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Single Image Super-Resolution Quality Assessment:
A Real-World Dataset, Subjective Studies, and An

Objective Metric
Qiuping Jiang, Member, IEEE, Zhentao Liu, Ke Gu, Member, IEEE, Feng Shao, Member, IEEE,

Xinfeng Zhang, Senior Member, IEEE, Hantao Liu, Senior Member, IEEE, and Weisi Lin, Fellow, IEEE

Abstract—Numerous single image super-resolution (SISR) al-
gorithms have been proposed during the past years to reconstruct
a high-resolution (HR) image from its low-resolution (LR) ob-
servation. However, how to fairly compare the performance of
different SISR algorithms/results remains a challenging problem.
So far, the lack of comprehensive human subjective study
on large-scale real-world SISR datasets and accurate objective
SISR quality assessment metrics makes it unreliable to truly
understand the performance of different SISR algorithms. We
in this paper make efforts to tackle these two issues. Firstly, we
construct a real-world SISR quality dataset (i.e., RealSRQ) and
conduct human subjective studies to compare the performance of
the representative SISR algorithms. Secondly, we propose a new
objective metric, i.e., KLTSRQA, based on the Karhunen-Loéve
Transform (KLT) to evaluate the quality of SISR images in a no-
reference (NR) manner. Experiments on our constructed RealSRQ
and the latest synthetic SISR quality dataset (i.e., QADS) have
demonstrated the superiority of our proposed KLTSRQA met-
ric, achieving higher consistency with human subjective scores
than relevant existing NR image quality assessment (NR-IQA)
metrics. The dataset and the code will be made available at
https://github.com/Zhentao-Liu/RealSRQ-KLTSRQA.

Index Terms—Single image super-resolution, real-world, image
quality assessment, no-reference metric, Karhunen-Loéve Trans-
form.

I. INTRODUCTION

Single image super-resolution (SISR) aims to reconstruct
a latent high-resolution (HR) image from its corresponding
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low-resolution (LR) observation. Although SISR has been a
long-standing problem in the community with a great progress
made due to the progress of deep learning techniques over the
past several years [1], how to fairly compare the performance
of different SISR algorithms remains challenging.

Although the existing works generally conduct both qualita-
tive evaluation and quantitative evaluation to compare different
SISR algorithms, they suffer from several limitations. First, in
terms of qualitative evaluation, only a limited number of im-
ages are presented for visual comparison and more importantly
the selected visual images often vary in different works, hereby
making the qualitative evaluation not convincing. Second, in
terms of quantitative evaluation, several existing image quality
assessment (IQA) metrics are adopted, without considering
the suitability of these metrics for evaluating SISR results.
Therefore, researchers may choose diverse IQA metrics to
support their own methods, making it non-trivial and unfair
to compare different SISR results objectively. Third, many
SISR methods are only validated using synthetic LR images.
However, due to the intrinsic discrepancies between synthetic
and authentic degradations, evaluation on synthetic data does
not necessarily reflect the true performance on real-world SISR
with authentic degradations. Overall, the lack of comprehen-
sive human subjective study on large-scale real-world SISR
datasets and well-performed objective SISR quality metrics
makes it impossible to fully understand the performance of
different SISR algorithms.

In this paper, we make efforts to address the above prob-
lems. We firstly construct a real-world SISR quality dataset
(RealSRQ) with comparative human subjective studies to
compare the performance of several representative SISR al-
gorithms. The ranking scores, obtained from our comparative
subjective studies, are used as the ground truth scores indicat-
ing the perceived quality of SISR images. Then, we propose a
new objective metric, i.e., KLTSRQA, based on the Karhunen-
Loéve Transform (KLT) to evaluate the quality of SISR
images in a no-reference (NR) manner. Finally, we conduct
performance evaluation on our constructed RealSRQ and the
latest synthetic SISR quality evaluation dataset (i.e., QADS).
The experimental results demonstrate the superiority of our
proposed KLTSRQA metric, achieving higher consistency with
human subjective scores in comparison with all the competing
NR-IQA metrics. To highlight, the main contributions of this
work are twofold:

1) Benchmark dataset. We construct the first real-world

https://github.com/Zhentao-Liu/RealSRQ-KLTSRQA
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SISR quality dataset called RealSRQ with diverse scene types,
scaling factors, and SISR algorithms. The subjective scores
in RealSRQ are obtained via comparative human subjective
studies. Consequently, RealSRQ provides a reliable platform
to fairly compare the performance of different IQA metrics
for evaluating SISR images.

2) Objective metric. We propose a new objective NR quality
metric called KLTSRQA that can evaluate the quality of SISR
images with high accuracy. Extensive performance compar-
isons with 15 relevant existing NR-IQA metrics (including
two dedicated NR metrics for SISR images) on two datasets
(i.e., RealSRQ and QADS) demonstrate the superiority of
KLTSRQA.

The rest of this paper is organized as follows. Section II
introduces related works. Section III illustrates the details of
RealSRQ. Section IV presents the proposed KLTSRQA metric
and performance comparisons. Finally, conclusions are drawn
in Section IV.

II. RELATED WORKS

A. SISR Datasets
1) Synthetic SISR datasets: In the literature, there are

several commonly used synthetic datasets for training and
testing SISR algorithms. They are Set5 [2], Set14 [3], BSD500
[4], Train91 [5], Urban100 [6] and DIV2K [7, 8]. These
datasets only provide the pristine images. In order to get
the corresponding LR images, one need to down-sample the
pristine images to different scales. A detailed comparison of
the existing synthetic datasets are provided in Table I and
corresponding brief descriptions of them are as follows:

Set5 [2]: It includes 5 pristine images with low resolution.
Set14 [3]: It includes 14 pristine images with low resolution.

Compared with Set5 [2], the variation of image content is
larger.

BSD500 [4]: The Berkeley Segmentation Dataset (BSD) is
used for image segmentation and contour detection. It totally
contains 500 pristine images with diverse scenes in the real-
world.

Train91 [5]: It includes 91 pristine images. The images are
mainly about flowers and other natural scenes.

Urban100 [6]: It includes 100 pristine images which are
mainly about city buildings, including abundant structures in
the real-world.

DIV2K [7, 8]: It includes 1,000 HR pristine images at 2K
resolution collected from the Internet. This dataset owns rich
image contents with high resolution and has been used in the
NTIRE 2017 SR Challenge.

2) Real-world SISR datasets: In recent years, real-world
SISR has drawn increasing attention. Some real-world SISR
datasets have been constructed to train and test SISR algo-
rithms. They are RealSR [9], SR-RAW[10], DRealSR [11],
and ImagePairs [12]. Different from the synthetic datasets,
real-world SISR datasets provide both HR images and the
corresponding LR images captured in the real world instead
of synthesized from the pristine HR image using simple
degradation model. A comparison of the existing real-world
SISR datasets are provided in Table II and corresponding brief
descriptions of them are as follows:

TABLE I
COMPARISON OF EXISTING SYNTHETIC SISR DATASETS.

Dataset Year HR images Characteristics

Set5 [2] BMVC2012 5 Low resolution
Limited content

Set14 [3] LNCS2010 14 Low resolution
Limited content

BSD500 [4] TPAMI2011 500 Image segmentation
Contour detection

Train91 [5] CVPR2008 91 Natural image
Flower

Urban100 [6] CVPR2015 100 Urban image
Building structure

DIV2K [7, 8] CVPRW2017 1000 High resolution
Rich content

TABLE II
COMPARISON OF EXISTING REAL-WORLD SISR DATASETS.

Dataset Year Scaling Factors Characteristics
RealSR [9] ICCV2019 ×2,×3,×4 Focal length adjusting

SR-RAW [10] CVPR2019 ×4,×8
Focal length adjusting
Raw sensor data

DRealSR [11] ECCV2020 ×2,×3,×4 Focal length adjusting
ImagePairs [12] CVPRW2020 ×2 Beam splitter

RealSR [9]: It includes 595 HR images and corresponding
real-world LR images at three different scaling factors, i.e.,
×2, ×3, and ×4. The authors apply two DSLR camera (i.e.,
Nikon D810 and Canon 5D3) to capture various scenes in real
world. Both the HR and LR images are captured by adjusting
focal length at the same scene. Then, a new image registration
approach is designed to align the LR-HR image pairs.

SR-RAW [10]: Similar to RealSR [9], the LR-HR image
pairs in SR-RAW are also captured by adjusting focal length.
However, different with RealSR [9], SR-RAW provides raw
sensor data and HR RGB images because it is used for SR
from raw data. In total, 500 seven-image sequences are taken
in both indoor and outdoor scenes under seven different optical
zoom settings using a 24-240mm zoom lens (i.e., Sony FE 24-
240mm).

DRealSR [11]: DRealSR is also similar with RealSR [9],
with a larger scale. Five DLSR cameras (i.e., Sony, Canon,
Olympus, Nikon and Panasonic) are used to capture the LR-
HR image pairs at four resolutions in both indoor and outdoor
scenes. The SIFT algorithm is used to align the image contents
with different resolutions. DRealSR totally contains 884, 783,
and 840 LR-HR image pairs for the scaling factors ×2, ×3,
and ×4, respectively.

ImagePairs [12]: In this dataset, the authors apply a beam-
splitter to make two cameras (i.e., a low-resolution camera
and a high-resolution camera) capture images of the same
scene simultaneously. The pixel-wise aligned LR-HR image
pairs are obtained by applying a four-step process: ISP, image
undistortion, pair alignment, and margin cropping. This dataset
totally contains a collection of 11,421 LR-HR image pairs with
a single scaling factor ×2.

B. SISR Quality Datasets

Different from the SISR datasets used for training and
testing SISR algorithms, an SISR quality dataset aims to
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TABLE III
COMPARISON OF EXISTING SISR QUALITY DATASETS. INCLUDE OR
EXCLUDE INDICATE WHETHER DEEP-BASED SISR METHODS ARE

INVOLVED OR NOT.

Dataset Yang et al. [13] Ma et al. [14] SISRSet [15] QADS [16] RealSRQ
Year ECCV2014 CVIU2016 NC2019 TIP2019 -

Synthetic/Real Synthetic Synthetic Synthetic Synthetic Real
HR Images 10 30 15 20 60

DS parameters 9 6 3 3 N.A.
Scaling factors 2,3,4 2,3,4,5,6,8 2,3,4 2,3,4 2,3,4

LR Images 90 180 45 60 180
SR methods 6 (Exclude) 9 (Exclude) 8 (Include) 21 (Include) 10 (Include)
SR Images 540 1,620 360 980 1,620
User study ACR ACR PC PC PC

provide a platform for comparing different objective IQA
metrics. The construction of SISR quality dataset generally
involves human subjective studies to provide subjective quality
scores of SISR images, such that the performance of different
objective IQA metrics can be fairly compared by measuring
how well they can predict the subjective quality scores. To our
best knowledge, the earliest SISR quality datasets are built by
Yang et al. [13] and Ma et al [14]. After that, SISRset [15]
and QADS [16] were also constructed. A brief comparison
of existing SISR quality datasets are listed in Table III and
corresponding detailed descriptions of them are as follows:

Yang et al. [13]: As the first effort on this problem, this
dataset contains 10 HR images based on which 90 LR images
are generated at three scaling scales, i.e., ×2, ×3, and ×4.
Six classical (non-deep) SISR algorithms are applied to the
LR images, obtaining 540 SISR results in total. The subjective
user study is conducted in a absolute category rating (ACR)
manner, generating a subjective quality score for each SISR
image. Note that the evaluated SISR algorithms used in this
study do not include deep learning-based SISR algorithms and
the obtained SISR results are gray-scale.

Ma et al. [14]: This dataset is an extension of Yang et
al.’s [13], with more HR images, scaling factors, and SISR
algorithms. Specifically, it includes 30 HR images and the
corresponding 180 LR images at six scaling factors, i.e., ×2,
×3, ×4, ×5, ×6, and ×8. Nine classical (non-deep) SISR
algorithms are applied to the 180 LR images, thus obtaining
1,620 SISR results in total. Subjective user study is also
conducted via ACR, finally generating a subjective score for
each SISR image.

SISRset [15]: To investigate if the widely used metrics
can well assess the DNN-based SISR results, Shi et al. [15]
construct the SISRset. It contains 15 HR images and 45 LR
images at three scaling factors, i.e., ×2, ×3, and ×4. Four non-
deep SISR algorithms and Four DNN-based SISR algorithms
are applied to reconstruct the 45 LR images, and thus obtaining
360 SISR results in total. It applies pairwise comparison for
human subjective study. Through intra-scaling comparisons
and cross-scaling comparisons, each SISR result gets a mean
opinion score (MOS).

QADS [16]: This dataset includes 20 HR images and 60 LR
images at three scaling scales, i.e., ×2, ×3, and ×4. A total
number of 15 non-deep SISR algorithms and 6 DNN-based
SISR algorithms are applied to the 60 LR images at three

scaling scales, i.e., ×2, ×3, and ×4. And it gets 980 SISR
results in total. Note that not each algorithm is applied to all
three scaling factors. It also applies pairwise comparison in
its subjective study. It conducts comparisons across different
SISR algorithms and different scaling factors in the same
scene. Finally, each SISR result gets a MOS.

However, the common problem of these datasets is that
the involved LR images are all synthetic ones, i.e., generated
from the pristine HR images with a simple degradation model,
rather than captured in the real world. Due to the intrinsic
discrepancies between synthetic and authentic degradations, it
is required to revisit this problem with real-world images. As
far as we have known, the construction of real-world SISR
quality dataset remains untouched.

C. IQA Metrics
Objective IQA aims to automatically evaluate the perceptual

quality of distorted image in consistent with human subjective
perception. Objective IQA metrics are roughly classified into
three categories: full-reference (FR), reduce-reference (RR),
and no-reference (NR). We mainly introduce the FR and NR
metrics due to their wide applications in SISR studies.

FR-IQA metrics treat the reference image as the ideal
one with perfect quality and compute the distance/similarity
between the reference and distorted images as quality score.
The most popular FR metric is PSNR which is highly effi-
cient. However, it suffers from low correlation with human
perception. SSIM [17] brings FR-IQA from pixel-wise error
visibility to structural similarity. MS-SSIM [18] and IW-SSIM
[19] improved SSIM from the perspectives of multi-scale
mechanism and information content weighting, respectively.
IFC [20] proposes a novel information fidelity criterion. VIF
[21] is an extension of IFC [20] which quantifies the mutual
information between reference and distorted images. FSIM
[22] combines phase congruency and gradient magnitude for
feature similarity calculation. GMSD [23] uses global variation
of gradient based local quality map and applies standard devia-
tion for pooling. Inspired by the internal generative mechanism
theory, IGM [24] adopts an autoregressive prediction algorithm
to decompose an image into order and disorder portions for
separate quality calculation. VSI [25] uses visual saliency as
feature to compute the local quality map and a weighting
function to get the final quality score. Inspired by the fact that
human visual system (HVS) is highly sensitive to edges, ESIM
[26] extracts three salient edge features, i.e., edge contrast,
edge width, and edge direction to assess screen content images
(SCIs) quality. To conduct performance evaluation, a new SCI
database is also established in this work. Later, a FR-IQA
metric for SCIs called GFM [27] is proposed by using the
Gabor filter response features.

NR-IQA is more challenging due to the lack of reference
image. Most of the current NR metrics share a common two-
step procedure. First, extracting image quality-related features
from the distorted image. Second, using regression tools to
map the extracted features to subjective scores. The main dif-
ferences of these NR metrics lie in the extracted features. Some
representative two step-based NR-IQA metrics include GM-
LOG [28], BLIINDS-II [29], CurveletQA [30], BRISQUE
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[31], OG-IQA [32], SSEQ [33], DIIVINE [34], RISE [35],
BMPRI [36], FRIQUEE [37]. In sharp contrast with the
regression-based NR-IQA metrics, NIQE [38], IL-NIQE [39],
and HVS-MaxPol [40] are training-free. There are also some
NR quality metrics specifically designed for image restoration
and image super-resolution. PCRL [41] presents a pairwise-
comparison-based rank learning framework for benchmarking
image restoration algorithms. SR-metric [14] extracts features
from three aspects: local frequency features, global frequency
features, and spatial features, for blind quality assessment of
image super-resolution.

III. REALSRQ: A REAL-WORLD SISR QUALITY DATASET

A. Real-World LR-HR Image Pairs

We aim to compare the performance of different SISR
algorithms for real-world LR images. In this work, the real-
world LR images are collected either from the RealSR dataset
[9] or captured by ourselves following the same method in [9],
i.e., adjust the focal length of a fixed digital single-lens reflex
camera (i.e., Canon 5D3). For each scene, images are taken
using four focal lengths: 105mm, 50mm, 35mm, and 28mm.
Images taken by the largest focal length are used to generate
the HR images, and images taken by the other three focal
lengths are used to generate the three LR versions. Due to the
influence of lens distortion and optical center shift caused by
focal length adjustment, the same image registration approach
in [9] is adopted to align the LR-HR image pairs. Overall,
we collect 60 HR images and corresponding 180 LR images
at three different scales, including 60 for scale 2 (↓2), 60 for
scale 3 (↓3), and 60 for scale 4 (↓4), respectively.

B. SISR Algorithms

The existing SISR algorithms can be classified into two
branches: non-deep models and deep models. In this study,
we evaluate 10 representative SISR algorithms, including BCI,
ASDS [42], SPM [43], Aplus [44], AIS [45], SRCNN [46],
CSCN [47], VDSR [48], SRGAN [49], and USRnet [50]. The
set of SISR methods considered in our study equally samples
from the two branches, i.e., the former five methods are non-
deep methods while the latter five methods are deep learning-
based SISR methods, and covers recent major publications
in the field (either to be widely used or the latest ones).
Especially, the USRnet is reported to be suitable for real-world
SISR. As a result, we finally obtain 1,620 SR images in total.
Table IV lists the evaluated SISR methods, the implemented
scaling factors, and the number of generated SR images
by each method. Note that we only implement SPM, AIS,
and SRGAN methods under two scaling factors because the
released codes or priors only support these two scaling factors.

C. Human Subjective Study

Human subjective study aims to compare different SISR
results according to human visual perception. Early datasets
use the ACR method where the test images are presented
one at a time and are rated independently on a discrete
category scale (e.g., ITU 5-point quality scale). Nevertheless,

TABLE IV
LIST OF THE USED SISR METHODS AND THE CORRESPONDING NUMBER

OF SR IMAGES.

SISR methods Scaling factor No. of SR images

Non-deep
models

BCI 2,3,4 180
ASDS [42] 2,3,4 180
SPM [43] 2,3 120
Aplus [44] 2,3,4 180
AIS [45] 2,3 120

Deep models

SRCNN [46] 2,3,4 180
CSCN [47] 2,3,4 180
VDSR [48] 2,3,4 180

SRGAN [49] 2,4 120
USRnet [50] 2,3,4 180

Total 1,620

Fig. 1. Our designed GUI for pairwise comparison (PC).

the ACR method will result in a huge bias and uncertainty
when the observers do not have sufficient experience. For this
consideration, the pairwise comparison (PC), which aims to
provide a binary preference label between a pair of stimuli
instead of rating an absolute quality level to a single stimulus,
is adopted.

Our PC-based human subjective study is detailed as follows.
First, keeping in mind that our goal is to fairly compare
different SISR algorithms, it is only meaningful to generate
comparison pairs from the same scene and the same scaling
factor. For scaling factor ×2, we have 10 SISR results and
thus

(
10
2

)
= 45 pairwise comparisons per scene. For scaling

factor ×3, we have 9 SISR results and thus
(
9
2

)
= 36 pairwise

comparisons per scene. For scaling factor ×4, we have 8
SISR results and thus

(
8
2

)
= 28 pairwise comparisons per

scene. That is, 45 + 36 + 28 = 109 pairwise comparisons
are involved for each scene and a total number of 109 per
scene×60 scenes= 6540 pairwise comparisons are involved
for all scenes. Then, PC is performed via a customized GUI.
A screenshot of our designed GUI is illustrated in Fig. 1. At
the beginning of the experiment, participants would input their
group number and user ID at the top-left corner. If they would
like to start, they could press the “Start” button at the top-right
corner. They can also press the “Stop” button for a rest. There
are four image windows show on the screen simultaneously.
The top row presents two SISR results to be compared. The
HR image is shown in the bottom-left window. As suggested
in [16], subjects can make their decisions more quickly and
precisely by flipping the three images at the same position.
Thus, we use the bottom-right window to show these three
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TABLE V
ADDITIONAL QUESTIONNAIRE.

Factors ID Reason Descriptions
Noise 1 Another picture introduces more noises and checkerboards.
Detail 2 Another picture loses more details and its details are blurrier.

Contour
3

The contours of objects are not clear, with more severe
shaking, ghosting, blurring or jaggies.

4 The contours of objects are more distorted.

Texture
5

Textures are not clear, with more severe shaking, ghosting,
blurring or jaggies.

6 Textures are more distorted.

Color
7

The colors are dimmer, lighter, lower contrast, less saturated
and look blurrier.

8 Another picture shows a more severe discoloration.
Other 9 No specific reason. Another picture is just worse.

images for finer comparison. Participants can switch different
images by pressing the three buttons “HR”, “SR1”, “SR2”
below the bottom-right window. After careful comparison,
subjects can make their choices by pressing the corresponding
button below the SR image windows to submit a binary
preference label, i.e., “1” or “-1”.

A total number of 60 subjects, including 32 males and 28
females, participated in our human subjective study. Before
the experiment, we train them adequately to ensure that they
are familiar with the background knowledge and the GUI. We
divide the 60 participants into 6 groups, i.e., 10 participants per
group. Each group is responsible for one scene type attribute
group. Thus, each participant should finish 1,090 PC voting
(109 pairs per scene ×10 scenes per group= 1, 090) and every
comparison pair is voted by 10 times. As a result, we can
get 65,400 votes totally (6, 540 pairs ×10 votes per pair=
65, 400). Every time they finish 100 pair comparisons, they
are asked to have a rest for 5 minutes to avoid the influence
of potential visual fatigue. Each participant will take about
172 minutes to complete the subjective experiment.

To further ensure the reliability of human subjective studies,
we also set check points to avoid random selections. Each par-
ticipant would go through 30 check points in which the correct
choice is easy to select. Each check point is a comparison pair
consisting of two SR results from the same scene and the same
SISR algorithm, but at two different scaling factors. As long
as one fails the check point more than twice, his/her votes will
be discarded. Fortunately, all of our participants successfully
pass the check points.

To get more insights on the pros and cons of different SISR
algorithms, we are also interested in asking the participants
“Why don’t you like another picture?” We provide nine
reasons to form the questionnaire, as shown in Table V. These
reasons are put forward based on the diverse factors that we
think would affect the quality of SR results. To reduce the
experiment period, the questionnaire only appears randomly
on the GUI with a probability of 1/6.

D. Subjective Study Result Analysis

This section performs comprehensive statistical analyses on
the results obtained from our PC-based subjective studies,
including global ranking of SISR algorithms, convergence
analysis, and human preference analysis.

1) Global Ranking of SISR Algorithms: We adopt the
Bradley-Terry model [51] to derive the global ranking of SISR
algorithms from the corresponding PC results.

First, we define Cij as

Cij =

{
number that i beats j, i 6= j
0, i = j

(1)

where Cij denotes the number that method i beats method
j. Suppose there are M SISR methods and their subjective
rating scores are denoted by s = [s1, s2, · · · , sM ]. Based on
the results of PC, we can construct a winning matrix C ∈
RM×M , where each element is defined by Eq. (1). Suppose
the probability of users prefer method i over method j is

Pij =
esi

esi + esj
(2)

Then, the probability of s is

P (s) =

M∏
i=1

M∏
j=1
j 6=i

(Pij)
Cij (3)

By minimizing the negative log likelihood of P (s), we can
obtain an estimation of s. The negative log likelihood of P (s)
is expressed as

L(s) = −
M∑
i=1

M∑
j=1
j 6=i

Cij logPij (4)

The partial derivative of L(s) with respect to sk is

∂L(s)

∂sk
=

M∑
i=1
i6=k

(Cki + Cik) · esk
esk + esi

−
M∑
j=1
j 6=k

Ckj , k = 1, 2, · · · ,M

(5)
Let ∂L(s)

∂sk
= 0, and the t + 1-th iteration of sk, k =

1, 2, · · · ,M is obtained as

st+1
k = log

( ∑M
j=1
j 6=k

Ckj∑M
i=1
i6=k

Cki+Cik

es
t
k+es

t
i

)
, k = 1, 2, · · · ,M (6)

Since Ckk = 0, the above equation can be rewritten as

st+1
k = log

( ∑M
j=1 Ckj∑M

i=1
Cki+Cik

es
t
k+es

t
i

)
, k = 1, 2, · · · ,M (7)

After we get an estimation ŝ of s, zero mean normalization
is further performed on ŝ to obtain the final B-T scores as the
ground truth subjective rating scores.

Note that the SISR results of the same scene and the same
scaling factor constitute a group for PC in our study. By
applying the B-T model on each group, we can get a B-T
score for each SISR result in this group. Then, we rank the
evaluated SISR results/algorithms based on the average B-T
scores, as shown in Fig. 2. A higher B-T score indicates a
better performance. We find that, ASDS [42] gets the highest
B-T Score at all scaling factors. For ×2 and ×3, USRnet
[50], which gets the second ranking, has shown significant
advantage over other methods by a large margin. BCI owns
the lowest B-T score on both ×3 and ×4 scaling factors, but
performs moderately on the scaling factor ×2.
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Fig. 2. Average B-T scores of different SISR algorithms at each scaling factor.

(a) (b)

Fig. 3. Convergence analysis on the number of votes and images at scaling
factor ×4.

2) Convergence Analysis: In order to demonstrate that the
number of votes and images are sufficient to obtain stable
subjective rating scores, we perform convergence analysis
from two perspectives: the number of votes and the number
of images.

Number of votes: We collect 65400 votes in total. There
are 27000 votes at scaling factor ×2, 21600 votes at scaling
factor ×3 and 16800 votes at scaling factor ×4. We randomly
sample α (α = 1000, 3000, 6000, 9000, 12000, 15000) votes
from all votes at each scaling factor, and compute B-T score
for each SISR algorithm. We repeat this process 1000 times
for each α. Fig. 3(a) show the mean and standard deviation of
B-T scores for each α at scaling factor ×4. Obviously, with
the increasing of the number of votes, standard deviation of
B-T scores decreases, indicating the subjective rating scores
tend to be stable.

Number of images: We collect 60 HR images in total. We
randomly sample β (β = 5, 15, 25, 35, 45, 55) HR images from
our dataset and compute B-T Score for each SISR algorithm
at each scaling factor. We repeat this process 1000 times for
each β. Fig. 3(b) show the mean and standard deviation of
B-T Scores for each β at scaling factor ×4. Obviously, with
the increasing of the number of images, standard deviation of
B-T Scores decreases, indicating the subjective rating scores
tend to be stable.

3) Human Preference Analysis: This part analyzes the
results collected in the additional questionnaire during the
human subjective study. Our question is “Why don’t you like
another picture?” and we provide nine options for users to
choose, as shown in Table V.

We show the vote percentages of all the reasons in Fig. 4.

4.09% 32.34% 19.33% 1.86% 16.73% 2.60% 10.04% 0.74% 12.27%

5.63% 29.58% 12.68% 0.70% 12.68% 8.10% 11.27% 2.11% 17.25%

29.03% 4.84% 18.55% 6.45% 4.84% 1.61% 2.42% 25.81% 6.45%
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Fig. 4. Vote percentages of different reasons.

The i-th element in each row represents the vote percentage of
the Reason #i for corresponding SISR algorithm in this row.
In general, Reason #2 gets the highest vote percentage and
Reasons #3, #5, #7 get relatively higher vote percentage
than the rest reasons. As for ASDS [42], i.e., the one with
the best overall performance at all scaling factors, Reason
#1 gets the highest vote percentage followed by Reason #8.
After observing our dataset, we found that the SISR results
generated by ASDS [42] appear to have relatively clear object
contours and texture details. However, these images on the
other hand suffer from relatively severe noise (Reason #1)
and color artifacts (Reason #8) around edges. Based on the
vote percentage map, we can summarize that several influential
factors on SISR image quality. First, the loss and ambiguity
of details; Second, shaking, ghosting, blurring or jaggies of
the edge and texture; Third, color shift, low contrast and
saturation. We hope the future development of advanced SISR
algorithms can better take these factors into account.

IV. KLTSRQA: AN OBJECTIVE NR QUALITY METRIC
FOR SISR

A. Motivation

As analyzed previously, we are aware that the distortions
on macro-structures (e.g., edges and contours) and micro-
structures (e.g., texture and details) are the main factors
affecting the visual quality of SISR results. Thus, it is of
critical importance to characterize the underlying distortions
from different image components (i.e., macro-structures and
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(a) Original Image (b) k=1 (c) k=2 (d) k=4

(e) k=8 (f) k=16 (g) k=32 (h) k=64

Fig. 5. Image reconstruction results with different numbers of spectral components. (a) is the original image, (b)-(h) are the reconstructed results by using
the first k, k = {1, 2, 4, 8, 16, 32, 64} spectral components. Zoom-in for best viewing.

micro-structures) for SISR image quality evaluation. As we
will show in the next, the KLT coefficients in different spectral
components actually account for different image components,
i.e., the front part of spectral components in the KLT coef-
ficient matrix accounts for macro-structures while the latter
part accounts for micro-structures. Therefore, in this work we
are inspired to extract quality-aware features from different
spectral components to more accurately evaluate SISR image
quality in a NR manner.

1) Theory of KLT: KLT is a signal dependent linear trans-
form, the kernels of which are derived by computing the prin-
cipal components along eigen-directions of the autocorrelation
matrix of the input data.

Given an image X with size M × N , a set of non-
overlapping patches with size

√
K ×

√
K are extracted.

These image patches are vectorized and combined together to
form a new matrix X = [x1,x2, · · · ,xS ] ∈ RK×S , where
xs ∈ RK , s = 1, 2, · · · , S represents the s-th vectorized
patch and S is the total number of image patches in X. The
covariance matrix of X is defined as follows

C = E[(xs − x̄)(xs − x̄)T] (8)

=
1

S − 1

S∑
s=1

(xs − x̄)(xs − x̄)T (9)

where x̄ = 1
S

∑S
s=1 xs denotes the mean vector obtained by

averaging each row of X and C ∈ RK×K . Then, the eigen-
values and eigenvectors of C are calculated via eigenvalue
decomposition. The eigenvectors are arranged according to
their corresponding eigenvalues in the descending order to
form the KLT kernel P = [p1,p2, · · · ,pK ] ∈ RK×K where
pk ∈ RK , k = 1, 2, · · · ,K represents the k-th eigenvector.
Using the KLT kernel P, the KLT of X is expressed as

follows:
Y = PTX (10)

where Y = [y1,y2, · · · ,yK ]T ∈ RK×S is the KLT coefficient
matrix and yk ∈ RS , k = 1, 2, · · · ,K refers to the k-th
spectral component obtained by yk = (pk)

T
X.

2) Relationship Between KLT and SISR Image Quality
Evaluation: Ideally, we can reconstruct the original image
based on the KLT coefficient matrix Y and the KLT kernel
P. Note that P is an orthogonal matrix, thus

PPT = I (11)

where I ∈ RK×K represents the identity matrix with size
K × K. So, the original image X can be reconstructed as
follows

X = PY (12)

In order to understand the role of different spectral com-
ponents in image reconstruction, we take the first k spectral
components in KLT coefficient matrix as the reconstruction
KLT coefficient matrix Y(k), which is defined as follows:

Y(k) =

 y1,1 · · · yk,1 0 · · · 0
...

. . .
...

...
. . .

...
y1,S · · · yk,S 0 · · · 0


T

(13)

where Y(k) ∈ RK×S , k = 1, 2, · · · ,K. By setting different
values of k, different numbers of spectral components are
involved in the reconstruction process. The image is recon-
structed as follows:

X(k) = PY(k) (14)

and X(k) denotes the reconstructed image by only considering
the first k spectral components.

scmhl4
Text Box



IEEE TRANSACTIONS ON IMAGE PROCESSING 8

(a) 2 (b) 3-4 (c) 5-8

(d) 9-16 (e) 17-32 (f) 33-64

Fig. 6. Difference maps between the adjacent reconstruction results shown
in Fig. 5. These difference maps are exactly the results reconstructed by the
spectral components whose indexes are shown below each image.

A visual example is shown in Fig. 5 where we set K = 64
and k = 1, 2, 4, 8, 16, 32, 64. Fig. 5(a) is the original image,
Fig. 5(b)-Fig. 5(h) are the reconstructed images corresponding
to k = 1, 2, 4, 8, 16, 32, 64, respectively. As shown in Fig.
5(b), when only the 1st spectral component is involved in
the reconstruction process, almost all the macro-structures
are recovered. As k increases, the small textures and details
become richer and clearer. We then present more results to
demonstrate the role of the last k spectral components in image
reconstruction. Fig. 6 shows the difference maps between the
adjacent reconstruction results shown in Fig. 5. Note that, the
image shown in Fig. 6(a) refers to the difference map between
Fig. 5(b) and Fig. 5(c) and is exactly the reconstruction result
by only using the 2nd spectral component. The image shown
in Fig. 6(b) refers to the difference map between Fig. 5(c) and
Fig. 5(d) and is exactly the reconstruction result by only using
the 3rd and 4th spectral components, and so on.

From these results, we can have the following observations.
First, the first spectral component (see Fig. 5(b)) can recon-
struct most image structures. Second, Fig. 6(a)(b)(c) contain
some basic contours and edges while Fig. 6(d)(e)(f) only
contain some extremely small details. In other words, we can
say that the front part of spectral components in the KLT
coefficient matrix accounts for the reconstruction of image
macro-structures such as the basic contour and main structures
while the latter part of spectral components accounts for the
reconstruction of image micro-structures such as the small
textures and details. As we have reported that the distortions
on macro-structures (e.g., edges and contours) and micro-
structures (e.g., texture and details) are also the main factors
affecting the visual quality of SISR results. Thus, by specify-
ing different spectral components, KLT provides an effective
way to characterize the underlying SISR image distortions
from different image components (i.e., macro-structures and
micro-structures).

B. KLTSRQA

1) Overview: The flow chart of KLTSRQA is depicted in
Fig. 7. The input of KLTSRQA is a to-be-evaluated SISR

SISR Image

Predicted Score

Color Space Conversion 

& MSCN Normalization

SVMrank Model

KLT Coefficient Computation

KLT-Based  Feature Extraction

Feature Vector 

AGGD 

Parameter

Coefficient

Energy

𝐎1 𝐎2 𝐎3

Pristine Images

Kernel Construction

KLT Kernel

Color Space Conversion 

& MSCN Normalization

Offline KLT Kernel Construction

Fig. 7. The flow chart of our proposed KLTSRQA metric.

image and the output is an estimated quality score. For an
input SISR image in the RGB format, we first convert it into
the opponent color space [52, 53] and then perform a local
mean subtraction and divisive normalization on each color
channel to obtain three mean subtracted contrast normalized
(MSCN) coefficient maps. The KLT is performed on the
corresponding MSCN maps using the KLT kernels that we
have constructed offline. Therefore, we can obtain three KLT
coefficient matrices corresponding to the three opponent color
channels. Based on the obtained KLT coefficient matrix for
each channel, quality-aware feature extraction is performed
from two aspects. On the first aspect, we use the asymmetric
generalized Gaussian distribution (AGGD) model [54] to fit
the KLT coefficients in different spectral components and
the estimated AGGD parameters are taken as the first part
of features. On the second aspect, we compute the energy
of the KLT coefficients in different spectral components as
the second part of features. These two parts of features are
combined together and aggregated over three channels to yield
a final quality-aware feature vector for quality score prediction
via the SVMrank model.

2) Color Space Conversion & MSCN Normalization:
Instead of the original RGB color space, our method is
implemented in a more perceptually relevant opponent color
space which has been demonstrated to be better correlated with
the color perception of HVS. The color space conversion is
formulated as follows: O1

O2

O3

 =

 0.06 0.63 0.27
0.30 0.04 −0.35
0.34 −0.6 0.17

 R
G
B

 (15)

For each color channel Ol, l = 1, 2, 3, we perform a local
mean subtraction and divisive normalization by computing the
corresponding MSCN coefficients [31]:

Ôl(i, j) =
Ol(i, j)− µ(i, j)

σ(i, j) + c
(16)

where i and j are the spatial coordinates of a pixel, c = 1 is
a constant that prevents instabilities from occurring when the
denominator tends to zero and we set c = 1 here.

µ(i, j) =

P∑
p=−P

Q∑
q=−Q

wp,qOp,q
l (i, j) (17)
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(a) (b) (c)

Fig. 8. Distributions of the KLT coefficients in three channels. (a) O1; (b) O2; (c) O3.
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Fig. 9. Visualization of the estimated AGGD parameters of different images. (a) O1; (b) O2; (c) O3.

σ(i, j) =

√√√√ P∑
p=−P

Q∑
q=−Q

wp,q(Op,q
l (i, j)− µ(i, j))2 (18)

where wp,q is a 2D circularly-symmetric Gaussian weighting
function sampled out to 3 standard deviations and re-scaled
to unit volume. According to the implementations in [31], we
also set P = Q = 3.

3) Offline KLT Kernel Construction: In this work, we
resort to the 60 pristine HR images in RealSRQ to construct
three KLT kernels with size 64 × 64 for the three color
channels, respectively. The procedures of the offline KLT
kernel construction are shown in the red lines in Fig. 7. Note
that each pristine HR image is also preprocessed as described
in Color Space Conversion & MSCN Normalization. For each
color channel, the MSCN maps of all the HR images are used
together to obtain the corresponding KLT kernel according to
the procedures described in Theory of KLT. Finally, we can
get three KLT kernels P1, P2, and P3 for the three channels
O1, O2, and O3, respectively, which will be used for KLT of
the input SISR images.

4) KLT-Based Feature Extraction: For an input to-be-
evaluated SISR image, the KLT is performed on the corre-
sponding MSCN maps Ôl, l = 1, 2, 3 using the KLT kernels
Pl, l = 1, 2, 3 that we have constructed offline:

Yl = Pl
TÔl (19)

where Yl, l = 1, 2, 3 represents the obtained KLT coefficient
matrix for the three color channels. Based on Yl, l = 1, 2, 3,
quality-aware feature extraction is performed from two aspects
which will be detailed in the next.

AGGD Parameters: Since the quality-aware features are
extracted based on the KLT coefficient matrices Yl, l = 1, 2, 3,
we first conduct some statistical analyses of them. For a certain
HR image in RealSRQ, the histograms of Yl, l = 1, 2, 3 are
shown in Fig. 8. It is observed that they all present Gaussian-
like distributions. Considering the distributions, instead of be-
ing completely symmetric, are somewhat asymmetric between
the left and right sides, it is appropriate to use the asymmetric
generalized Gaussian distribution (AGGD) [55] to fit the KLT
coefficients. The probability density function of AGGD with
zero mode is expressed as follows:

f(x;α, σl, σr) =


α

(βl+βr)γ(
1
α )

exp
(
−
(
−x
βl

)α)
, x < 0

α
(βl+βr)γ(

1
α )

exp
(
−
(
−x
βr

)α)
, x ≥ 0

(20)
where βl and βr are defined by the following equations.

βl = σl

√
γ( 1

α )

γ( 3
α )
, βr = σr

√
γ( 1

α )

γ( 3
α )

(21)

where γ(x) =
∫ +∞
0

tx−1e−tdt is the gamma function; α > 0
is the shape parameter and σl > 0, σr > 0 are left-scale and
right-scale parameter that control the spread on the left and
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(a) (b) (c)

Fig. 10. Energy of KLT coefficients in different spectral components. (a) O1; (b) O2; (c) O3.

right side of the mode, respectively. When σl = σr > 0,
AGGD reduces to GGD. The parameters of AGGD (α, σl, σr)
can be obtained by the moment-matching-based approach
proposed in [54].

In our method, both the KLT coefficient distribution in the
whole matrix and the KLT coefficient distributions in each
individual spectral component are fitted with AGGD and all
the estimated AGGD parameters are combined together to
form as the first part of our extracted quality-aware features.

Next, we will illustrate the effectiveness of the estimated
AGGD parameters (α, σl, σr) in distinguishing the visual
quality of SISR images. For this purpose, we visualize the
distributions of the estimated AGGD parameters of different
images in three-dimensional space. The distributions of the
AGGD parameters estimated on the 10 HR images annotated
as Building in RealSRQ (“Building HR”) and their correspond-
ing SISR results generated by the USRnet [50] algorithm
at three scaling factors (“Building ×2 USRnet”, “Building
×3 USRnet”, and “Building ×4 USRnet”) are visualized in
Fig. 9. Note that (a), (b), (c) correspond to three channels,
respectively. Typically, for the same image content and the
same SISR algorithm, the visual quality of SISR images will
decrease as the scaling factor increases. It is clear that the
distributions of AGGD parameters shown in Fig. 9 can well
characterize such trend, i.e., the AGGD parameters of the
intra-group images are concentrated together while the AGGD
parameters of the inter-group images are well separated in the
three-dimensional space. In addition, we also observe some
slight differences among the three color channels. Specifically,
in channel O1, α, σl, σr of “Building HR” are relatively large.
As scaling factor increases (i.e., visual quality decreases),
α, σl, σr show a decreasing trend. In channel O2, σl, σr of
“Building HR” are relatively large. As scaling factor increases
(i.e., visual quality decreases), σl, σr show a decreasing trend
while α stays stable. In channel O3, σl, σr of “Building
HR” are relatively large and α is relatively small. As scaling
factor increases (i.e., visual quality decreases), σl, σr show a
decreasing trend and α shows an increasing trend. Overall, the
AGGD parameters estimated on the KLT coefficient matrices
in three opponent color channels all have good capability in
distinguishing the visual quality of SISR images.

Energy of KLT Coefficients: In addition to use AGGD
to model the KLT coefficient distributions, we also calculate
the energy of KLT coefficients. The KLT coefficient matrix on

each color channel Ol of a SISR image is Yl, l = 1, 2, 3. Thus,
the energy of KLT coefficients in each spectral component is
defined as follows:

el,k =
1

S

S∑
s=1

Yl(k, s)
2, (k = 1, 2, · · · ,K) (22)

For an HR image Building 001 HR in RealSRQ and its corre-
sponding SISR results generated by the USRnet [50] algorithm
at three scaling factors (i.e., Building 001 ×2 USRnet, Building
001 ×3 USRnet, and Building 001 ×4 USRnet), their energy
distributions in different spectral components are shown in
Fig. 10. Again, (a), (b), (c) correspond to three opponent
color channels, respectively. From these figures, we can find
that for all the images thee energies generally decrease as the
spectral component index increases, but the attenuation factors
differ for different images. Specifically, the attenuation factor
is proportional to visual quality, i.e., the attenuation factor is
the largest for Building 001 HR and the lowest for Building
001 ×4 USRnet. Inspired by this, we use the exponential
function to fit the energy distribution. The exponential function
is defined as follows:

f(x;λ1, λ2, λ3) = λ1e
λ2x + λ3, (23)

where λ1, λ2, and λ3 are the parameters to be fitted. The fitted
curves by exponential function are also shown in the dashed
lines in Fig. 10. As we can see, the fitted curves can well
characterize the general trend of energy changes along with
the increase of spectral component index. However, instead of
directly using the three parameters as the features, we resort to
sample the continuous curves that we have fitted at an interval
of 4 to better enhance the feature representation capacity.
Finally, the sampled discrete values on the fitted curve are
taken as the second part of our extracted features.

C. Quality Evaluation

The remaining issue is to map the extracted quality-aware
features to predicted quality scores. This is a typical regression
problem from a machine learning perspective and we can
resort to any regression algorithm to implement it. Since the
ground truth B-T scores are only meaningful within the same
group, we resort to the classical SVMrank model [56] to learn
the mapping function from extracted features to subjective
quality scores, i.e., B-T scores in RealSRQ.
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TABLE VI
PERFORMANCE COMPARISON OF DIFFERENT NR-IQA METRICS ON REALSRQ.

Metric
KROCC SROCC PLCC RMSE

×2 ×3 ×4 All ×2 ×3 ×4 All ×2 ×3 ×4 All ×2 ×3 ×4 All

GM-LOG [28] 0.3944 0.5189 0.4579 0.4547 0.5055 0.6460 0.5777 0.5737 0.9328 0.8972 0.7853 0.8772 0.2982 0.2931 0.3149 0.3014

BLIINDS-II [29] 0.3492 0.5502 0.4829 0.4558 0.4436 0.6660 0.5961 0.5629 0.9312 0.9182 0.8451 0.9014 0.2989 0.2627 0.2465 0.2713

CurveletQA [30] 0.2957 0.3536 0.4405 0.3579 0.3855 0.4623 0.5589 0.4625 0.9410 0.8848 0.7988 0.8801 0.2898 0.3094 0.3018 0.2999

BRISQUE [31] 0.3520 0.4203 0.2995 0.3592 0.4476 0.5348 0.3748 0.4551 0.9495 0.9212 0.7289 0.8747 0.2496 0.2474 0.3861 0.2893

OG-IQA [32] 0.3327 0.4150 0.3201 0.3564 0.4420 0.5252 0.4087 0.4599 0.9258 0.8403 0.7774 0.8533 0.3492 0.3544 0.2875 0.3327

SSEQ [33] 0.3086 0.4852 0.3021 0.3655 0.4085 0.6002 0.3998 0.4698 0.9326 0.8672 0.6458 0.8258 0.3032 0.3175 0.3888 0.3333

DIIVINE [34] 0.3148 0.4750 0.4812 0.4175 0.4128 0.6111 0.5995 0.5342 0.9326 0.9184 0.8086 0.8911 0.2744 0.2573 0.2913 0.2737

RISE [35] 0.4142 0.3913 0.3518 0.3881 0.5201 0.5055 0.4559 0.4962 0.9313 0.8741 0.7262 0.8515 0.2784 0.3379 0.3076 0.3069

BMPRI [36] 0.3503 0.2795 0.1544 0.2687 0.4535 0.3956 0.1861 0.3550 0.9368 0.7651 0.6373 0.7908 0.2663 0.4065 0.3710 0.3441

FRIQUEE [37] 0.5715 0.6210 0.5978 0.5958 0.6958 0.7378 0.7081 0.7134 0.9093 0.9278 0.8692 0.9036 0.3002 0.2362 0.2493 0.2638

NIQE [38] 0.0419 0.2367 -0.2225 0.0285 0.0465 0.3006 -0.2906 0.0313 0.6197 0.7923 0.6390 0.6830 0.7707 0.4091 0.3623 0.5292

ILNIQE [39] -0.1300 0.0745 0.1351 0.0167 -0.1410 0.0992 0.1743 0.0325 0.7861 0.7976 0.6167 0.7397 0.5484 0.3807 0.4200 0.4545

HVS-MaxPol [40] 0.4222 0.3498 0.3273 0.3699 0.5394 0.4854 0.4204 0.4861 0.9504 0.8436 0.6747 0.8331 0.2515 0.3399 0.3625 0.3139

PCRL [41] 0.3563 0.4923 0.5673 0.4642 0.4520 0.6220 0.6719 0.5738 0.9407 0.9186 0.8066 0.8936 0.2584 0.2507 0.3006 0.2683

SR-metric [14] 0.3723 0.5723 0.5714 0.4980 0.4772 0.6921 0.6829 0.6098 0.9415 0.9276 0.8442 0.9080 0.2758 0.2430 0.2687 0.2628

KLTSRQA 0.6125 0.6296 0.6416 0.6268 0.7282 0.7522 0.7486 0.7422 0.9604 0.9285 0.8753 0.9246 0.2288 0.2319 0.2159 0.2260

V. EXPERIMENTAL RESULTS

A. Algorithm Performance Test

First, we test the performance of KLTSRQA on RealSRQ.
For performance evaluation, all the SISR images in RealSRQ
are randomly divided into two subsets, 80% are used for
training the SVMrank model, and the remaining 20% are
used as the testing samples. Note that these two subsets
do not have any content overlapping to ensure there is no
performance bias towards specific image contents. The dataset
random partition process is repeated for 1,000 times. For
each time, we calculate the Pearson Linear Correlation Co-
efficient (PLCC), Spearman Rank-Order Correlation Coeffi-
cient (SROCC), Kendall Rank-Order Correlation Coefficient
(KROCC), and Root Mean Square Error (RMSE) between
the predicted scores and ground truth subjective B-T scores.
The median values over 1000 times are calculated to measure
the consistency between objective evaluation and subjective
rating results. An ideal match between objective and subjective
scores will have KROCC=SROCC=PLCC=1 and RMSE=0.

To demonstrate the superiority of our method, 15 existing
NR-IQA metrics, including two most recent dedicated metrics
for image restoration [41] and super-resolution [14], are imple-
mented for comparison. These NR-IQA metrics include GM-
LOG [28], BLIINDS-II [29], CurveletQA [30], BRISQUE
[31], OG-IQA [32], SSEQ [33], DIIVINE [34], RISE [35],
BMPRI [36], FRIQUEE [37], NIQE [38], ILNIQE [39], HVS-
MaxPol [40], PCRL [41], and SR-metric [14]. Among these
methods, NIQE [38], ILNIQE [39], and HVS-MaxPol [40]
are training-free while the rests are all training-based. For all
the training-based methods, the regression functions are all im-
plemented by SVMrank for fair comparison. The performance
results are shown in Table VI. As shown, KLTSRQA achieves
the best performance in terms of all performance criteria
at all three scaling factors. FRIQUEE [37] and SR-metric
[14] also have relatively good performance than the others.

Fig. 11. Scatter plots of different NR-IQA metrics on RealSRQ.

Note that the SR-metric [14] is specifically designed for SR
images, yet its performance is still worse than the KLTSRQA,
implying the effectiveness of our KLT-based feature extraction
methods. In addition, we draw the scatter plots between
objective scores and subjective scores for better visualization
of the performances of different NR-IQA metrics, as shown
in Fig. 11. We can observe that the proposed KLTSRQA
metric is more in line with subjective B-T scores. To further
demonstrate the superiority of KLTSRQA, we also conduct
statistical significance test. Specifically, the two sample t-test
between the pair of SROCC values of 1,000 train-test loops
at the 5% significance level is conducted. Fig. 12 presents
the t-test results, where the value 1/-1 indicates that row
algorithms perform statistically better/worse than the column
algorithms while the value 0 indicates that row algorithms
perform statistically competitive with the column algorithms.
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Fig. 12. T-test results of different NR-IQA metrics on RealSRQ.

TABLE VII
PERFORMANCE COMPARISON WITH DIFFERENT KERNEL SIZES.

Kernel Size
KROCC SROCC

×2 ×3 ×4 All ×2 ×3 ×4 All
4 0.5260 0.5492 0.3695 0.4874 0.6446 0.6741 0.4686 0.6023
16 0.5406 0.5708 0.4801 0.5327 0.6580 0.6969 0.5944 0.6521
64 0.6125 0.6296 0.6416 0.6268 0.7282 0.7522 0.7486 0.7422

256 0.5491 0.5230 0.5618 0.5442 0.6749 0.6515 0.6831 0.6695
4+16 0.5358 0.5866 0.5025 0.5429 0.6536 0.7056 0.6175 0.6602

4+16+64 0.6171 0.6357 0.6418 0.6306 0.7265 0.7566 0.7524 0.7442
4+16+64+256 0.5497 0.5121 0.5585 0.5398 0.6667 0.6491 0.6735 0.6628

As we can see, KLTSRQA performs statistically better than all
the competing NR-IQA metrics on RealSRQ, which further
prove the superiority of KLTSRQA.

B. Determination of KLT Kernel Size

In order to determine the most appropriate KLT kernel
size, we carry out experiments to manually select the KLT
kernel size. In addition to the single size of KLT kernel,
we also consider the combination of different sizes of KLT
kernels. The experimental results are shown in Table VII.
The two kernel sizes leading to the top two performance
are shown in bold. As shown in Table VII, for single KLT
kernel, size 64 × 64 achieves the best performance. For
multiple KLT kernels, the combination of KLT kernels with
size 4 × 4, 16 × 16, 64 × 64 achieves the best performance.
However, compared to the single KLT kernel with size 64×64,
the performance is only slightly improved but the complexity
of the model greatly increased. Considering both algorithm
performance and model simplicity, the single KLT kernel with
size 64× 64 is selected as the final one.

C. Ablation Study

Ablation study aims to test the contribution of each compo-
nent in our model. Our ablation study includes four parts: (1)
performance test of individual part of features, (2) performance
test of individual channel in the opponent color space, (3)
validity of using AGGD for parameter estimation, and (4)
validity of using opponent color space.

TABLE VIII
PERFORMANCE TEST OF INDIVIDUAL PART OF FEATURES.

Feature
KROCC SROCC

×2 ×3 ×4 All ×2 ×3 ×4 All
KLTSRQA-Energy 0.5305 0.5441 0.5557 0.5425 0.6498 0.6716 0.6664 0.6620
KLTSRQA-AGGD 0.6037 0.6136 0.6383 0.6173 0.7195 0.7342 0.7464 0.7324

KLTSRQA 0.6125 0.6296 0.6416 0.6268 0.7282 0.7522 0.7486 0.7422

TABLE IX
PERFORMANCE TEST OF EACH INDIVIDUAL CHANNEL.

Channel
KROCC SROCC

×2 ×3 ×4 All ×2 ×3 ×4 All
KLTSRQA− O1 0.5495 0.5991 0.5521 0.5668 0.6632 0.7224 0.6677 0.6843
KLTSRQA− O2 0.5315 0.5806 0.5720 0.5599 0.6454 0.7039 0.6821 0.6758
KLTSRQA− O3 0.5489 0.5741 0.6108 0.5756 0.6663 0.7024 0.7201 0.6943

KLTSRQA 0.6125 0.6296 0.6416 0.6268 0.7282 0.7522 0.7486 0.7422

TABLE X
PERFORMANCE RESULTS OF DIFFERENT COLOR SPACES. OC: OPPONENT

COLOR SPACE.

Color Space
KROCC SROCC

×2 ×3 ×4 All ×2 ×3 ×4 All
RGB 0.5621 0.6333 0.5787 0.5908 0.6788 0.7497 0.6951 0.7073
HSV 0.5750 0.6050 0.5549 0.5790 0.6835 0.7286 0.6684 0.6941

YCbCr 0.5906 0.6222 0.5988 0.6035 0.7059 0.7448 0.7100 0.7201
OC 0.6125 0.6296 0.6416 0.6268 0.7282 0.7522 0.7486 0.7422

TABLE XI
PERFORMANCE TEST OF INDIVIDUAL PART OF FEATURES.

Fitting Model
KROCC SROCC

×2 ×3 ×4 All ×2 ×3 ×4 All
GGD 0.5903 0.5929 0.5764 0.5870 0.6989 0.7229 0.6872 0.7034

AGGD 0.6125 0.6296 0.6416 0.6268 0.7282 0.7522 0.7486 0.7422

Performance Test of Individual Part of Features: The
extracted features in our model contains two types: (1) AGGD
parameters of KLT coefficients and (2) KLT coefficient energy.
We will analyze the contributions of these two types of fea-
tures. The experimental results are shown in Table VIII where
KLTSRQA-Energy represents KLT coefficients energy and
KLTSRQA-AGGD represents the estimated AGGD parameters
of KLT coefficients. As shown in Table VIII, both KROCC
and SROCC of KLTSRQA-AGGD are higher than KLTSRQA-
Energy at three scaling factors. Therefore, the contribution of
the estimated AGGD parameters of KLT coefficients in our
model plays a more important role than the KLT coefficients
energy features. However, a combination of these two types
of features can successfully lead to the best performance at all
three scaling factors.

Performance Test of Individual Channel: Our method is
implemented in a perceptual quality relevant opponent color
space including three channels, i.e., O1, O2, and O3. Now,
we analyze the contribution of each individual channel. The
experimental results are shown in Table IX. As shown in Table
IX, the features extracted from O1 and O2 own the similar
performance. At scaling factors ×2 and ×3, the features
extracted from O3 own the similar performance with O1 and
O2. At scaling factor ×4, the features extracted from O3

achieve better performance than O1 and O2. In general, the
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TABLE XII
PERFORMANCE COMPARISON ON QADS.

Metric KROCC SROCC PLCC RMSE
GM-LOG [28] 0.6479 0.8208 0.8433 0.1467

BLIINDS-II [29] 0.7095 0.8711 0.8884 0.1256
CurveletQA [30] 0.6994 0.8685 0.8744 0.1329
BRISQUE [31] 0.7957 0.9373 0.9427 0.0920
ILNIQE [39] 0.6794 0.8644 0.8628 0.1386
NIQE [38] 0.3393 0.4902 0.5581 0.2277

OG-IQA [32] 0.6905 0.8678 0.8848 0.1278
SSEQ [33] 0.6998 0.8645 0.8786 0.1315

DIIVINE [34] 0.7366 0.8903 0.9180 0.1100
RISE [35] 0.7066 0.8744 0.8868 0.1265

BMPRI [36] 0.5212 0.6865 0.7238 0.1877
FRIQUEE [37] 0.8021 0.9347 0.9425 0.0914

HVS-MaxPol [40] 0.6233 0.7914 0.8060 0.1630
PCRL [41] 0.7610 0.9059 0.9355 0.0971

SR-metric [14] 0.7567 0.9068 0.8973 0.1206
KLTSRQA 0.8312 0.9564 0.9514 0.0846

contributions of these three channels are complementary to
each other for different scaling factors and the best perfor-
mance is achieved by considering all these three color channels
simultaneously.

Validity of Using Opponent Color Space: Our proposed
KLTSRQA metric is implemented in the opponent color space.
Compared with those normal color spaces such as RGB, HSV,
and YCbCr, the opponent color space is more perceptually
relevant. Here, we conduct experiments to demonstrate the
effectiveness of the opponent color space in our proposed
KLTSRQA metric. The experimental results are shown in Table
X. We can find that using the opponent color space can lead
to the best performance in most cases and the best overall
performance.

Validity of Using AGGD for Parameter Estimation: We
finally compare the performance by using AGGD or GGD
for parameter estimation. Specifically, we have conducted
experiments by replacing AGGD with GGD for parameter
fitting, and adopted SVMrank to learn the quality regression
model. The results are listed in Table XI. It can be seen
that using AGGD can obtain better performance than GGD
in terms of all performance criteria. Since in theory AGGD
is a generalized version of GGD, its superior performance is
expectable.

D. Validation on Synthetic Dataset

In addition to RealSRQ, we also conduct performance test
on another SISR dataset QADS [16] to more comprehensively
validate the performance of KLTSRQA. As described in [16],
QADS is a recently published synthetic SISR image quality
dataset where the LR images are generated by simulating a
simple and uniform degradation on their HR versions. Also,
the same 15 NR-IQA metrics are included for comparison on
QADS [16]. The numerical performance results are shown in
Table XII and the scatter plots are shown in Fig. 13. As shown,
KLTSRQA still achieves the best numerical performance re-
sults (i.e., the highest PLCC, KROCC, and SROCC values,
while the lowest RMSE value) on QADS [16]. As observed
from Fig. 13, the scatter plot of KLTSRQA is also highly in

Fig. 13. Scatter plots of different NR-IQA metrics on QADS.
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Fig. 14. T-test results of different NR-IQA metrics on QADS.

line with the subjective scores, which further demonstrates its
superiority and good robustness on different datasets.

In Fig. 14, we present the two sample t-test results on
QADS. It is seen that KLTSRQA performs statistically better
than almost all the competing NR-IQA metrics except the
BRISQUE metric [31], which is actually equivalent with
KLTSRQA. It means that even with the traditional BRISQUE
metric [31], a highly accurate quality assessment of synthetic
SISR images can be achieved. However, we notice that the
SROCC and KROCC values on QADS are much higher than
those on RealSRQ, implying that it is generally more difficult
to accurately evaluate the visual quality of SISR images in the
real-world case and also demonstrating the necessity of more
research efforts on real-world SISR image quality evaluation
in the near future.

E. Running Time Comparison

Besides the high prediction accuracy, an excellent NR-IQA
metric should also be computationally efficient. We test the
running time of different NR-IQA metrics with the same
setting and platform. The testing image is a 1200× 800 color
image. The experiments are all conducted on a PC with an
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TABLE XIII
RUNNING TIME COMPARISON (IN SECOND) OF DIFFERENT NR-IQA METRICS FOR PROCESSING A 1200× 800 COLOR IMAGE.

GM-LOG BLIINDS-II CurveletQA BRISQUE ILNIQE NIQE OG-IQA SSEQ DIIVINE RISE BMPRI FRIQUEE HVS-MaxPol PCRL SR-metric KLTSRQA

0.1114 112.3120 4.2238 0.1310 45.7343 0.3351 0.1107 1.5638 28.6201 2.1553 5.0127 38.1595 0.3006 1.6948 57.0650 0.4908

AMD Ryzen 7 4800H@2.9GHZ CPU and 16GB RAM. The
software platform is MATLAB R2018a. The running time of
different NR-IQA metrics can be found in Table XIII. It is
observed that the proposed KLTSRQA is highly efficient, i.e.,
it only requires less than 0.5 second to process a 1200× 800
color image.

F. Discussions

One important point should be noted is that KLT is
similar with pyramid decomposition and wavelet transform
in function. Therefore, pyramid decomposition and wavelet
transform can also be potentially useful for SISR image quality
evaluation. Gaussian pyramid provides a representation of the
same image at multiple scales, using simple low-pass filtering
and decimation techniques. The Laplacian pyramid provides a
coarse representation of the image as well as a set of detailed
images at different scales. Unlike the Gaussian and Lapla-
cian pyramids, Wavelet decomposition provides a complete
image representation and perform the image decomposition
according to both scale and orientation. Since these image
decomposition techniques also decompose an image into basic
and detail components, they can be potentially applied to SISR
image quality evaluation. However, the challenging problem
is that how to extract effective quality-aware features from
the decomposed components. This can be a future work that
deserves further investigations.

VI. CONCLUSION

This paper focuses on the problem of perceptual quality
assessment of real-world SISR. The first contribution is that
we construct a real-world SISR quality dataset (i.e., RealSRQ)
and conduct comparative human subjective studies with 10
representative SISR algorithms. Comprehensive analyses on
the results from the subjective studies are also presented.
Through subjective studies, we find that traditional SISR
algorithms (e.g., ASDS) can perform much better than the
deep learning-based algorithms on real-world LR images.
The second contribution is that we propose a new objective
metric KLTSRQA to evaluate the quality of SISR images in
a NR manner. Experiments on both real-world and synthetic
SISR quality datasets have demonstrated the superiority of
KLTSRQA. In addition, we find that it is much more chal-
lenging to accurately evaluate the quality of real-world SISR
images than the synthetic ones. Overall, our RealSRQ dataset
creates a reliable platform to fairly compare the performance
of different image quality metrics on SISR images and our
KLTSRQA metric offers a more accurate solution to address
the challenging problem.
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