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A B S T R A C T

This paper presents Contextual Fibre Growth (ConFiG), an approach to generate white matter numerical phan-
toms by mimicking natural fibre genesis. ConFiG grows fibres one-by-one, following simple rules motivated by
real axonal guidance mechanisms. These simple rules enable ConFiG to generate phantoms with tuneable
microstructural features by growing fibres while attempting to meet morphological targets such as user-specified
density and orientation distribution. We compare ConFiG to the state-of-the-art approach based on packing fibres
together by generating phantoms in a range of fibre configurations including crossing fibre bundles and orien-
tation dispersion. Results demonstrate that ConFiG produces phantoms with up to 20% higher densities than the
state-of-the-art, particularly in complex configurations with crossing fibres. We additionally show that the
microstructural morphology of ConFiG phantoms is comparable to real tissue, producing diameter and orientation
distributions close to electron microscopy estimates from real tissue as well as capturing complex fibre cross
sections. Signals simulated from ConFiG phantoms match real diffusion MRI data well, showing that ConFiG
phantoms can be used to generate realistic diffusion MRI data. This demonstrates the feasibility of ConFiG to
generate realistic synthetic diffusion MRI data for developing and validating microstructure modelling
approaches.
1. Introduction

Numerical phantoms play a valuable role in the development and
validation of many magnetic resonance imaging (MRI) techniques. In
particular, numerical phantoms are often used when developing diffu-
sion MRI (dMRI) microstructure imaging techniques where simulations
of the dMRI signal in phantoms with known microstructural properties
are used in lieu of an in vivo ground truth measure of microstructure
(Alexander et al., 2017). While recently numerical phantoms have
proven useful for validating microstructure imaging of grey matter
(Palombo et al., 2020), they have more commonly been used for vali-
dating white matter (WM) microstructure, with many studies comparing
parameter estimates from fitting their models to the known ground truth
from the phantoms e.g. (Daducci et al., 2015; Jelescu and Budde, 2017; Li
et al., 2019; Nilsson et al., 2017, 2010; Scherrer et al., 2016; Tariq et al.,
2016; Xu et al., 2014; Zhang et al., 2012). Some recent works directly
estimate microstructural features using fingerprinting techniques and
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machine learning to match simulated signals and the corresponding
ground truth microstructure of the numerical phantom to the measured
signal (Hill et al., 2019; Nedjati-Gilani et al., 2017; Palombo et al., 2018a;
Rensonnet et al., 2018). As well as affecting the dMRI signal, micro-
structural features also influence other MR techniques such as
susceptibility-weighted imaging (Lee et al., 2010; Li et al., 2012). For
instance, Xu et al. (2018) recently used simulations to show that using
realistic axonal models rather than simple circular cylinders affects the
MR signal. Therefore, it is important to the MRI community to generate
realistic WM numerical phantoms which accurately capture microstruc-
tural features in order to get realistic simulated signal.

Typically, however, there is a mismatch between the complexity of
true brain tissue microstructure and the models used in simulation, with
simulations simplifying the microstructure. On one hand, ex vivo elec-
tron microscopy (EM) studies have revealed the high complexity of real
axonal morphology (Abdollahzadeh et al., 2019; Lee et al., 2019; Salo
et al., 2018). Reconstructions of axons from these studies show that real
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WM contains axons with complex morphologies on an individual axon
basis such as undulation, beading and non-circular cross sections, as well
as non-trivial configurations including orientation dispersion and
crossing bundles. On the other hand, the models used in simulation
studies often represent axons in WM using simplistic geometrical repre-
sentations such as parallel cylinders with uniform (Fieremans et al.,
2010; Ford and Hackney, 1997; Nilsson et al., 2010, 2009) or poly-
disperse (Alexander et al., 2010; Hall and Alexander, 2009) radii. Some
studies investigate the effect of differing configurations of fibres such as
simple crossing (Rensonnet et al., 2017; Zhang et al., 2011a) and
orientation-dispersed (Tariq et al., 2016; Zhang et al., 2012, 2011b) fibre
bundles. A few groups generate WM numerical phantoms with complex
fibre configurations for the application to tractography (Close et al.,
2009; Neher et al., 2014); however realistic microstructural morphology
is not the focus of these approaches. Other studies introduce more
microstructural complexity into the numerical phantoms, typically only
considering one mode of morphological variation at a time; some ex-
amples of this include harmonic beading (Budde and Frank, 2010;
Landman et al., 2010), spines (Palombo et al., 2018b), undulation
(Brabec et al., 2019; Nilsson et al., 2012) and myelination (Brusini et al.,
2019).

Recently, a number of groups have attempted the challenge of
combining these features to generate phantoms approaching the
morphological complexity and density of real tissue. The most common
approach to this is the packing of fibres into densely packed configura-
tions (Close et al., 2009; Ginsburger et al., 2019, 2018; Rafael-Patino
et al., 2018). The typical approach, as taken in the state-of-the-art
MEDUSA algorithm (Ginsburger et al., 2019), is to generate a set of
overlapping fibres decomposed into small segments and iteratively refine
their positions to remove the overlap between them. Despite their recent
progress, further advance of this class of techniques may be limited,
because nature does not create fibres before attempting to pack them
together. Instead, real axons are guided by chemical cues and fit into
available space as they grow (Lowery and Vactor, 2009; Price et al.,
2017). Mimicking the natural fibre genesis may prove important for
building more realistic phantoms.

To this end, we propose Contextual Fibre Growth (ConFiG), an
approach to generate WM numerical phantoms that emulates natural
fibre growth. ConFiG generates WM numerical phantoms by growing
fibres one-by-one, mimicking a set of key mechanisms which govern real
axonal growth. A preliminary implementation of ConFiG was presented
in (Callaghan et al., 2019). We assess the performance of ConFiG by
measuring the impact of each of the biologically inspired mechanisms on
the achievable phantom density and comparing against state-of-the-art
MEDUSA phantoms. To test how realistic ConFiG phantoms are, we
compare the microstructural properties of the phantoms to measured
data from electron microscopy and compare simulated dMRI signal in the
phantoms to real dMRI data.

The rest of the paper is organized as follows: Section 2 describes the
ConFiG algorithm, Section 3 details the experiments outlined above and
Sections 4 and 5 summarise the contributions and discuss future work.

2. Methods

In this section we describe the ConFiG algorithm, beginning with an
overview of the main components in the growth algorithm. We then
describe the biological mechanisms motivating ConFiG and how each of
these are implemented to give the final ConFiG algorithm.

2.1. Overview of the ConFiG algorithm

Given a set of morphological input parameters (target density,
orientation distribution and diameter distribution), ConFiG generates a
densely packed set of fibres by growing each fibre following a set of
biologically motivated rules. The generation of ConFiG numerical
phantoms happens in three main steps:
2

� STEP 1: Generate initial growth configuration from user inputs
� STEP 2: Grow the fibres using ConFiG growth algorithm
� STEP 3: Generate 3D meshes for dMRI simulation

Each of these steps are discussed in detail below.
First, Step 1 is broken down in to three substeps as outlined in Fig. 1:
STEP 1.1: Generate fibre starting points (Fig. 1a–b). To generate a

starting point for each fibre to grow from, ConFiG packs circles with the
desired diameter distribution up to the target density (defined in terms of
the desired fibre volume fraction) in 2D, following the approach taken in
(Hall and Alexander, 2009).

STEP 1.2: Generate fibre target points (Fig. 1c). To encode the
desired orientation distribution, each fibre has a direction drawn from
the target distribution which gives a target point for the fibre to grow
towards. As a demonstration of the flexibility of the framework, in this
work we use the Watson distribution (Mardia and Jupp, 2008) for
isotropic dispersion and the elliptically symmetric angular Gaussian
distribution (Paine et al., 2018) for anisotropic orientation dispersion,
however other orientation distributions can be defined according to the
user’s needs.

STEP 1.3: Generate growth nodes (Fig. 1d). ConFiG uses a set of
pseudorandomly placed points (nodes) to sample the space and encode
which regions are occupied by existing fibres. This simplifies collision
checking making growth more efficient than a direct collision detection
approach involving growing each fibre one small step at a time and
checking collisions with existing fibres (Callaghan et al., 2019).

Second, Step 2, the main growth algorithm, is broken down into a
series of substeps as outlined in Fig. 2:

STEP 2.1: Create growth network (Fig. 2a&b). In order to encode
which nodes a fibre can move to from any other node, the growth nodes
are connected using the Delaunay triangulation.

STEP 2.2: Grow one fibre step (Fig. 2 c-e). Fibres grow one-by-one in a
random order along this network towards their target points while
avoiding existing fibres. During growth, a fibre must choose in which
direction it should grow. This direction is chosen in ConFiG by following
a cost function motivated by biological axonal guidance mechanisms
(Fig. 2d), described in Sections 2.3 and 2.6.

STEP 2.3: Update the network (Fig. 2 f). The growth network is
updated in order to store the information about the space this fibre is
occupying so that future fibres can avoid it. The simplest way to do this is
to store the minimum distance from each node in the network to any
existing fibre as in (Callaghan et al., 2019). Additionally, another bio-
logically motivated network updating strategy is described in Section 2.5.

STEP 2.4: Repeat steps 2.2 and 2.3 until fibre reaches target (Fig. 2g).
By default in ConFiG, each fibre will grow completely before the next one
starts, meaning that step 2.5 only needs to be performed once the fibre
has finished growing. If fibres are allowed to grow concurrently, step 2.5
must be performed after each growth step.

STEP 2.5: Repeat steps 2.2–2.4 for remaining fibres (Fig. 2h–i). As
noted in Fig. 2(e–h), as the network is updated, more and more nodes
become inaccessible making the network sparser. This means that some
fibres may reach a point from which they cannot grow any further and
will become stuck. Biologically inspired mechanisms designed to address
this point are described in Sections 2.4 and 2.5.

Finally, Step 3, the meshing procedure, is briefly described below and
in further detail in Section 2.8:

STEP 3: Generate 3D fibre meshes. After the growth process, each
fibre will be represented by a series of connected 3D points and corre-
sponding diameters at each point. In order to simulate diffusion MRI
signals, these fibre skeleta need to be turned into 3Dmeshes. ConFiG uses
a meshing procedure designed to eliminate overlap between fibres.

The basic ConFiG growth algorithm described here is illustrated in
Fig. 2, with an animation of the algorithm in Supplementary Video 1. The
remainder of this section outlines the biological process governing real
axonal growth, and how these processes motivated the final imple-
mentation of the ConFiG algorithm.



Fig. 1. Inputs to the ConFiG algorithm for the single bundle case. L defines the size of the area of that the growth will take place in. The target density and fibre radius
distribution govern the generation of starting points for each fibre by packing in 2D. Orientation dispersion parameters govern the generation of target points cor-
responding to each starting point. N defines the number of nodes to use when generating the network. In the case of multiple bundles, starting and target points are
generated for each bundle and then combined into the same space which is filled with nodes for the network.
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Supplementary video related to this article can be found at https://
vimeo.com/433661018 or https://doi.org/10.1016/j.neuroimage.20
20.117107

2.2. Biological motivation for ConFiG

In nature, axons grow following chemical cues in their environment
through various mechanisms which either attract or repel fibres to guide
their growth (Dent et al., 2011; Lowery and Vactor, 2009; Mortimer
et al., 2008; Polleux and Snider, 2010; Price et al., 2017; Rauch et al.,
2013; Sakisaka and Takai, 2005). In an attempt to emulate real axonal
growth, mechanismsmotivated by the following guidance processes have
been integrated into ConFiG:

� Chemoattraction – the process by which fibres are attracted to
diffusible chemical cues in their environment (Mortimer et al., 2008;
Price et al., 2017).

� Fibre collapse – a response to a chemorepulsive source whereby a
fibre withdraws and regrows in a different direction (Rauch et al.,
2013).

� Cell adhesion molecules – chemical signals on the surface of cells
which guide axons that come into contact with them (Sakisaka and
Takai, 2005).

� Fasciculation – the process by which multiple axons come together to
form bundles (Price et al., 2017; �Smít et al., 2017).

The following sections detail how mechanisms motivated by these
biological processes are implemented in ConFiG while Figs. 3–5 illustrate
these biological processes alongside their ConFiG counterparts.

2.3. Chemoattraction

As mentioned in Section 2.1, as a fibre grows it must choose in which
direction it will move. One of the main processes governing the guidance
of real axons is chemotropism; a process by which axons respond to
diffusible chemical cues in their environment. One key chemotropic
mechanism is chemoattraction, in which fibres are attracted along a
chemical gradient towards a target region (Price et al., 2017).

To approximate this chemoattractive mechanism, each fibre is
3

encouraged to grow towards its target point (i.e. the target point acts like
a chemoattractive source). From any node in the growth network, the
fibre will move along an edge that takes it towards its target while
avoiding existing fibres according to a cost function (Callaghan et al.,
2019). The chemoattractive mechanism and its ConFiG counterpart are
illustrated in Fig. 3a.

From a starting node, s, the candidate nodes, c, that the fibre can
move to are any nodes that share an edge with s. In addition to its po-
sition, each network node stores the maximum fibre diameter, dc, that
can be sustained at that nodewithout intersecting another fibre. The fibre
will move to a candidate node according to a cost function consisting of
two terms; lt ; which penalises taking very large steps or moving away
from the target point, t, and ld; which penalises moving to a position
where dc is low meaning that the fibre will have to shrink. The cost
function for a fibre at a position, s, to move to a candidate node, c, given a
target point, t, is (Callaghan et al., 2019)

l¼ lt þ fld ; (1)

where

lt ¼ 1
2
� js� cj
1þ js� cj �

�
1� ðc� sÞ �ðt � sÞ

jc� sjjt � sj
�
; (2)

ld ¼ max
�
0;

1
d0

ðd0 � dcÞ
�

(3)

Here, d0 is the target diameter of the fibre and f is a weighting factor
between the two terms. In this work, f is fixed to 0.2 to more strongly
weight growth towards the target.

The next node for a fibre will be the candidate node which has the
lowest cost according to Equation (1). This method of finding a path
through the triangulation by choosing the lowest cost node at each po-
sition amounts to a greedy best-first pathfinding approach with a heu-
ristic given by Equation (1).

Growing fibres along the network using just this chemoattractive
mechanism is the minimal implementation of ConFiG that will generate
substrates to try and meet the morphological inputs. There are some
limitations to this minimal approach however; the greedy growth and the
sparse sampling of the space means that fibres can grow into regions from

https://vimeo.com/433661018
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Fig. 2. Overview of the basic growth algorithm in ConFiG. In this example, three fibres are shown with a growth network that only contains relevant nodes for the
sake of visualisation. From the set of nodes, a network is constructed using the Delaunay triangulation. Each fibre then grows from node to node, along any edge
connected to the current node. The node moved to will be the node with the lowest cost. Once a fibre segment has grown, the network nodes are updated to store
information about which nodes are occupied or near to an existing fibres. This contributes to the cost function for any future fibres, penalising moving to nodes too
close to existing fibres. It is not possible to move to any node now inside a fibre as indicated by the removal of this edges from the network (pairs of blue arrows show
where this is happening). The next fibres grow, now avoiding existing fibres until all fibres have finished. See Supplementary Video 1 for an animation of
this algorithm.
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which they cannot grow further and become stuck. Additionally, in this
approach, fibres grow independently of one another, whereas real fibres
grow forming bundles in the process known as fasciculation.

Sections 2.4-2.7 describe further mechanisms which were added to
enable ConFiG to address these limitations in order to meet more com-
plex morphological priors (e.g. high density and orientation dispersion
together).

2.4. Fibre collapse

As mentioned in Section 2.3, in ConFiG a fibre can become stuck
when there are no possible next steps because all neighbouring nodes are
inaccessible. In an attempt to ameliorate this a process mimicking fibre
collapse was implemented, illustrated in Fig. 3b.
4

In ConFiG fibre collapse, the fibre will move back by an initial dis-
tance, g0, and regrow from there avoiding any nodes in the route it took
previously. If the fibre becomes stuck again, it will move back by a
further distance, g0 þ δ, where δ is the additional distance to step back.
This process is repeated until the fibre reaches the target or gets stuck a
user-defined maximum number of times. In this work, g0 ¼ 2 μm and δ ¼
5 μm in an approximation of the biological fibre collapse process inves-
tigated by Rauch et al. (2013) who show fibres collapsing up to 25 μm
back towards the soma. The maximum number of steps back is set to 5,
meaning that the maximum step back is 27 μm, in line with real fibres. If
there is no possible route after 5 attempts then the fibre will stop growing
and will be removed from the phantom. This process of removing stuck
fibres means that the resulting substrate may not always have the same
density as the input desired fibre density.



Fig. 3. Illustration of two of the biological motivations and how they are implemented in ConFiG. a) Growth towards the target is enforced by means of a cost function
encouraging growth towards the target point. b) Fibre collapse is implemented by allowing the fibre to move backwards if it reaches a node from which there are no
viable steps. The biological figures are adapted from (Price et al., 2017).

Fig. 4. Illustration of the contact guidance axonal growth mechanism and the dynamic growth network implemented in ConFiG. The dynamic growth network is
implemented as a set of points added around each fibre after growth, enable future fibres to more easily grow along/around existing fibres.
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2.5. Dynamic growth network

In the preliminary implementation of ConFiG (Callaghan et al., 2019),
the network nodes were initialised pseudorandomly within the growth
region and once initialised, the growth network was static, meaning that
the nodes and edges of the network were fixed. This limited the growth to
the specific instantiation of the network and it could not adapt to where
fibres were once they had grown. Furthermore, as illustrated in Fig. 2, as
fibres grow, many nodes become inaccessible due to being within fibres
meaning that the network becomes gradually sparser.

A dynamic growth network was implemented to ameliorate these
effects. Now, once a fibre has reached the target, a number of nodes,
Nadded, are generated around the path of the fibre. This gives a denser
sampling of the space in regions in which fibres exist and serves to give
subsequent fibres more nodes to use to grow along or around that fibre,
helping to increase the achievable density by limiting the number of fi-
bres which get stuck. In this work, where the dynamic network is used,
Nadded ¼ 2500.

This is also loosely motivated by the contact guidance mechanism in
which axons are attracted to or repelled by chemical cues on the surface
of other cells, known as cell adhesion molecules (CAMs). Here, the added
points act like CAMs meaning that a future fibre which grows can use
these points near to the fibre to grow around or along it as if it were
following contact guidance cues. Fig. 4 shows how CAMs work in
5

biological axonal growth alongside the ConFiG dynamic network, illus-
trating the parallels between the two.
2.6. Axon fasciculation

One particular role CAMs play is in axon fasciculation, the process in
which axons follow a so-called pioneer axon closely, forming a bundle
(Price et al., 2017; Sakisaka and Takai, 2005). To mimic the process of
axon fasciculation, the term in the cost function penalising moving into
regions in which the fibre had to shrink, ld (Equation (3)), was altered to
be conditional on which fibre bundle is closest.

A fibre, f , with a target diameter, d0, moving to a candidate node, c,
which has a maximum sustainable diameter dc will now have ld given
by:

ld ¼

8>>><
>>>:

max
�
0;

1
d0

ðd0 � dcÞ
�

if bc 6¼ bf

abs
�
1
d0

ðd0 � dcÞ
�

if bc ¼ bf

; (4)

Where bf is an index identifying the bundle that fibre f belongs to and bc
is the index of the bundle that is closest to c (i.e. the index of the bundle of
the fibre that set dc). This means that when c is closest to the same bundle



Fig. 5. Illustration of how the labelled pathway hypothesis is expected to work
in biology and its ConFiG counterpart. Fasciculation is implemented using the
cost function term in Eq. (1) which means that fibres in the same bundle are
encouraged to stay close to one another.
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as f , the cost function penalises moving away from that bundle as well as
shrinkage, whereas when the bundles differ, it only penalises shrinkage.

This new form of the cost function encourages fibres of the same
bundle to stick together while still avoiding fibres of different bundles,
inspired by the labelled pathway hypothesis, which states that axons join
different fascicles based on different CAMs expressed on the fibres (Price
et al., 2017). In this case, bundle indices bc and bf act like different
identifying CAMs. Fig. 5 shows how this fasciculation process is expected
to happen in biology alongside how the improved cost function en-
courages a similar process in ConFiG.
2.7. Global optimisation

Since the growth of fibres in ConFiG takes place on a discrete network
of points, the final positions of fibre nodes may be suboptimal for
achieving the maximum density. In other words, certain fibres’ nodes
may be closer to other fibres than they would ideally be in order to reach
their target diameter (i.e. the fibre has had to shrink its diameter at that
node).

To mitigate against this, a global optimisation step was added at the
end of the growth in a procedure similar to MEDUSA (Ginsburger et al.,
2019). For each point, i, that is part of a fibre, its nearest n neighbours
(j 2 NNðiÞ) from other fibres are found; in this work n ¼ 10. The dis-
tance to all of the neighbours is found and the point’s position is updated
from these distances according to the update vector, ui

!

ui!¼
X

j 2 NNðiÞ
Dði; jÞ �� pi!� pj!

�
;

where pi
! and pj

! are the locations of point i and j. Dði; jÞ is the function
determining whether the interaction is repulsive or attractive:

Dði; jÞ ¼ sgn
�
ri þ rj �

��pi!� pj!
�� �

Here, sgn is the signum function and ri and rj are the target radii of point i
6

and j. The sum of these radii is the desired distance between the points
since that means the fibres are just touching.Dði; jÞ imposes that the force
is repulsive if the points are closer together than the desired radius and
attractive if they are further apart. The update vector is scaled such that if
jui!j →> 0:2ri, the update vector is rescaled so that jui!j ¼ 0:2ri. This acts
to prevent the update vector from becoming very large.

There is some biological evidence that this kind of interaction be-
tween fibres is important in the fasciculation process. The fasciculation
process described in Section 2.4 relies on CAMs detected at the tip of a
growing axon, however some studies provide evidence for fasciculation
through interactions along axon shafts, known as zippering (Barry et al.,
2010; �Smít et al., 2017; Voyiadjis et al., 2011). In zippering, nearby axon
shafts attract one another to form more closely packed fascicles, which is
a similar process to the global optimisation process in ConFiG.
2.8. Creation of 3D meshes

As mentioned in Section 2.1, following the growth process ConFiG
fibres will be represented by a series of connected points and corre-
sponding radii. To convert these skeleta into 3D meshes, the ConFiG
meshing procedure uses Blender (https://blender.org) and is built on the
SWC mesher addon (https://github.com/mcellteam/swc_mesher).

ConFiG meshes are constructed using Blender metaballs, an implicit
surface representation which is the isosurface of a function; typically a
function analogous to the electric potential from a point charge. When
two metaballs come close to one another, the fields combine and the
surfaces will merge to form a smooth surface. By placing a series of
metaballs along the skeleton of each fibre, a smooth surface is formed for
each fibre one-by-one as shown in Fig. 6a. Supplementary Fig. 1 dem-
onstrates that the ConFiG meshing procedure does not impact the
diffusion dynamics compared to a straight cylinder.

When fibres are densely packed, the surfaces from neighbouring fibres
may overlap. To account for this, a meshing procedure was developed in
which fibres can deform around nearby fibres to avoid overlap. The meta-
ball surface for one fibre is created as described above. This surface is then
turned into a triangulated mesh, however the metaballs are retained. The
metaball potential is then turned negative, meaning that rather than
merging with any future nearby metaball surfaces, it will repel them, as
shown in Fig. 6b. Thismeans that subsequentfibres which aremeshed very
close to, or overlapping with, existing fibres will deform organically to
resolve the intersection, thus creating a series of completely non-
intersecting fibre meshes which can be used by the dMRI simulator.
2.9. Summary of ConFiG input parameters

Table 1 summarises the key parameters that govern the generation of
ConFiG phantoms. Parameters are split into those which define the target
microstructural morphology and those which define the instantiation of
the growth algorithm. For each parameter, the theoretical range is re-
ported alongside the practical range that has been tested so far. This is
due to stochastic nature of the algorithm and the interdependence of the
parameters. For instance a very large substrate is possible if very large
fibres are chosen, but likely impossible with very small fibres since this
will require a very large number of fibres and run into memory
limitations.

3. Experiments

In order to assess the performance of ConFiG, a range of experiments
were performed. The first set of experiments were performed in order to
explore the impact of each of the biologically inspired growth mecha-
nisms. Another set of experiments aimed to show that ConFiG is able to
generate substrates with realistic microstructure by comparing generated
substrates with real tissue. Additionally, the relationship between the
user-specified target morphology and the final output morphology was

https://blender.org
https://github.com/mcellteam/swc_mesher


Fig. 6. Demonstration of the meshing procedure in ConFiG. The first fibre is created using metaballs to create a smooth surface. The second, and following fibres will
be created using negative metaballs for any fibres that intersect in order to deform around them. Note that in practice, more spheres will be much more closely placed
along the skeleton to create a smoother surface.

Table 1
Summary of ConFiG parameters split into parameters which define the target microstructural morphology and parameters which define the instantiation of the growth
algorithm. For each parameter the theoretical range is reported as well as the practical range that has been tested so far.

Parameter Meaning Theoretical Range Practical limits tested

Target microstructure parameters L Size of growth region R3
þ [0,0,0] -> [50,50,50] μm

ρ Fibre volume fraction [0,1] [0,0.8]
μr Mean radius Rþ [0.5, 2] μm
σr Standard deviation radius Rþ [0.1, 0.5] μm

GAD Global angular dispersion Watson: κ Rþ [4, 100]

ESAG
�
μ
γ

Rþ [2, 10]
R2

þ [2, 2] -> [10, 10]

Growth algorithm parameters N Number of growth nodes N [0,107]
f Cost function weighting term [0,1] [0,0.5]

g0; δ Fibre collapse initial and subsequent step length Rþ [1, 5], [1, 5] μm
Nadded Dynamic network no. nodes added N [0, 5000]
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investigated by comparing resulting phantoms to their inputs (target
density and orientation distribution). Finally, a simulation experiment
was performed to assess how well ConFiG phantoms can be used to
generate realistic diffusion MRI data. The rest of this section outlines
these experiments.

3.1. Testing the performance of ConFiG

In order to test how each of the biological mechanisms proposed in
Section 2 impacted on the resulting phantoms, an experiment was
devised to measure how phantoms changed when each mechanism was
introduced. Four scenarios of interest were generated using several var-
iants of the ConFiG algorithm that included these mechanisms either one
at a time or all at once, attempting to grow phantoms as densely as
possible:

� one bundle of parallel fibres, target density 75%
� one bundle with Watson distributed fibres (κ ¼ 8), target density 75%
� two perpendicular crossing bundles, intra-bundle target density 40%
� three mutually perpendicular crossing bundles, intra-bundle target
density 30%

These target densities were chosen to ensure that the centre of the
phantom (i.e. the crossing region for crossed bundles) had a high target
7

density whilst ensuring that each bundle had a reasonable number of
fibres to begin with (>50).

The ConFiG variants were tested by generating phantoms for each of
the scenarios starting with the same initial conditions. Each phantomwas
generated 5 times with a different random seed and results averaged
across the seeds.

To investigate the impact of the biological mechanisms on dMRI
simulation, a comparison was made between real dMRI signals and
simulations from ConFiG phantoms. The NODDI model (Zhang et al.,
2012) was fitted to a WM ROI in the corpus callosum of a Human Con-
nectome Project (HCP) (Van Essen et al., 2012) subject to provide sen-
sible input parameters (target fibre density and orientation dispersion)
for ConFiG to generate phantoms. We generated phantoms using the two
extreme cases: the minimal growth case only using chemoattraction, and
the complete ConFiG algorithm using all mechanisms. Whilst the random
nature of ConFiG means that the resulting phantom will not have
morphology exactly matching the input parameters, this approach
ensured that the phantoms were reasonable for this proof of concept
experiment.

The dMRI signal was simulated in the phantoms using Camino (Cook
et al., 2006; Hall and Alexander, 2009) with identical simulation con-
ditions in both cases and the measurement scheme corresponding to the
HCP dMRI sequence (Sotiropoulos et al., 2013a). An important consid-
eration when performing dMRI simulations is the size of the substrate
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relative to the diffusion length. The phantom should be large enough that
it is bigger than the diffusion length, but not so large as to require
excessive computational resources. Owing to the relatively long diffusion
time (43 ms) in the HCP sequence, phantoms were extended with re-
flected copies (Fieremans and Lee, 2018; Lee et al., 2020) to increase
their effective size relative to the diffusion length scale.

All dMRI simulations in this work used a bulk diffusivity D ¼ 2:0μm2=

ms in agreement with values used in similar Monte Carlo simulations
(Hall and Alexander, 2009; Nilsson et al., 2009; Rensonnet et al., 2017)
with 105 spins and 2000 timesteps. Standard Camino periodic bound-
aries were used (Hall and Alexander, 2009), with dMRI signal was
generated from a central region 75% the size of the total phantom to
avoid boundary effects (Panagiotaki et al., 2010).
3.2. Microstructural measures

In order to test how realistic the microstructure generated using
ConFiG is, microstructural measurements of diameter distribution and
orientation distribution were calculated using methods to be comparable
with previous studies on ex-vivo tissue (Abdollahzadeh et al., 2019; Lee
et al., 2019).

A centre line is generated from each of the fibre meshes by aligning
the ends of each fibre with the z-axis and connecting the centre of mass of
100 equidistant slices through each fibre, following the approach taken
by Lee et al. (2019). This is illustrated in Fig. 7.

Each segment in this centre line could then be used to assess the
microstructure of the phantom. The direction of each segment was used
to assess the orientation distribution of the phantom, illustrated in Fig. 8.
Following the approach of Lee et al. (2019), the direction of each
segment was projected onto the surface of a triangulated unit sphere
(Womersley, 2018). For each triangle, the number of segments pointing
in that direction was used to colour the triangle to visualise the orien-
tation distribution.

A second approach was devised to better visualise orientation dis-
tributions in 3D to aid differentiation of crossing bundles and antipodal
symmetry. In this approach each vertex was raised above the surface of
the sphere proportionally to the number of segments pointing in its di-
rection as illustrated in Fig. 8.
Fig. 7. Centre line extraction of fibres. Each fibre was sliced N times along the z-axis,
This line could then be optionally smoothed according the diffusion time coarse gra
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To measure the diameter profile along fibres, the direction of each
segment gave the normal to a plane used to cut the fibre using Boolean
intersection to give a cross section of each fibre at each segment. The
diameter profile along the axon was generated by calculating the
equivalent diameter of a circle with the same area as the fibre cross
section. This process is illustrated in Fig. 9.

3.3. Virtual histology

Virtual histological slices were generated to compare ConFiG sub-
strates to real white matter analysed using histology. Histological slices
were found by calculating the Boolean intersection of a cutting plane
with the generated fibre meshes using Blender (https://blender.org). A
myelin sheath was added to the fibres when generating virtual histology
for visualisation purposes. Virtual histological images were rendered
with a resolution of 5 nm � 5 nm x 100 nm, chosen to be comparable to
real histological white matter measurements (Abdollahzadeh et al.,
2019; Lee et al., 2019).

In order to compare ConFiG virtual histology to real histology, virtual
histological slices were rendered in binary black and white to compare
against intra-axonal segmentations from (Lee et al., 2019). Slices from
real histology, ConFiG phantoms and a parallel cylinder phantom were
processed using the MorphoLibJ plugin for ImageJ (Legland et al., 2016;
Rueden et al., 2017; Schindelin et al., 2012; Schneider et al., 2012) to
extract morphological features: circularity (4π � Area=Perimeter2),
convexity (Area of shape=Area of convex hullÞ, eccentricity of fitted el-
lipse and Area=πr2max for each axon. Axons touching the edge of the image
were removed since truncation from the image edge would skew these
microstructural metrics.

3.4. Relationship between input and output morphology

As mentioned in Section 2, the nature of the ConFiG growth algorithm
means that themicrostructuralmorphologyof thephantomsmaynotmatch
the user input. Some fibres may become stuck and fibres cannot typically
grow in a straight line, affecting the density and orientation distribution.

To investigate this, we generated a series of ConFiG phantoms with
Watson distributed orientation dispersion with κ ¼ ½8; 10; 15; 20; 30;
connecting the centre of mass of each slice to create the points in the centre line.
ining effect, as in (Lee et al., 2019).

https://blender.org


Fig. 8. Orientation distribution calculation. Each segment of a fibre was projected onto the surface of a triangulated sphere, here illustrated with a sectioned circle. For
each section in the sphere, the number of fibre segments going through that section was used to colour and/or raise the surface to visualise the orientation distribution.
Since the diffusion process is symmetric about the origin, each fibre segment was projected onto the sphere forwards and backwards.

Fig. 9. Calculation of the diameter distribution. A slice is taken through each fibre perpendicular to every segment in the centre line. The area of each of these slices is
used to find a circle equivalent radius or diameter using A ¼ πr2.
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50; 100� and target density, ρ¼ 75%. The target density of 75% is chosen
as this is the upper limit of what is achievable empirically and towards
the higher end of expected axonal volume fraction. Additionally, with
75% achieved, lower densities can be generated easily, either by running
ConFiG in full, or simply by removing or shrinking fibres.

The mean and standard deviation of the angle from z, μθ and σθ
respectively, for each κ was calculated by taking 10000 samples from
the Watson distribution and this was compared to μθ and σθ of the
ConFiG fibres. Additionally, the density of the ConFiG phantoms was
compared to the target density of 75%. Each phantom was generated in
a 20 � 20 � 20 μm region, using 2:5� 106 nodes in the growth
network.

3.5. Diffusion MRI simulation

To qualitatively verify that the simulated diffusion MRI signals from
ConFiG phantoms are realistic, simulated signals from ConFiG phantoms
9

were compared to real HCP data (Sotiropoulos et al., 2013b; Van Essen
et al., 2012).

In the real data, the fibre orientation distribution (FOD) was fit in
each voxel using constrained spherical deconvolution in MRTrix (Tour-
nier et al., 2019, 2007). Voxels were selected in regions of interest in the
midbody of the corpus callosum (CC), internal capsule (IC), regions in
which a single bundle of fibres is found from the FOD. A third voxel was
selected in which three crossing fibre populations were found from visual
inspection of the FOD (TC).

In each voxel, the diffusion tensor was fit to the signal and the prin-
cipal eigenvector used to define a major direction of diffusion in the
voxel, n. From this, the normalised diffusion weighted signal was plotted
against jn �Gj, where G is the gradient direction. Additionally, the di-
rection averaged signal was calculated for each b-shell.

To attempt to generate representative microstructure for each voxel
using ConFiG, the NODDI model (Zhang et al., 2012) was fitted to the
signal to give some initial parameters for ConFiG. Most importantly, the
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value of κ for the Watson distribution (Mardia and Jupp, 2008) estimated
using NODDI was used to initialise the orientation dispersion in the
ConFiG phantoms used to represent CC (κ ¼ 6:2) and IC (κ¼ 5:5Þ re-
gions. To represent the TC voxel, a phantom generated using three
mutually perpendicular crossing bundles was used.

ConFiG phantoms were grown using these initial conditions and the
diffusion MRI signal simulated using the Camino Monte Carlo diffusion
MRI simulator (Hall and Alexander, 2009). For each phantom, the same
processing as with the real data was performed, finding the direction
dependent and direction averaged signal per b-shell.

4. Results

4.1. Impact of biological mechanisms

Each of the proposed biological mechanisms enabled ConFiG to
generate phantoms with increased density over the minimal case of
chemoattraction only, as is shown in Fig. 10. Global optimisation resulted
in the largest improvement, 17–24%, consistently giving a large
improvement. Other improvements performed better for specific phan-
tom configurations. For instance, fasciculation and the dynamic network
produced only modest improvements in crossing fibre configurations
(4–6%), but performed well in the single bundle cases (11–14%). Fibre
collapse was particularly effective in the three perpendicular case, of-
fering 10% improvement.

When combining all of the proposed mechanisms together, the
achievable density is higher than any of the improvements individually.
This improved performance is comparable to the state of the art,
MEDUSA (Ginsburger et al., 2019), with particularly good performance
relative to MEDUSA in the crossing fibre configurations.

This improvement in density can be appreciated visually in Fig. 11
which demonstrates virtual histology of a parallel fibre phantom for each
of the mechanisms. Additionally, Fig. 12 visually shows the difference in
density of the phantoms in 3D between the minimal case of chemo-
attraction and all biological mechanism for each fibre configuration.
Fig. 10. Demonstration of the impact of each biological growth mechanism on th
proposed mechanism, error bars show � standard error on the mean. MEDUSA valu
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The improvement in the density of phantoms leads to a much more
realistic simulated diffusion MRI signal as demonstrated in Fig. 13. The
root mean square error to the real data is reduced by 10 times when using
improved ConFiG.

4.2. Microstructural measures and virtual histology

The microstructural morphology generated using ConFiG is compa-
rable to results from real data as demonstrated in Figs. 14–17. Fig. 14
demonstrates virtual histology of a ConFiG phantom alongside a real EM
image from mouse corpus callosum (Baxi et al., 2015). The exact
microstructural features, such as diameter distribution, as well as the EM
contrast do not exactly match between ConFiG and the real data. How-
ever, ConFiG is able to capture the general morphology or real axons as
highlighted in Figs. 15 and 16. In particular, ConFiG is able to capture
complex fibre cross-sections such as in the case of fibres squashed into
small spaces. This is the first model of white matter able to handle
complex fibre cross-sections such as this to our knowledge.

Video 2 shows a series of sequential slices through a ConFiG substrate
containing two crossing bundles of fibres, demonstrating the non-circular
cross-sections generated by ConFiG. These complex cross-sections are not
explicitly imposed during growth but arise as a result of the close packing
of axons and the meshing procedure used in ConFiG.

Supplementary video related to this article can be found at https://
vimeo.com/402472645 or https://doi.org/10.1016/j.neuroimage.20
20.117107

ConFiG morphological metrics calculated slice-wise on the virtual his-
tology correspond much more closely to real axons that the same metrics
calculated for parallel cylinders, as shown in Fig. 15. While cylinders pro-
duce a delta function at one extreme of each metric, ConFiG phantoms
produce much closer distributions to the real data. Supplementary Fig. 2
shows each of these slices coloured by their morphological metrics.

The diameter distribution of a ConFiG substrate is compared to a
reconstruction from real EM data (Lee et al., 2019) in Fig. 16. ConFiG is
able to capture the general profile of axonal variations well, with the
e density achievable with ConFiG. Each bar shows the mean density for each
es are estimated from Fig. 14 in Ginsberger et al. (Ginsburger et al., 2019).

https://vimeo.com/402472645
https://vimeo.com/402472645
https://doi.org/10.1016/j.neuroimage.2020.117107
https://doi.org/10.1016/j.neuroimage.2020.117107


Fig. 11. Virtual histology demonstrating the impact of biologically inspired mechanism on the final phantom created for one of the parallel phantoms tested. This
visually demonstrates the improvement in density. Leftmost image shows the phantom generated with all mechanisms in 3D and the cutting plane used to produce the
virtual histology.

Fig. 12. Demonstration of the improvement in density achieved when using all mechanisms in ConFiG compared to the minimal implementation using only che-
moattraction. Colours chosen to match Fig. 1.

Fig. 13. Left: Direction averaged signal attenuation for real HCP data (� standard deviation over ROI) and simulated data from the minimal ConFiG implementation
using only chemoattraction and using all growth mechanisms ConFiG showing that ConFiG can produce realistic dMRI signals. Right: The original and improved
ConFiG phantoms used to generate the signal on the left. Simulations performed with 105 spins, 2000 timesteps and HCP measurement scheme (Sotiropoulos et al.,
2013a). Diffusivity set to 2.0 μm2=ms, chosen to be consistent with previously reported values (Hall and Alexander, 2009; Nilsson et al., 2009; Rensonnet et al., 2017).
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overall shape of the diameter distribution matching well. The distribu-
tion of the coefficient of variation along ConFiG axons is slightly nar-
rower with a smaller mean than real axons, though these discrepancies
may be alleviated with a different choice of input parameters to ConFiG.
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ConFiG is also able to generate orientation distributions comparable
to real tissue as shown in Fig. 17. The orientation dispersion is introduced
to ConFiG phantoms using the elliptically symmetrical angular Gaussian
(Paine et al., 2018) to best approximate the EM data and also using



Fig. 14. Comparison of real and virtual histology. A) Light microscopy of rat ventromedial WM in thoracic spinal cord. Reproduced from (Baxi et al., 2015), scale bar
2 μm. B) Two virtual histological slices from a ConFiG generated phantom. Phantoms are rendered to have similar colours to electron microscopy studies. The exact
contrast and fibre bundle configurations are different between the real and virtual tissues, but the general morphology of the myelinated axons are captured well using
ConFiG as highlighted by corresponding boxes. Yellow and Blue: axons severely deformed between other axons. Red: Pockets of empty space forming. Green: Largely
circular axon surrounded by other axons deforming around it. Scale bar 2 μm.
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isotropic Watson distributed directions to demonstrate the flexibility of
ConFiG.

4.3. Relationship between input and output morphology

The morphology of ConFiG phantoms matches the input morphology
well, as shown in Table 2. Whilst the input and output μθ and σθ, do not
match exactly, the values are close and increasing the input μθ and σθ also
increases the output μθ and σθ. Additionally, the output density generally
matches the input target density well, achieving higher densities than
MEDUSA for the same angular dispersion. Supplementary Table 1 shows
the same experiment run with a target density of 60% to demonstrate
ConFiG’s performance at lower densities.

These phantoms took an average of 6 h to grow plus an average of 20
min for the meshing and microstructural measurement procedure, using
9.4 GB of RAM on average. These values give an estimate of the time
taken to generate a typical ConFiG phantom, though it is strongly
dependent on user inputs (number of nodes in the network etc.).

4.4. Diffusion MRI simulation

Simulated data from ConFiG substrates match real dMRI data well,
as shown in Fig. 18. The direction averaged signal matches well in
each case, in particular, for the corpus callosum and three crossing
phantoms, the simulated signal matches the real signal closely. The b
¼ 3 ms/μm2 signal in the internal capsule and corpus callosum is lower
in simulation than in real data. This is to be expected however because
as jn:Gj approaches 1, the signal reaches the noise floor and the noise-
free simulations fall below the measured data. Supplementary Fig. 3
shows the difference between the simulated and measured signal in
3D.

5. Discussion

ConFiG is shown to produce substrates with microstructural proper-
ties comparable to real white matter, both in terms of measures derived
from histology (i.e., electron microscopy) and in terms of the diffusion
MRI signal.

ConFiG is shown to produce WM numerical phantoms with state-of-
the-art performance. The amount of real data containing 3D micro-
structural morphology information available to compare to is limited, so
we have only compared to one sample in this study. Whilst limited, this
shows that ConFiG is able to produce realistic microstructure by
following simple biologically inspired growth rules.

Fig. 15 demonstrates that ConFiG phantoms are able to create fibre
morphologies that match real axons much more closely than previous
methods based on cylinders. Whilst some of the features such as eccen-
tricity may be achievable with cylinders oriented obliquely to the cutting
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plane, ConFiG phantoms capture morphological features that are other-
wise impossible with cylinders such as convexity less than one.

Whilst the input morphological priors do not necessarily correspond
to the morphology of the resulting ConFiG phantom, Table 2 shows that
even for relatively high orientation dispersion and density, this effect is
small. Even so, for use in further analysis, microstructural measures such
as orientation dispersion and density should be calculated based on the
resultant phantom, rather than taking the input microstructural
parameters.

A related property of ConFiG is that the growth algorithm strongly
depends on the growth network, meaning that the resulting phantom for
the same input fibre configuration will be different for different network
choices. This is alleviated to an extent by using the dynamic network
introduced here, however the phantom will still be dependent on the
initialisation of the network. The dependence appears to be relatively
minor as is demonstrated by the small standard errors on the mean
density shown in Fig. 10 across the five repetitions.

The diffusion MRI simulations shown in Fig. 18 demonstrate the
ability of ConFiG to generate phantoms which reproduce real diffusion
MRI data well. These simulations, however, are just three examples of
ConFiG phantoms and corresponding simulations. Using NODDI as input
to ConFiGmeans that the resulting phantoms have sensible morphologies
and are shown to generate signals that match the real tissue well, though
there may be other configurations that can better reproduce the signal. As
an example, the b ¼ 3 ms/μm2 signal from the internal capsule is higher
at low |n.G| in the simulated versus the real data (Fig. 18c). One expla-
nation of this is that the phantom generated does not have microstructure
accurately representing this region, for instance the phantom may have
too little dispersion caused by ConFiG underrepresenting the target
orientation dispersion, as seen at low κ in Table 2.

It may be possible to find a better matching phantom using a
computational modelling approach such as that proposed in (Nedjati--
Gilani et al., 2017), however the simulations presented are sufficient to
demonstrate a proof-of-concept that ConFiG can be used to generate
realistic simulated dMRI data.
5.1. Limitations and future work

One limitation of ConFiG is that the algorithm relies on the space
being sufficiently densely sampled by the growth network. This can
require a large number of nodes for a large phantom, becoming prohib-
itively memory expensive. The dependence of the resulting phantom on
the density of network nodes can be addressed by growing the fibres in
small subregions local to the head of the fibres rather than the whole
space at once. For instance, rather than filling the entire space of growth
with nodes, it is possible to fill a small layer of the space with points and
then grow layer by layer. In this way, it is possible to achieve a high
density of nodes using fewer nodes than when covering the entire space.



Fig. 15. Slice wise morphological metrics calculated for real axons, ConFiG phantoms and parallel cylinders. Across each of the metrics, ConFiG produces much more
realistic distributions than the cylinder phantom. Some of the cylinders have a non-zero eccentricity, but this arises since the metrics are calculated from binary images
where the pixelated circles may appear to not be perfectly circular.
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One further potential limitation of ConFiG is that once a fibre has
grown, it is static. The fibre will remain fixed in place and all other
fibres will have to grow around it. One problem with this is that once
the fibres are fixed, they may create pockets of inaccessible space which
limits the space available for following fibres. Additionally, in real tis-
sue, axons are flexible and non-rigid, meaning that it may be more
realistic that growing fibres can push existing fibres out of the way to
make more space for growth. A potential approach to ameliorate this
would be to have an optimisation procedure during growth, similar to
13
the global optimisation introduced in this work but optimising the shape
of a fibre as it grows.

A limitation of the current study is that the simulations assume a
single diffusivity for the intra and extracellular spaces and no perme-
ability of the axonal membranes. Furthermore, effects such as T2 and
magnetic susceptibility are ignored. These effects are a limitation of
the simulator used rather than ConFiG, and work is planned to
improve these aspects of the simulator for more realistic simulated
signals.



Fig. 16. a) Along fibre diameter variation in ex vivo mouse corpus callosum, reproduced from (Lee et al., 2019) compared to along axis diameter variation in the
phantom inset demonstrating the ability of ConFiG to generate realistic microstructure. b) Histograms of the inner diameter of axons from (Lee et al., 2019) and
diameter of ConFiG axons. c) Coefficient of variation along axons for real and ConFiG axons and d) Three example fibres reconstructed from the EM data used by Lee
et al. to make a). d) Three example ConFiG fibres selected for similarity to the EM examples.

Fig. 17. Dispersion profiles for EM data and a series of numerical phantoms. Top row: EM data used to generate OD profile, reproduced from Lee et al. (Lee et al.,
2019) and three ConFiG phantoms with one, two and three crossing bundles (each crossing bundle coloured a different shade of grey). Middle row: OD profile for real
EM data and OD profiles corresponding to ConFiG phantoms above, generated using an elliptically symmetric dispersion. Bottom row: Three OD profiles generated
from ConFiG phantoms generated using isotropic orientation dispersion. Colormap has units of steradians�1.
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Table 2
Comparison between input microstructural parameters and the microstructure measured in the resulting ConFiG phantoms. For each phantom, an input target density,
ρ, of 75% was used with each phantom having a different value of κ used in the Watson distribution. Each κ is associated with a target μθ and σθ , the mean and standard
deviation of the angle away from the main bundle direction. Angles reported in degrees.

Input κ Input ρ Output ρ Target μθ Output μθ Target σθ Output σθ Output no. fibres

8 75% 70.6% 19.60 17.46 11.32 9.92 104
10 75% 73.4% 17.11 16.47 9.62 9.43 128
15 75% 73.4% 13.60 13.93 7.37 8.75 132
20 75% 70.7% 11.68 12.69 6.23 7.88 133
30 75% 72.0% 9.45 11.60 5.02 6.60 152
50 75% 73.6% 7.26 9.36 3.83 5.51 146
100 75% 74.9% 5.10 7.75 2.68 4.23 157

Fig. 18. Comparison of diffusion MRI simulations and real data from three different brain regions: a) a voxel in the midbody of the corpus callosum, with phantom
with volume fraction 55% and mean orientation from z 25�. b) a voxel in which there are three crossing bundles, with phantom of three crossing bundles with volume
fraction 50% and c) a voxel in the internal capsule, with phantom with volume fraction 58% and mean orientation from z 22�. Top row shows the ConFiG phantom and
corresponding WM voxel. Middle row shows the direction dependent signal for ConFiG (lines) and HCP data (dots). Bottom row shows the direction averaged signal.
Black lines correspond to phantom in top row. Grey lines are signal from phantoms with the same orientation distribution as the black line in each plot but different
densities to show that ConFiG has the flexibility to generate a wide range of realistic signals. Simulations performed with 105 spins, 2000 timesteps, diffusivity 2.0
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Additionally, as mentioned above, this study only compares ConFiG
to one EM sample of real tissue. Future work will also aim at more
extensive validation of the digital phantoms generated using ConFiG,
making comparison with larger EM dataset, including different WM
configurations from different brain regions.
15
We will work towards decreasing the difference between the input
and output morphological measures, particularly in complex situations,
such as high orientation dispersion and crossing bundles. This can be
addressed through the improvements to ConFiGmentioned here and also
by improving the strategy for the generation of starting and target points
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for each fibre. For instance, currently it is not intuitive how starting and
target points should be arranged to achieve a desired density in crossing
regions of fibres.

One planned extension of ConFiG is to implement periodic boundary
conditions in the growth network, enabling the generation of fully pe-
riodic phantoms. This would enable ConFiG phantoms to be generated in
relatively small volumes and tiled for simulation, accelerating the process
of generating a wide range of phantoms and thememory required to store
each phantom.

The core growth algorithm for ConFiG relies on a set of starting and
target points, a connected network of nodes and some rules defining the
growth. As such, ConFiG is very flexible since the exact form of each of
these components can be modified based on the application. One
example of a simple modification that may be explored is the order of
growth of the axons. Currently, in the absence of any clear biological
precedent know to the authors, fibres grow in a random order, but it may
be possible that there is a better order such as growing large diameter
axons first, or central axons in a bundle growing first.

In this work, ConFiG is applied to the case of densely packed axons,
without contributions from neuronal cell bodies or other processes. A
planned future extension of ConFiG is to allow for the addition of glial
cells such as astrocytes and oligodendrocytes (e.g. from real 3D re-
constructions available for instance on http://neuromorpho.org or syn-
thetically generated using generative models like in (Palombo et al.,
2019)) to the extracellular space to make the virtual WM tissue more
realistic.

Additionally, to further add to the realism of ConFiG phantoms,
realistic myelin may be modelled, creating spiral layers wrapped around
the axons (Brusini et al., 2019). Furthermore, intra-axonal structures
such as mitochondria and microtubules may be added to investigate their
contributions to the diffusion weighted signal.

A planned future application will be to use ConFiG to generate a wide
range of phantoms with different microstructural features. These can
then be used to create a computational model to estimate microstructural
features directly from the diffusion MRI signal in an approach similar to
previous works (Hill et al., 2019; Nedjati-Gilani et al., 2017; Palombo
et al., 2018a, 2016; Rensonnet et al., 2018).

5.2. Applications beyond diffusion MRI

As mentioned in the introduction, axonal configuration impacts MR
signals beyond dMRI. One potential avenue of exploration would be to
investigate the impact of realistic axonal configurations on magnetic
susceptibility in a similar way to Xu et al. (2018), extending their 2D
simulations to use realistic 3D geometries generated in ConFiG.

The virtual histology presented in Fig. 14 shows an approximation
of electron microscopy generated using ConFiG substrates. In this
work, the purpose of this is to show that ConFiG is generating
microstructurally realistic phantoms. For this reason, the virtual his-
tology is simply produced by rendering images to have similar contrast
to electron microscopy for comparison. It may be possible, however to
generate more realistic electron microscopy images using a physically
realistic electron microscopy simulator (Babin et al., 2010; Grella
et al., 2003; Ophus, 2017) which may be used to train and test axon
segmentation routines. This may be of particular use for cases of fibres
parallel to the electron microscopy plane or crossing bundles which
are typically difficult for 3D reconstruction and segmentation
algorithms.

The 3D meshes generated by ConFiG are saved in the PLY format, a
widely used format for storing meshes for many purposes. This means
that the ConFiG phantoms may be used in other types of simulations
such as polarized light imaging (Matuschke, 2019; Menzel et al., 2015)
or molecular dynamics simulations using software such as MCell
(https://mcell/.org) (Kerr et al., 2008; Stiles et al., 1996; Stiles and
Bartol, 2001) or LAMMPS (http://lammps.sandia.gov) (Plimpton,
1997).
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6. Conclusion

ConFiG enables the generation of realistic white matter numerical
phantoms achieving state of the art fibre density whilst ensuring realistic
microstructural morphology by following biologically motivated rules.
This realistic microstructure is shown to generate realistic simulated
diffusionMRI signals, opening up the possibility to use ConFiG to create a
realistic computational model of WM microstructure.

ConFiG outputs fibre meshes which can be used for realistic diffusion
MRI simulations or can be processed to produce virtual histological sli-
ces, allowing for further potential applications outside of diffusion MRI.
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ConFiG code will be made available at https://rcallagh.github.io.
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