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Using a distinguishable-particle lattice model based on void-induced dynamics, we successfully
reproduce the well-known linear relation between heat capacity and temperature at very low tem-
peratures. The heat capacity is dominated by two-level systems formed due to the strong localization
of voids to two neighboring sites, and can be exactly calculated in the limit of ultrastable glasses.
Similar but weaker localization at higher temperatures accounts for the glass transition. The result
supports the conventional two-level tunneling picture by revealing how two-level systems emerge
from random particle interactions, which also cause the glass transition. Our approach provides a
unified framework for relating microscopic dynamics of glasses at room and cryogenic temperatures.

I. INTRODUCTION

Most liquids can be quenched into the glassy state
by undergoing a glass transition, a phenomenon actively
studied for decades [1, 2]. When further cooled below
∼1K, it was found by Zeller and Pohl that the heat capac-
ity of glasses is proportional to the temperature T , well
exceeding Debye’s T 3 relation based on acoustic phonons
[3]. Anderson et al [4] and Phillips [5] simultaneously
proposed that the heat capacity is dominated at low T
by two-level systems (TLS). Their theory has success-
fully explained a plethora of low-T thermal and acoustic
properties of glasses [6]. Nevertheless, the microscopic
nature of TLS and their possible universal properties re-
main controversial [7–11]. Recently, TLS in glasses have
attracted additional interest due to their strong relevance
to noise in quantum computing devices [12].
Numerous glasses [10] exhibit the characteristic heat

capacity found in Ref. [3]. Therefore, TLS is likely an
intrinsic component in glasses and should be relevant
to the glass transition and glassy dynamics in general.
Yet, TLS at present plays little role in major theories of
glass transition [1, 2]. Concerning particle simulations,
both molecular dynamics (MD) simulations [13] and lat-
tice models [14] can reproduce many features of glasses.
Identification of TLS in MD systems has been reported
[15, 16]. However, according to Refs. [4, 5], the char-
acteristic low-T heat capacity depends not only on the
existence of TLS, but also that they must be sufficiently
isolated from each other. The latter condition has not
been fully explored in any particle simulation and, more
importantly, the hallmark low-T heat capacity has not
been explicitly reproduced. As MD simulations become
computationally challenging at low T due to the slow dy-
namics, accessing the heat capacity directly can be dif-
ficult. Neither has this been achieved in conventional
lattice models, despite their better computational effi-
ciencies [14]. On the other hand, heat capacity linear in
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T has also been shown to be explainable with diffusive
vibrational modes [17] and observed in a random network
model [18] that apparently exhibits no TLS.

In this work, we successfully reproduce the charac-
teristic low-T heat capacity of glasses using a recently
proposed distinguishable particle lattice model (DPLM),
which has already been shown to exhibit typical glass
transition [19]. The heat capacity is shown to be domi-
nated by TLS, which naturally emerge from increasingly
strong particle localization as T decreases. We demon-
strate that the same localization effects are responsible
for the glass transition at higher T .

At T . 10K, the heat capacity of many glasses follows
c1T+(cD+c3)T

3 [3, 10]. The linear term c1T dominates
at T . 1K and is explained by the TLS theory [4, 5].
The Debye contribution cDT 3 can be independently de-
termined from acoustic properties. Results in general
support the existence of an extra c3T

3 term, which can
be approximately accounted for using soft-potential mod-
els [20, 21]. Being a lattice model, the DPLM does not
accommodate vibrations, leading to cD = 0. We will
show below that under a wide range of conditions, the
specific heat capacity Cv of the DPLM at low T follows

Cv = c1T + c3T
3, (1)

consistent with experiments.

The DPLM has been shown to exhibits typical glassy
behaviors such as a pronounced plateau in the mean-
squared displacement of particles [19, 22] and stretched
exponential relaxation in the self-intermediate scattering
function [19]. It has recently afforded an explanation
of the decades-old Kovac’s expansion gap paradox [23],
reproduced Kovacs memory effect [24], suggested sim-
ple connections among glass fragility, entropy and parti-
cle pair-interactions [25] and demonstrated heat-capacity
overshoot [26] . The present demonstration of character-
istic low-T thermal properties in the same model thus
establishes a unique framework to relate the TLS theory
to the rich dynamical behaviors of glasses at higher T .

http://arxiv.org/abs/2109.02275v3
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II. MODEL

We adopt basically the DPLM defined in Ref. [25]. It
is a two-dimensional lattice model withN distinguishable
particles. Each particle has its own type, and can move
on a square lattice of size L2. A vacant lattice point is
deemed occupied by a void so that the void density is
φv = 1−N/L2. The system has a total energy

E =
∑

<i,j>′

Vsisj (2)

where the sum is only applied to occupied adjacent sites
i and j. There are thus only nearest neighboring in-
teractions between particles in the model. The index
si = 1, 2, . . . , N denotes which particle is at sites i. Each
interaction Vkl between particle k and l is sampled ran-
domly from a distribution g(V ). The dynamics is fur-
nished by the Metropolis rule satisfying detailed balance:
each particle can hop to an empty adjacent site (i.e. a
void) at a rate

w(∆E) =

{

w0e
−∆E/kBT for ∆E > 0,

w0 for ∆E ≤ 0,
(3)

where kB = 1, w0 = 106, and ∆E is the change of the
system energy E due to the hop. Notice that the particle
indices si and sj are implicitly time dependent, since
particles move around.

III. SPECIFIC HEAT MEASUREMENT

In our main simulations, we consider for simplicity an
interaction distribution g(V ) uniform over [V0, V0+∆V ],
where ∆V = 1. We put V0 = 0, corresponding to purely
repulsive interactions which suppress void aggregation
even at low T . A general form of g(V ) should give qual-
itatively similar results. As will be discussed below, a
uniform g(V ) does not gives rise to, and should not be
confused with, a flat TLS energy distribution. The lat-
ter is a commonly used simplification but is again non-
essential for arriving at the experimental low-T heat ca-
pacity [4, 5].
We initialize equilibrium systems on a 200×200 lattice

with a void density φv = 0.005 at temperature TI via di-
rect construction [19]. Kinetic Monte Carlo simulations
are then performed with T decreasing from TI towards 0
at a cooling rate νcool = 10−4. We continuously measure
the system energy E defined in Eq. (2) so as to calculate
Cv = N−1 dE/dT . The glass transition temperature in
our system is found to be Tg ≃ 0.15, which has been de-
fined as the temperature at which the particle diffusion
coefficient D falls to a small reference value Dr ≡ 0.1
[25]. We first consider low initial equilibrium temper-
atures TI ≪ Tg, leading to ultrastable glasses [27, 28]
with a low fictive temperature close to TI . Simulation
results on Cv are plotted in Fig. 1(a). We observe that
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FIG. 1. (a) Specific heat capacity Cv against temperature T
for various initial temperature TI . (b) Plot of Cv/T against
T 2 using the same data as in (a) but over a wider range of
T ≤ TI . (a) Dashed lines and (b) short dashed lines show
theoretical values from Eqs. (1) and (11), which are accurate
for TI . 0.05. For TI & 0.06, Eq. (1) remains valid as shown
by their linear fits (solid lines).

the DPLM successfully reproduce the linear relation be-
tween Cv and T , i.e. Eq. (1) in the low T limit. Moreover,
we find that c1, which equals the slope, decreases with
TI . The reduction of c1 shows a depletion of TLS, fully
consistent with suggestions based on experiments [8, 9].

After confirming the c1T term, we now examine the full
expression in Eq. (1). Figure 1(b) plots Cv/T against T 2.
The reasonable linear relations observed in all cases verify
Eq. (1) with c3 > 0. Similar to experimental results
[3], the absence of any second order term, i.e. c2T

2, is
evident. Nevertheless, the presence of the c3T

3 term is,
at first sight, surprising, since similar nonlinear terms
such as a T 5 term has been suggested to be accounted
for by the soft-potential model concerning anharmonic
vibrations [20, 21]. It is somewhat not expected for a
lattice model. This will be discussed later.
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FIG. 2. Spatial profile showing occupation probability pvoidi

of voids at site i during cooling when temperature T reaches
0.2 (a), 0.15 (b), 0.1 (c) and 0.05 (d). In each case, pvoidi is
measured over a period during which 107 particle hops have
occurred. Hops appear fewer at lower T because of increas-
ingly severe back-and-forth motions. Sites at which no void is
detected are shaded white. Initial void positions at each pe-
riod are marked by black squares. A pair of two-level systems
A and B have emerged in (d).

IV. PARTICLE DYNAMICS

A close examination of the particle dynamics shows
that stronger particle localization at low T accounts for
both the glass transition and the emergence of TLS. In
the DPLM, particle movements are induced by voids,
a mechanism supported by recent colloidal experiments
[29]. Since a particle hop can be equivalently considered
as the opposite hop of a void, we describe the dynamics
of particles and voids interchangeably. Figure 2 shows
spatial profiles of the void occupation probability pvoidi

at site i on a 40× 40 lattice at different stages of cooling.
To enable a meaningful comparison, pvoidi in each case is
measured over a period of time during which 107 particle
hops have occurred.

For T = 0.2 ≫ Tg corresponding to the non-glassy
liquid phase, we observe that voids diffuse quite freely.
Thermal excitations dominate over random particle in-
teractions. When cooled to T = 0.15 ≃ Tg, p

void
i is much

more heterogeneous, with highly preferential sites of lo-
cating voids. Such void localization is caused by the ran-
dom particle interactions. It leads to significant dynamic
slowdown and thus the glass transition as characterized
in Refs. [19, 25] and will be further quantified below.
As the system is further cooled to T = 0.1 ≪ Tg, most
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FIG. 3. (a) Plot of void displacement d against time t of
the two TLSs in Fig. 2 at T = 0.05. Results for TLS B are
shifted upward for clarity. (b) Plot of |log(p2/p1)| against 1/T
for the same TLS in (a), where p1 and p2 are the measured
probabilities of the two levels in a TLS. Solid lines are fits to
the Boltzmann relation.
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FIG. 4. (a) Particle and void return probabilities, Pret and
Qret against 1/T . (b) Probability q that a particle hop is
energetically possible against 1/TI .

voids are persistently trapped to within a few sites. Some
of them are even completely frozen. The system can no
longer fully relax within practical simulation time, im-
plying the glass phase. At T = 0.05, the strong local-
ization completely freezes most voids. More importantly,
a small number of voids are trapped between only two
sites, forming TLS.

The TLS in our system exemplified in Fig. 2 are iso-
lated and noninteracting, due to the strong localization
and the small void density φv = 0.005 used. We em-
phasize that noninteracting or weakly interacting TLS
are essential to account for the experimental Cv [4, 5].
At T . 0.05, further system relaxation is limited to
TLS transitions, while TLS movements, restructuring
and other relaxations are all negligible. Figure 3(a) shows
displacement-time graphs of the voids constituting the
two TLS in Fig. 2. The bistability is evident, with each
level corresponding to the void at one of the two ener-
getically possible sites. The occupation probabilities p1
and p2 of the initial and the hopped levels are asym-
metrical in general and depend on the energy difference
∆E. Figure 3(b) plots |log p2/p1| against 1/T . The
nice linearity obtained verifies the equilibrium relation
p2/p1 = exp(−∆E/kBT ). Hence, TLS form equilibrium
subsystems, in sharp contrast to the whole system which
is out of equilibrium.

To further quantify in a unified manner how localiza-
tion induces both the glass transition and TLS, we study
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the hopping return probabilities Pret andQret of particles
and voids respectively. After a particle has hopped, the
return probability Pret is defined as the probability that
the next hop by the particle reverse its previous hop and
return it to the original position [19, 25, 29, 30]. Here, we
define Qret analogously for voids. Figure 4 plots Pret and
Qret against 1/T during cooling. Results are measured
from snapshots of system configurations. They provide
lower bounds of the probabilities, since some rapid back-
and-forth motions in between consecutive snapshots may
not be registered [30]. At high T , both Pret and Qret

are relatively small as dynamics are closer to random
walks. During cooling, they decrease monotonically and
smoothly. At T = 0.15 ≃ Tg, we get Pret ≃ 0.8. This im-
plies a strong back-and-forth nature of the particle hops
[30, 31], which is a main contributor to the dramatically
slowed down dynamics at the glass transition [25]. At
T = 0.10, Pret ≃ 0.99. Since nearly all hopping motions
are reversed, particle dynamics are basically arrested, ev-
idencing that the glass transition has already occurred
and the system is deeply in the glass phase. At T = 0.01,
Qret ≃ 0.99, showing that nearly all dynamics are TLS
transitions. Note that although particle hops are induced
by voids, Pret > Qret at all T . This can be understood by
noting, for example, that two consecutive non-returning
hops by a single void involve single-hops by two different
particles, resulting at distinct statistics for particles and
voids.

V. EMERGENCE OF TWO-LEVEL SYSTEMS

A unique feature of the DPLM is its exact equilib-
rium properties [19] which have been extensively verified
numerically [19, 23, 25]. This allows us to analytically
deduce the emergence of TLS as follows. Let ∆E be the
system energy change due to a hop attempt of a particle
into a nearest neighboring void. The probability distri-
bution P (∆E) can be computed for equilibrium systems
[32], but in general depends non-trivially on the thermal
history for non-equilibrium systems. The probability q
that a hop is energetically possible can be approximated
by

q =

∫ ∆Emax

−∞

P (∆E)d∆E (4)

where ∆Emax is the maximum energy cost for a hop
attempt to be considered energetically possible. During
cooling, temperature is close to T for a duration τ which,
as an order of magnitude estimation, is given by τ ∼
0.1 T/νcool. For at least one hop to occur during τ , the
hopping rate must satisfy w & 1/τ , which gives

∆Emax ≃ ln(0.1 w0T/νcool)kBT. (5)

after using Eq. (3). For systems equilibrium at TI , q
is calculated using Eqs. (4)-(5) and exact expressions of
P (∆E) from Ref. [32] and results are plotted in Fig. 4(b).

At small TI , we observe that q converges towards 0,
e.g. q ≃ 0.05 at TI = 0.03. Voids then have vanishingly
few energetically possible hopping pathways. Most voids
are thus frozen. Some voids possess one energetically
possible hop with a probability ∼zq, where z = 4 is the
lattice coordination number. Each then forms a TLS
leading to a TLS density φTLS ≃ zqφv. If a void is
allowed multiple possible hops, a multi-level system with
three or more levels results. This however occurs at a
probability of order q2 or smaller and are negligibly few
compared with TLS.
The above analysis is directly applicable to T ≤ TI ≪

Tg corresponding to ultrastable glasses. Most glasses are
however less stable with a fictive temperature around Tg.
The above picture is still qualitatively applicable because
once cooled to T ≪ Tg, most dynamics are frozen, as
can be observed from Fig. 2. Hence, q should similarly
approach 0. Nevertheless, due to local relaxations pre-
dominantly in the vicinity of voids, the system is overall
non-equilibrium so that P (∆E), q and φTLS cannot be
calculated analytically.
We begin our derivation of Eq. (1) by assuming

T ≪ Tg. As explained above, most voids are completely
frozen and have null contribution to Cv. Voids forming
multi-level systems are on the other hand few and can
be neglected. Therefore, we only need to consider the
TLS which dominate Cv. Since TLS are at equilibrium
as shown in Fig. 3(b), straightforward algebra gives

Cv = zφv

∫ ∆Emax

−∞

d∆E P (∆E)Φ(∆E), (6)

where

Φ(∆E) =
1

4kBT 2
∆E2sech2

(

∆E

2kBT

)

(7)

is the heat capacity of a TLS [5]. Note that Φ(∆E) is an
even function peaked sharply at ∆E ≈ ±2.35kBT . This
physically represents that TLS with large energy splits
contribute little to Cv. The upper integration limit can
thus be approximated as infinity, giving

Cv = zφv

∫ ∞

0

d|∆E| P̃ (|∆E|)Φ(|∆E|). (8)

Here, |∆E| is the TLS energy split with a distribution

P̃ (|∆E|) = P (∆E) + P (−∆E). (9)

This expression highlights the equivalent contributions
to Cv by hops with positive and neglect energy changes.
Conventionally, P̃ (|∆E|) is assumed a constant for sim-

plicity [4, 5]. Instead, we expand P̃ (|∆E|) about |∆E| =
0, keeping only the first two non-zero terms. After some
algebra, Eq. (8) reduces to Eq. (1) with

c1 =
π2zφvk

2
BP (0)

3
, c3 =

7π4zφvk
4
BP

′′

(0)

15
. (10)
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FIG. 5. Arrhenius plot of diffusion coefficient D against
1/T for particle interaction distribution g(V ) in a Fermi-plus-
Gaussian form for G0 = 0.2 and σV = 0.1 indicating a mod-
erately fragile glass. We take φv = 0.01.

All even terms, e.g. c2T
2, vanish exactly since P̃ (|∆E|)

is even.
For ultrastable glasses with T ≤ TI ≪ Tg, we can

calculate c1 and c3 using exact expressions of P (∆E)
[32]. In particular, for the uniform interaction distribu-
tion g(V ) used in our main simulations and z = 4, we
get

c1 =
8π2φvk

4
BT

2
I

∆V 3
, c3 =

14π4φvk
4
B

15∆V 3
, (11)

which is exact for TI → 0. Figure 1 plots Cv from Eqs. (1)
and (11). We observed an excellent agreement with sim-
ulations for c1 and c3 at TI . 0.10 and 0.05 respectively.
For less stable glasses with higher TI , discrepancies from
Eq. (11) occur. This is because local relaxation results
in deviation from the exact form of P (∆E) at TI used
in our calculations. Nevertheless, Eq. (1) remains valid.
See appendix A for more detailed calculations.

VI. COMPARISON WITH GLYCEROL

The DPLM is a microscopic model allowing quantita-
tive comparisons with real materials [25]. Up to now,
we have been using dimensionless units. A quantitative
comparison with real materials requires using physical
units, which will be adopted in this section. First, we
follow Ref. [25] to match the kinetic fragility of a spe-
cific material. To generate glasses of various fragilities,
an energetic parameter G0 ∈ [0, 1] is introduced in the
interaction energy distribution g(V ) by generalized it to
a uniform-plus-delta functional form

g(V ) = G0 + (1−G0)δ(V −∆V ) (12)

where δ denotes Dirac’s delta function. To suppress void
aggregation, we take in this work 0 ≤ V ≤ ∆V = 1

corresponding to fully repulsive interactions. When G0 =
1, Eq. (12) reduces to the uniform g(V ) adopted in our
main simulations. For small but finite G0, we get fragile
glasses [25].
At small G0, the physical significance of g(V ) in

Eq. (12) is that it includes a high-entropy high-energy
(delta) component and a low-entropy low-energy (uni-
form) component. It was shown that replacing the delta
function by a narrow Gaussian function gives similar re-
sults [25]. To eliminate non-analyticities which adversely
impact our calculations, we further generalize Eq. (12)
to a Fermi-plus-Gaussian form:

g(V ) = G0fFermi(V ) + (1−G0)fGau(V ) (13)

where

fFermi(V ) =

[

1 + exp

(

V −∆V

σV

)]−1

(14)

fGau(V ) =
1√
2πσ

exp

[

− (V −∆V )2

2σ2
V

]

(15)

for V ≥ 0. Here, σV denotes the width of both the Gaus-
sian and the drop in the Fermi function. When σV → 0,
Eq. (12) is recovered.
We have performed DPLM simulations using g(V ) in

Eq. (13) with G0 = 0.2 and a cooling rate νcool = 10−2.
Fig. 5 shows the measured diffusion coefficient D against
1/T . The kinetic fragility measured based on a reference
diffusion coefficient Dr = 0.1 is mk = 13. Extrapolat-
ing to Dr = 10−14 following Ref. [25], we get mk = 50
which is comparable to the value 53 for glycerol [33]. As
explained in Ref. [25], the bi-component g(V ) we adopt
is closely related to the bond excitation model of Moyni-
han and Angell [34]. The bond excitation model uses
two parameters to describe thermodynamic properties of
different materials: the entropy difference ∆S0 and the
enthalpy difference ∆H0 between an unexcited and an ex-
cited state. They correspond to the Fermi (uniform) and
Gaussian (delta) part of the bi-component g(V ), respec-
tively. We can calculate ∆S0 and ∆H0 of the two compo-
nents in DPLM following Ref. [25]. For G0 = 0.2, Tg =
0.24, one can find that ∆S0/kB ≈ ln[(1−G0)/G0] = 1.39
and ∆H0/kBTg ≈ (1 − Tg)/Tg = 3.17. This is in agree-
ment with a fit to the experimental thermodynamic data
of glycerol using the bond excitation model, which gives
∆S0/kB = 1.65 and ∆H0/kBTg = 3.84 [34]. The two pa-
rameters φv and σV have weaker impacts on the fragility.
In general, c1 increases with φv while the dependence on
σV is non-monotonic. We take σV = 0.1, resulting at the
distribution g(V ) shown in the inset of Fig. 6. We then
find that taking φv = 0.031 provides a reasonable value of
c1. In dimensionless unit with kB = 1, we get c1 = 0.0178
and Tg = 0.24. To convert to physical units, we note that
Tg = 193K for glycerol [33] and kB = 8.314 J/(K·mol).
This gives c1 = 1.835× 10−4 J/K2 mol. It matches the
experimental value of c1 = 1.84 × 10−4 J/K2 mol [35].
However, we get from simulations c3 = 5.034×10−8 J/K4

mol, which is a few orders smaller than c3 = 1.01× 10−3
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8.314J/(K ·mol). Inset: particle interaction distribution g(V )
in a Fermi-plus-Gaussian form.

J/K4 mol from experiments [35]. Therefore, using re-
alistic model parameters, our model provides a possible
explanation of c1, while c3 has to be approximately ac-
counted for using other mechanisms such as lattice vibra-
tions considered by the soft-potential model [20, 21].

VII. DISCUSSIONS

A. Comparison with standard TLS picture

Anderson et al [4] and Phillips [5] proposed the stan-
dard TLS model which explains the characteristic low-T
heat capacity, heat conductivity, phonon echoes proper-
ties of glasses [6]. While some properties such as heat
capacity can be captured by semi-classical calculations
[4], other properties must be accounted for by a fully
quantum mechanical picture. Our lattice model focuses
on the formation and the heat capacity of the TLS, which
can well be described semi-classically. Quantum proper-
ties, similar to molecular vibrations, cannot be studied
with classical lattice model and are beyond the scope of
this work. Despite these limitations, we will show that
the TLSs that naturally emerge from the DPLM at low
T are fully consistent with and hence support the stan-
dard TLS picture, despite some technical differences to
be explained below.
The standard TLS model is also widely referred to as

the tunneling two-level (TTL) model. TTL model de-
cribes the two-level system with the following Hamilto-
nian:

H =

(

E1 + ~ω1 ~ω0 exp(− δ
2
(2mV

~2 )
1

2 )

~ω0 exp(− δ
2
(2mV

~2 )
1

2 ) E2 + ~ω2

)

(16)

where E1, E2 are energy of two quasi-stable configura-
tions, ω0, ω1, ω2 are separately inter-well hopping fre-
quency and intra-well oscillation frequency on site 1 and
two. V and δ are used to denote the energy barrier height
and width. In their original paper [4], Anderson et al
already pointed out that the relevant TLS should have
large energy barrier so that resonant tunneling does not
occur (V is large enough that off-diagonal elements are
negligible), but transitions can occur by processes such
as phonon-assisted tunneling. These transitions are thus
incoherent processes consistent with a semi-classical de-
scription. The DPLM is basically a classical model. Par-
ticle hops at low T should thus be interpreted in the semi-
classical sense. The hopping rate w in Eq. (3) is then
taken as a rough approximation for phonon-assisted tun-
neling processes. More accurate forms of particle hopping
rates however should not alter our results qualitatively.
Our expression ofCv from Eq. (1) with c1 from Eq. (10)

is equivalent to that in Ref. [4], after neglecting c3T
3 and

identifying zφvP̃ (|∆E|) with, in our notation, the density
n(|∆E|) of TLS per particle per unit energy in Ref. [4]
at |∆E| = 0, i.e.

n(0) = zφvP̃ (0). (17)

Moreover, the standard model assumes random parti-
cle hopping barriers uncorrelated to the TLS energy split
|∆E| [4]. Particles happen to have surmountable barriers
constitute the TLS. In the DPLM, whether a particle can
hop is also random, but the randomness primarily comes
from whether it is a neighbor of a void. If a particle is
next to a void so that a hop is allowed, the barrier then
depends solely on the energy difference ∆E according to
simple Metropolis rule in Eq. (3) without further ran-
domness. Nevertheless, the DPLM can be generalized to
have additional randomness in the barriers, which should
not alter our results qualitatively.

B. Real space structure of TLS

Despite decades of study, what constitutes the TLS is
still controversial [12]. The movement of rigid molecu-
lar groups suggested in the original paper of Anderson
et al [4] is still the leading contender. Our picture basi-
cally follows this view. A particle in the DPLM repre-
sents an atom or a rigid molecular group, while a void
represents a quasivoid consisting of coupled free-volume
fragments of a combined size comparable to that of a par-
ticle [29]. Moreover, a TLS transition is identified with a
microstring particle hopping motion, in which a short
chain of particles displace one another synchronously
[36]. They have been suggested as elementary motions
in glasses [30, 37], a notion supported by colloidal ex-
periments at high density [29]. At present, the DPLM
only directly simulates microstrings of unit length. Not-
ing their strong back-and-forth nature as quantified by a
high particle return probability Pret, we have suggested



7

that reversed microstrings are responsible for β relax-
ations while only the non-reversed ones, which become
increasingly few as T decreases, lead to structural relax-
ations [30]. In this work, we further establish that as the
void return probability Qret approaches 1 at very low
T , these microstrings constitute TLS transitions as well.
These provide a simple unified view for these seemingly
diverse processes of glasses.

VIII. CONCLUSION

To conclude, we have shown that the specific heat of
the DPLM follows Cv ∝ T at very low T in agreement
with experiments. By closely monitoring the motions
of particles and voids, we observe formation of TLS as
random particle interactions induce strong localization
of voids to within two lattice sites. System relaxation is
then limited to TLS transitions. For ultrastable glasses
with a very low fictive temperature, the TLS density and
thermal properties can be analytically calculated. For
less stable glasses with fictive temperature close to the
glass transition temperature, TLS emerge similar at low
T after local relaxation subsides.

ACKNOWLEDGMENTS

We thank the support of National Natural Science
Foundation of China (Grants 11974297 and 11774022).

Appendix A: Details of analytic calculation of

specific heat capacity of TLS

We now provide further details on the calculation of
the specific heat capacity in the DPLM. Consider a TLS
with its initial state labeled 1 and the other state labeled
2. Denote the system energy at these two states by E1

and E2 so that ∆E = E2−E1. The relaxation rate wTLS

of the TLS equals the sum of the forward and backward
transition rates of the TLS, i.e. wTLS = w1→2 + w2→1,
implying wTLS = w(∆E)+w(−∆E). In our simulations,
we adopt particle hopping rates in the Metropolis form,
i.e.

w(∆E) =

{

w0e
−∆E/kBT for ∆E > 0,

w0 for ∆E ≤ 0.
(A1)

We thus get

wTLS = w0

(

1 + e−|∆E|/kBT
)

≥ w0. (A2)

All TLS in the DPLM thus relax fast and this explains
their equilibrium nature even at very low T as numeri-
cally demonstrated in Fig. 3(b).
Since TLS are at equilibrium, its average energy ǫTLS

can be calculated using the Boltzmann distribution and

we get

ǫTLS =
E1e

−E1/kBT + E2e
−E2/kBT

e−E1/kBT + e−E2/kBT
. (A3)

The heat capacity Φ(∆E) = dǫTLS/dT of a TLS is then
given by

Φ(∆E) =
1

4kBT 2
∆E2sech2

(

∆E

2kBT

)

. (A4)

Consider T ≪ Tg in which voids admit few energet-
ically possible hopping pathways due to the strong lo-
calization. Assume also a small void density φv so that
voids are isolated. The initial equilibrium position of a
void is associated with state 1 of a possible TLS. There
is a probability q that the void can hop to a given near-
est neighboring occupied site with an energy cost smaller
than ∆Emax, realizing a TLS transition to state 2. Tak-
ing into account all possible TLS, the specific heat ca-
pacity Cv, defined as heat capacity per particle, is

Cv = zφv

∫ ∆Emax

−∞

d∆E P (∆E)Φ(∆E), (A5)

where z = 4 is the lattice coordination number and
P (∆E) is the probability distribution of ∆E. The void
density φv has been assumed a constant independent of
T , as is assumed in our simulations for simplicity.
Only TLS with an energy split |∆E| within a few kBT

can contribute significantly to the heat capacity. This is
reflected in the function Φ(∆E), which is sharply peaked
at ∆E ≈ ±2.35kBT . The upper integration limit in
Eq. (A5) can thus be approximated by infinity. Noting
also that Φ(∆E) is an even function of ∆E, Eq. (A5)
gives

Cv = zφv

∫ ∞

0

d|∆E| P̃ (|∆E|)Φ(|∆E|), (A6)

where the TLS energy split |∆E| has a distribution

P̃ (|∆E|) = P (∆E) + P (−∆E). (A7)

The distribution P (∆E) is a smooth function provided
the interaction distribution g(V ) is sufficiently smooth,
which should hold true in realistic systems. We expand
P (∆E) about ∆E = 0 and write

P (∆E) = P (0)+∆E P ′(0)+
1

2
∆E2P ′′(0)+ . . . . (A8)

Then, Eq. (A7) becomes

P̃ (|∆E|) = 2P (0) + ∆E2P ′′(0) + . . . . (A9)

All odd-power terms vanish exactly as P̃ (|∆E|) is an even
function of |∆E|. Substituting Eq. (A9) into Eq. (A6)
and neglecting higher order terms, we get

Cv = c1T + c3T
3 (A10)
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where

c1 =
z

2
I1φvk

2
BP (0), c3 =

z

4
I3φvk

4
BP

′′

(0). (A11)

We have defined

In =

∫ ∞

0

dx xn+1sech2(x/2) (A12)

so that I1 = 2π2/3 and I3 = 14π4/15. These give

c1 =
π2zφvk

2
BP (0)

3
, c3 =

7π4zφvk
4
BP

′′

(0)

30
. (A13)

An interesting observation is that all even terms, e.g.
c2T

2, vanish exactly, which follows directly from the van-
ishing of all odd terms in P̃ (|∆E|) from Eq. (A9).
We now further assume an ultrastable system equili-

brated at an initial temperature TI ≪ Tg. Exact equi-
librium properties of the DPLM [19] then allow an exact
evaluation of Cv. At equilibrium temperature TI , the in-
teraction Vsisj between particles occupying sites i and j
follows a distribution peq(V ), which is simply the Boltz-
mann distribution [19, 23]

peq(V ) =
g(V )e−V/kBTI

∫∞

−∞
g(V )e−V/kBTIdV

(A14)

Starting from the initial state 1 of the TLS, a given hop
attempt to attain state 2 involves an energy change ∆E
of the system given by [32]

∆E =

z−1
∑

γ=1

(

V ′
γ − Vγ

)

(A15)

where Vγ denotes z − 1 initial interactions to be broken
and V ′

γ denotes z−1 new interactions to be formed. Here,
Vγ follows the a posteriori distribution peq(V ) because
they are realized in the initial equilibrium configuration.
In contrast V ′

γ follows the a priori distribution g(V ) be-
cause without stipulating that the hop attempt must be
successful, any new interactions are equally likely.
Note that Cv in Eq. (A6) depends on the coordina-

tion number z not only explicitly but also implicitly via
P̃ (|∆E|). Moreover, z in turn depends on the lattice
type and more generally on the system dimension. We
now take z = 4 for the square lattice adopted in this
work. Eq. (A15) states that ∆E is a sum of six random
variables and its distribution thus follows the convolution
form

P (∆E) = (g ∗ g ∗ g ∗ P−
eq ∗ P−

eq ∗ P−
eq)(∆E) (A16)

where P−
eq(V ) = Peq(∆V − V ), which is non-zero for

V ∈ [0,∆V ]. In general, P (∆E) can be evaluated nu-
merically using Eq. (A16) for any g(V ). Fig. 8 shows the
numerical result of P (∆E). Note that P (∆E) is not a
flat distribution as often assumed for simplicity [6], de-
spite a uniform interaction distribution g(V ) being used.
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C
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T

FIG. 7. Specific heat capacity Cv against temperature T for
initial temperature TI = 0.05 and various void density φv ≤
0.0125. Dashed lines show theoretical values from Eqs. (A10)
and (A19).
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FIG. 8. Probability distribution P (∆E) of energy change
∆E due to level switching of a TLS. The system is equi-
librium at temperature TI = 0.1. Despite using a uniform
distribution g(V ) of particle interactions, P (∆E) is not flat.
The low-T heat capacity coefficient c1 depends only on P (0)
(black dot). Inset: P (∆E) against ∆E for an alternative non-
uniform g(V ) = 2V for V ∈ [0, 1], leading to a qualitatively
similar P (∆E).

According to Eq. (A13), the low-T heat capacity depends
only on P (0) and P ′′(0) and other details of P (∆E) is
irrelevant. For comparison, the inset in Fig. 8 shows
P (∆E) for a different g(V ) = 2V for V ∈ [0, 1]. We
observe a qualitatively similar P (∆E), which will also
lead to qualitatively similar heat capacity properties pre-
dictable using Eq. (A13).
In particular, consider the interaction distribution

g(V ) uniform in [0,∆V ] adopted in our main simulations.
Analytic calculation is possible. Performing simple alge-
bra in the Laplace tranformed space, Eq. (A16) becomes

P (∆E) = L
−1[(L [g])3(L [P−

eq ])
3)](∆E+3∆V ). (A17)
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FIG. 9. (a) Plot of Cv/T against T 2 at low T during cooling
from a high initial temperature TI not well below Tg. It sat-
isfies Eq. (A10) as shown by the good fits to linear relations
(solid lines). However, as TI increases, results increasingly
deviate from the coefficients c1 and c3 predicted in Eq. (A19)
(dotted lines) because of local relaxation into non-equilibrium
configurations. (b) Cv against T in log-log scales from the
same simulations as in (a) plotted over the full range of T .
As T decreases, Cv drops from values up to 1.6 kB , with
kB = 1, to small values, after which it follows Eq. (A10). The
dashed and solid lines with slopes 1 and 3 are guides to the
eye.

where L denotes the Laplace transform. The relevant
derivatives at ∆E = 0 are found to be, after some alge-
bra,

P (0) =
6k2BT

2
I

∆V 3
, P

′′

(0) =
1

∆V 3
. (A18)

Substituting into Eq. (A13), we get

c1 =
8π2φvk

4
BT

2
I

∆V 3
, c3 =

14π4φvk
4
B

15∆V 3
. (A19)

Note that c1 and c3 from Eq. (A19) are exact in the
limit T ≤ TI ≪ Tg corresponding to ultrastable glasses,
in which the only relaxation modes are TLS relaxations.

They are accurately verified by DPLM simulations under
these conditions as shown in Fig. 1.
Generalization to other lattice coordination number z

is straight-forward. For example, for z = 6 appropriate
for a triangular lattice in 2D or a cubic lattice in 3D, we
get

P (0) =
70k4BT

4
I

∆V 5
, P

′′

(0) =
15k2BT

2
I

∆V 5
(A20)

and hence

c1 =
140π2φvk

6
BT

4
I

∆V 5
, c3 =

21π4φvk
6
BT

2
I

∆V 5
. (A21)

For more general forms of g(V ), the Laplace transform
may become intractable analytically but c1 and c3 can be
readily solved accurately by performing the convolution
numerically.

Appendix B: Supplemental simulation results

Our main simulations have been performed using a
void density φv = 0.005. We have also performed simu-
lations using a wider range of φv and results on Cv are
plotted in Fig. 7. Good agreement with Eqs. (A10) and
(A19) is observed. In particular, Eq. (A19) implies that
c1 ∝ φv which is well verified here. It shows that the
TLS in the system are isolated and independent of each
other at small φv.
We have focused on T ≤ TI ≪ Tg corresponding to

ultrastable glasses, for which analytical expressions are
obtained. We now explain additional simulations on less
stable glasses with a higher initial temperature TI . Fig-
ure 9(a) plots CV /T against T 2 at low T . Results are
consistent with Eq. (A10), although c1 and c3, i.e. the
y-intercept and slope, deviate from the theoretical values
in Eq. (A19). The discrepancies increase with TI be-
cause the initial temperature TI can no longer be taken
as the fictive temperature at low T due to significant re-
laxations. To illustrate the full picture, Fig. 9(b) plots Cv

against T in a log-log scale from the same simulations for
the entire temperature range. Consider TI = 0.15 or 0.2
simulating the formation of glasses by cooling from the
liquid phase. At high T , Cv is of the order of kB, where
kB = 1. This is consistent with typical experimental
values of excess entropy of glasses over their crystalline
counterparts [34]. As T decreases, Cv drops by a few
orders of magnitude and eventually follows the tempera-
ture dependence in Eq. (A10). Note that the curves for
TI = 0.15 and 0.2 in Fig. 9(a) and (b) nearly coincide at
T ≤ 0.15. This is because the systems remain close to
equilibrium during cooling at T & Tg ≃ 0.15 so that the
thermal history above Tg is irrelevant.
Fig. 3(a) in the main text plots the void displace-

ment versus time of two TLS at T = 0.05, reveal-
ing their bistable nature. To provide the full picture,
they are reproduced in Fig. 10, which also shows similar
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FIG. 10. Plot of void displacement d against time t of two TLS in Fig. 2 in the main text for T =0.2 (a), 0.15 (b), 0.1 (c) and
0.05 (d). Results for TLS B are shifted upward for clarity.
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FIG. 11. Plot of displacement d against time t for a four-level
system at T = 0.1 resulting from the motion of void B and
three related particles. Curves for particles are shifted upward
for clarity. Inset: Void occupation probability pvoidi in the
region containing the four-level system. A black square marks
the position of the void at t = 0. Initial particle positions are
labeled as 1, 2, and 3.

displacement-time graphs of these two voids at a wide
range of T . We observe that at T = 0.2 ≫ Tg, the
voids are mobile and the displacements resemble those

of simple random walks, indicating the liquid phase. At
T = 0.15 ≃ Tg, localization of the voids during the dis-
played period is clear. At T = 0.1 ≪ Tg, the voids are
much more tightly localized. The system is deep in the
glass phase. One void already forms a TLS. The other
leads to a four-level system, although the two excited lev-
els carry much less probabilistic weights. At T = 0.05,
both TLS have emerged from the strong localization,
without detectable transition to higher levels.

In the main text, we have argued that a TLS requires
a void return probability Qret = 1, while a particle re-
turn probability Pret = 1 is a necessary but an insuf-
ficient condition. To explain it further, Fig. 11 shows
the displacement-time graph of a void exhibiting a four-
level system. A transition between the two lower energy
levels with d = 0 and 1 involves the hop of a particle,
the displacement of which is also shown (green). Exci-

tations to two other levels with d =
√
2 and 2 in con-

trast involve the hop of two other particles, with their
displacements also shown (orange and purple). From
their displacement-time graphs, all three particles ex-
hibit bistability and contribute to a unit particle return
probability Pret. However, they do not form three non-
interacting TLS, as the first particle must be at the d = 1
state before one of the other two particles can hop. These
constraints are easily understood from the spatial pro-
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file of the possible positions of the void (see inset in
Fig. 11). Therefore, this void together with the three
particles form a four-level system, rather than three in-
dependent TLS.
Note that in the displacement-time graphs of voids and

particles discussed above, d alone does not perfectly re-
solve all possible levels. For example, d = 1 can result

from one of any four possible nearest neighboring hops
of the void on a square lattice. We have thus also exam-
ined real space images as well as x and y components of
the void displacement. All examples of TLS described by
these plots indeed exhibit bistability.
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