate under combined loading 

In this section, an isotropic plate under combined compression and shear loading is modelled 

to investigate the slightly skewed postbuckling mode. The material properties are Young’s 

modulus 𝐸 = 110 kNmm−2 and Poisson's ratio 𝑣 = 0.3. Initial buckling is attained assuming 

a ratio of 50% between the shear and longitudinal stress resultants, followed by postbuckling 

analysis in which there is a constant ratio between the applied shear and longitudinal strains. 

The plate is simply supported (restricting out of plane displacement) along all four edges with 

three different in-plane boundary conditions applied along its longitudinal edges, see Figure 

7.2.  
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Figure 7.2. Load and boundary conditions for isotropic plate under combined load 

VICON analyses are run first to extract the critical buckling modes, critical buckling loads and 

end shortening strains. For the case of in-plane free edges, the end shortening compressive and 

shear strains can be pre-determined by the ratio α as; 

 

 

Table 7.1. End shortening strains at postbuckling cycles, 0 indicates critical buckling point 

For each postbuckling cycle, in-plane displacements u and v are obtained directly by solving 

the equilibrium equations.  Then distributions of strains and stresses can be tabulated and 

plotted to observe their progression.

Cycle 0 1 2 3 … 19 20 

𝜀𝑥 -1.57E-4 -1.72E-4 -1.88E-4 -2.04E-4 … -4.55E-4 -4.71E-4 

𝛾𝑥𝑦 -2.04E-4 -2.24E-4 -2.45E-4 -2.65E-4 … -5.92E-4 -6.13E-4 

Normalized 1 1.1 1.2 1.3  2.9 3 
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As shown in Tables 7.2 and 7.3, the solutions obtained by solving the equilibrium equations 

correspond to nine half-wavelengths with both real (cosine) and imaginary (sine) parts . It can 

be seen that the results for both u and v are perfectly antisymmetric in the transverse direction. 

This is because whilst both the geometry and material are symmetric, the loading condition is 

antisymmetric leading to an antisymmetric solution.  Another observation is that the amplitudes 

of the sinusoidal terms decrease as the half-wavelength increases, with the amplitude of the 

l/10 term being approximately 0.1% of that of the l/1 one. The contributions of the l/10 term 

for the buckling mode are therefore insignificant, which means that its existence only slows 

down the calculations. However, it cannot be simply be neglected since the half-wavelength 

l/10 for the in-plane displacements is calculated from the half-wavelength l/5 for the out-of-

plane displacements l/(5+5), and l/5 makes a contribution to the out-of-plane displacements 

which cannot be ignored, see Table 7.4.  

 

 

 

(a) (b) 

(c) (d) 
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Figure 7.3. Contour plots of (a) out-of-plane displacements w(m); (b) in-plane displacements 

u(m); (c) in-plane displacements v(m); (d) strain 𝜀𝑥 ; (e) strain 𝜀𝑦 ; (f) strain 𝛾𝑥𝑦 ; (g) stress 

resultant 𝑁𝑥; (h) stress resultant 𝑁𝑦(N/m); (i) stress resultant 𝑁𝑥𝑦(N/m), under compression 

and shear with free in-plane edge conditions, at cycle 10 (200% of initial end shortening strain) 

(e) (f) 

(g) (h) 

(i) 
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After obtaining the displacements u and v by solving the in-plane equilibrium equations, 

stresses and strain can be calculated trigonometrically. To present the solutions visually, the 

trigonometric terms are required to be transformed to actual values at specific locations. Figure 

7.3 illustrates the converged solutions for CWPAN at cycle 10. It is worth noting that in Figure 

7.3 (b) and (c), the contours only plot the variations in the displacements, with the linear terms 

of Equation 4.2 excluded since they are very large compared to the variations which hence 

would be obscured. It can be seen that the contour plots are all skewed in the direction of the 

shear load and antisymmetric due to the antisymmetric solutions of the in-plane displacements. 

Figure 7.4 presents the postbuckling load paths for both compression and shear from cycle 1 

to cycle 20. The path of the compression applied at the transverse edges increments in an 

approximately quadratic manner. On the other hand, the shear loading is approximately linear. 

Another observation is that the compression path decreases at a strain of about 4e-4, i.e. around 

cycles 19 and 20. This is because, from Figures 7.5 and 7.6, the equivalent stress resultants 

redistribute at every cycle, with the stress in the middle strip starting to become negative at this 

point resulting in a decrease in the total load for the whole plate. Figure 7.7 shows the stress 

resultant path for each strip, from which it can be seen that strips 6-10 are symmetric to strips 

1-5, where the dashed line represents the stress resultants at the critical buckling point. It can 

also be seen that the nearer the strips are to the edges, the more the stress increases. In the 

middle strips 5 and 6, the stress resultants decrease instead of increasing. Figure 7.6 shows the 

shear stress resultants at each postbuckling cycle. 

The reason for the approximately linear increments in the shear in Figure 7.4 can be concluded 

from Figures 7.6 and 7.8, where the equivalent shear stress on each strip increases linearly. 

From a structural point of view, shear stress does not have the same effect of stress 

redistribution as occurs with longitudinal stress. Figure 7.9 presents the progressive out-of-

plane deflection at each cycle obtained using the modified Newton iteration scheme. 
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Figure 7.4 Postbuckling behaviour of load strain curve 

  

Figure 7.5 Equivalent uniform longitudinal stress at strip vs normalized end shortening 

strains  

 

Figure 7.6. Equivalent uniform shear stress at strip vs normalized end shortening strains

Can not be ignored 
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Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Strip 1 37756 40925 44089 47245 50395 53538 56667 59788 62900 65997 69082 72145 75186 78210 81207 84173 87109 90013 92910 95817 

Strip 2 36864 39127 41376 43597 45796 47971 50099 52200 54274 56300 58285 60195 62028 63811 65504 67095 68586 69978 71375 72848 

Strip 3 35513 36415 37295 38132 38935 39707 40398 41059 41688 42252 42766 43168 43462 43712 43850 43865 43779 43615 43596 43852 

Strip 4 34174 33734 33274 32765 32222 31652 30983 30297 29594 28828 28030 27113 26092 25079 23985 22821 21656 20583 19976 19991 

Strip 5 33350 32087 30808 29478 28117 26733 25239 23734 22219 20639 19027 17276 15394 13512 11491 9288 6844 3780 -714 -7465 

Strip 6 33350 32087 30808 29478 28117 26733 25239 23734 22219 20639 19027 17276 15394 13512 11491 9288 6844 3781 -714 -7472 

Strip 7 34174 33734 33274 32765 32222 31652 30983 30297 29594 28828 28030 27113 26092 25079 23984 22821 21657 20584 19978 19990 

Strip 8 35513 36415 37295 38132 38935 39707 40398 41059 41688 42252 42766 43168 43461 43712 43848 43865 43780 43617 43600 43864 

Strip 9 36864 39127 41376 43597 45796 47971 50099 52200 54274 56300 58285 60195 62028 63810 65502 67095 68586 69979 71378 72852 

Strip 10 37756 40925 44089 47245 50395 53538 56667 59788 62900 65997 69082 72145 75186 78210 81207 84173 87109 90013 92910 95816 

Figure 7.7. Equivalent uniform stress distribution at each postbuckling cycle 
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Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Strip 1 19141 21058 23033 25064 27146 29278 31465 33703 35993 38343 40752 43236 45797 48435 51166 54002 56946 59988 63038 66000 

Strip 2 19126 21007 22931 24897 26904 28952 31047 33186 35372 37612 39909 42273 44710 47224 49829 52535 55352 58270 61209 64073 

Strip 3 19124 20991 22892 24827 26798 28807 30857 32950 35089 37280 39529 41844 44233 46701 49264 51932 54718 57615 60546 63415 

Strip 4 19122 20981 22869 24786 26737 28721 30746 32812 34922 37085 39304 41589 43947 46386 48919 51559 54318 57190 60106 62968 

Strip 5 19122 20977 22859 24769 26712 28688 30704 32761 34863 37018 39231 41510 43865 46302 48834 51477 54240 57119 60047 62930 

Strip 6 19122 20977 22859 24769 26712 28688 30704 32761 34863 37018 39231 41510 43865 46302 48834 51477 54240 57119 60048 62934 

Strip 7 19122 20981 22869 24786 26737 28721 30746 32812 34922 37085 39304 41589 43947 46386 48919 51559 54318 57190 60106 62975 

Strip 8 19124 20991 22892 24827 26798 28807 30857 32950 35089 37280 39529 41844 44233 46701 49264 51932 54718 57614 60546 63417 

Strip 9 19126 21007 22931 24897 26904 28952 31047 33186 35372 37612 39909 42273 44710 47224 49829 52535 55352 58270 61209 64072 

Strip 10 19141 21058 23033 25064 27146 29278 31465 33703 35993 38343 40752 43236 45797 48435 51167 54002 56945 59988 63038 65999 

Figure 7.8 Equivalent uniform shear stress distribution at each postbuckling cycle 
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Figure 7.9. Contour plots of out-of-plane displacements at cycles 1 to 20, showing the 

progressive buckling mode. 

 

If the boundary conditions in the longitudinal direction are changed to either fixed or straight 

edges, the v displacement contours are affected whilst the u displacements contours merely 

change shape. Figure 7.10 presents the v contour for each boundary condition at cycle 10. The 

plate with  fixed edges is seen to have quite a different  displacement distribution with two 

skewed contours and zero displacement along the longitudinal edges. For the straight edges 

plate, the v displacements at the edges are constant and the contours are in between those for 

the free and fixed edge plates. 
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Figures 7.11 and 7.12 show the equivalent uniform longitudinal stresses distributions from 

cycles 1 to 20 for plates with straight and fixed edges respectively. For the plate with straight 

edges, it can be seen that the stress resultants are all positive due to the Poisson effect. For the 

fixed edge plate, the stress resultants for each of the cycles show a much lower level of 

redistribution with no interaction occurring due to there being less difference between the 

stresses nearer the edge and in the middle. Another effect of changing the longitudinal v 

boundary conditions is that introducing constraint results in stresses 𝑁𝑦 on the longitudinal 

boundaries which are zero for free and straight edges, see Figure 7.13. Figure 7.14 presents the 

load paths for each of the boundary conditions. 

 

 

 

Figure 7.10. v displacement contour plots (m) from (a) free edges, (b) fixed edges and (c) 

straight edges 
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Figure 7.11. Uniform longitudinal stress distribution at each postbuckling cycle for in-plane longitudinal straight edges 

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Strip 1 37771 40956 44136 47309 50476 53637 56786 59933 63066 66187 69297 72389 75470 78531 81571 84586 87577 90540 93459 96354 

Strip 2 36929 39260 41576 43869 46141 48393 50601 52807 54964 57080 59160 61175 63155 65066 66904 68659 70333 71911 73340 74699 

Strip 3 35654 36700 37727 38715 39672 40602 41457 42326 43114 43842 44525 45105 45652 46103 46453 46698 46850 46895 46749 46589 

Strip 4 34389 34168 33929 33646 33332 32994 32564 32178 31696 31153 30576 29885 29190 28403 27529 26568 25560 24505 23306 22285 

Strip 5 33611 32612 31599 30541 29454 28347 27138 25993 24742 23427 22082 20606 19130 17542 15836 13996 12033 9878 7198 4038 

Strip 6 33611 32612 31599 30541 29454 28347 27138 25993 24742 23427 22082 20606 19130 17542 15836 13996 12033 9878 7199 4040 

Strip 7 34389 34168 33929 33646 33332 32994 32564 32178 31696 31153 30576 29885 29190 28403 27529 26568 25561 24506 23308 22289 

Strip 8 35654 36700 37727 38715 39672 40602 41457 42326 43114 43842 44524 45105 45651 46102 46453 46698 46851 46897 46751 46594 

Strip 9 36929 39260 41576 43869 46141 48393 50601 52807 54964 57080 59160 61175 63154 65066 66904 68659 70333 71911 73342 74702 

Strip 10 37771 40956 44136 47309 50476 53637 56786 59933 63066 66187 69297 72389 75470 78531 81571 84586 87578 90540 93459 96355 
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Figure 7.12. Equivalent uniform longitudinal stress distribution at each postbuckling cycle for in-plane longitudinal fixed edges 

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Strip 1 33327 35841 38347 40849 43351 45847 48339 50820 53297 55756 58219 60687 63129 65563 67996 70401 72804 75201 77572 79937 

Strip 2 32124 34162 36187 38204 40218 42221 44215 46190 48155 50086 52021 53961 55855 57730 59600 61415 63223 65014 66755 68476 

Strip 3 30301 31624 32929 34222 35514 36791 38058 39296 40523 41699 42886 44087 45218 46326 47431 48457 49478 50482 51412 52322 

Strip 4 28490 29108 29703 30289 30877 31452 32019 32553 33080 33546 34036 34557 34994 35410 35839 36173 36518 36858 37117 37371 

Strip 5 27374 27559 27721 27874 28034 28181 28323 28432 28536 28574 28646 28761 28783 28790 28819 28745 28694 28646 28516 28392 

Strip 6 27374 27559 27721 27874 28034 28181 28323 28432 28536 28575 28646 28761 28784 28791 28820 28746 28697 28645 28515 28390 

Strip 7 28490 29108 29703 30289 30877 31452 32019 32554 33080 33547 34036 34558 34995 35412 35842 36176 36524 36856 37115 37368 

Strip 8 30301 31624 32929 34222 35514 36791 38058 39296 40523 41700 42886 44088 45220 46328 47434 48461 49484 50481 51410 52318 

Strip 9 32124 34162 36187 38204 40218 42221 44215 46190 48155 50087 52021 53962 55856 57731 59602 61417 63227 65014 66753 68473 

Strip 10 33327 35841 38347 40849 43351 45847 48339 50820 53297 55756 58219 60687 63129 65563 67997 70401 72805 75201 77572 79936 
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Figure 7.13. Equivalent uniform transverse stress  distribution 𝑁𝑦 at each postbuckling cycle for in-plane longitudinal fixed edges 

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Strip 1 5889 5030 4155 3273 2391 1499 601 -321 -1249 -2220 -3176 -4109 -5103 -6111 -7109 -8177 -9234 -10294 -11410 -12526 

Strip 2 5709 4780 3834 2880 1927 964 -7 -1001 -2003 -3049 -4079 -5085 -6154 -7238 -8312 -9457 -10591 -11727 -12922 -14116 

Strip 3 5785 4887 3971 3048 2125 1192 251 -714 -1687 -2705 -3708 -4689 -5733 -6794 -7847 -8972 -10089 -11211 -12394 -13579 

Strip 4 5865 4998 4114 3222 2332 1431 523 -409 -1347 -2330 -3298 -4244 -5252 -6276 -7292 -8378 -9456 -10540 -11682 -12827 

Strip 5 5915 5067 4203 3331 2461 1580 692 -219 -1136 -2097 -3043 -3966 -4950 -5949 -6940 -8000 -9050 -10105 -11217 -12330 

Strip 6 5915 5067 4203 3331 2461 1580 692 -219 -1136 -2097 -3043 -3966 -4950 -5950 -6940 -8000 -9050 -10105 -11217 -12330 

Strip 7 5865 4998 4114 3222 2332 1431 523 -409 -1347 -2330 -3298 -4244 -5252 -6276 -7292 -8378 -9456 -10540 -11682 -12827 

Strip 8 5785 4887 3971 3048 2125 1192 251 -714 -1687 -2705 -3708 -4689 -5733 -6794 -7847 -8972 -10089 -11211 -12394 -13580 

Strip 9 5709 4780 3834 2880 1927 964 -7 -1001 -2003 -3049 -4079 -5084 -6154 -7237 -8311 -9456 -10590 -11728 -12923 -14117 

Strip 10 5889 5030 4155 3273 2391 1499 601 -320 -1249 -2220 -3176 -4109 -5103 -6111 -7109 -8176 -9233 -10294 -11410 -12527 
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Figure 7.14. Postbuckling load paths for all boundary conditions for metal plate 

 

7.3. Composites loaded in compression 

In this section, to illustrate the capability of CWPAN in analysing composite plates under shear 

loading, a square plate with the same dimensions as the plate in the last section but 

manufactured from composite is modelled. The properties of the material are taken from Zhang 

(2018): 𝐸11 = 131kNmm−2 , 𝐸22 = 13kNmm−2 , 𝐺12 = 𝐺13  = 𝐺23 = 6.41kNmm−2 , 𝑣12 =

0.38 .  The plate consists of 16 plies with a ply thickness of 0.125mm  a layup of 

[0 0 +45 0 −45 0 90 90 90 90 0 −45 0 +45 0 0⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄  ] , see Figure 7.15. (This 

orientation is utilized by the models in all balanced and symmetric cases). This layup is 

balanced and symmetric resulting in A16 = A26 = 0, a zero B-stiffness matrix with no extension 

bending or shear extension coupling. The membrane stiffness matrices of the laminates are as 

follows 
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A-Stiffness Matrix (Nm-1) 

1.6222×108 2.3827×107 0 

2.3827×107 1.0236×108 0 

0 0 2.6624×107 

Table 7.5. Laminate stiffness of balanced and symmetric laminates 

 

Figure 7.15 Laminate orientation example 

To validate CWPAN the critical buckling and postbuckling behaviour are compared with those 

from ABAQUS/Standard (ABAQUS 2014). The plate is modelled with 400 S4R  4-node 

general-purpose shell elements, with reduced integration and hourglass control, and three 

integration points through the thickness of each ply. For a 16 ply composite plate this 

corresponds to 48 integration points in total, with strains and stress resultants at the mid surface 

at integration point 24 (or 25 since these are coincident). A linear buckling perturbation is 

utilised to find the eigenvalues with the mode corresponding to the lowest positive eigenvalue 

selected to predict the postbuckling mode. Subsequently, the Riks method with a 0.01 curvature 

increment is chosen to perform a non-linear postbuckling analysis. The Riks method allows 

geometrically nonlinear static problems including buckling or collapse where the load-

D-Stiffness Matrix (Nm) 

72.778 7.9425 2.1044 

7.4974 15.415 2.1044 

2.1044 2.1044 8.8746 
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displacement response shows a negative stiffness, and the structure must release strain energy 

to remain in equilibrium, to be solved. It is therefore particularly suitable for nonlinear, 

potentially unstable problems such as postbuckling. 

The model is analysed for the same three boundary conditions described in Section 7.1. 

However, to enable comparison with the improved exact strip method (Che, 2012), only free 

edges are presented here since this method is restricted to free edges only. Since CWPAN is 

controlled by end shortening strains which are increased by α at each postbuckling cycle, the 

FEA loading is controlled by displacements to provide the best comparison with CWPAN. This 

is achieved by applying equation constraints to the two loaded edges.  

 

                              (a)                                                                 (b) 

 

                              (c)                                                                 (d) 
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                              (e)                                                                 (f) 

Figure 7.16. Contour plots of displacements (m) at cycle 8 of the composite plate under 

compression: (a) out-of-plane w, CWPAN (b) out-of-plane w, ABAQUS (c) in-plane u, 

CWPAN (d) in-plane u, ABAQUS (e) in-plane v, CWPAN (f) in-plane v, ABAQUS 

 

 

 

(a)                                                                      (b) 
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(c) 

Figure 7.17. Contour plots of stress resultants 𝑁𝑥  at cycle 8 of composite plate under 

compression (N/m): (a) series solution (b) improved exact strip method (Zhang, 2018) (c) 

ABAQUS solution 

 

 

(a)                                                                      (b) 
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(c) 

Figure 7.18. Contour plots of stress resultants 𝑁𝑦  at cycle 8 of the composite plate under 

compression (N/m): (a) series solution (b) improved exact strip method (Zhang 2018) (c) 

ABAQUS solution 

 

Figure 7.19. Normalized applied compressive load(𝑃/𝑃𝑐𝑟) vs non-dimensional maximum 

deflection 𝑤/ℎ 

w/h 0.0235 0.0328 0.0402 0.0464 0.0519 0.0569 0.0614 0.0657 0.0696 0.0734 

VPA 1.0327 1.0651 1.0956 1.1256 1.1557 1.1846 1.2149 1.2435 1.2728 1.3020 

ABAQUS 1.0282 1.0503 1.0725 1.0944 1.1156 1.1368 1.1648 1.1782 1.1995 1.2204 

Relative 

difference 
0.0044 0.0140 0.0215 0.0285 0.0358 0.0419 0.0430 0.0554 0.0610 0.0668 

Table 7.6. Normalized deflections from CWPAN and ABAQUS 
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Figure 7.16 compares contour plots of in-plane and out-of-plane displacements from CWPAN 

and FEA at cycle 8. A good agreement can be seen both in shape and values. Figures 7.17 and 

7.18 compare contour plots of strain and stress resultants from CWPAN, improved exact strip 

method and finite element analysis at cycle 8 (1.8 times the critical buckling strain, chosen to 

coincide with the example from Che (2010)). It can be seen that the mode skews slightly due 

to the introduction of composite material resulting in bend twist coupling. The shape of the 

plots will continue to be distorted as the applied load increases due to stress redistribution. One 

observation is that CWPAN shows good agreement with the improved exact strip method (Che, 

2010). As can be seen from the explicit expressions, the previous method represents the in-

plane buckling mode using five half-wavelengths while ten are used for CWPAN. CWPAN is, 

therefore, closer to the actual solution. Since in this case, the level of anisotropy is small the 

difference between the two methods is fairly negligible. For higher levels of anisotropy 

however such as the introduction of shear load, the study of unbalanced laminate lay-ups or 

later into the postbuckling period, CWPAN will show much closer agreement with the actual 

solutions. Both methods show good agreement with ABAQUS although their contours are 

more angular than ABAQUS close to transverse edges for 𝑁𝑦 . This is because the free 

boundary conditions on the transverse edges in ABAQUS cannot easily be modelled due to the 

resulting rigid body movement whilst the exact strip postbuckling analysis overcomes this by 

adding point supports at longitudinal strips explained in Section 4.6. Figure 7.19 compares the 

total load path from the CWPAN and FEA. The maximum error of 6.68% is found at the last 

equilibrium point shown in the figure.  

7.4. Composite loaded under combined  load 

In this section, a composite plate under combined shear and compression is modelled to 

illustrate CWPAN’s ability to analyse a composite under shear loading. The geometry and 

properties of the composite are the same as in the previous example whilst the load combines 

compression with a shear load having half its magnitude at initial buckling, applied as described 

in section 7.2 (see Figure 7.20).  Again, only the results for in-plane fixed v displacements are 

presented.  (This orientation is utilized by all models in this thesis).  
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Figure 7.20. Load and boundary conditions 

 

 

 

                              (a)                                                                 (b) 
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                              (c)                                                                 (d) 

 

                              (e)                                                                 (f) 

 

                              (g)                                                                 (h) 
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                                                              (i) 

Figure 7.21. Combined loading case contour plots of: (a) out-of-plane displacement w (m) (b) 

in-plane displacement u (m) (c) in-plane displacement v (m) (d) strain 𝜀𝑥  (e) strain 𝜀𝑦 (f) 

strain 𝛾𝑥𝑦 (g) stress resultant 𝑁𝑥  (N/m) (h) stress resultant 𝑁𝑦 (N/m) (i) stress resultant 

𝑁𝑥𝑦(N/m) 

Figure  7.21 shows contour plots of displacements and stress and strain distributions for the 

plate. The inclusion of shear loading, can be clearly observed to increase the level of skew. 

This can be seen from the sinusoidal solutions to be due to the fact that the non-dominant (in-

plane half-wavelength 0 is considered to be the dominant term) terms contribute more when 

compared to the compression only case. From a structural point of view, the shear loading will 

bring antisymmetry into the structure resulting in skewed mode shapes also validating CWPAN.  

One observation from Figure 7.21(b) is that displacements u are approximately linearly 

distributed in both the longitudinal and transverse directions. This is caused by the constant 

ratio between the applied end shortening and shear strains applied to the structure at each 

postbuckling cycle, see Equation 4.2, while the non-linear parts of the displacements are caused 

by postbuckling stiffness. Another observation from Figure 7.21(c) is that since in-plane 

boundary conditions are only applied on the longitudinal edges, the distribution of v 

displacements along these edges will clearly be different in this case than for other boundary 

conditions. As shown in Figure 7.21(c), v displacements are zero at the longitudinal edges and 

the two contours in the upper and lower halves of the plate move in opposite directions. Figure 

7.22 presents the buckling and postbuckling longitudinal and shear stress paths for composites 

under combined loading. It can been seen that at the beginning of the path, the ratio of shear to 

compression is 0.5. This ratio increases when the path goes into the later stages due to the 

assumptions of strain control in the postbuckling analysis. Another difference between the 

different boundary conditions is in the stress redistributions at each cycle, see Figure 7.23. For 
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the fixed boundary conditions considered here, stress resultants on the edge strips increase 

more slowly than for ones under free boundary conditions whilst the stress resultants at the 

middle strips hardly reduce.  

 

Cycle 0 1 2 3 4 5 6 7 8 9 10 
Compression(N/

m) 

397
4 

414
6 

431
8 

448
8 

465
8 

482
7 

499
6 

516
1 

532
8 

549
3 

565
7 

Shear(N/m) 198
7 

218
7 

238
8 

258
9 

279
1 

299
3 

319
5 

339
8 

360
2 

380
6 

401
0 

Ratio 2 1.90 1.81 1.73 1.67 1.61 1.56 1.52 1.48 1.44 1.41 

 

Figure 7.22 Postbuckling load paths and tabulation of shear and compression for a composite 

plate under combined loading and in-plane fixed boundary conditions 

 

The solution for the combined loading case illustrates the main difference between the arc 

length method (Riks method), used in the finite element analysis, and CWPAN.  The Riks 

method is a numerical technique which converges on an equilibrium state by increasing the 

applied load and displacements at the same time (Memon, 2004). 
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Figure 7. 23 Equivalent uniform longitudinal stress distribution at each postbuckling cycle for a composite plate under combined loading and in-

plane longitudinal fixed edges 

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Strip 1 14395 15542 16689 17834 18978 20122 21262 22403 23542 24680 25819 26954 28086 29217 30348 31473 32598 33728 34851 35968 

Strip 2 14170 15092 16012 16927 17841 18754 19659 20565 21466 22364 23264 24155 25041 25923 26804 27671 28540 29418 30280 31129 

Strip 3 13817 14388 14954 15514 16072 16630 17174 17722 18263 18799 19341 19869 20389 20904 21420 21914 22414 22932 23427 23899 

Strip 4 13465 13685 13901 14109 14316 14525 14716 14915 15105 15292 15488 15668 15839 16008 16179 16324 16480 16667 16824 16953 

Strip 5 13247 13252 13252 13244 13235 13230 13205 13191 13168 13142 13130 13100 13060 13019 12984 12919 12869 12859 12816 12741 

Strip 6 13247 13252 13252 13244 13235 13230 13205 13191 13168 13142 13130 13100 13060 13019 12984 12919 12870 12859 12816 12742 

Strip 7 13465 13685 13901 14109 14316 14525 14716 14915 15105 15292 15488 15668 15839 16008 16179 16324 16480 16667 16824 16953 

Strip 8 13817 14388 14954 15514 16072 16630 17174 17722 18263 18799 19341 19869 20389 20904 21420 21914 22414 22932 23427 23899 

Strip 9 14170 15092 16012 16927 17841 18754 19659 20565 21466 22364 23264 24155 25041 25923 26804 27671 28540 29418 30281 31129 

Strip 10 14395 15542 16689 17834 18978 20122 21262 22403 23542 24680 25819 26954 28086 29217 30348 31473 32598 33728 34851 35968 
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Figure 7.24. Arc length procedure for specific iteration (Memon, 2004) 

 

As shown in Figure 7.24, the increment of displacement is written as ∆𝑝 while for the applied 

load, instead of using load directly, a load proportionality factor (LPF) ∆𝜆 is used. The applied 

load at each equilibrium state is  

𝑄 = ∆𝜆𝑐𝑞 …(7.1) 

 

where q is the reference load applied when modelling and c is the cycle number. From Equation 

7.1, it can be concluded that the load during a Riks step is always proportional to the reference 

load. (ABAQUS 2014). 

If the applied load is a combined load instead of a single force, this combined load will be 

incremented and the ratio between the two individual loads will remain the same, see Figure 

7.25(a). On the contrary, for CWPAN, as the increment at each cycle is controlled by the level 

of strain, it is the strain ratio which remains unchanged rather than the applied force ratio, see 

Figure 7.25(b).  Thus,  the applied forces will not the be in the same ratio as for the initial input 

load, see Figure 7.21. In this case, comparison with the Riks method will naturally show poor 

agreement.  
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(a) 

  

(b) 

Figure 7.25. The inputs and outputs of a postbuckling analysis using: (a) the ABAQUS Riks 

method; (b) CWPAN 

Such phenomena also occur for an unsymmetric laminate because the coupling of in-plane-and 

out-of-plane stiffness matrices has not been incorporated into the stiffness calculation, see 

Section 5.5. In all of these cases therefore the Riks method cannot be used to validate the results 

from CWPAN. 

7.5. Composite loaded in pure shear 

Composite plates under pure shear have been studied extensively (Xu etc, 2013; Gousal etc, 

2015). However, many numerical methods incur very high computational costs or even fail to 

converge due to high levels of nonlinearity. Using CWPAN, composite plates under pure shear 

can be analysed efficiently and convergence problems can be overcome by solving the 

equilibrium equations analytically.  

In this section, a plate under pure shear is modelled and validated using ABAQUS. In-plane 

fixed boundary conditions are applied on the longitudinal edges and pure shear load is applied 

on all four edges. The properties of the plate are as described in section 7.3. As the complexity 

of the problem is increased, three out-of-plane half-wavelengths may no longer accurately 

capture the in-plane and out-of-plane displacement distributions. Instead therefore, five out-of-

plane half-wavelengths and a 5% shear strain increment ratio are selected. Other predefined 

parameters are as described in section 7.1. 
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                            (a)                                                                 (b) 

Figure 7.26 Contour plots of out-of-plane displacements w at initial buckling for pure shear 

case (m): (a) CWPAN. (b) ABAQUS 

 

                            (a)                                                                 (b) 

Figure 7.27. Contour plots of out-of-plane displacements u for pure shear case at cycle 5 (m): 

(a) CWPAN. (b) ABAQUS 
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                            (a)                                                                 (b) 

Figure 7.28. Contour plots of out-of-plane displacements v for pure shear case at cycle 5 (m): 

(a) CWPAN. (b) ABAQUS 

 

                            (a)                                                                 (b) 

Figure 7.29. Contour plots of strain 𝜀𝑥 for pure shear case at cycle 5: (a) CWPAN. (b) 

ABAQUS 
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                            (a)                                                                 (b) 

Figure 7.30. Contour plots of strain 𝜀𝑦  for pure shear case at cycle 5: (a) CWPAN. (b) 

ABAQUS 

 

 

                            (a)                                                                 (b) 

Figure 7.31. Contour plots of strain 𝛾𝑥𝑦 for pure shear case at cycle 5: (a) CWPAN. (b) 

ABAQUS 

 

Figures 7.26, 7.27 and 7.28 present the distribution of displacements at cycle 5, i.e. at 125% of 

the initial shear strain (5% strain increment times 5 cycles),  compared with ABAQUS Riks 

analysis. From these figures, it can clearly be seen that very good agreement has been achieved. 

Displacements w (Figure 7.26) are skewed significantly and symmetrical along the diagonal 

due to the coupling of the effects of the pure shear loading and the composite material. This 
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kind of solution cannot be obtained by the previous postbuckling analysis by Che (2010) due 

to it being limited to one out-of-plane half-wavelength. 

Figures 7.29, 7.30 and 7.31 show strain distributions at cycle 5. Solutions from both CWPAN 

and ABAQUS Riks analysis are largely in agreement with each other. However, there are 

differences in the strain 𝜀𝑥  contour on its longitudinal edges, the strain 𝜀𝑦  contour on its 

transverse edges and the shear strain 𝛾𝑥𝑦 at its corners. These differences can be explained by 

another major mechanism difference between CWPAN and the ABAQUS Riks method.  

This difference originates from the initial buckling analysis which is solved by VICON. As 

described in Chapter 3,  VICON analysis assumes plates as infinitely long with the end supports 

repeating at longitudinal intervals over their length l. The mode shapes are therefore assumed 

to repeat in the longitudinal direction at intervals of 𝐿 = 2𝑙 𝜉⁄ , where 𝜉 is a parameter in the 

range 0 ≤ 𝜉 ≤ 1  and can therefore be represented (Anderson et al., 1983) by a series of 

responses with half-wavelengths 𝑙 (𝜉 + 2𝑚)⁄  where m is any integer. 

In the modelling process, parameter 𝜉  is selected to find the interval giving the lowest 

eigenvalue and the mode shape corresponding to this is taken as the initial buckling mode for 

the postbuckling analysis. Such a method is advantageous for thin slender structures like an 

aeroplane wing which can be considered as an infinitely long stiffened plate providing an 

accurate representation of the boundary conditions along the length (Diaconu and Weaver, 

2006).  

Figure 7.32 shows a finite number of bays from a repetitive infinitely long panel from VICON’s 

initial buckling solutions when  𝜉 = 1, 0.5 and 0.25. It is worth noting that the total length of 

the repeat intervals is 𝐿 = 2𝑙 𝜉⁄ , the number of repeating bays M is therefore 𝐿/𝑙 = 2 𝜉⁄ . Thus, 

when 𝜉 = 1, the number of repeating bays M is 2 bays. Similarly, when 𝜉 = 0.5,𝑀 = 4 and 

when 𝜉 = 0.25,𝑀 = 8. For each 𝜉 , although the buckling mode extends across all of the 

repeating bays, with each displaying a slightly different mode shape, only the first one is chosen 

as the postbuckling start point. In this case 𝜉 = 0.5 gives the lowest critical buckling load 𝑃𝑐𝑟 =

12,712 𝑁 . Thus, the mode corresponding to the first of the four repeating bays will be taken 

as the initial buckling mode shape.  
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Figure 7.32. Initial buckling solution from VICON for pure shear case 

 

In the ABAQUS model however, the analysis is based on a single bay rather than an infinitely 

long plate. In this case the lowest buckling mode is as shown in Figure 7.26(b), corresponding 

to a critical buckling load 𝑃𝑐𝑟 = 11,540 𝑁 which shows very poor agreement with the lowest 

buckling mode and load 𝑃𝑐𝑟 = 12,712 𝑁  when 𝜉 = 0.5  from the VICON analysis. (The 

ABAQUS solution is closer to the mode when 𝜉 = 1, see Figure 7.26(a)). Unsurprisingly, 

results from the two methods lead to differences in strain distributions. 

The advantage of assuming infinite long plates in the coupled wavelength postbuckling 

analysis in that the computational efficiency remains the same regardless of the length of plate, 

i.e. the complexity of analysing one bay or multiple bays plate is the same, is inherited from 

VICON analysis. This is very different from FEA. Furthermore, for CWPAN, the infinitely 

long plate model allows for moment equilibrium where there is continuity with other parts of 

a larger structure, and is therefore more representative of aircraft wing panels with intermediate 

transverse stiffeners, i.e. ribs. 
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Figure 7.33. Shear stress redistribution from pure shear model 

 

Figure 7.33 illustrates the shear stress redistribution observed over 20 cycles of CWPAN. 

Compared to the stress redistribution seen for example for a plate under compression, 

redistribution of the shear stress resultants occurs in the opposite direction with the stress 

resultants in the middle of the strips increasing whilst the ones closer to the edges decrease.  

From a structural point of view, for pure shear cases, large deflections are located in areas of 

high stress. As the largest deflections are found in the centre of the plate, see Figure 7.26, the 

large stresses are therefore also located in the centre as shown in Figure 7.33. Such phenomena 

can also be validated based on the ABAQUS postbuckling analysis. 

7.6. Unbalanced and unsymmetric composites 

In this section, unbalanced symmetric and unbalanced unsymmetric laminated composites are 

modelled to illustrate the capability of CWPAN in analysing more general cases. 

As described in chapter 2, for unbalanced composite materials, shear-extension coupling occurs 

during both the buckling and postbuckling regimes, with the  𝐴16 and 𝐴26 terms in the stiffness 

matrix becoming non-zero. For these lay-ups in-plane normal stresses 𝑁𝑥 and 𝑁𝑦  cause shear 

strain 𝛾𝑥𝑦  and twist stress 𝑁𝑥𝑦  causes elongations.  
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A lack of symmetry brings another level of complexity for postbuckling analysis, introducing 

coupling of out-of-plane curvatures κ including twist 𝜅𝑥𝑦  and bending moments M. 

Furthermore, since the stiffness elements 𝐵𝑖𝑗 are non-zero, in-plane stresses 𝑁𝑥, 𝑁𝑦, 𝑁𝑥𝑦 cause 

out-of-plane curvatures and bending moments 𝑀𝑥, 𝑀𝑦, 𝑀𝑥𝑦 cause in-plane strains. 

These coupling effects need to be incorporated for accurate postbuckling analysis. To include 

both the B and the D elements of the stiffness matrix, expressions for curvatures and moments 

are required to form the correct equilibrium equations as described in Chapter 4. When solving 

these equilibrium equations - Equations 4.46 and 4.47, it can be seen that expressions for 

curvatures are only related to out-of-plane deflections w, considered to be constants appearing 

on the right hand side of the equations, whilst moments  𝑀𝑥, 𝑀𝑦, 𝑀𝑥𝑦 are irrelevant to those 

equations. From a computational point of view, the time taken to solve such equations is 

therefore more or less the same as for balanced and symmetric composites. However as the 

structural stiffness matrix is required for the Newton iteration scheme, the technique for 

obtaining symmetric composite stiffness cannot be used for unsymmetric cases. This is because 

out-of-plane stiffness for symmetric composites has no coupling with in-plane stiffness, 

namely only stiffness matrix A and D are required and are embedded into the theory. To 

consider the in-plane coupling effect caused by unsymmetric laminates, further stiffness 

calculations would have to be developed. Therefore, in this section, only the first cycle of the 

postbuckling analysis for unsymmetric composite is presented since the mode shapes for the 

rest of the cycles will be inaccurate.  

The plates in this section are subject to in-plane compression and under fixed boundary 

conditions. The configurations studied are presented below: 

 

A: [0 −45 +45 0 −45 0 90 90 90 90 0 −45 0 +45 −45 0⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄  ] 

B: [0 90 +45 0 −45 0 −45 90 90 90 0 −45 −45 0 0 +45⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄⁄  ] 

 

Based on the level of complexity of the mode shape, the predefined parameters chosen for the 

balanced and symmetric composites i.e. three out-of-plane half-wavelengths, ten strips and 

10% strain increments are also used here.  Since as discussed in section 7.5, it is not possible 
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to generate a comparable load case using FEA for unbalanced cases, comparison with FEA is 

not presented here. 

 

                            (a)                                                                 (b) 

  

                            (c)                                                                 (d) 

 

                            (e)                                                                 (f) 
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                            (g)                                                                 (h) 

 

                                                             (i) 

Figure 7.34. Symmetric unbalanced laminated composite under in-plane compression and fixed 

boundary condition at cycle 1 (110% of buckling end shortening strain), contour plots of:  (a) 

out-of-plane deflection w (m); (b) in-plane longitudinal deflection u (m); (c) in-plane transverse 

deflection v (m); (d) strain 𝜀𝑥; (e) strain 𝜀𝑦; (f) strain 𝛾𝑥𝑦; (g) stress resultant 𝑁𝑥 (N/m); (h) 

stress resultant 𝑁𝑦 (N/m); (i) stress resultant 𝑁𝑥𝑦 (N/m). 

 



Chapter 7 

144 
 

 

Figure 7.35. Equivalent shear uniform stress distribution at each postbuckling cycle 

 

Figure 7.36. Postbuckling load paths for unbalanced symmetric composite under 

compression, free edges 

 

Figure 7.34 presents the displacement, stress and strain distributions for a symmetrical 

unbalanced composite plate under compression with fixed in-plane boundary conditions. It can 

be seen that most of the contours are twisted in one direction, caused by the unbalanced lay-

up. Another observation is that compared to balanced composites, the shape and maximum 

amplitudes of the shear stress (𝑁𝑥𝑦) contour plots are very different, with stresses concentrated 

on the edges unlike those from a balanced composite. The stress redistribution is therefore 

much more obvious due to the coupling of direct and shear stresses and strains.   
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Figure 7.35 shows the equivalent shear stress resultants at strip level at each postbuckling cycle 

for the unbalanced composite. The graph shows that the shear stress resultants fluctuate along 

the transverse direction in which positive extrema are located at both ends while negative ones 

are located at the quarter points of the plate, and they are unsymmetric and increasing.  These 

patterns are very different to the balanced cases, see Figures 7.13 and 7.33. As for total shear 

stress, an interesting phenomenon can be seen in Figure 7.36 where shear stress does not appear 

straight after the critical buckling point as shear loading is not applied. Instead, it starts to show 

after the first postbuckling cycle and then keeps increasing. From a structural point of view, 

these effects are due to the involvement of stiffness elements 𝐴16 and 𝐴26 which results in in-

plane normal forces 𝑁𝑥 and 𝑁𝑦 causing twist of the laminate 𝜅𝑥𝑦, and a twist force 𝑁𝑥𝑦 causing 

elongations in the x and y directions. A more detailed solution for unbalanced symmetric case 

is presented in Appendix B. 

Figure 7.37 presents the displacement, stress and strain distributions for an unsymmetric 

unbalanced laminated composite plate under compression and fixed boundary conditions. 

Compared with the symmetric cases, the shear strains and stresses here are clearly very 

different. This is largely due to the involvement of stiffness matrices B and D.  

Figure 7.38 shows the curvatures κ and bending moments M, which have not been presented 

in the previous cases. As solutions are shown only for the first cycle of the postbuckling 

analysis, i.e. 110% of buckling constant strain, there is not too much skewing, and the bending 

moments caused by the unsymmetric layups are relatively small. These are likely to be more 

significant further along the postbuckling path.  
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                            (a)                                                                 (b) 

 

                            (c)                                                                 (d) 

 

                            (e)                                                                 (f) 
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                            (g)                                                                 (h) 

 

(i) 

 

Figure 7.37. Unsymmetric unbalanced laminated composite model under in-plane 

compression and fixed boundary conditions at cycle 1 (110% of buckling end shortening 

strain), contour plots of:  (a) out-of-plane deflection w(m); (b) in-plane longitudinal 

deflection u (m); (c) in-plane transverse deflection v (m); (d) strain 𝜀𝑥; (e) strain 𝜀𝑦; (f) strain 

𝛾𝑥𝑦; (g) stress resultant 𝑁𝑥 (N/m); (h) stress resultant 𝑁𝑦 (N/m); (i) stress resultant 𝑁𝑥𝑦 

(N/m). 
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                            (a)                                                                 (b) 

 

                            (c)                                                                 (d) 

 

                            (e)                                                                 (f) 

Figure 7.38. Unsymmetric unbalanced laminated composite model under in-plane compression 

and fixed boundary condition at cycle 1 (110% of buckling end shortening strain), contour plots 

of:  (a) curvature 𝜅𝑥; (b) curvature 𝜅𝑦; (c) curvature 𝜅𝑥𝑦; (d) bending moment 𝑀𝑥 (Nm); (e) 

bending moment 𝑀𝑦 (Nm); (f) bending moment 𝑀𝑥𝑦 (Nm). 
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7.7. Computational Efficiency Evaluation  

Computational efficiency is an important consideration for numerical modelling techniques. 

Reducing the computational cost of composite modelling for large aerospace projects is highly 

beneficial particularly for preliminary design where many different design scenarios must be 

considered, and optimization which may take months for conventional FEA to solve. In these 

cases, a fast and reliable numerical technique is of great value. In this section, an evaluation of 

the computation efficiency of CWPAN for different cases is presented.  

The most time-consuming calculation process in the postbuckling analysis is the solution of 

the equilibrium equations which are large linear equations. The size of these equations is highly 

dependent on the number of in-plane half-wavelengths and the number of strips.  Since these 

are solved using the modified Newton iteration scheme more than 50 repeats are required which 

exacerbates the problem. Therefore, to improve the computational efficiency, reducing the 

computational effort required to solve large equations becomes the priority problem.  

For a plate divided into 10 strips, using three and five half-wavelengths, it takes 0.35 minutes  

and 0.9 minutes to run one Newton iteration respectively using a 4 cores i7 and 16 RAM 

computer, . Such differences result in the computational times shown in Table 7.7. 
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Table 7.7 Approximate computational efficiency of CWPAN, showing iteration counts and solution times. 

Cycle number 
Compression with 

free edges(3 half-

wavelengths) 

Compression with 

fixed edges(3 half-

wavelengths) 

Compression with 

straight edges(3 

half-wavelengths) 

Combined load 

with free edges(3 

half-wavelengths) 

Combined load 

with fixed edges(3 

half-wavelengths) 

Combined load 

with straight 

edges(3 half-

wavelengths) 

Pure shear(5 half-

wavelengths) 

1 2 1 2 2 2 2 3 

2 2 1 1 2 2 2 3 

3 2 1 1 2 2 2 4 

4 2 1 1 2 2 2 4 

5 2 1 1 2 2 2 5 

6 2 1 1 2 2 2 5 

7 2 1 1 2 2 2 6 

8 2 1 1 2 2 2 7 

9 2 1 1 2 2 2 8 

10 2 1 1 2 2 2 8 

Total 20 10 11 20 20 20 53 

Time(mins) 8 4 5 8 8 8 47 
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Table 7.7 shows the average number of iterations required to converge on a postbuckling mode 

using the modified Newton iteration scheme and the total run time. It can be seen that the run 

time increases when the complexity of the case increases, for example for shear. In this case 

this is due to the combination of the fact that shear loading adds instability to the structure 

resulting in more iterations for convergence, and that the use of 5 out-of-plane half-

wavelengths increases the size of the linear equations. However for simpler cases, the analysis 

reaches double the critical buckling constant strain (10 cycles), within a maximum of 8 minutes.  

For the ABAQUS Riks method, the run time is relatively hard to measure since it is dependent 

on many factors such as the number of elements, arc lengths, imperfection, etc. For a simple 

square composite plate under non-pure-shear loading, an approximation has been made that 

around 10 minutes are required to reach the same stage as CWPAN by using 900 elements. 

Even for these simple cases, CWPAN achieves the same level of accuracy with a 20% 

execution time reduction by dividing the plate into 10 strips. As described in section 7.5, as 

plates are assumed to be infinitely long, the computational complexity of the square plate is the 

same as plates of rectangular shape. This means that when analysing long plates, CWPAN will 

be significantly more efficient than Riks analysis to achieve the same level of accuracy. 

Since the long execution time is associated with solving the large linear equations, applying 

suitable techniques based on key features of the resulting matrix could reduce the 

computational time significantly. For CWPAN, the target equations are found to form a banded 

matrix. This would allow them to be transformed into upper and a lower triangular matrices 

(LU decomposition) and solved accordingly, saving a significant amount of time. There are 

other techniques for solving such a matrix that can further reduce computational time such as 

the Gaussian elimination method (Maa et. al. 1997). Applying one of those techniques, the 

computational efficiency of CWPAN could be further reduced.  
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7.8. Conclusion 

In this chapter, different types of isotropic laminated composite plates are modelled and 

presented to illustrate the capabilities of the coupled wavelength postbuckling analysis and 

modified Newton iteration scheme.  The modelling examples start with isotropic plate under 

combined loading illustrating the particular data structures by CWPAN. For the case of a 

balanced symmetric laminate under pure compression and pure shear force, results are 

validated using the ABAQUS Riks method and the differences between the results for the two 

methods have been discussed. The modelling of unbalanced and unsymmetric composite plates 

is presented in the Section 7.6 to illustrate the ability of analysing general composite plates. 

Finally, a study of computational efficiency is presented. Some key conclusions are made.  

Based on combining a number of half-wavelengths, a series solution for postbuckling analysis 

has been developed to enable any kind of laminated composites and in-plane loading conditions 

to be studied. To capture out-of-plane deflections for each postbuckling cycle, a modified 

Newton iteration has been introduced.  These two techniques have been validated for a 

selection of different types of laminated composite plates with good results. Compared with 

previous postbuckling analysis using VIPASA analysis, CWPAN overcomes the limitations of 

compression loading and conservative solutions for composite materials.  

Comparison of the results with those from ABAQUS Riks analyses shows good agreement has 

been achieved in terms of both contour plots of in-plane and out-of-plane displacements (u, v, 

w), strains (𝜀𝑥, 𝜀𝑦, 𝛾𝑥𝑦 ), stress resultants (𝑁𝑥, 𝑁𝑦, 𝑁𝑥𝑦 ) and postbuckling paths where the 

maximum difference between the two methods has reached approximately 7%. As the two 

methods have some key differences, a discussion of these has been included. 

A study has been presented to illustrate the computational efficiency of CWPAN for different 

combinations of loading and material anisotropy. In comparison with FEA, CWPAN has 

achieved a 20% reduction in execution time for square composite plates. For longer plates, 

however, CWPAN has an obvious advantage since as it already assumes an infinitely long plate 

the size of the model stays the same which is clearly not the case for FEA. 
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Chapter 8. Conclusions and 

Future Work 

8.1. General conclusions 

The literature on numerical solutions for shell structure postbuckling is extensive. Many of 

these  studies focus on the finite element or finite strip methods as they provide highly robust 

and accurate solutions for structures with complex geometries, loading and boundary 

conditions. However, researchers and engineers have sometimes found those methods 

unsuitable for preliminary design due to their computational cost particularly when examining 

large numbers of different scenarios. To overcome these difficulties, other researchers are 

looking for analytical solutions or semi-analytical solutions which can provide fast analysis 

processes while retaining the required accuracy for certain problems.  

The coupled wavelengths postbuckling presented in this thesis provides an efficient and 

reliable technique to allow researchers and engineers to observe postbuckling behaviours for 

composite plates under any in-plane loading. Based on the exact strip method, the theory 

represents out-of-plane displacements with a series of user-defined terms which are 

trigonometric in the longitudinal direction, and in-plane displacements with another enhanced 

set of trigonometric terms to account for the effect of  large deflections. Such assumptions 

regarding displacements bring several advantages when compared to previous work. Firstly, 

composite plates and plates under shear load which causes skewed mode shapes can be 

accurately captured. This cannot be done using the previous postbuckling analysis which 

assumes plate deformation varies with only one half-wavelength. Secondly, by naturally 

regarding plates as infinitely long the method provides advantages for slender structures like 

an aircraft’s wings and fuselage because solving for square plates and plates with multiple bays 

results in the same execution time. Thirdly dividing plates into strips rather than elements 



Chapter 8 

154 
 

results in a relatively small stiffness matrix. Compared to the conventional finite element 

method, retaining the desired accuracy using CWPAN is more efficient. By having explicit 

expressions for displacements, governing equilibrium equations can be assembled and solved 

analytically. The distributions of displacements, stresses and strains can therefore be captured.   

These advantages have been illustrated by considering composite plates under a number of 

different in-plane boundary and loading conditions corresponding to particular engineering 

scenarios. Solutions have been compared with finite element analysis and previous 

postbuckling analyses, and the maximum difference between the presented method and FEA 

has reached approximately 7%. Results are seen to correlate well.  

The series solutions used are inspired by previous postbuckling analyses based on VIPASA 

finite exact strip analysis. However, instead of representing the out-of-plane displacements 

with a single half-wavelength, any number of half-wavelengths can be coupled to represent 

complex postbuckling behaviours. The postbuckling solutions are therefore more accurate than 

those obtained previously for cases involving composite plates and skewed loading, and allow 

solutions to be obtained for cases which could not be solved using the previous version of the 

analysis. 

The series solutions representing in-plane variables are based on taking out-of-plane 

displacements as known quantities. To employ the method in postbuckling analysis, several 

convergence strategies have been developed to find progressive changes in out-of-plane 

displacement, including a general convergence strategy, calculation of effective uniform stress 

resultants, approximate buckling amplitude calculation and a modified Newton iteration 

scheme. An effective uniform stress resultants calculation employs an energy approach to find 

the current postbuckling stage’s applied load. Based on this, the postbuckling stiffness used for 

the Newton iteration scheme can be calculated. The Newton iteration scheme was first 

developed for VICONOPT postbuckling analysis to provide accurate convergence on critical 

buckling loads and associated buckling modes with a single half-wavelength. The modified 

version extends the technique to enable any number of half-wavelengths to be considered for 

complex buckling modes such as composite plates under shear loading. By considering 

postbuckling stiffness, the out-of-plane displacements are therefore captured accurately. The 

strategy of approximate buckling amplitude calculation is developed to assist the Newton 

iteration scheme to converge more efficiently.  
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Validation studies are performed to compare the progressive postbuckling mode with that 

obtained using the Riks method in the FE software ABAQUS. Solutions are seen to  replicate 

classical plate phenomena like stress redistribution, validating the method. The method is also 

seen to be capable of predicting the correct distributions of in-plane and out-of-plane 

displacements at any strain level. Comparisons of displacements, stresses and strains using 

contour plots show good agreement for the majority of cases. Those where there is less 

agreement are a result of the infinitely long plate assumption and the method of controlling the 

linear strains, which are not directly replicated in FE. In both cases however CWPAN is 

considered to be closer to real structural behaviour. A study of computational efficiency 

showed CWPAN achieved a 20% reduction in execution time for square composite plates. For 

longer plates, however, it has an even greater advantage since as it already assumes an infinitely 

long plate so that the size of the model stays the same which is clearly not the case for FEA. 

The following objectives have been achieved in this research: 

1. A peer review on stability of plate structures has been  completed and limitations and 

gaps in the research on the postbuckling analysis of composite plates have been found. 

2. Based on the exact strip method, a postbuckling analysis using coupled wavelengths 

(CWPAN) has been developed allowing researchers and engineers to observe 

postbuckling of composite plates in a fast and reliable way. 

3. To further enable a full postbuckling analysis and increase the robust features of the 

technique, a convergence procedure has been developed. 

4. A sensitivity study has been conducted to select the optimal parameters in the coupled 

wavelength postbuckling analysis. 

5. A validation has been done against FEA to further study the speed and accuracy of 

CWPAN. 

8.2. Future work 

Further improvements have been identified throughout the course of this study which may 

bring additional benefits and which should be considered for implementation in the future. 
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Some recommendations for future development based on the improved analysis are discussed 

below. 

 

1. Large linear matrices are required to be solved in both the series solutions and the Newton 

iteration scheme. Currently a method of LU decomposition is employed to achieve this. 

However, it has been found that the features of the target matrix, such as the fact that the 

equilibrium equations are found to form a banded matrix, have not been fully exploited 

in the solution techniques. A suitable linear equation solving technique would reduce the 

computational time significantly.  

2. Although unsymmetric and unbalanced laminates can be analysed in the series solutions, 

convergence strategies are still not able to cover these cases. The stiffness matrix 

calculation utilized in the modified Newton iteration scheme is based on the method 

developed by Anderson et al. (1983). Such a method is particularly designed for the exact 

strip method and enables the exact stiffness to be found for balanced and symmetric 

composites for buckling problems. It would be worth studying a structure’s stiffness for 

unsymmetric and unbalanced laminates in the exact strip method. 

3. One limitation of the study in this thesis is that it is restricted to simple geometries. 

Assemblies like stiffened and curved panels are not able to be analysed by the series 

solution. This is because as the half-wavelengths for the in-plane displacements are 

generalized from the out-of-plane displacements, they naturally cannot be represented by 

the same set. However, for stiffened panels, the skins’ out-of-plane displacements are the 

stiffeners’ in-plane displacements and vice versa. This cannot be achieved in explicit 

expressions for the current method. To overcome this limitation, the in-plane and out-of-

plane displacements have to be represented by one set of half-wavelengths. One solution 

would be to neglect the extra half-wavelengths in the in-plane displacements to make 

them identical to the out-of-plane ones. Zhang (2018) did a similar study using VIPASA 

postbuckling analysis by neglecting two extra half-wavelengths. The solutions were 

compared with ABAQUS but discrepancies were noted due to oversimplification. Such 

an assumption may lead to an even larger discrepancy for the series solutions as the target 

structures are more complex. Another solution would be to establish completely new 

assumptions for both in-plane and out-of-plane displacements with out-of-plane 

displacements being no longer known quantities in the equilibrium equations. The 

equilibrium equations would then be non-linear instead of linear. Consequently, 



 Conclusions and Future Work 

157 
 

convergence strategies for obtaining out-of-plane displacements may not be necessary. 

Such a hypothesis could be less efficient than the presented one due to the involvement 

of highly non-linear equations. But it is almost certain that it will increase the accuracy 

and most importantly overcome the stiffened panel problem. More studies are required 

to achieve such hypothesis. 

4. Another limitation is concerned with the fact that only in-plane boundary conditions can 

be applied to the structure. Out-of-plane boundary conditions are designed to represent 

simple support in CWPAN. To enable the flexible application of out-of-plane edge 

conditions in series solutions, the stiffness matrix for the particular edge conditions in 

the Newton iteration scheme would be required to be modified considering extra 

Lagrange Multipliers. Such a technique already exists in VICONOPT. Implementing 

extra Lagrange Multipliers, point supports are able to be added at any location on the 

plate. Furthermore, unsymmetrical edge conditions can be achieved which may then be 

helpful for the analysis of stiffened panels. 
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Appendices 

Appendix A 

This appendix  presents programming codes written in Python to achieve highly robust 

calculations in this thesis. 

 

Calculation of the list of in-plane half-wavelengths 

 

NOwavlth = list(abs(self.lambda1)) 

for i in self.lambda1: 

     for j in self.lambda1: 

          NOwavlth.append(abs(i + j))   

          NOwavlth.append(abs(i - j)) 

NOwavlth = np.unique(NOwavlth)  

NOwavlth.sort() 

NOwavlth = np.asarray(NOwavlth) 

K = 2 * NOwavlth.size - 1 

 

 

 

Calculation of Equation 4.17 

 

epioNSC = empty([n, NOwavlth.size]) 

epioNSS = empty([n, NOwavlth.size]) 

epioCX = empty([n, K]) 

 

for i in range(0, n): 

     for j in range(0, NOwavlth.size): 
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          epioNSC[i, j] = 0 

          epioNSS[i, j] = 0 

          for m in range(0, lambda1.size): 

               for k in range(0, lambda1.size): 

                   if lambda1[m] + lambda1[k] == NOwavlth[j]: 

                        epioNSC[i,j] = epioNSC[i,j] + lambda1[m] * 

lambda1[k]*\        (-w[i,m*2]*w[i,k*2]+w[i,m*2+1]*w[i,k*2+1]) 

                        epioNSS[i,j] = epioNSS[i,j] + lambda1[m] * 

lambda1[k]*\ (-w[i,m*2]*w[i,k*2+1]-w[i,m*2+1]*w[i,k*2]) 

                   elif np.absolute(lambda1[m] - lambda1[k]) == NOwavlth[j]: 

                        epioNSC[i,j] = epioNSC[i,j] + lambda1[m] * 

lambda1[k]*\   (w[i,m*2]*w[i,k*2]+w[i,m*2+1]*w[i,k*2+1]) 

                        if lambda1[m] - lambda1[k] > 0: 

                            epioNSS[i, j] = epioNSS[i, j] + lambda1[m] *\ 

lambda1[k]*(-w[i,m*2] * w[i,k*2+1] + w[i,m*2+1]*w[i,k*2]) 

                       elif lambda1[m] - lambda1[k] < 0: 

                            epioNSS[i, j] = epioNSS[i, j] + lambda1[m] *\ 

lambda1[k]*(w[i,m*2]*w[i,k*2+1]-w[i,m*2+1]*w[i,k* 2]) 

        

epioCX[i, 2 * j - 1] = epioNSC[i, j] 

         epioCX[i, 2 * j] = epioNSS[i, j] 

 

for i in range(0, n): 

     epioCX[i, 0] = epioNSC[i, 0] 

epioCX = ((0.25 * pi * pi) / (l * l)) * epioCX  # multiply constants for the all matrix 
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Calculation of Equation 4.18 

epioCYC = empty([n, NOwavlth.size]) 

epioCYS = empty([n, NOwavlth.size]) 

epioCY = empty([n, K]) 

 

for i in range(0, n): 

     for j in range(0, NOwavlth.size): 

          epioCYC[i, j] = 0 

          epioCYS[i, j] = 0 

          for m in range(0, lambda1.size): 

               for k in range(0, lambda1.size): 

                   if lambda1[m] + lambda1[k] == NOwavlth[j]: 

                        epioCYC[i, j] = epioCYC[i, j] + phi[i, m * 2] * phi[i, k 

* 2] - phi[i, m * 2 + 1] * phi[i, k * 2 + 1] 

                        epioCYS[i, j] = epioCYS[i, j] + phi[i, m * 2] * phi[i,  k 

* 2 + 1] + phi[i, m * 2 + 1] * phi[i, k * 2] 

 

                   elif np.absolute(lambda1[m] - lambda1[k]) == NOwavlth[j]: 

                        epioCYC[i, j] = epioCYC[i, j] + phi[i, m * 2] * phi[i, k 

* 2] + phi[i, m * 2 + 1] * phi[i, k * 2 + 1] 

 

                        if lambda1[m] - lambda1[k] > 0: 

                            epioCYS[i, j] = epioCYS[i, j] - phi[i, m * 2] *\ 

phi[i, k * 2 + 1] + phi[i, m * 2 + 1] * phi[i, k * 2] 

                        elif lambda1[m] - lambda1[k] < 0: 

                             epioCYS[i, j] = epioCYS[i, j] + phi[i, m * 2] *\ 

phi[i, k * 2 + 1] - phi[i, m * 2 + 1] * phi[i, k * 2] 

 

         epioCY[i, 0] = epioCYC[i, 0] 

         epioCY[i, 2 * j - 1] = epioCYC[i, j] 

          epioCY[i, 2 * j] = epioCYS[i, j] 

 

epioCY = 0.25 * epioCY 
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Calculation of Equation 4.19 

epioCXYC = empty([n, NOwavlth.size]) 

epioCXYS = empty([n, NOwavlth.size]) 

epioCXY = empty([n, K]) 

 

for i in range(0, n): 

     for j in range(0, NOwavlth.size): 

         epioCXYC[i, j] = 0 

          epioCXYS[i, j] = 0 

          for m in range(0, lambda1.size): 

              for k in range(0, lambda1.size): 

                   if lambda1[m] + lambda1[k] == NOwavlth[j]: 

                        epioCXYC[i, j] = epioCXYC[i, j] + lambda1[m] * (w[i, m\ * 

2 + 1] * phi[i, k * 2] + w[i, m * 2] * phi[i, k * 2 + 1]) 

                        epioCXYS[i, j] = epioCXYS[i, j] + lambda1[m] * (-w[i,m\ * 

2] * phi[i, k * 2] + w[i, m * 2 + 1] * phi[i, k * 2 + 1]) 

                   elif np.absolute(lambda1[m] - lambda1[k]) == NOwavlth[j]: 

                        epioCXYC[i, j] = epioCXYC[i, j] + lambda1[m] * (w[i, m\ * 

2 + 1] * phi[i, k * 2] - w[i, m * 2] * phi[i, k * 2 + 1]) 

                     if lambda1[m] - lambda1[k] > 0: 

                            epioCXYS[i, j] = epioCXYS[i, j] + lambda1[m]*(-w[i, m * 

2] * phi[i, k * 2] - w[i, m * 2 + 1] * phi[i, k * 2 + 1]) 

                        elif lambda1[m] - lambda1[k] < 0: 

                            epioCXYS[i, j] = epioCXYS[i, j] + lambda1[m] * (w[i, m * 

2] * phi[i, k * 2] + w[i, m * 2 + 1] * phi[i, k * 2 + 1]) 

 

         epioCXY[i, 0] = epioCXYC[i, 0] 

        epioCXY[i, 2 * j - 1] = epioCXYC[i, j] 

         epioCXY[i, 2 * j] = epioCXYS[i, j] 

 

epioCXY = ((0.5 * pi) / l) * epioCXY 

epioC = empty([n, K * 3]) 
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Calculation of effective uniform stress resultants (Equations 5.12-5.14) 

 

def EffStres(AdStrainsX, AdStressesX): 

 

     EfStresX = np.zeros(N/m) 

    for k in range(0, n):   

          for i in range(0, K + 1):   

              for j in range(0, K + 1):   

                   if i % 2 == 0 and j % 2 == 0:   

                        if NOwavlth[i // 2] == NOwavlth[j // 2] and NOwavlth[i 

// 2] == 0: 

                            EfStresX[k] = AdStressesX[k, i] * AdStrainsX[k, j] + 

EfStresX[k] 

                        elif NOwavlth[i // 2] == NOwavlth[j // 2] and 

NOwavlth[i // 2] != 0: 

                            EfStresX[k] = AdStressesX[k, i] * AdStrainsX[k, j] / 2 + 

EfStresX[k] 

                  elif i % 2 == 1 and j % 2 == 1:   

                        if NOwavlth[(i - 1) // 2] == NOwavlth[(j - 1) // 2] and 

NOwavlth[(i - 1) // 2] != 0: 

                           EfStresX[k] = AdStressesX[k, i] * AdStrainsX[k, j] / 2 + 

EfStresX[k] 

                   elif i % 2 == 1 and j % 2 == 0:   

                        if NOwavlth[(i - 1) // 2] % 2 == 0 and NOwavlth[j // 2] % 

2 == 1: 

                             EfStresX[k] = AdStressesX[k, i] * AdStrainsX[k, j] 

* (2 * NOwavlth[(i - 1) // 2]) / (pi * (np.power(NOwavlth[ (i - 1) // 2],2) - 

np.power(NOwavlth[j // 2],))) + EfStresX[k] 

                        elif NOwavlth[(i - 1) // 2] % 2 == 1 and NOwavlth[j // 

2] % 2 == 0: 

                             EfStresX[k] = AdStressesX[k, i] * AdStrainsX[k, j]\ 

* (2 * NOwavlth[(i - 1) // 2]) / (pi *(np.power(NOwavlth[ (i - 1) // 2], 2) - 

np.power(NOwavlth[j // 2], 2))) +  EfStresX[k] 

                    elif j % 2 == 1 and i % 2 == 0:   

                         if NOwavlth[(j - 1) // 2] % 2 == 0 and NOwavlth[i 

// 2] % 2 == 1: 

                              EfStresX[k] = AdStressesX[k, i] * 

AdStrainsX[k, j] * (2 * NOwavlth[(j - 1) // 2]) / (pi * (np.power(NOwavlth[ (j - 1) // 2], 

NOwavlth[i // 2], 2))) + EfStresX[k] 

                         elif NOwavlth[(j - 1) // 2] % 2 == 1 and 
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NOwavlth[i // 2] % 2 == 0: 

                              EfStresX[k] = AdStressesX[k, j] * 

AdStrainsX[k, i] * (2 * NOwavlth[(j - 1) // 2]) / (pi * ( np.power(NOwavlth[ (j - 1) // 2], 2) - 

np.power(NOwavlth[i // 2], 2))) + EfStresX[k] 

 

     EfStraX = np.zeros(N/m) 

     for i in range(0, n): 

          EfStraX[i] = AdStrainsX[i, 0] 

     for k in range(0, n):   

          for j in range(0, K + 1):   

               if j % 2 == 1:   

                   if NOwavlth[(j - 1) // 2] == 0: 

                        EfStraX[k] = EfStraX[k] + AdStrainsX[k, j] 

                  elif NOwavlth[(j - 1) // 2] % 2 == 1: 

                        EfStraX[k] = EfStraX[k] + 2 * AdStrainsX[k, j]  

(NOwavlth[(j - 1) // 2] * pi) 

 

    Efs = np.zeros(N/m) 

 

     for i in range(0, n): 

          if abs(EfStraX[i]) < 10e-10: 

              Efs[i] = AdStressesX[i, 0] 

          else: 

              Efs[i] = EfStresX[i] / EfStraX[i] 

 

 

Local stiffness matrix calculation. This process is adopted from Wittrick and Williams (1983) 

for the calculation of stiffness matrix for a symmetric composite. 

alfa11 = D11 / D22 

alfa12 = D12 / D22 

alfa33 = D66 / D22 

alfa13 = D16 / D22 

alfa23 = D26 / D22 

vudash = alfa12 - alfa23**2 

 

def EStiff(Nl, Ns, Nt, wlen): 

    Lm = l / lambda1[wlen] 

     w = lambda1[wlen]*(pi * B)/l 

     T = (alfa12) + (2 * alfa33) - (3 * alfa23**2) - ((Lm**2 * Nt) / (2 * pi**2 * D22))  

     S = ((Lm**2 * Ns) / (pi**2 * D22)) + (2 * ((alfa23 * T) + (alfa23**3) - (alfa13))) 

    L = ((Lm**2 / (pi**2 * D22)) * Nl) - (2 * alfa23 * S) + (T + alfa23**2)**2 - (alfa11) 

    Tt = ((S**2) / 4) + (T * L / 3) - ((T**3) * 8 / 27)  
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     Delta = (((T**2) * 4 / 3) - L)**3 - (27 * Tt**2)     

    if Delta > 0: 

          xii = np.arccos(27 * Tt * ((4 * T ** 2) - (3 * L)) ** -1.5) 

         beta = np.sqrt(((((4 * T**2) - (3 * L))**0.5 * np.cos(xii / 3)) - T) / 3) 

 

    elif Delta < 0: 

          if (Tt - (np.sqrt(-Delta / 27))) >= 0: 

               beta = np.sqrt((0.5 * pow((Tt + (np.sqrt(-Delta / 27))), 1 / 3)) + (0.5 * pow((Tt 

- (np.sqrt(-Delta / 27))), 1 / 3)) - (1 / 3 * T)) 

          elif (Tt - (np.sqrt(-Delta / 27))) < 0: 

               beta = np.sqrt((0.5 * pow((Tt + (np.sqrt(-Delta / 27))), 1/3)) + (0.5 * -pow((-

(Tt - (np.sqrt(-Delta / 27)))), 1/3)) - (1 / 3 * T)) 

    if (T + beta ** 2 + (S / (2 * beta))) > 0: 

          alfa = np.sqrt(T + beta ** 2 + (S / (2 * beta))) 

          s1 = (1 / alfa) * np.sinh(w * alfa) 

          c1 = np.cosh(w * alfa) 

     elif (T + beta ** 2 + (S / (2 * beta))) < 0: 

          alfa = np.sqrt(-(T + beta ** 2 + (S / (2 * beta)))) 

         s1 = (1 / alfa) * np.sin(w * alfa) 

          c1 = np.cos(w * alfa) 

     if (T + beta ** 2 - (S / (2 * beta))) > 0: 

          gama = np.sqrt(T + beta ** 2 - (S / (2 * beta))) 

          s3 = (1 / gama) * np.sinh(w * gama) 

         c3 = np.cosh(w * gama) 

     elif (T + beta ** 2 - (S / (2 * beta))) < 0: 

          gama = np.sqrt(-(T + beta ** 2 - (S / (2 * beta)))) 

          s3 = (1 / gama) * np.sin(w * gama) 

          c3 = np.cos(w * gama) 

     s2 = np.sin(w * beta) 

     c2 = np.cos(w * beta) 

     A = T + (2 * beta ** 2) 

     F = L + (8 * T * beta ** 2) + (12 * beta ** 4) 

     B2 = S / (2 * beta) 

     B1 = (2 * beta ** 2) + B2 

     B3 = (2 * beta ** 2) - B2 

     Z = ((A + beta ** 2) * s1 * s3) - (c1 * c3) + ((2 * c2 ** 2) - 1) 

     R1 = (B1 * c1 * s3) + (B3 * c3 * s1) - (4 * beta * s2 * c2) 

     R2 = (4 * A * beta * s2 * c2) + ((F - (A * B1)) * c1 * s3) + ((F - (A * B3)) * c3 * s1) 

     R3 = F * s1 * s3 

     R4 = (2 * beta * s2 * (c1 + c3)) - (c2 * ((B1 * s3) + (B3 * s1))) 

     R5 = c2 * (s1 + s3) 

     R6 = (B2 * c2 * (c1 - c3)) + (beta * s2 * ((s1 * (T + A + B1)) + (s3 * (T + A + B3)))) 

     I3 = (2 * B2 * s2 * c2) + (beta * c1 * s3 * (T + A + B3)) - (beta * c3 * s1 * (T + A + B1)) 

     I4 = (s2 * ((B1 * s3) - (B3 * s1))) - (2 * beta * c2 * (c1 - c3)) 

     I5 = s2 * (s1 - s3) 

     I6 = (B2 * s2 * (c1 + c3)) + (beta * c2 * ((s3 * (T + A + B3)) - (s1 * (T + A + B1)))) 

     Smm = ((pi * D22) / Lm) * Z ** -1 * R1 

     Sqq = ((pi ** 3 * D22) / Lm ** 3) * Z ** -1 * (R2 + (alfa23 ** 2 * R1) - (2 * alfa23 * I3)) 
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     Smq = (pi ** 2 * D22 / Lm ** 2) * (((A - vudash) - (Z ** -1 * R3)) + ((1j * Z ** -1) * (I3 - (alfa23 

* R1)))) 

     cSmq = (pi ** 2 * D22 / Lm ** 2) * (((A - vudash) - (Z ** -1 * R3)) + ((-1j * Z ** -1) * (I3 - 

(alfa23 * R1)))) 

    Fmm = (pi * D22 / Lm) * Z ** -1 * (R4 - (I4 * 1j)) * np.exp(1j * alfa23 * w) 

     cFmm = (pi * D22 / Lm) * Z ** -1 * (R4 - (-I4 * 1j)) * np.exp(-alfa23 * 1j * w) 

     Fqq = (pi ** 3 * D22 / Lm ** 3) * Z ** -1 * ((((A - alfa23 ** 2) * R4) + (F * R5) - (2 * alfa23 * 

I6)) - (1j * (((A - alfa23 ** 2) * I4) + (F * I5) + (2 * alfa23 * R6)))) * np.exp(alfa23 * 1j * w) 

     Fmq = -(pi ** 2 * D22 / Lm ** 2) * Z ** -1 * ((R6 - (alfa23 * I4)) - (1j * (I6 + (alfa23 * R4)))) * 

np.exp(1j * alfa23 * w) 

     cFqq = (pi ** 3 * D22 / Lm ** 3) * Z ** -1 * ((((A - alfa23 ** 2) * R4) + (F * R5) - (2 * alfa23 * 

I6)) - (-1j * (((A - alfa23 ** 2) * I4) + (F * I5) + (2 * alfa23 * R6)))) * np.exp(-1j * alfa23 * w) 

     cFmq = -(pi ** 2 * D22 / Lm ** 2) * Z ** -1 * ((R6 - (alfa23 * I4)) - (-1j * (I6 + (alfa23 * R4)))) * 

np.exp(-1j * alfa23 * w) 

     KLminf1 = np.array( [[Smm, -Smq, Fmm, Fmq], [-cSmq, Sqq, -Fmq, -Fqq], [cFmm, -cFmq, 

Smm, cSmq], [cFmq, -cFqq, Smq, Sqq]]) 

 

     return KLminf1 

 

Assembly of local stiffness matrices into a global stiffness matrix 

 

gstiff = np.array([], dtype=complex) 

for i in range(0, lambda1.shape[0]): 

     Aestiff = np.zeros((2, 2), dtype=complex) 

     for j in range(0, n-1): 

          estiff = EStiff(stress_resultants[j], shear_stress[j], EfssY[j], i) 

          Aestiff[-1, -1] = Aestiff[-1, -1] + estiff[1, 1] 

          Aestiff[-1, -2] = Aestiff[-1, -2] + estiff[1, 0] 

          Aestiff[-2, -1] = Aestiff[-2, -1] + estiff[0, 1] 

          Aestiff[-2, -2] = Aestiff[-2, -2] + estiff[0, 0] 

          Aestiff = block_diag(Aestiff, estiff[2:4, 2:4]) 

          Aestiff[-4, -2] = Aestiff[-4, -2] + estiff[0, 2] 

          Aestiff[-4, -1] = Aestiff[-4, -1] + estiff[0, 3] 

          Aestiff[-3, -2] = Aestiff[-3, -2] + estiff[1, 2] 

          Aestiff[-3, -1] = Aestiff[-3, -1] + estiff[1, 3] 

         Aestiff[-2, -4] = Aestiff[-2, -4] + estiff[2, 0] 

          Aestiff[-2, -3] = Aestiff[-2, -3] + estiff[2, 1] 

          Aestiff[-1, -4] = Aestiff[-1, -4] + estiff[3, 0] 

          Aestiff[-1, -3] = Aestiff[-1, -3] + estiff[3, 1] 

     gstiff = block_diag(gstiff, Aestiff) 

 

gstiff = gstiff[1:, :] 
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The following presents the programming structure of the amplitude calculation 

Effective_stress_resultants = postbuckling_solver(trial_displacements) 

Upper_Lower_Bound = W-W_algorithm(Effective_stress_resultants)  

Initialize Upper_bound=0, Lower_bound, Amplitude 

  

While true: 

 If Upper_Lower_Bound ==0: 

  Upper_bound = Amplitude 

  If abs(Upper_bound - Lower_bound)/Upper_bound < 0.001; 

   break 

  if Lower_bound == 0: 

                  Amplitude = Amplitude /1.5 

              elif Lower_bound != 0: 

                  Amplitude = (Upper_bound + Lower_bound)/2 

  Effective_stress_resultants = postbuckling_solver(Amplitude * trial_displacements) 

Upper_Lower_Bound = W-W_algorithm(Effective_stress_resultants)  

     else: 

              Lower_bound = Amplitude 

              if abs(Upper_ bound - Lower_ bound)/Upper_ bound < 0.001: 

                  break 

              if Upper_ bound > 10e5: 

                  Amplitude = Amplitude *1.5  

              elif Upper_ bound < 10e5: 

                  Amplitude = (Upper_ bound  + Lower_ bound)/2 

   Effective_stress_resultants = postbuckling_solver(Amplitude * trial_displacements) 

Upper_Lower_Bound = W-W_algorithm(Effective_stress_resultants)  

 

The following presents the structure of the whole postbuckling analysis 

Displacements = VICONOPT(structure_properties) 

Initialize predefined parameters 
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Initial constant strain, cycle = 0, iteration 

While true: 

 Cycle +=Cycle 

 If cycle > number_cycles: 

  break 

 Amplitude = Amplitude_Calculation(constants_strain[cycle]) 

 Displacements = Amplitude * Displacements 

 While true: 

  Effective_stress_resultants = postbuckling_solver(Displacements) 

  Stiffness = Global_Stiffness_matrix(Effective_stress_resultants) 

  displacements_adjustments = Modified_Newton_iteration(Stiffness) 

  trial_displacements = Displacements+ Displacements_adjustments 

If max(displacements_adjustments)<0.001*max(trial_displacements): 

   Effective_stress_resultants = postbuckling_solver(trial_displacements) 

   Print solutions 

   Displacements = trial displacements 

   Iteration += 1 

   Break 

  Else: 

   Iteration+=iteration 

   Continue 
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Appendix B 

Some solutions from composite plates that are not discussed in Chapter 7 are presented in this 

appendix. 

B.1. Balanced and symmetric composite plate under combined loading, 

straight edges 

The layups are shown as follows: 

[0/0/+45/0/−45/0/90/90/90/90/0/−45/0/+45/0/0] 

Other properties of the plate and predefined variables are shown in Figure B.1.Results are 

shown in Figures B.2, B.3 and B.4. 

 

Figure B.1. Input data for balanced and symmetric composite plate under combined loading, 

straight edges. 
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(a) (b) 

(c) (d) 

(e) (f) 
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Figure B. 2. Contour plots of (a) out-of-plane displacements w (m); (b) in-plane displacements 

u(m); (c) in-plane displacements v(m); (d) strain 𝜀𝑥 ; (e) strain 𝜀𝑦 ; (f) strain 𝛾𝑥𝑦 ; (g) stress 

resultants 𝑁𝑥(N/m); (h) stress resultants 𝑁𝑦(N/m); (i) stress resultants 𝑁𝑥𝑦(N/m), for composite 

plate under compression and shear with free in-plane edge conditions, at cycle 10 (200% of 

initial end shortening strain) 

(g) (h) 

(i) 
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Figure B.3. Contour plots of in-plane displacements v at cycles 1 to 20, showing the progressive 

buckling mode. 
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 Figure B.4. Uniform stress resultant distribution at each postbuckling cycle for composite plate 

under combined loading, in-plane longitudinal straight edges 

 

B.2. Unbalanced and symmetric composite plate under 

compression, fixed edges 

The layups are shown as follows: 

 

[0/−45/+45/0/−45/0/90/90/90/90/0/−45/0/+45/−45/0] 

Other properties of the plate and predefined variables are shown in Figure B.5. 

Results are shown in Figures B.6 to B.8. 
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Figure B.5. Input data for unbalanced and symmetric composite plate under compression, free 

edges. 

 

  
 

 

 

 

 

 

 

 

 

 

(a) (b) 
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(c) (d) 

(g) 

(e) (f) 

(h) 
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Figure B.6. Contour plots of (a) out-of-plane displacements w (m); (b) in-plane displacements 

u (m); (c) in-plane displacements v (m); (d) strain 𝜀𝑥; (e) strain 𝜀𝑦; (f) strain 𝛾𝑥𝑦; (g) stress 

resultants 𝑁𝑥  (N/m); (h) stress resultants 𝑁𝑦  (N/m); (i) stress resultants 𝑁𝑥𝑦  (N/m), for 

unbalaced symmetric composite under compression with free in-plane edge conditions, at cycle 

10 (200% of initial end shortening strain) 

 

(i) 

(a) (b) 

(c) (d) 
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Figure B.7. Contour plots of (a) Moment 𝑀𝑥 (Nm); (b) Moment 𝑀𝑦 (Nm); (c) Moment 

𝑀𝑥𝑦 (Nm); (d) curvature 𝜅𝑥 ; (e) curvature 𝜅𝑦 ; (f) curvature 𝜅𝑥𝑦  for unbalaced symmetric 

composite under compression with free in-plane edge conditions, at cycle 10 (200% of initial 

end shortening strain) 

 

 
Figure B.8. Equivalent uniform longitudinal stress resultant distribution at each postbuckling 

cycle 

 

(e) (f) 


