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Abstract 

Axons in white matter have been shown to have varying geometries within a bundle using 

ex vivo imaging techniques, but what does this mean for diffusion MRI (dMRI) based 

spherical deconvolution (SD)? SD attempts to estimate the fibre orientation distribution 

function (fODF) by assuming a single dMRI fibre response function (FRF) for all white 

matter populations and deconvolving this FRF from the dMRI signal at each voxel to 

estimate the fODF.  Variable fibre geometry within a bundle however suggests the FRF 

might not be constant even within a single voxel. We test what impact realistic fibre 

geometry has on SD by simulating the dMRI signal in a range of realistic white matter 

numerical phantoms, including synthetic phantoms and real axons segmented from 

electron microscopy. We demonstrate that variable fibre geometry leads to a variable FRF 

across axons and that in general no single FRF is effective to recover the underlying fibre 

orientation distribution function (fODF). This finding suggests that assuming a single FRF 

can lead to misestimation of the fODF, causing further downstream errors in techniques 

such as tractography.  

 

Highlights 

• Variable fibre geometry within a voxel leads to variable fibre response functions 

within the voxel 
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• More complex fibre geometry leads to a wider range of fibre responses within a 

voxel 

• No single choice of response function is typically effective at recovering the 

underlying fibre orientation distribution function using spherical deconvolution 
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1 Introduction 

Diffusion weighted magnetic resonance imaging (dMRI) has been widely used to probe the 

structure and organisation of brain tissue, with one particular area of focus being the 

estimation of the orientational distribution of neuronal fibres in a voxel. This fibre 

orientation distribution function (fODF) is particularly interesting since it is used in 

tractography techniques to probe the structural connectivity of the brain which is 

important in many clinical and basic neuroscience studies(Catani and Thiebaut de 

Schotten, 2013; Dell’Acqua and Tournier, 2019; Johansen-Berg and Behrens, 2006). Whilst 

tractography has found many uses, there remain a number of challenges to the technique, 

including typically generating a large number of false positive connections (Jbabdi and 



Johansen-Berg, 2011; Maier-Hein et al., 2017; Schilling et al., 2019a; Thomas et al., 2014). 

One potential source of these issues could be due to difficulties in reliably estimating the 

fODF, where minor differences in fODF can lead to large differences in the tractograms 

created (Schilling et al., 2019a, 2019b). Accurate and reliable estimation of the fODF is 

therefore important to improve the accuracy of tractography techniques. 

Many techniques have been developed for estimating the fODF, of which perhaps the most 

prominent are based on spherical deconvolution (SD). While there are a variety of 

spherical deconvolution methods, the central principle is the same - the diffusion weighted 

signal as a function of the azimuthal (𝜙) and elevation (𝜃) angles is modelled as a spherical 

convolution of the fODF, 𝐹(𝜃, 𝜙), with a kernel (called the fibre response function (FRF)), 

𝑅(𝜃), the typical diffusion weighted signal from a single fibre population estimated a priori. 

By estimating an FRF from voxels where the signals are deemed typical of a single coherent 

fibre population, the fODF is determined by deconvolving this FRF from the signal. Implicit 

in this formulation is an assumption that one common FRF is shared across all fibre 

populations in the white matter (WM). Recently, some works have challenged this 

assumption, for instance (Schilling et al., 2019b) use known fODFs from histology to 

estimate the FRF in different WM regions, showing that the FRF does indeed vary across 

the WM and that this variation does affect the estimated fODF and tractography results. 

However, the assumption behind the FRF not only requires it to be the same across WM 

voxels, but also to be identical across individual fibre populations within a voxel. In fact, 

recent works using electron microscopy (EM) to investigate WM axonal morphology show 

that axons within a voxel have different shapes (Abdollahzadeh et al., 2019; Andersson et 

al., 2020; Lee et al., 2019), with varying diameters along their length and non-straight 

trajectories. It is reasonable, therefore, to propose that this heterogeneity in fibre geometry 

will mean that different fibres will have different responses. This may lead to 

misestimation of the fODF when assuming a single FRF for all fibres, which has 

downstream consequences for techniques including tractography. 

A related factor is that an assumption is made that there is no exchange between fibres or, 

equivalently, diffusion in different directions using this representation. In essence, this 



means that the fibres are implicitly assumed to be perfectly straight and pointing a given 

direction since any deviation from straight (i.e. curved or undulating fibres) would 

introduce directions that are connected, violating the non-exchange assumption. Under 

some experimental conditions, such as those used in current clinical applications, these 

effects may not be negligible and may affect subsequent techniques such as tractography. 

In this work we investigate what effect, if any, violation of these assumptions introduced by 

within-voxel heterogeneity in axonal morphologies has SD techniques. We use Contextual 

Fibre Growth (ConFiG) (Callaghan et al., 2020), our recently developed white matter 

numerical phantom generator capable of generating realistic WM morphology to 

investigate this in controllable environments, as well as real digital tissues reconstructed 

from EM (Lee et al., 2019) to test a limited sample of real tissue. Firstly, we investigate how 

microscopic variations in fibre geometry affect the diffusion within each fibre and whether 

the dMRI signal from each fibre is the same. We further evaluate what effect this has on 

fODF estimates by calculating them using FRFs representing the variable responses present 

in a voxel.  

The rest of this paper is organised as follows: Section 2 describes the experiments 

performed to probe the assumptions outlined above, Section 3 presents the results and 

Sections 4&5 summarise the contributions and discuss future work. 

2 Method 
In order to test the impact of fibre geometry heterogeneity on the dMRI signal per-fibre and 
how any variability in response may affect fODF estimation, experiments were performed 
in a range of numerical phantoms generated using ConFiG and reconstructed from EM (Lee 
et al., 2019), using an acquisition typical of SD applications. 

Two primary experiments were conducted: 
1. Per-fibre response heterogeneity - To investigate the impact of fibre geometry 

heterogeneity on the dMRI signal per-fibre 
2. Impact on fODF estimation – To investigate what impact variation in the FRF can 

have on fODF estimation 

In this section, we describe the phantoms used in these experiments and the dMRI 

simulations that were performed to investigate the impact of microscopic structural 

variability. 



2.1 Phantom Generation 
In order to test SD techniques in realistic geometries, a set of digital-tissue phantoms were 

generated to represent a range of WM tissue configurations: 

• A single bundle of fibres generated by ConFiG with varying amounts of orientation 

dispersion: 

o Watson distributed (Mardia and Jupp, 2008), 𝜅 = 2 

o Watson distributed, 𝜅 = 6 

o Watson distributed, 𝜅 = 100 

• Crossing bundles of fibres generated by ConFiG 

o Two perpendicular bundles 

o Three perpendicular bundles 

• Real fibres from mouse corpus callosum (CC) reconstructed from EM (Lee et al., 

2019) 

In the case of the single bundle phantoms, a low 𝜅 means high orientation dispersion, so 

phantoms with a lower 𝜅 were expected to have more complex morphology since higher 

OD means that they must grow around one another more to avoid intersections. A typical 𝜅, 

estimated using NODDI (Zhang et al., 2012), for the corpus callosum of a healthy Human 

Connectome Project (HCP) (Sotiropoulos et al., 2013; Van Essen et al., 2012)  subject is 𝜅 ∼

6 (Callaghan et al., 2020) Since the CC is expected to contain some of the most coherent 

fibre bundles in the brain, 𝜅 ∼ 6 will be towards the higher end of OD in vivo. Crossing 

bundle phantoms were generated by using starting and target points arranged into two- or 

three-crossing bundles and grown using ConFiG to generate complex phantoms with 

interleaved fibres. 

2.1.1 Real WM fibres from EM 

To simulate diffusion in real axons, 3D meshes were generated from WM axon 

segmentations from EM of mouse corpus callosum presented by (Lee et al., 2019). 

The axonal segmentations are provided in the NIfTI format, a volumetric format. In order 

to convert these into surface meshes for dMRI simulation, the isosurface function in 

MATLAB was used, however this produces meshes with some artifacts such as loose 



surfaces inside the fibres. In order to account for this, a further mesh refinement procedure 

was developed using the shrinkwrap feature in Blender to create a smooth, closed surface 

mesh around each fibre. 

2.1.2 Gold standard fODF extraction from microstructure 

 

Figure 1 Gold standard fODF estimation from microstructure of WM numerical phantoms. 
Each fibre’s main direction is projected onto a sphere and a spherical harmonic 
representation calculated. 

In order to generate a ground truth to compare with fODFs estimated from the simulated 

dMRI signals, a gold standard fODF was estimated from the WM numerical phantom 

meshes. As an attempt to generate a microstructural fODF comparable to that estimated 

from the simulated dMRI based fODFs, the microstructural fODF was calculated using the 

assumption of one direction per fibre, namely the direction connecting the endpoints of the 

fibre that would subsequently be used to align each fibre to the z-axis (see Figure 2). 

A triangulated unit sphere was used to store this fODF, with each triangle in the sphere 

storing the number of fibres whose direction went through that triangle scaled by the 

volume of each fibre, as illustrated in Figure 1. In order to compare this fODF to those 

calculated using SD from dMRI, the microstructural fODF was expanded in spherical 

harmonics (SHs). A spherical function 𝑓(𝜃, 𝜙), can be expressed in terms of spherical 

harmonics as: 



 

𝑓(𝜃, 𝜙) = ∑ ∑ 𝑐𝑙
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𝜋

0

2𝜋

0

(𝜃, 𝜙)𝑌𝑙
𝑚∗(𝜃, 𝜙)sin(𝜃)𝑑𝜃𝑑𝜙 . (2) 

𝑌𝑙
𝑚 are the so-called spherical harmonics of degree 𝑙 and order 𝑚 up to a maximum degree 

𝑙𝑚𝑎𝑥 and ∗ denotes complex conjugation. In our case, 𝜃 and 𝜙 are discrete samples in the 

centre of each triangle in our unit sphere meaning one approach to finding 𝑐𝑙
𝑚 is to turn the 

integral in into a summation. A more robust approach, however is a least squares approach 

(Alexander et al., 2002; Brechbühler et al., 1995)in which the spherical harmonics are re-

indexed to have single index 𝑗(𝑙, 𝑚) = 𝑙2 + 𝑙 + 𝑚. The discrete fODF values stored in each 

triangle are turned into a vector of length 𝑛tri,  [𝑓] = {𝑓(𝜃𝑖 , 𝜙𝑖), 𝑖 = 1, . . . , 𝑛𝑡𝑟𝑖} and an 

𝑛tri × 𝑗(𝑙max, 𝑙max) matrix, 𝑋, constructed with elements 𝑋𝑖,𝑗(𝑙,𝑚) = 𝑌𝑙
𝑚(𝜃𝑖 , 𝜙𝑖). Essentially, 𝑋 

maps the SH coefficients for each 𝑙, 𝑚 into amplitudes along each 𝜃𝑖 , 𝜙𝑖 . The 𝑗(𝑙max, 𝑙max) 

vector of SH coefficients, [c] can then be found as 

 [c] = (𝑋∗𝑇𝑋)−1𝑋∗𝑇[𝑓] . (3) 

The number of coefficients in [𝑐] can be reduced since the fODF is real-valued and 

antipodally symmetric (since the dMRI process is antipodally symmetric). Being real 

valued means that the SH coefficients exhibit conjugate symmetry (that is, 𝑐𝑙
𝑚 =

(−1)𝑚𝑐𝑙
−𝑚∗)  and the antipodal symmetry means that all odd 𝑚 terms are 0 (Alexander et 

al., 2002; Tournier et al., 2004). In the end, this means that [𝑐] has (𝑙𝑚𝑎𝑥 + 1)(𝑙𝑚𝑎𝑥 +

2)/2 elements.  

Each fODF was normalised such that 



 
∫ ∫ 𝑓

𝜋

0

2𝜋

0

(𝜃, 𝜙)sin(𝜃)𝑑𝜃𝑑𝜙 = 1 , (4) 

to ensure that the fODF is a probability density function (PDF), describing the probability of 

fibre pointing in a given unit of solid angle. 

2.2 Experiments 

2.2.1 Per-fibre response heterogeneity (Experiment 1) 

We test to what extent variable fibre geometry results in variable fibre responses by 

simulating the intracellular dMRI signal from the phantoms described in Section 2.1 

following the procedure outlined in Figure 2.  

For testing individual fibre response functions, only the intracellular signal was needed 

since the ideal FRF comes solely from the intracellular space. In this case, each fibre was 

rotated to be aligned with the 𝑧-axis and then extended with a reflected copy as in (H. Lee 

et al., 2020). The rotation matrix used to align the fibre with 𝑧 was stored so that signals 

could be rotated back into the dispersed directions to generate an overall voxel signal. In 

the case of EM fibres, only axons that were longer than 18 μm before extension were used 

in simulation to remove very short fibres that had been segmented at the edge of the 

volume. 

Diffusion MRI signals were simulated from ConFiG phantoms using the Camino dMRI 

simulator (Cook et al., 2006; Hall and Alexander, 2009) to perform the experiments 

described below. For all experiments a bulk diffusivity D = 2.0μm2/ms was used in 

agreement with similar Monte Carlo experiments as in with standard Camino periodic 

boundaries (Panagiotaki et al., 2010). 



 

Figure 2 Calculation of per-fibre response and fODF from a phantom. Each fibre is treated 
individually, being rotated onto the 𝑧-axis and extended with reflected copies as in (Callaghan 
et al., 2020; H. Lee et al., 2020) to avoid artefacts from the closed ends. The dMRI signal is 
then simulated, decomposed into SH, rotated back onto the original fibre direction and 
resampled in the original directions. Each fibre signal is then combined to give total voxel 
signal and deconvolved with a given FRF to estimate the fODF. 



For each fibre 10,000 spins were initialised uniformly within the intra-axonal space and the 

simulations were performed using 5000 timesteps. Each phantom had ∼ 300 fibres giving 

∼ 3 × 106 spins in total per phantom. These settings were confirmed to be adequate by 

comparing to a set of test simulations performed using 105 spins per fibre and 104 

timesteps. The measurement parameters were ∆= 28ms, 𝛿 = 24ms, 𝑏 =

1000, 2000, 3000 s/mm2 and 256 equidistributed gradient directions (Saff and Kuijlaars, 

1997) at each shell. This gives a diffusion time 𝑑𝑡=20 ms, chosen so that the diffusion 

length scale (√2𝐷𝑑𝑡 ≈ 8μm at 𝐷 = 2.0 μm2/ms) is small relative to the axon length (≥

18μm). Additionally, these settings give G = 60 mT/m at b = 3000 s/mm2, a feasible 

gradient strength on a high-end clinical system. Rician noise was optionally added at 30 

SNR. 

To compare to the collection-of-straight-fibres assumption implicit in spherical 

deconvolution techniques, an infinite cylinder representing each fibre was generated using 

the endpoints of each fibre to give the direction and the mean radius of the fibre as the 

cylinder radius. For simulation, each cylinder was aligned with the 𝑧-axis similarly to the 

ConFiG fibres so that everything was in the same space to compare the signals. The same 

measurement scheme was simulated in each cylinder in order to compare to the ConFiG 

fibres. 

Since the individual axons have been aligned with the 𝑧-axis, the signals from each fibre can 

be directly compared with one another as the gradient directions are aligned with respect 

to each fibre. To demonstrate the variability in dMRI response, each fibre’s response was 

calculated and the median, 10th and 90th percentile responses found (in terms of mean 

squared difference between fibre and cylinder responses). Additionally, to relate the type 

and size of morphological variation to the signal changes, the microscopic orientation 

dispersion (Brabec et al., 2019) (𝜇𝑂𝐷), a measure of undulation, and the coefficient of 

variation of diameter (𝐶𝑉), a measure of beading (H. Lee et al., 2020), was calculated for 

each fibre. 

Throughout this work, SH representations of signals are used. The MATLAB 

implementation of constrained spherical deconvolution (CSD) (Tournier et al., 2007) 



available from (https://github.com/jdtournier/csd) is used to calculate SH decompositions 

of signals. This is the same technique as used in popular dMRI tractography tool MRtrix3 

(Tournier et al., 2019) and follows the procedure outlined in Section 2.1.2 for SH 

decomposition of the dMRI signal, where 𝜃, 𝜙 are the gradient directions.  

2.2.2 Impact on fODF estimation (Experiment 2) 

To investigate the impact on the fODF of assuming a single fibre response per voxel, we 

compared fODF estimates from CSD using three different FRFs per phantom derived from 

Experiment 1: the median response (representing a typical response) and the 10th 

percentile and 90th percentile FRF (representing extrema of responses). To generate an 

overall voxel signal for deconvolution with each FRF, the volume-weighted mean signal 

calculated for each phantom, as shown in bottom half of Figure 2 by rotating each fibre’s 

signal onto the original fibre direction and weighting by fibre volume. Additionally, the 

fODF estimated using CSD is not a true PDF since it does not integrate to one, so throughout 

this work the fODF from CSD is normalised as outlined in Section 2.1.2. 

To help illustrate the differences in the fODF, the main peak direction and dispersion angle 

(calculated as the angle away from main direction to cover 75th percentile of main peak) 

were calculated for the single bundle and EM fibre cases. 

3 Results 

3.1 Per-fibre response heterogeneity 

Variations in intra-voxel fibre geometries are present in real fibres and ConFiG phantoms 

as demonstrated in Figure 3 which shows each digital phantom alongside the fibres which 

give the median, 10th and 90th percentile response.  

Under the experimental conditions investigated, this morphological variation in the fibres 

causes the dMRI signal response per-fibre to vary as can be seen in the middle of Figure 3, 

which shows the median, 10th and 90th percentile signals across all fibres in each phantom 

at b=2000s/mm2 and 30 SNR. The variation in the response function depends on the 

https://github.com/jdtournier/csd


complexity of the fibre arrangement, with the most complex three-crossing bundle 

arrangement leading to the largest variation in response functions. 

This variation in the FRF is seen across each 𝑏-value from 1000 to 3000s/mm2 as 

demonstrated in Figure 4 for the 𝜅 = 2, three-crossing and EM fibre phantoms, chosen 

since these display the most variation for each phantom category. Here 𝑆𝑁𝑅 = ∞ to isolate 

the effect of 𝑏 from noise.  



 



Figure 3 Variability in fibre responses within a voxel at b=2000 s/mm2 at SNR=30 along with 
geometrical variation in fibres responsible for median, 10th and 90th percentile response. 
Notably, the 10th percentile fibres tend to be more stick-like while 90th percentile have more 
beading. Solid green line in FRF figures represents median response, shaded green area 
represents 10th and 90th percentile response. Same values for representative cylinders are in 
blue to demonstrate the variability due to noise. 

 

3.2 Impact on fODF estimation 

The variation in the FRF for each fibre leads to a variation in the estimated fODF as seen in 

Figure 5-Figure 7. Again, the magnitude of differences in fODF tends to depend on the 

complexity of the fibre arrangements since the more complex arrangements have more 

variation in the FRF. The resultant fODF is dependent on the 𝑏-value as demonstrated by 

Figure 6. While the direction of peaks in the fODF does not differ greatly at different 𝑏-

values, the overall shape can change. Generally, the fODF calculated from SD picks out the 

correct main peak direction that is seen in the gold standard fODF from the microstructure, 

with differences in the overall peak amplitude and shape. A notable exception to this is the 

𝜅 = 2 and EM fibre phantoms which at low 𝑏-value identifies two peaks with some FRFs 

which are not present in the gold standard fODFs. 



 

Figure 4 Per-fibre response function at 𝑏 = 1000, 2000, 3000 𝑠/𝑚𝑚2 (left-to-right) for (a) 
the κ = 2 phantom, (b) the three-crossing phantom and (c) the EM fibres. 



 

Figure 5 Variations in the FOD estimated using the 10th percentile, median and 90th 
percentile signal for the FRF for a range of phantoms. Left-to-right: the gold standard FOD 
from microstructure, FOD using 10th percentile, FOD using median, FOD using 90th 
percentile. 3D glyphs represent the FOD for each column and lines show previous FODs 



overlaid.

 

Figure 6 Variation in FOD estimated using 10th percentile, median and 90th percentile FRF at 
b = 1000, 2000, 3000 s/mm2 (left-to-right) for (a) the κ = 2 phantom, (b) the two-crossing 
bundles phantoms (c) the three-crossing bundles phantom and (d) the EM fibres. Green 3D 
surface is gold standard FOD from microstructure and lines outline the FOD using the 10th 
percentile, median and 190th percentile signals. 



 

Figure 7 Variation in fODF properties when estimated using different FRFs. a) the angular 
error between the main peak in gold standard fODF and that of the fODFs estimated using 
CSD and b) the error in dispersion angle of the main peak (angle from main peak direction to 
cover 75th percentile) compared to the gold standard for each fODF. 

4 Discussion 

The microscopic variations in fibre morphology challenge the assumption in SD techniques 

that there exists a unique and shared FRF even within a single voxel. Here we have used 

dMRI simulations to demonstrate that variations in individual axonal morphology do 

indeed lead to different response functions per-fibre which in turn can have a knock-on 

effect on SD techniques to estimate the fODF. 

As demonstrated in Figure 3Figure 4, the response function can vary substantially across 

different fibres, particularly in complex fibre arrangements such as the three-crossing 

bundles scenario. Indeed, the variation in responses in fibres reconstructed from real EM 

images of WM is large, similar to that of the ConFiG three-crossing simulations, and much 

larger than ConFiG phantoms containing a single fibre bundle. This suggests that there is in 

fact more variation in real axons than in the axons generated by ConFiG, even in simple 

arrangements of a single bundle of fibres. This is something that may be used to inform 

future versions of ConFiG to generate more realistic phantoms. 

In the main, the largest variation in the per-fibre response, as well as the largest difference 

between cylinders and realistic axons happens in the axial direction which is to be 



expected. Even with diameter variations and undulation, the radial diffusion is still strongly 

restricted under the assumption of no axonal permeability, while recent studies have 

shown that real axonal morphology causes time-dependent deviations from Gaussian 

diffusivity along the axial direction (H. Lee et al., 2020). Phantoms which show large 

amounts of beading (high 𝐶𝑉 in EM fibres and three-crossing bundles) show the largest 

variability in response, while 𝜇𝑂𝐷 affects the response less, suggesting that fibre beading 

drives fibre response variability more than undulation. 

Variations in the FRF have an impact on the estimated fODF as demonstrated in Figure 5-

Figure 7. In the simplest fibre arrangements with the lowest dispersion (Figure 5b&c), the 

FRF variation is relatively small and so the fODF variation is small and the fODF peak 

directions match the gold standard fODF well, however in the 𝜅 = 2 case, the fODF varies 

greatly when using different FRFs (Figure 5a, Figure 6a and Figure 7). 

Interestingly, when using the 10th percentile and median FRF, the fODF seems to pick out 

two-crossing bundles which are not present in the gold standard fODF, while the 90th 

percentile FRF picks up one dispersed bundle much closer to the gold standard fODF. On 

top of this, the relative amplitudes of the fODF change with 𝑏-value as seen in Figure 6a in 

which the median and the 10th percentile fODF changes from two distinct peaks at 

b=1000s/mm2 to one wider merged peak at b=3000s/mm2. These kinds of effects could 

have significant impacts on tractography techniques which use the fODF to trace fibre 

bundles through the brain. 

In the case of crossing fibres, the fODF varies depending on the FRF used too. In the case of 

two-crossing bundles of fibres (Figure 5d), each bundle responds in a similar way, with 

peak directions and amplitudes largely unaffected by the FRF used and matching the gold 

standard fODF well. In the three perpendicular bundle case, however, peak amplitudes are 

affected by the FRF used as seen in Figure 5e and Figure 6c, in which different FRFs create 

fODFs with different relative peak amplitudes. The 90th percentile FRF selects the largest 

peak very strongly, creating smaller perpendicular peaks while the 10th percentile (and, in 

fact gold standard) FRF pick out more even lobes. This is significant because as shown by 



(Schilling et al., 2019b), even changes in fODF peak amplitudes without peak direction 

changes can have an impact on tractography results. 

In the real EM fibres, the large differences in FRF lead to large differences in the fODF as 

seen in Figure 5f and Figure 6d. Similarly to the 𝜅 = 2 case, the 10th percentile FRF seems 

to pick out two-crossing peaks, while the others pick out a single peak, closer to the gold 

standard fODF. This effect is dependent on 𝑏-value, with the two peaks at b = 1000 s/mm2 

merging into one at b=3000 s/mm2. One possible explanation for this is that the Tikhonov 

regularisation in CSD (Tournier et al., 2007) encourages directions in which there is little 

diffusion to zero and it may be over-regularising in the 𝜅 = 2 and EM fibres cases. 

The main takeaway from these investigations is that in general, even for a single voxel, 

there is often not a single FRF that can properly explain the data - at least under the 

experimental conditions investigated. Within-voxel heterogeneity in fibre geometry leads 

to heterogeneity in the per-fibre response to the extent that using a single FRF in CSD 

cannot always accurately recover the underlying fODF. Some techniques account for some 

FRF variation voxel-to-voxel (Christiaens et al., 2017; Kaden et al., 2016b, 2016a), however 

the investigations presented here suggest that the FRF may vary even within a voxel.  

Additionally, these simulations lend further support to challenge the assumption that FRF 

is constant across the brain as differences in the median FRF per phantom demonstrate 

that the overall FRF from different fibre arrangements will be different as a result of the 

different axonal morphology in each environment. Further, as demonstrated by the fODF 

experiments, small changes in the FRF can lead to significant changes in the estimated 

fODF, meaning that using the wrong FRF in different brain regions could have large impacts 

on fODF-based techniques such as tractography. 

4.1 Limitations and future work  

In this work we investigated how complex fibre morphology affects SD techniques using a 

dMRI scheme chosen to use clinically feasible gradient strength and duration, though it 

may be possible that other measurement schemes exhibit greater or lesser sensitivity to 

these effects. For instance (Yeh et al., 2010) have shown that the gradient pulse duration 

can impact fibre orientation estimation. Another factor to investigate is the impact of the 



diffusion time on the observed effects, since longer diffusion times can ‘smooth out’ these 

microscopic morphological variations as spins are able to diffuse further. At present, the 

diffusion time we can simulate is limited by the size of our phantoms, however work is 

ongoing to produce larger phantoms with ConFiG to allow us to study these effects at 

longer diffusion time.  

Throughout this work we have referred to the fODF generated from the phantom 

microstructure as the ‘gold standard’ fODF in inverted commas. This is deliberate since it is 

not straightforward to define an fODF from microstructure that exactly corresponds to that 

from dMRI, in part due to the assumptions made in modelling the fODF from dMRI, which 

have been discussed here. Efforts have been made to make the two fODFs comparable in 

this work by defining the gold standard fODF using a single direction per fibre and 

normalising all fODFs to one. 

The variability that is demonstrated in the per-fibre response in this experiment is 

suggested to arise due to the complexity of fibre morphology introduced due to complex 

fibre arrangements. This seems to be case, as shown in Figure 3, though the exact nature of 

the link is not known for certain since there are many sources of morphological complexity 

(undulation, beading, non-circular cross-sections, etc.) which could all contribute to these 

variations. Future work will aim to isolate each of these effects to probe which 

morphological features have the largest impact on the FRF/fODF. Should these effects be 

understood, it may be possible to estimate them from the dMRI signal to improve the 

accuracy of SD techniques. 

Another important consideration is that in this work we use CSD as in MRtrix3, however 

there are wide range of SD techniques for fODF estimation, each with slightly different 

derivations and assumptions. While this will affect the fODFs presented in this work, the 

per-fibre signals and compartmental signals presented do not rely on any SD model, so the 

FRF variations will impact any models which use the FRF. 

It is worth pointing out that here we merely demonstrate that the response varies on a per-

fibre basis, meaning that the concept of a fibre response function needs to be treated 

carefully. Most SD techniques estimate their FRF from averaging across a number of voxels, 



meaning that the FRF is an average single bundle response (including many fibres, 

extracellular space, other cells etc.) rather than purely a fibre response function. The 

variability in the per-fibre response may contribute less to the variable overall FRF seen 

across the brain in previous studies (Christiaens et al., 2020; Schilling et al., 2019b) than 

other factors such as the extracellular space but it should be considered. 

It is also worth noting that this effect will impact other dMRI modelling techniques which 

model the signal as a combination of a diffusion response with an orientation distribution. 

For instance, NODDI models the intracellular signal with a Watson distribution as the 

orientation component and diffusion in sticks as the MR response, assuming that all the 

fibres can be treated as sticks. As shown here, microscopic variations in fibre morphology 

mean that the signals from each fibre are not identical and this could affect results of 

NODDI and other similar models (Alexander et al., 2017). Similarly, previous studies have 

looked into the effect of morphological features such as undulation on axon diameter 

estimation (Brabec et al., 2019; H.-H. Lee et al., 2020; Nilsson et al., 2012). Future work will 

aim to shed more light on these effects and investigate whether it is possible for it to be 

accounted for in our models.  

5 Conclusion 

The complex axonal morphology introduced by axons packing together in complex 

arrangements leads to differences in the dMRI response across different fibres. These 

variations in per-fibre response functions lead to differences in the fODF estimated using 

CSD, suggesting that the assumption of a single FRF across all fibres and all voxels may 

need to be considered carefully. Indeed, where there are large variations in FRF, no single 

choice of FRF is able to accurately estimate the fODF.  

All of this means that the interpretation of the FRF and fODF in SD needs to be carefully 

considered and future models may seek to disentangle some of these effects for more 

accurate FRF and fODF estimation. 
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