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A B S T R A C T

This work introduces a compartment-based model for apparent cell body (namely soma) and neurite density imaging (SANDI) using non-invasive diffusion-weighted
MRI (DW-MRI). The existing conjecture in brain microstructure imaging through DW-MRI presents water diffusion in white (WM) and gray (GM) matter as restricted
diffusion in neurites, modelled by infinite cylinders of null radius embedded in the hindered extra-neurite water. The extra-neurite pool in WM corresponds to water in
the extra-axonal space, but in GM it combines water in the extra-cellular space with water in soma. While several studies showed that this microstructure model
successfully describe DW-MRI data in WM and GM at b � 3,000 s/mm2 (or 3 ms/μm2), it has been also shown to fail in GM at high b values (b≫3,000 s/mm2 or 3 ms/
μm2). Here we hypothesise that the unmodelled soma compartment (i.e. cell body of any brain cell type: from neuroglia to neurons) may be responsible for this failure
and propose SANDI as a new model of brain microstructure where soma of any brain cell type is explicitly included. We assess the effects of size and density of soma on
the direction-averaged DW-MRI signal at high b values and the regime of validity of the model using numerical simulations and comparison with experimental data
from mouse (bmax ¼ 40,000 s/mm2, or 40 ms/μm2) and human (bmax ¼ 10,000 s/mm2, or 10 ms/μm2) brain. We show that SANDI defines new contrasts representing
complementary information on the brain cyto- and myelo-architecture. Indeed, we show maps from 25 healthy human subjects of MR soma and neurite signal
fractions, that remarkably mirror contrasts of histological images of brain cyto- and myelo-architecture. Although still under validation, SANDI might provide new
insight into tissue architecture by introducing a new set of biomarkers of potential great value for biomedical applications and pure neuroscience.
1. Introduction

Mapping brain microstructure noninvasively using diffusion-
weighted MRI (DW-MRI) remains a formidable challenge due to the
complexity of the underlying constituents and the relatively featureless
diffusion-driven signal decay. Biophysical modelling can deliver more
insight into the microstructure, thereby providing promising means for
accessing MR-measurable parameters related to more specific features
underpinning tissue or cellular structures. The existing conjecture or
“standard model” of brain microstructure typically considers neural tis-
sue as consisting of two compartments where endogenous water mole-
cules diffuse (Jespersen et al., 2007; Zhang et al., 2012; Fieremans et al.,
2011; Kaden et al., 2016; Novikov et al., 2018a, 2019; Alexander et al.,
2019; Panagiotaki et al., 2012): 1) a pool of water in neurites (axons,
dendrites and neuroglial processes) thought to exhibit restricted diffu-
sion and modelled by impermeable straight cylinders, or “sticks” if cyl-
inder radius is assumed to be negligible (Panagiotaki et al., 2012); 2)
another pool surrounding the neurites assumed to exhibit hindered
diffusion and modelled as isotropic or anisotropic Gaussian diffusion
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(Fig. 1a). The extra-neurite pool in white matter (WM) corresponds to
water in the extra-axonal space, but in gray matter (GM) it combines
water in the extra-cellular space with water in cell bodies of any brain cell
type: from neuroglia to neurons (collectively named soma).

This work introduces a biophysical model incorporating for the first
time soma size and density in addition to neurite density, thereby
enabling their joint estimation non-invasively using DW-MRI and a
model-based approach. The model is motivated by recent studies that
suggest the standard model of neural tissue microstructure (Jespersen
et al., 2007; Zhang et al., 2012; Fieremans et al., 2011; Kaden et al., 2016;
Novikov et al., 2018a, 2019; Alexander et al., 2019) does not hold in GM
at high b-values (McKinnon et al., 2017; Veraart et al., 2019, 2020;
Palombo et al., 2018; Henriques et al., 2019a; Jespersen et al., 2019). We
hypothesise that the observed departure of the standard model from the
data at high b-values in GM can be largely explained by the breakdown of
the assumption that water in soma exhibits similar diffusion properties as
water in extra-cellular space (Palombo et al., 2018, Palombo et al., 2018).
Furthermore, we propose that this unexplained signal can be accounted
for by explicitly modelling the soma as one of the contributors to the
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Fig. 1. Schematics of current standard model of brain microstructure (a) and the novel model proposed in this work (b). Current conjecture envisions the tissue
component in an MRI voxel as subdivided into two non-exchanging compartments: intra-neurite and extra-neurite space. The total MRI signal is then given by the
weighted sum of the signals from water molecules diffusing in each compartment, with relative signal fractions fin and 1-fin, respectively (a). We propose a new picture:
the tissue component of an MRI voxel is subdivided into intra-cellular and extra-cellular non-exchanging compartments. The total signal is the weighted sum of the
signal from water molecules diffusing in each compartment, with relative signal fractions 1-fec and fec, respectively. Furthermore, the intra-cellular compartment is
itself divided into two non-exchanging sub-compartments: intra-neurite and intra-soma. The intra-cellular MRI signal is then given by the weighted sum of the MRI
signal from water molecules diffusing within the two sub-compartments, with relative signal fractions fin and 1-fin, respectively (b).
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intra-cellular signal (Fig. 1b). Most importantly, the resulting biophysical
model enables us to estimate apparent soma size and density
non-invasively using DW-MRI.

We tested our hypothesis using Monte-Carlo diffusion simulations in
simplified digital models of neural cells (Palombo et al., 2019a). We show
that soma size and density have indeed a specific signature on the
direction-averaged (also known as powder-averaged (Callaghan and
Soderman, 1983)) DW-MRI signal at high b-values that are consistent
with the observed departure. Furthermore, using the same Monte-Carlo
simulation framework, we show for the first time that, at reasonably
short diffusion times (td) of few tens of milliseconds, the water exchange
between neurites and soma can be ignored, supporting the design of a
simple three-compartment model to separate and quantify the presence
of soma (Fig. 1b). We note that it is still not clear whether using DW-MRI
we can distinguish neuroglial from neuronal signal; therefore, we expect
our model likely quantifies the presence of cell bodies of all cell types in
the brain (e.g. neuroglia and neurons). We evaluate the resulting model
with data from healthy ex-vivo mouse brain and in-vivo human brains,
with results supporting the model as a promising tool for estimating
apparent soma size and density.

The rest of the paper is organised as follows: in the Theory section we
briefly recall the current standard model of brain microstructure and we
2

formally introduce a new biophysical model of brain microstructure,
explicitly accounting for the soma compartment and corresponding
signal. In the Methods section we describe the numerical simulations and
experiments used in this work to support such model, and in the Results
section, we show promising results on how the proposed model enables
us to characterize both cyto and myeloarchitectonic of the brain non-
invasively using DW-MRI. We finally discuss the results, as well as the
model limitations in the Discussion section.

2. Theory

The current paradigm in model-based microstructure imaging uses
biophysical models, inspired by microscopy studies of tissue micro-
architecture, to approximate the tissue microenvironment and estimate
model parameters linked to specific tissue microstructure features from
DW-MRI data (Novikov et al., 2018a, 2019; Alexander et al., 2019).
Among them, the most common class of models separate the contribution
to the DW-MRI signal S measured in an image voxel into different parts
that can be attributed to different “compartments” where water mole-
cules diffuse (Panagiotaki et al., 2012). A common assumption of these
so-called compartment models of diffusion is that there is no exchange
between the compartments, i.e., water molecules do not move from one
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compartment to the other.
In the simplest form, two compartments are typically used and are

identified as intra- and extra-cellular. For neural tissue, it is common to
assume the signal associated with the intra-cellular compartment (Sintra)
is mostly due to water diffusing in elongated cellular fibres, generally
called neurites (Jespersen et al., 2007; Zhang et al., 2012; Fieremans
et al., 2011; Kaden et al., 2016; Novikov et al., 2018a, 2019; Alexander
et al., 2019), modelled as straight cylinders of zero diameter, namely
sticks. Such models merge any signal contribution from soma or other
large cellular domains with that of the extra-cellular compartment (Sex-
tra). Below, the detail of this standard model is first given, before we
describe the proposed extension that models soma explicitly.
2.1. The standard model of neural tissue microstructure

Following (Zhang et al., 2012; Novikov et al., 2018b), we briefly
recall here that in general the normalised DW-MRI signal associated with
the intra-neurite compartment can be represented as a convolution be-
tween the fibre orientation distribution function (fODF) РðbnÞ and the
response kernel Κ from a perfectly aligned fiber (fascicle) pointing in the
direction bn, such that (Zhang et al., 2012; Novikov et al., 2018b)

AinðbÞ¼
Z

jbnj¼1

dbnРðbnÞΚðb; bn � bgÞ (1)

where b is the diffusion weighting factor, measured along the direction bg,
such that b ¼ b bg. The “stick” model assumes the functional form for the
response kernel:

Κðb; bn � bgÞ¼ e�bD?
in�bðDk

in�D?
inÞðbn �bgÞ2 (2)

modelled by axially symmetric Gaussian diffusion compartment, with the
radial diffusion of the intra-neurite compartment D?

intra ¼ 0 (i.e. sticks).
Starting from this common paradigm for the intra-neurite signal, many
methods have been proposed to quantify neurite density and dispersion
in both WM and GM (Jespersen et al., 2007, 2010; Zhang et al., 2012;
Fieremans et al., 2011; Kaden et al., 2016; Novikov et al., 2018a, 2018b,
2019; Alexander et al., 2019; Lampinen et al., 2017, 2019; Kroenke et al.,
2004; Assaf and Basser, 2005; Sotiropoulos et al., 2012; Ferizi et al.,
2015; Jelescu et al., 2016). They mostly differ in the way they model the
fODF or in the way they model the contribution to the total signal from
the extra-neurite compartment. Nevertheless, they all can be seen as
multi-compartment models (Fig. 1a) where the total signal of the tissue
component measured in an imaging voxel is given by:

SðbÞ
Sð0Þ¼ finAinðbÞ þ ð1� finÞAenðbÞ (3)

The signal from extra-neurite compartment AenðbÞ is modelled as an
isotropic or anisotropic diffusion tensor, with its principal direction of
diffusion assumed to be parallel with the dominant direction of the fODF.
Since intra- and extra-neurite compartments may generally have
different T2 values, the fraction fin is the relative signal fraction, not the
absolute volume fraction (Dortch et al., 2013). Moreover, the myelin
water contribution is assumed unobservable due to its short T2 time
compared to clinical DW-MRI echo time TE (MacKay et al., 1994). Also,
further compartments, such as isotropic cerebrospinal fluid (CSF), can be
added to Eq. (3) to accommodate partial volume contamination, such as
in (Zhang et al., 2012).
2.2. SANDI: microstructure model for soma imaging

Here, we propose an intra-cellular model that consists of the intra-
neurite model accommodating an approximate description of the
contribution from water spins diffusing within cellular soma (Fig. 1b).
3

2.2.1. Model assumptions
The proposed microstructural model is based on the same assump-

tions of the “standard” model and on the experimental evidence that at
short td (�20 ms given a water bulk diffusivity of ~3 μm2/ms and esti-
mated pre-exchange time �500 ms) the effect of cell (either neurons or
glia) membrane permeability and corresponding water exchange be-
tween intra- and extra-cellular space is negligible (Yang et al., 2018). An
additional assumption, whose validity is investigated in this work by
numerical simulations, is that at short td (�20 ms), the two
sub-compartments comprising the intra-cellular space: soma and neu-
rites, can be approximated as two non-exchanging compartments.

2.2.2. General formulation
Under these assumptions, we propose the functional form for the new

compartment model of brain tissue microstructure to be

SðbÞ
Sð0Þ¼ ficðfinAinðbÞþ fisAisðbÞÞ þ fecAecðbÞ (4)

where fic and fec are the intra-cellular and extra-cellular relative signal
fractions satisfying the condition fic þ fec ¼ 1; fin and fis are the neurite
and soma relative signal fractions satisfying the condition finþ fis¼ 1; Ain
and Ais are the normalised signals for restricted diffusion within neurites
and soma, respectively and Aec the normalised signal of the extra-cellular
space. Equation (4) represents a first attempt to provide a more general
model to describe neural tissue microstructure that takes into account
soma. Indeed, following a hierarchical decomposition of the tissue
compartments similar to previous works (Jespersen et al., 2007; Zhang
et al., 2012; Fieremans et al., 2011; Kaden et al., 2016; Assaf and Basser,
2005; Assaf et al., 2008; Alexander et al., 2010; Stanisz et al., 1997;
Yablonskiy et al., 2003), we identify an intra-cellular and an
extra-cellular compartment, contributing to the total signal with relative
signal fractions fic and fec that have to sum up to unity (Fig. 1b). Then, the
intra-cellular compartment is comprised of intra-neurite and intra-soma
compartment that contribute to the total intra-cellular signal with rela-
tive signal fractions fin and fis that have to sum up to unity (Fig. 1b). As
such, fic, fec, fin and fis are not volume fractions of the corresponding
constituent of the MRI voxel, but rather relative MRI signal fractions of
the corresponding tissue compartment. In fact, the T2 of the intra- and
extra-cellular compartments may be different (Dortch et al., 2013;
Veraart et al., 2018), and here we are additionally neglecting myelin
water assuming the echo time is sufficiently long to attenuate most of the
myelin water contribution through relaxation. Moreover, in this first
implementation, CSF contributions are not taken into account since;
however, due to its quickly decaying signal with increasing b values we
expect that its residual contribution would be simply captured by the
extra-cellular compartment and would not significantly impact the esti-
mates of the intra-cellular compartment model parameters.

2.2.3. Direction-average
Here, we focus on estimating orientation-independent features of

microstructure by considering the direction-averaged signal ~SðbÞ (Call-
aghan et al., 1979). The direction-averaged signal, also known as the
powder averaged, is defined as the average of the signals SðbÞ acquired
along many uniformly distributed directions bg. The resulting signal takes
the form:

~SðbÞ
Sð0Þ¼ ð1� fecÞð fin~AinðbÞþ ð1� finÞ~AisðbÞÞ þ fec~AecðbÞ (5)

where ~Ain ~Ais, and ~Aec are the direction-averaged normalised signals
associated with their respective compartments and we used the relations
fic ¼ 1 - fec and fis ¼ 1 - fin. The direction averaging eliminates the
dependence on the fODF which is readily determined following the
estimation of the orientation-independent microstructure features
(Kaden et al., 2016; Callaghan et al., 1979; Celebre et al., 1992; Price,
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1997). The forms of these direction-averaged signals are given below.
Extra-cellular compartment. The diffusion of water molecules associ-

ated with the extra-cellular compartment, ~Aec, follows the assumptions
made under the standard model. It is modelled as isotropic Gaussian
diffusion with a scalar effective diffusion constant Dec:

Aecðb; DecÞ¼ ~Aecðb; DecÞ � e�bDec (6)

This approximation assumes that the extra-cellular space is fully
connected for water molecules to sample during the course of the diffu-
sion experiment.

Intra-neurite compartment. The signal contribution ~Ain from neurites
(dendrites and axons) also follows the standardmodel. On a voxel level, it
is assumed that neuronal processes can be described as a collection of
long thin cylinders, with a longitudinal apparent diffusion coefficient

Dk
in � Din and a transverse apparent diffusion coefficient D?

ine0. It is also
assumed that on the timescale of our diffusion experiments (td ~ 10 ms),
the effects of branching and/or finite length of cellular processes can be
neglected. These assumptions are appropriate under the considered
experimental conditions. The root-mean-squared-displacement along the
neurite would be ~5 μm, for typical longitudinal intra-neurite diffusivity
which is half that of free water at body temperature. This distance is
much smaller than the typical length of each cell fibre’s branch, e.g. ~55
μm for cerebral cortical pyramidal neurons (Jespersen et al., 2012; Pal-
ombo et al., 2016). Therefore, from the water diffusion standpoint, we
can consider branching neurites as a collection of individual branches (or
cylinders/sticks), randomly oriented in space (Jespersen et al., 2012;
Hansen et al., 2013). Under these assumptions, the direction-averaged
Ain can be computed as powder average of randomly oriented sticks,
such that (Jespersen et al., 2007; Kaden et al., 2016; Panagiotaki et al.,
2012; Kroenke et al., 2004; Callaghan et al., 1979; Celebre et al., 1992;
Price, 1997):

~Ainðb;Din Þ �
ffiffiffiffiffiffiffiffiffiffiffi
π

4bDin

r
erf

� ffiffiffiffiffiffiffiffiffi
bDin

p �
(7)

Intra-soma compartment. The signal contribution ~Ais from cell bodies is
assumed to arise from a pool of diffusing water molecules restricted in
spheres of radius rs. With this approximation, we are implicitly assuming
negligible exchange between the pool of diffusing water molecules
confined in the intra-neurite space and those in the soma. While this
approximation is not valid in general, we will show, using Monte Carlo
diffusion simulation in realistic models of neuronal cells, that under
practical experimental conditions and typical soma size and volume
fraction, the exchange between intra-neurite and intra-soma diffusing
water is negligible.

Modelling soma as closed impermeable spheres, the normalised
signal can be computed from the GPD approximation (Neuman, 1974;
Balinov et al., 1993), such that

~Aisðb;Dis;rsÞ� exp

(
�2ðγgÞ2

Dis

X∞
m¼1

α�4
m

α2
mr2s �2

�
"
2δ�2þ e�α2mDisðΔ�δÞ �2e�α2mDisδ�2e�α2mDisΔþe�α2mDisðΔþδÞ

α2
mDis

#)
(8)

where Dis is the bulk diffusivity of water in somas, δ and Δ the diffusion
gradient pulse width and separation, g the magnitude of diffusion
gradient pulse, αm the mth root of the equation ðαrsÞ�1J3

2
ðαrsÞ ¼ J5

2
ðαrsÞ,

with Jn(x) the Bessel function of the first kind. For simplicity, here we
consider a single radius rs as representative for all the soma in a given
MRI voxel. In reality, we would expect a distribution of radii P(rs) in a
given MRI voxel of few millimetres. In this case, the normalised signal
could be computed from Eq. (8) following a volume average (Price,
2009):
4

~Aisðb;DisÞ¼
R∞
0 PðrsÞr3s ~Aisðb;Dis; rsÞdrsR∞ 3

(9)

0 PðrsÞ rs drs

The rs3 term is included to account for the spin volume, i.e., the in-
crease in the number of spins as the radius increases. In principle, it is
possible to use Eq. (9) to analyse experimental data. However, the
inversion of Eq. (9), a Fredholm equation of the first kind, to provide P(rs)
is non-trivial, and to obtain an approximate estimate of apparent soma
size, we prefer to use in this work Eq. (8).

Total signal. Substituting Eqs. (6), (7) and (8) in Eq. (5), we get the
approximated expression for the total direction-averaged signal:

~SðbÞ
Sð0Þ¼ ð1� fecÞð fin~Ainðb;DinÞþ ð1� finÞ~Aisðb;Dis; rsÞÞ þ fec~Secðb;DecÞ (10)

In general, the total free parameters to be determined from the
direction-averaged data are thus six: fin, fec, Din, Dis, Dec and rs. However,
from Eqn. (8), it is evident that it is challenging to disentangle Dis from rs
in many practical applications where data are usually acquired by
varying only the magnitude of diffusion gradient; thus, it is possible to
estimate only the ratio Dis=rs, or Dis from fixing rs or rs from fixing Dis.
Since the purpose of the proposed biophysical model is to characterize
the microarchitecture of the brain tissue, an apparent MR estimate of rs
would be more valuable than that of Dis. Therefore, we will adopt the
simplification of fixing Dis to the value of the self-diffusion coefficient of
free water, given the tissue temperature. Since all the experiments in this
study were conducted in vivo, or ex vivo with the temperature kept con-
stant at 37 	C, for fitting purposes, we will fix Dise3 μm2/ms. However, in
typical diffusion experiments, fixing Dis to any value between 0.5 and 3
μm2/ms would not change the estimates of rs substantially, as suggested
by previous studies using numerical simulations and PGSE experiments
in murine erythroleukemia cancer cells (Li et al., 2017).

3. Methods

3.1. Numerical simulations

Monte-Carlo simulation of spin-diffusion in realistic digital models of
dendritic structures were conducted to investigate the regime of validity
of the assumption of non-exchanging intra-cellular compartments. Since
the purpose of the simulations is to investigate when the assumption of
non-exchanging neurite and soma compartments holds, only the intra-
cellular component of the total MR signal is of interest. We first estab-
lish the regime of validity of our model in Eq. (10) and then further use
the simulations to investigate the sensitivity to soma size and density (rs,
fis) within that regime.

Simulation setup. Detailed 3D geometries were constructed using our
recently proposed generative model of complex cellular morphologies
(Palombo et al., 2019a) that enables users to simulatemolecular diffusion
within realistic digital brain cells, such as neurons, in a completely
controlled and flexible fashion (Fig. 2a and b). Here we use the genera-
tive model to mimic realistically connected neurites with different (rs, fis)
combinations. We assume cell fibres do not branch and simulate only the
intra-cellular signal (Fig. 2c) – hence, the generative model in Fig. 2a are
not tested in simulation. Therefore, the experiments test the validity of
only the assumptions of the intra-cellular compartment models:
intra-neurites as randomly oriented sticks, intra-soma as sphere, and
negligible exchange of diffusing spins between them. Specifically, we
used 20 randomly oriented straight cylindrical segments of radius rn ¼
0.50 μm and length L ¼ [50, 200, 500] μm, and spherical soma of radius
rs ¼ [2, 4, 6, 8, 10] μm leading to a fraction of the total cell volume

occupied by the soma, fis ¼ 4=3πr3s
20�L�πr2n

ranging from~0.1 to 0.9, to simulate

structures mimicking a range of possible brain cell types, from small
microglia to large neurons. We note that radius of brain neurites (glial
processes, dendrites, axons and neuropil in general) is typically� 1.5 μm
(Cardona et al., 2010). For such very thin fibres, we do not expect



Fig. 2. Summary and a few examples (a) of the 12 morphological features used in the generative model of brain cells generation introduced in (Palombo et al., 2019a)
to simulate realistic cellular structures like Purkinje cells, motor neurons and pyramidal spiny neurons (b). Here, the generative model is used to investigate simplified
cellular structures (c) comprised of straight long cylindrical fibres connected to a spherical soma structure, with and without the possibility for diffusing spins to
exchange between neurites and soma.
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significant effects on the DW-MRI signal measured by sequences like
Pulsed Gradient Spin Echo (PGSE) at the experimental conditions
investigated here (Nilsson et al., 2017). The diffusion of 5 � 105

non-interacting spins, initially uniformly distributed within the whole
cellular volume, was simulated for each synthetic geometry with bulk
diffusivity 2 μm2/ms and time step 20 μs, using CAMINO (Cook et al.,
2006). The number of spins and the time step were chosen as the minimal
values that guarantee stability of the simulated signal, according to
previous work (Hall and Alexander, 2009). Using more spins or smaller
time step would produce an identical simulated signal within <2% of
error. To investigate the validity of the non-exchanging intra-cellular
compartments approximation, a set of 3D digital models were created to
explicitly prevent any exchange between soma and neurites. This is done
by sealing off all the holes in the surface mesh of each sphere used to
model soma (Fig. 2c), thus disconnecting each sphere from the neurites
that extend from it, which are modelled by cylinders. Note that in these
simulations we used simplified brain cell structures with non-branching
neurites. This is adequate, because, as justified earlier, branching neu-
rites can be approximated as a collection of individual non-exchanging
branches under the considered experimental conditions.

Simulation 1 – Investigating the validity of the non-exchange approxima-
tion for different diffusion times. The purpose of this simulation experiment
is to theoretically investigate using simulations when, in terms of chosen
diffusion time, the non-exchanging neurite/soma compartments
assumption used to build SANDI model holds. From the simulated spin-
trajectories, the normalised direction-averaged DW-MRI signal ~A was
computed from a PGSE sequence with td ranging from 1 to 240 ms, δ ¼ 1
ms and three b values: 500, 1,000 and 2,000 s/mm2 (or, 0.5, 1 and 2 ms/
μm2). This resulted in two sets of normalised direction-averaged signals:
with exchange (~Aw) and without exchange (~Aw=o) that were used to
compute the corresponding apparent diffusion coefficients ADCw and
ADCw/o for different td. The relative difference (ΔADC) between ADCw
and ADCw/o was computed as a function of td according to the following
definition:
5

ΔADCðtdÞ¼
���ADCw=oðtdÞ � ADCwðtdÞ

ADCw=oðtdÞ
���� 100 (11)
� �
A sensible regime where the non-exchanging-compartments approx-

imation can be considered valid may be for those values of td where
ΔADC(td) < 10%.

Simulation 2 – Investigating the validity of the non-exchange approxima-
tion for different b values. The purpose of this simulation experiment is to
theoretically investigate using simulations whether the non-exchanging
neurite/soma compartments assumption holds for a wide range of
(high) b values, when td is fixed to a short or long value. From the
simulated spins’ trajectories, the normalised direction-averaged DW-MRI
signal ~Awas computed from a PGSE sequence with b-values¼ [0 : 1,000 :
60,000] s/mm2 (or [0:1:60] ms/μm2) and 32 directions, uniformly
distributed over the full sphere. Gradient pulse duration δ ¼ 3 ms and
separation Δ ¼ 11 and 81 ms, were chosen according to the results of
Simulation 1 (see Results section) and to match experimental data (see
following section 3.2). Furthermore, in order to quantify the bias in
model-parameter estimation due to the non-exchanging assumption, Eq.
(10) without the extra-cellular compartment was fitted to the simulated
signals with exchange between neurites and soma. The uncertainty in
parameter estimation was evaluated with a Monte Carlo approach. Spe-
cifically, the residual sum of squares corresponding to the best initial fit
for each (rs, fis) configurations was used as standard deviation to
randomly induce artificial Gaussian noise in our simulated signals before
repeating the fitting operation. This process was performed 1,000 times.
Then for each parameter, we computed its mean and standard deviation
over the generated repetitions, and compared them with the ground-
truth values. We performed this analysis for both conditions: td ¼ 10
ms (when the non-exchange assumption should hold, according to
Simulation 1) and td¼ 80ms (when the non-exchange assumption should
fail, according to Simulation 1).

Simulation 3 – Investigating the sensitivity of signal to soma size and
density. The purpose of this simulation experiment is to investigate using
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simulation and comparison with real data the sensitivity of signal to soma
size and density. Using the result in Simulation 2, we built a dictionary of
simulated signals, corresponding to different microstructural scenarios,
i.e. different (rs, fis) configurations, and compared them to the experi-
mental signals obtained from selected regions-of-interest (ROIs) in ex-
vivo mouse brain (see following section 3.2). The direction-averaged
DW-MRI signal from real data was computed for a GM ROI manually
drawn in the cortex and a WM ROI in the corpus callosum. We chose
these two brain regions because they are expected to have very different
(rs, fis) values. The average signal in each ROI was compared against the
dictionary of simulated signals to determine whether different soma size
and density could explain the non-exponential signal decay in experi-
mental data.

3.2. Experimental data

We considered two datasets to evaluate our key modelling assump-
tion – diffusion of water molecules within soma has a non-negligible
contribution to the normalised direction-averaged signal at high b
values and can be modelled as restricted diffusion, separate from water
diffusion in neurites – and to assess the proposed model’s ability to es-
timate soma size and density. First, DW-MRI data of ex-vivo mouse brains
were collected at ultra-high b values, with state-of-the-art preclinical
hardware, to show that the specific signature of soma size and density on
the DW-MRI signal, as predicted by Monte Carlo simulation (Simulation
3), is consistent with measured data. Second, DW-MRI data of in-vivo
healthy human brains at high b values were analysed, producing maps
of soma density that can be compared against published histological
results, to show that the technique translates to in-vivo human studies
and that it provides a novel contrast sensitive to neural tissue
cytoarchitecture.

3.2.1. Ex-vivo mouse brain
All animal experiments were preapproved by the institutional and

national authorities and were carried out according to European Direc-
tive 2010/63. A c57bl/6 mouse (N¼ 1), male, 8 weeks old, was perfused
intracardially with 4% paraformaldehyde. The brain was isolated and
kept 48h in 4% paraformaldehyde and 5 days in PBS (changed daily),
before being transferred to a 10 mm NMR tube filled with Fluorinert
(Sigma Aldrich) for susceptibility matching. MRI experiments were per-
formed using a 16.4 TMRI scanner (Bruker BioSpin, Karlsruhe, Germany)
operating at 700 MHz for 1H nuclei and equipped with a micro5 imaging
probe (Bruker BioSpin, Rheinstetten, Germany) with maximum gradient
strength 3000 mT/m isotropically. The brain was kept at constant tem-
perature of 37 	C using the probe’s temperature controller. DW-MRI were
acquired using a PGSE-EPI sequence with: TE/TR ¼ 20/2500 ms; δ/Δ ¼
3/11 ms; 30 b values from 1 to 40 ms/μm2; 40 gradient directions per b
value, 30 b ¼ 0 images, slice thickness ¼ 0.250 mm; FOV ¼ 11.2 � 11.2
mm; matrix dimension ¼ 224 � 224; bandwidth ~250 kHz; resolution
50� 50� 250 μm3, 10 slices, 4 averages. The dataset was denoised using
MRtrix3 (Tournier et al., 2012) (http://www.mrtrix.org) and corrected
for Gibbs ringing (Kellner et al., 2016). No artifacts from eddy-current
were observed. The direction-averaged DW-MRI signal was then
computed for a GM ROI manually drawn in the cortex and a WM ROI in
the corpus callosum. The average signal in each ROI was compared
against the dictionary of simulated signals in Simulation 3 to determine
whether different soma size and density could explain the
non-exponential signal decay in experimental data.

3.2.2. In-vivo human brain
To provide proof-of-concept of translation to in-vivo human appli-

cations, we performed a retrospective analysis of 25 healthy young
subjects (age between 25 and 35) from the MGH Adult Diffusion Dataset
downloaded from the HCP data repository (https://www.humanconnect
ome.org). While this dataset was not acquired with the present applica-
tion in mind, its sequence parameters turn out to be almost optimal for
6

sensitivity of the direction-averaged signal to soma according to our
model, i.e. td < 20 ms and many b-values >3 ms/μm2. The dataset was
acquired on a 3T Siemens Connectom scanner, customized with a 64
channel tight-fitting brain array coil (Keil et al., 2013) and consists of
MPRAGE and diffusion scans with four levels of diffusion weighting. The
b-values used were 1, 3, 5 and two acquisitions at 10 ms/μm2 with
respectively 64, 64, 128, 128 and 128 randomly distributed
diffusion-encoding directions over a full sphere. The signal-to-noise ratio
(SNR) of individual b ¼ 10 ms/μm2 images was ~5 and the SNR of the
direction-averaged images at b ¼ 10 ms/μm2 was ~50. Every 14th vol-
ume was an image without diffusion weighting (b0) used for motion
correction and normalisation. Other acquisition parameters were TE ¼
57 ms, TR ¼ 8800 ms, δ ¼ 13 ms, Δ ¼ 22 ms, voxel size ¼ 1.5 mm3

isotropic, field of view ¼ 210 � 210 mm2, pixel bandwidth ¼ 1984
Hz/Px, echo spacing ¼ 0.63 ms and parallel imaging factor ¼ 3. Addi-
tional scan details can be found in (Setsompop et al., 2013). The DW-MRI
data in the dataset were already pre-processed with software tools in
FreeSurfer V5.3.0 (http://freesurfer.net/fswiki/FreeSurferWiki/) and
FSL V5.0 (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). Specifically, the
distortion caused by the gradient nonlinearity was corrected based on the
spherical harmonic coefficients (Glasser et al., 2013). For motion
correction, the b ¼ 0 images interspersed throughout the diffusion scans
were used to estimate the bulk head motions with respect to the initial
time point (first b ¼ 0 image), where the rigid transformation were
calculated with the boundary based registration tool in the FreeSurfer
package V5.3.0 (Greve and Fischl, 2009). For each b ¼ 0 image, this
transformation was then applied to itself and the following 13 diffusion
weighted images to correct for head motions. The FSL’s ‘EDDY’ tool was
to correct for eddy current distortion. All 4 shells (b¼ 1, 3, 5, 10 ms/μm2)
were concatenated (552 vol in total) and passed into the EDDY tool. After
eddy current correction, the rigid rotational motion estimates obtained
from both the motion correction step and the eddy current correction
step were concatenated and applied to the original b-vectors for
correction.

3.3. Model-parameter estimation

The five model parameters: fin, fec, Din, Dec and rs are estimated by
random forest regression (Nedjati-Gilani et al., 2017; Criminisi and
Shotton, 2013), while fis is computed from the relation fis ¼ 1� fin. To
train the random forest regressor, 105 synthetic signals were generated
using Eq. (10), with 105 random values of the five model parameters
chosen uniformly distributed within the reasonable intervals: fin ¼ [0.01,
0.99]; fec ¼ [0.01, 0.99]; Din ¼ [0.1, 3] μm2/ms; Dec ¼ [0.1, 3] μm2/ms; rs
¼ [1, 12] μm. For testing, we used 2 � 104 previously unseen signals
generated in the similar way. To match the SNR of the signals to be fitted,
Rician-distributed noise was added to the synthetic data used for training
and testing. We implemented a random forest regressor using the
scikit-learn open source Python toolkit (Pedregosa et al., 2011).
Following preliminary experiments, we built the final random forest re-
gressor with 200 trees of maximum depth 20 and bagging as the setting
that maximises the performance of the model. Further general imple-
mentation details can be found at http://scikit-learn.org/.

Accuracy and precision of intra-cellular model-parameter estimation. This
section investigates the robustness of the machine-learning based fitting
algorithm we use. We explored different (rs, fis) parameters combina-
tions, using the simulated intra-cellular signals in Simulation 2, with rs ¼
[2, 4, 6, 8, 10] μm and fis ¼ [0.01 0.02 0.05 0.15 0.30 0.45 0.60 0.65
0.85]. For each combination we estimated the three free parameters fin,
Din and rs (since we are not considering the extra-cellular contribution)
by RF regression, and repeated the experiment 2500 times with different
noise instances to estimate mean and variance of the parameter estima-
tion and thus quantify accuracy (through bias) and precision (trough
statistical dispersion or standard deviation). The fis was estimated by the
relation fis ¼ 1� fin. Different amount of Rician distributed noise was
added to the simulated intra-cellular signals in Experiment 2 by adding
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complex Gaussian noise before computing the magnitude to simulate
three SNR conditions: SNR ¼ 10 (worse scenario), SNR ¼ 50 (similar to
our experimental SNR) and ∞ (i.e. no noise, ideal scenario).

Additionally, for the ideal scenario of SNR¼∞, we also performed an
ablation study to assess to what extent the accuracy and precision are
compromised by using less and/or lower b values than those in Simula-
tion 2. We tested four different combinations of b values, subsampled
from Simulation 2 at td ¼ 10 ms, that could be achieved by clinical
scanners or more powerful human scanners such as the Connectom
(Jones et al., 2018): b¼ [0, 0.7, 1.5, 2, 3] ms/μm2; b¼ [0, 0.7, 1.5, 3, 10]
ms/μm2; b ¼ [0, 1, 3, 5, 10] ms/μm2; b ¼ [0, 1, 2, 3, 5, 10, 25] ms/μm2.
We explored the same set of (rs, fis) parameter combinations as above. For
each combination, we estimated the three free parameters fin,Din and rs in
the same way as described above, for each b combination. We computed
the mean squared error (MSE) to quantify the overall changes in accuracy
and precision for each estimate compared to the ground-truth values,
known by design.

3.4. Comparison with dot-compartment model

Because it has been reported (Panagiotaki et al., 2012; Alexander
et al., 2010; Stanisz et al., 1997) that in fixed tissue a fraction of immobile
water, known as the “dot-compartment”, is not negligible for WM, we
compared SANDI to a variant that replaces the sphere compartment with
the simpler dot-compartment, to assess which one describes better the
high b-value data, in both GM and WM. We fitted to the experimental
data from ex-vivo mouse brain both SANDI (Eq. (10)) and its
dot-compartment variant where the sphere compartment in Eq. (10) has
been substituted by a dot-compartment of relative signal fraction fdot¼ 1-
fin; specifically:

~SðbÞ
Sð0Þ¼ ð1� fecÞð fin~Ainðb;DinÞþ fdotÞ þ fec~Secðb;DecÞ (12)

The corrected Akaike’s information criterion (AICc) (Burnham and
Anderson, 2002) was used to compare the relative fit quality of the two
models. Given a set of candidate models for the data, the preferred model
is the one with the lowest AICc value. The models’ degrees of freedom
were 5 for SANDI (Eq. (10)) and 4 for the dot-compartment variant (Eq.
(12)).

3.5. Comparison with histology from literature

To illustrate qualitatively that the contrasts in fin and fis maps mirror
the myelo- and cyto-architecture of the brain, fin and fis maps for one
representative subject were qualitatively compared against literature-
derived histological images of myelin- and Nissl-stained sections of the
human brain from https://msu.edu/~brains/brains/human.

Furthermore, parametric maps of fis for each of the 25 analysed
subjects were processed with FreeSurfer Software Suite (https://surfer.
nmr.mgh.harvard.edu) and projected onto the inflated cortical surface
extracted from each corresponding subject for visualisation. Projection of
the average fis map across all the 25 subjects onto a common template
(cortical surface-based atlas defined in FreeSurfer based on average
folding patterns mapped to a sphere) was also computed and the par-
cellation of the cortical surface according to Brodmann areas (BA) was
performedwith FreeSurfer. Brodmann parcellation was chosen because it
is based on differences in brain cytoarchitecture features, making it ideal
to show correspondence between the proposed fis contrast and neural
soma density in specific regions of the brain cortex. The particular
Brodmann parcellation available on FreeSurfer and used in this study
does not contain all the areas identified by Broadmann in his seminal
atlas (Brodmann, 1909). However, the main BA, characterized by
distinctive differences in neural soma densities, such as 1-3 (somato-
sensory areas), 4 (primary motor area), 6 (pre-motor area), 17 (primary
visual area), 18 (secondary visual area), 44 (Broca’s area, pars
7

opercularis) and 45 (Broca’s area, pars triangularis) are represented with
high fidelity, following a rigorous probabilistic parcellation procedure
performed by Amunts and Zilles (2015). For some of these areas, we
provide also examples of histological images of cytoarchitecture from
literature (Amunts et al., 1999, 2000; Geyer et al., 2000), showing dif-
ferences in neural soma arrangement and density.

4. Results

Regime of validity of the non-exchanging compartment model for different
diffusion times and b values. Results from the first numerical simulation
experiment (Simulation 1) are reported in Fig. 3. Specifically, Fig. 3a
shows three different simulated ADC dependences on diffusion time td:
for the simulations where exchange between soma and neurites was
considered (‘exchange’); for the case of non-exchange (‘no exchange’)
and the prediction of a simple compartment model (diffusion in
randomly oriented sticks þ GPD approximation of restricted diffusion in
spheres) with the relative diffusivities, fin, fis and rs known by construc-
tion (‘compartments’). The difference between exchange and non-
exchange conditions ΔADC as a function of td are reported in Fig. 3b,
together with the threshold at 10% chosen as a reasonable level of
approximation for modelling purposes. Considering different overall
sizes of brain cell domains, ranging from 100 μm (approximating
microglia) to 1000 μm (approximating big neurons), Fig. 3b suggests that
td � 20 ms is the diffusion time regime where the exchange between
soma and neurites can be neglected and a simple compartment model can
be used to model the overall intra-cellular signal as a sum of two non-
exchanging compartments, namely intra-neurite and intra-soma. This
regime of validity for different b values is further demonstrated by the
results in Fig. 4 (Simulation 2), where the direction-averaged signal as a
function of b�1/2 is shown for two different td: td ¼ 10 ms < 20 ms
(Fig. 4a) and td ¼ 80 > 20 ms (Fig. 4b). While signals for exchange, no
exchange and simple compartments perfectly overlap in almost all the
simulated scenarios at td ¼ 10 ms (Fig. 4a), they are clearly different at td
¼ 80 ms (Fig. 4b).

Fig. 3 suggests that td� 20 ms is a suitable threshold that on one hand
offers sufficiently long diffusion time to probe soma structures of diam-
eter up to ~24 μm, and on the other introduces only a small error
(≪10%)when using our multi-compartment analytical model in Eq. (10).
This is true for cellular structures similar to large neurons and medium-
size neurons or glia (like astrocytes and oligodendrocytes) (first two rows
in Fig. 3). However, for the typical size of microglia-like cellular struc-
tures, such as the panel of rs ¼ 4 μm and fis ¼ 0.31 in Fig. 3, the error
expected from using the multi-compartment analytical model is too high
(~20%) at td ¼ 20 ms. This suggests that the suitable td must be chosen
according to the desired sensitivity to specific cell domains. For example,
to support the study of microglia-like structures, td< 10ms must be used.
However, this choice would reduce the sensitivity to soma of bigger cell-
types, such as big neurons (e.g. rs ¼ 8 μm and rs ¼ 10 μm columns)
because the characteristic length scale probed at td < 10 ms is less than
10 μm. Fig. 4 also shows the same effect, but through the b dependence of
the direction-averaged normalised signal. At td ¼ 10 ms (Fig. 4a) the
analytical model well describes the signal attenuation as a function of b
(up to very high b ¼ 60,000 s/mm2, or equivalently 60 ms/μm2), except
for the case of very small cell domain and soma (panel rs ¼ 4 μm and fis ¼
0.31 in Fig. 4a). However, when longer diffusion time is used (td¼ 80ms,
Fig. 4b), the analytical model fails to describe the signal attenuation as a
function of b also for larger cell domains and soma (second and third
rows in Fig. 4b). These results are confirmed by the direct comparison
between ground-truth values and model-parameter estimates from fitting
Eq. (10) without extra-cellular compartment to the simulated signals
with exchange in Fig. 4, and reported in Fig. 5. The estimates for the case
td¼ 10ms are consistently close (within the error) to the ground truth for
almost all the scenarios, except for the small cell domain (third row in
Fig. 4a). In contrast, the estimates for the case td¼ 80 ms are similar to or
worse (within the error) than those at td ¼ 10 ms, especially for the small
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Fig. 3. Regime of validity of the compartment model. a) Comparison of the diffusion time dependence of the apparent diffusion coefficient (ADC) in cellular structures
of different overall size and soma size/density, for three conditions: 1) fully connected cellular structures, simulating exchange between soma and neurites (exchange);
2) cellular structures where the connections between soma and neurites have been closed, simulating no exchange between soma and neurites (no exchange); 3) ADC
computed from the compartment model Eq. (10) in the GPD approximation, without extra-cellular compartment (compartments). b) relative percentage difference
between the ADC in the exchange and no exchange cases in a). The dashed lines show the 10% threshold used to define the diffusion time regime where the
compartment model Eq. (10) is a reasonable approximation of cellular structures.
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Fig. 4. Direction-averaged normalised signal as a function of b�1/2 in (ms/μm2)�1/2 for two diffusion times: 10 ms, where, according to the results in Fig. 3, we expect
the compartment model to be a good approximation of the intra-cellular signal (a) and 80 ms where we expect the compartment model to fail (b). As in Fig. 3, cellular
structures of different overall size and soma size/density were considered, for three conditions: 1) exchange allowed between soma and neurites (exchange); 2)
exchange not allowed between soma and neurites (no exchange); 3) computed from the compartment model Eq. (10) in the GPD approximation, without extra-cellular
compartment (compartments).
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cell domains (second and third rows in Fig. 4b) scenarios. From Fig. 5, we
also note that in some cases, such as fis ¼ 0.30 in cell domain 1000 μm
and fis ¼ 0.32 in cell domain 400 μm, the estimates at td ¼ 80 ms are
closer to the ground truth than those at td 10 ms. However, in these cases
the standard deviation on the estimated parameters (error bars in Fig. 5)
is higher, suggesting that higher fit instability and uncertainty in the
parameter estimation may be the cause.

Finally, we note that these results do not change even if a much higher
bulk diffusivity is used in our simulations, e.g. 3 μm2/ms (see
Fig. 5. Comparison between ground-truth model parameters and their estimates
from fitting Eq. (10)without extra-cellular compartment to the simulated signals
with exchange between neurites and soma in Fig. 4. Uncertainty (error bars) in
parameter estimates was quantified by a Monte Carlo approach (see Methods
section 3.1 for details).
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supplementary Figure S1).
Sensitivity to soma size and density. Results from Simulation 3 are re-

ported in Fig. 6 where a dictionary of pre-computed direction-averaged
simulated signals as a function of b�1/2 is compared to real DW-MRI
signal averaged across two ROIs representative of WM (SNR ¼ 50, at b
¼ 40 ms/μm2) and GM (SNR ¼ 20, at b ¼ 40 ms/μm2), collected in ex-
vivo mouse brain. First, observe that in Fig. 6b, only the cases marked
with # closely mirror the experimental data at b > 3 ms/μm2 for WM,
while only the cases marked with * for GM. The first set of cases corre-
sponds to the cellular configurations fis ~ 1–5% and rs ¼ 2 μm in Fig. 6a,
while the second set corresponds to fis ~60–65% and rs¼ 6–10 μm. These
configurations match our understanding of the neuroanatomy: in theWM
ROI (corpus callosum) only a small volume fraction is occupied by oli-
godendrocytes, whose elongated soma has shorter axis of only a few μm;
while in GM ROI (cortex) there is an abundance of large soma with
typical size (rs ¼ 6–10 μm) compatible with cortical pyramidal neurons.
Second, the other cases demonstrate the specificity of our computational
model: different cellular configurations can produce a range of distinct
signal variations. For example, the panels (first row, second column) and
(third row, third column) in Fig. 6b exhibit signal variations distinct from
those of the two ROIs investigated. The corresponding panels in Fig. 6a
show that they correspond to distinct cellular configurations: one con-
taining large cellular domains with low volume fraction of soma of in-
termediate size, while the other containing small cellular domains with
very high volume fraction of soma of large size. It is worth noting that
these results also suggest that SANDI performs fairly well for character-
izing WM, which is consistent with the standard “stick” model being a
valid approximation for WM (Veraart et al., 2020). Furthermore, we see
that for b-values as low as 3,000 s/mm2 (or 3 ms/μm2), the contribution
from extra-cellular water is negligible, as it is not present in our simu-
lation but present in the experimental data.

Accuracy and precision of model estimates. The study of accuracy and
precision of model-parameter estimates (fis, Din and rs) using the RF
regression is reported in Fig. 7, showing that the proposed model can
closely approximate (within 10% bias, or 90% accuracy) the connected
cellular structure in the ideal case (SNR ¼ ∞), and maintains good ac-
curacy and precision in more realistic case of SNR ¼ 50 and acceptable
accuracy and precision in the worse-case scenario SNR ¼ 10.

The ablation study is reported in Fig. 8, showing that a minimum of
five b values (or b shells), with two of them higher than 3,000 s/mm2 (or
equivalently 3 ms/μm2) are required to produce parameter estimates of
reasonable accuracy and precision. These results suggest that the in vivo
human dataset used in this work (MGH Adult Diffusion Dataset) is
adequate (third column in Fig. 8), but less and/or lower b values would
be insufficient, which would lead to MSE values 2 to 30 times larger (first
and second column in Fig. 7).

Model parameters maps in human brain. Parametric maps of all the five
model parameters fin, fec, Din, Dec, rs and fis for a representative human
subject are reported in Fig. 9.

Comparison with histology. Qualitative comparison of fin and fis maps
with histological images (from different subjects) of myelo- and cyto-
architecture (myelin- and Nissl-staining) from available human brain
atlas (https://msu.edu/~brains/brains/human/) are reported in Fig. 10.

Comparison of the soma signal fraction map and brain cytoarchitecture in
25 healthy human subjects. Examples of fis maps projected onto the cortical
surface (representing the whole cortical thickness) of 4 representative
subjects together with the average map over the 25 subjects analysed in
this study are reported in Fig. 11. Boundaries of Brodmann areas BA 1-6,
17, 18 and 44, 45 are also reported to show the remarkable match with
boundaries where fis values change, in both individual subjects and
average maps. Brodmann areas are known to identify regions of the brain
cortex where cytoarchitecture differs in soma density and arrangement.
Fig. 12 compares average MR estimates of soma density (fis map) among
the 25 subjects with histological images from a few representative areas
from literature showing a remarkable match of gradients in fis values with
the gradient in soma density, one of the criterion used to parcellate the
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Fig. 6. Comparison of numerical simulations with ex-vivo mouse data. a) Computational model: many randomly oriented cylindrical segments were projected from a
spherical compartment (soma) of radius rs, at different volume fractions of soma fis for different overall cell size (cell diameters). b) Normalised direction-averaged
DW-MRI signal as a function of b�1/2 computed from spin-trajectories simulated in the structures in a) (line). Comparison with measured signal from white matter
(WM) and gray matter (GM) ROIs shows very good match at 0.2<b�1/2<0.5 (ms/μm2)�1/2 for (rs,fis) conditions: (2,0.01–0.05)WM marked as # and (6-10,0.5-0.6)GM
marked as *. Comparison with simulation also suggesting negligible extra-cellular contribution for b�1/2<0.6 (ms/μm2)�1/2, corresponding to b � 3 ms/μm2.
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cortex in different Brodmann areas.
Comparison with the dot-compartment variant. In Fig. 13 we show the

results of fitting SANDI model (Eq. (10)) and the dot-compartment
variant (Eq. (12)) to the ex-vivo mouse data in Fig. 6, for both WM and
GM ROIs. The values of the estimated fitting parameters are reported in
the table, together with the AICc values for each model. We found that
SANDI describes the data better than the dot-compartment variant, wich
lower AICc (ΔAICc>2), for both WM and GM.

5. Discussion

In summary, this work proposes SANDI, a novel model to estimate
apparent soma and neurite density non-invasively using DW-MRI. Our
approach challenges the existing standard model (Jespersen et al., 2007;
Zhang et al., 2012; Fieremans et al., 2011; Kaden et al., 2016; Novikov
et al., 2018a, 2019; Alexander et al., 2019) that considers water diffusion
in WM and GM as restricted diffusion in neurites, modelled by “sticks”
embedded in the hindered extra-cellular water (Fig. 1a). Motivated by
recent studies that suggest this “stick” assumption fails in GM (McKinnon
et al., 2017; Veraart et al., 2019; Palombo et al., 2018), we hypothesise
that one plausible explanation for such failure is the abundance of cell
bodies (namely soma) in GM relative to WM (Palombo et al., 2018). So
far, the contribution from soma has not been directly modelled, but
rather assumed to contribute to the overall extra-cellular compartment
(for example see (Jespersen et al., 2007; Jespersen et al., 2012)) (Fig. 1a).
Indeed, the underlying assumption has been that there is negligible re-
striction in soma because of the fast exchange rate with the extra-cellular
space. However, a recent estimate of such exchange reports a water
pre-exchange lifetime in neurons and astrocytes >500 ms (Yang et al.,
2018). This suggests that for relatively short diffusion times td ≪ 500 ms,
restriction in soma may be not negligible. Here, we use advanced nu-
merical simulations in realistically connected cellular structures to show
that soma has indeed a specific signature on the DW-MRI signal at high
b-values. The results from ex-vivo experiments in a mouse brain show
that the signature predicted in simulation is both present and observable
in measured signals (Fig. 6). The results from in-vivo experiments in a
cohort of 25 healthy human subjects show that the proposed technique
can provide maps of apparent soma density and size that meet expecta-
tions from histological imaging (Fig. 10) and current anatomical under-
standing (Fig. 12). These findings are also in agreement with other recent
works that have challenged the validity of the standard model and its
derived variants (like spherical mean technique (Kaden et al., 2016)),
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and showed that factors not considered by the underlying microstruc-
tural models, such as intercomponent and intracompartmental kurtosis,
may cause misestimation of the model parameters (Henriques et al.,
2019a; Jespersen et al., 2019).

SANDI as a first model for soma imaging. We propose a new micro-
structure model based on three non-exchanging compartments that
explicitly includes the soma contribution to the intra-cellular signal as a
pool of water diffusing in restricted geometries of non-zero size, i.e. not a
dot-compartment (Panagiotaki et al., 2012; Veraart et al., 2019; Tax
et al., 2019), but rather a restricted water pool, whose MR signal has a
specific b and td dependence (i.e. Eq. (8)) (Fig. 1b). Our numerical sim-
ulations (Figs. 3–5) identify the time regime of validity for such a simple
compartment model to be at relatively short diffusion times (td � 20 ms).
In this time regime, the exchange between intra- and extra-cellular
compartments is also negligible, for both neuronal and glial cell types,
as suggested by a recent study from Yang et al. (2018). Furthermore, we
show with numerical simulations and experiments in mouse brain that
soma size and density have indeed a specific signature on the
direction-averaged DW-MRI signal at high b values (i.e. bmax > 3,000
s/mm2, corresponding to 3 ms/μm2) and that the high b value regime can
be used to increase sensitivity to geometrical restrictions of typical neural
soma size ranging from a few microns (e.g. for microglia and glia) to a
few tens of microns (e.g. for big neurons) (Zhao et al., 2006; Diaz-Cintra
et al., 2004) (Figs. 4–6 and 8). In the simulations we performed in this
work, we did not include long axons because they have been shown to
have small impact on the measured intra-cellular diffusion (see supple-
mentary information of (Palombo et al., 2016)). Under these experi-
mental conditions, the normalised direction-averaged (or powder
averaged) DW-MRI signal can be expressed as the sum of three
non-exchanging compartments: intra-cellular, comprised of intra-neurite
and intra-soma compartments, and extra-cellular compartment (Fig. 1b).
We show that such a model, under such experimental conditions, ap-
proximates very well the expected intra-cellular signal (Figs. 3–6) and
provides reasonably accurate and precise estimates of neurite MR signal
fraction and soma MR signal fraction and apparent size (Figs. 5, 7 and 8).
Note that the proposed model is very different from previously proposed
models that include a sphere compartment to account for other
extra-neurite compartments, such as in Stanisz et al. (1997). In fact, here
we propose a model to disentangle the signal from cell-bodies of any cell
type (modelled as a sphere compartment), from the signal from elongated
cellular projections, such as neuroglial processes and neuronal dendrites
and axons (modelled as sticks). In contrast, Stanisz et al. (1997) proposed



Fig. 7. Correlation accuracy plot. Soma compartment signal fraction fis, soma apparent size rs and axial intra-neurite diffusivity Din estimated using relation Eq. (10)
without the extra-cellular compartment and GPD approximation and labelled with the superscript “estimated” are plotted against the ground truth values labelled with
the superscript “ground-truth”. The perfect positive correlation line (solid line) and 
10% error (dashed lines) are plotted. In infinite SNR case, the correlation is very
high (R2 > 0.98) and bias within 10%. In the more realistic scenario of SNR ¼ 50 the correlation is still very high (R2 > 0.85) and accuracy and precision are close to
the ideal case of infinite SNR. In the worse-case scenario of SNR ¼ 10, the correlation is still high (R2 > 0.75) and accuracy and precision acceptable. Error bars on data
points indicate the statistical dispersion (standard deviation) in model parameter estimation as evaluated by Monte Carlo approach (2500 random drawn).
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a sphere compartment to characterize the signal coming from the whole
cell domain (hence cell body þ cellular projections) of glial cells in
bovine optic nerve.

Comparison with dot-compartment variant. The results reported in
Fig. 13 show that SANDI describes the measuredMRI signal better (lower
AICc) than the model comprising a dot-compartment (ΔAICc>2), in both
GM and WM. More importantly, we found that the signal fractions esti-
mated using the dot-compartment model do not correspond to the
neuroanatomy expected from histology and the apparent diffusivities are
not in agreement with literature, especially for GM data. For WM, the
dot-compartment model and SANDI provide similar estimates, suggest-
ing that for WM, which has low soma density, both models are good
approximations (Veraart et al., 2020), with SANDI still providing better
fit (lower AICc).

Non-invasive cyto- and myelo-architecture maps by DW-MRI. Using the
newly introduced microstructure model, we retrospectively analysed
data from 25 healthy subjects from the MGH Adult Diffusion Dataset,
freely available from the HCP data repository. This dataset was coinci-
dently acquired with experimental conditions appropriate for our model
assumptions: td � 20 ms and bmax ¼ 10 ms/μm2. Parametric maps of the
estimated model parameters in Fig. 9 show very reasonable and
encouraging contrasts. Maps of fin have contrast highlighting the major
12
WM tracts in the brain while fis values are higher in GM (Fig. 9). Spe-
cifically, fin values are higher in voxels mostly comprised of WM and they
seem minimally affected by fibre orientation dispersion and crossing, as
shown by the uniform contrast in all the WM regions, even in those
characterized by high fibre orientation dispersion and crossing, e.g. re-
gions where the radiation of the corpus callosum and the corona radiata
cross. We also notice that fin values in cortical GM are between ~0.1 and
0.2, in good agreement with recent works focusing on estimating neurite
density in GM using more advanced DW-MRI acquisition schemes such as
spherical tensor encoding (Lampinen et al., 2017, 2019). Values of fis are
consistently higher in all GM regions, from cortical to deep and cerebellar
GM. The slightly lower values of fis in cerebellum may be due to higher
partial volume in this region betweenWM and GM due to the large size of
MRI voxels (1.5� 1.5� 1.5 mm3). We note that more advanced DW-MRI
acquisition schemes such as B-tensor encoding (Westin et al., 2016) seem
to offer encouraging preliminary results on fis estimation using lower b
values (Gyori et al., 2019), in good agreement with our estimates. Values
of rs across the brain range from 2 to 12 μm, with a mean 
 std values of
10 
 3 μm. These values are in good agreement with the expected mean

 std radius of neural soma in human brain 11 
 7 μm, as evaluated by a
supplementary analysis we performed using about 3000 reconstructions
of human brain cellular morphologies, available from the Neuromorpho



Fig. 8. Ablation study of accuracy and precision of model parameters estimation. Soma compartment signal fraction fis, soma apparent size rs and axial intra-neurite
diffusivity Din estimated using relation Eq. (10) without the extra-cellular compartment and GPD approximation and labelled with the superscript “estimated” are
plotted against the ground truth values labelled with the superscript “ground-truth” for four different b value combinations (subsampled from Experiment 2 with δ/Δ
¼ 3/11 ms). The perfect positive correlation line is plotted as solid line. Error bars on data points indicate the statistical dispersion (standard deviation) in model
parameter estimation as evaluated by Monte Carlo approach (2500 random drawn) in case of infinite SNR. The mean squared errors (MSE) with respect to the ground-
truth values are reported for each b value combination as metrics of accuracy and precision (lower the value, higher the accuracy and precision).
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database (neuromorpho.org). Finally, Din and Dec values are in good
agreement with published values for intra-neurite diffusivity in WM
being about 2.3 μm2/ms (Dhital et al., 2019) and extra-cellular diffusivity
Dec < Din (Kunz et al., 2018). However, given the non-optimal experi-
mental design of the human dataset, the maps of rs should be taken with
care. In fact, rs estimation in this case is neither very accurate nor
particularly precise because of the limited number of b values and only
one td. This is shown in supplementary Figure S2, where the random
forest regressor predicts different and not always sensible values for rs
when trained with an incorrect range, e.g. rs ¼ [1, 20] μm, instead of the
correct one (rs ¼ [1, 12] μm). The model parameters fis and fin are MR
signal fractions of the two compartments that in our model are linked to
13
soma and neurites. As such, we expect them to correlate with soma and
neurite densities or volume fractions within the MRI voxel. On the other
hand, Nissl and myelin are two of the most used staining to characterize
the brain cyto- and myelo-architecture. Although Nissl staining stains
mostly the nucleus of neural cells rather than the whole cell body, we can
reasonably expect that the contrast in Nissl staining correlates with
density and arrangement of soma and thus the cyto-architecture of the
brain. Similarly, myelin staining stains only themyelinated neurites, such
as axons or myelinated dendrites, thus we can reasonably expect that the
contrast in myelin staining highlights mostly WM tracts and the
myelo-architecture of the brain. The qualitative comparison of fis and fin
maps with Nissl- andmyelin-stained histological images in Fig. 10 show a

http://neuromorpho.org


Fig. 9. An example of the parametric maps of the proposed compartment model for brain microstructure, obtained by fitting Eq. (10) to the normalised direction-
averaged DW-MRI data from a representative subject.

Fig. 10. Novel contrasts in apparent neurite and soma
density of human brain. Qualitative comparison of MR
soma signal fraction fis and MR cell fibers signal
fraction fin maps with histological images (from
different subjects) stained for brain cytoarchitectonic
(Nissl staining for cell nuclei, left side) and mye-
loarchitectonic (myelin staining, right side), respec-
tively. Brain histological images from the human
brain atlas at https://msu.edu/~brains/brains/huma
n. The contrast in the MRI maps show remarkable
similarity to the contrast from histological staining.
Quantitative map of fis is expected to provide contrast
related to soma density, while map of fin is expected to
provide contrast related to neurite density. Since
myelinated neurites (like axons) are the major con-
stituent of white matter, fin is expected to provide
contrast highly related to myelin in the white matter
regions.
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remarkable similarity between the MRI maps and the contrast in the
histological images, suggesting that fis and fin maps could be used to
characterize in a non-invasive way the cyto- and myelo-architecture of
neural tissue. However, we note that the concordance of SANDI maps and
histology is not perfect. This could be due to several reasons: implicit
contribution to fis from relaxation weighting; unavoidable differences
between histology and imaging (e.g. thinner slice and higher in plane
resolution in histology); histological and MRI images from different
subjects. A particularly important difference is that, unlike its histological
counterpart, fis is a fraction, thus reflecting the signal contribution of
soma relative to the entire intra-cellular space. For instance, we note,
14
unlike the Nissl staining image, fis values in the thalamus are lower than
other neighbouring GM regions (e.g putamen and caudate). This is
consistent with the fact that the thalamus, different from its neighbouring
GM structures, consists of a large amount of WM and myelin (Whittall
et al., 1997; Madler et al., 2008; Ganzetti et al., 2014) (e.g. the stratum
zonale that covers the dorsal surface and the external and internal
medullary laminae), leading to lower fis values (and higher fin corre-
spondingly). Moreover, histological images and fitted SANDI parameter
maps are from different subjects. On one hand, this represents a limita-
tion of the present work that future validation work (Palombo et al.,
2019) will aim to address. On the other, it makes the observed

https://msu.edu/%7Ebrains/brains/human
https://msu.edu/%7Ebrains/brains/human


Fig. 11. Projection onto cortical surface (representing the whole cortical thickness) of quantitative maps of MR soma signal fraction fis for 4 representative subjects
and for the average over the whole cohort of 25 healthy subjects. The principal Brodmann’s areas available on FreeSurfer are also reported. We notice a remarkable
correspondence between the boundaries of Brodmann areas and the gradient in fis values. This is particularly evident in the average map, while in the maps of in-
dividual subjects we can also appreciate sensible inter-subject variability.
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concordance between SANDI parameter maps and histology remarkable.
Non-invasive cyto-architectonics of the human brain by DW-MRI.

Although a proper validation of the novel contrast in soma density and
size introduced by the new model presented here is still in progress
(Palombo et al., 2019), here we present individual and average results
over 25 healthy subjects, showing remarkable similarity of fis values
distribution on the cortical surface with Brodmann areas parcellation of
the brain cyto-architecture (Figs. 11 and 12). As shown in Fig. 12,
Brodmann areas are characterized by different soma density and
arrangement. Changes in fis values on the cortical surface (representing
15
the whole cortical thickness) follow very well the boundaries of Brod-
mann areas (within acceptable slight mis-alignment probably due to
small errors in the co-registration procedure, performed using the auto-
mated toolbox within FreeSurfer), demonstrating that the contrast pro-
vided by this new MRI parameter could be used as non-invasive imaging
marker of cyto-architectonics. Furthermore, the correspondence to
Brodmann areas is also very good at the level of individual subject, as
shown by Fig. 11.

Potential impact. A deeper understanding of cortical organization,
including its complex fiber architecture and structural connectivity is still



Fig. 12. Projection onto cortical surface (representing the whole cortical thickness) of the quantitative map of MR soma signal fraction fis for the average over the
whole cohort of 25 healthy subjects. In correspondence of the principal Brodmann areas we report histological images from literature, showing the typical soma
arrangement and density used as criteria to delineate Brodmann areas. We find a very good correspondence between fis values and the expected pattern of soma
density from histology (high, intermediate and low soma density as indicated).

Fig. 13. Comparison of the SANDI model and the dot-compartment variant to describe measured DW-MRI signal decay at high b values. Two microstructure models
were fitted to the data in Fig. 6: the Eq. (10) from the SANDI model, and the Eq. (12) from the dot-compartment variant. The results of the fit for the DW-MRI data from
the WM and GM ROIs in Fig. 6 are reported in the table, together with the values of the AICc (lower AICc indicates better fit).
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an open challenge in neuroscience. There has been considerable interest
in the mapping of GM microstructure. Some examples include cortical
laminar structure characterization using high-resolution DTI (Assaf,
2019), assessment of GM maturation in rodents with DKI (Cheung et al.,
2009), and neurite density and dispersion quantification in human brain
with NODDI (Fukutomi et al., 2018; Parker et al., 2018; Winston et al.,
16
2014), all using PGSE experiments at intermediate diffusion times. Other
works have used PGSE experiments at shorter diffusion times (td � 30
ms) (White et al., 2013; Taquet et al., 2019), or oscillating gradients at
ultra-short diffusion times (Aggarwal et al., 2012), to characterize the
GMmicrostructure. SANDI can help interpret and model in terms of soma
size and density their results concerning, for example, DIAMOND
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(Scherrer et al., 2016) and restriction spectrum imaging (RSI) (White
et al., 2013) metrics, and ADC frequency dependence in GM (Aggarwal
et al., 2012). The additional contrasts provided by SANDI maps of soma
MR signal fraction and apparent MR measured soma size could be useful
to develop novel quantitative cytoarchitectonic and probabilistic map-
ping of cortical areas in a whole-brain fashion. For example, these could
be used to define new parcellations of the brain based on cytoarchitec-
tural features (e.g. Fig. 10 could be a proof-of-concept); and to improve
the quality of currently available atlases of brain GM sub-regions that are
notoriously difficult to delineate, such us the numerous nuclei
comprising the brainstem (Bianciardi et al., 2015) (e.g. some encour-
aging preliminary results have been recently shown in (Bianciardi,
2020)). SANDI could also help provide metrics more specific to changes
in the brain cyto- and myelo-architecture through development and due
to the onset of disease. In longitudinal studies of developing brain (Neil
et al., 1998; McKinstry et al., 2002; Deipolyi et al., 2005; Huang et al.,
2006, 2009, 2013; Yu et al., 2016; Ouyang et al., 2019a, 2019b), Ouyang
et al. (2019b) has recently used DKI (Lu et al., 2006) to quantify the
dynamic cortical microstructural signature of critical developmental
stages. SANDI may help understand the exact neuroanatomical under-
pinning of observed cortical MK in terms of changes in neuronal soma
density. In Multiple Sclerosis (MS), SANDI could provide more specific
information about microglial and astrocytic activation during inflam-
mation and astrocytic scarring, both processes involving increased
accumulation of glial soma within the MS lesions (Holley et al., 2003)
(e.g. some encouraging preliminary results have been recently shown in
(Palombo, 2020)). In epilepsy, SANDI maps of apparent MR measured
soma size and soma MR signal fraction could improve sensitivity and
specificity to the remodelling of brain cytoarchitectonic occurring within
the epileptic lesions (Aronica and Muhlebner, 2017).

Data acquisition requirement. In this work a comprehensive scheme
was used a-priori so as to ensure high accuracy and precision of our re-
sults (Figs. 7 and 8). Further refinement and optimization will be
required in the future to establish the limits of the methodology. In
general, given the specific hardware characteristics of an MRI scanner
(either preclinical or clinical) and acquisition time constraints, it is al-
ways possible to optimize the experimental protocol in order to achieve
reasonable levels of precision in SANDI model parameters estimation. A
possible general approach to perform such optimization has been pre-
viously proposed by Alexander (2008).

It is important to underline that conventional clinical DW-MRI data
are in general not suitable for SANDI, for a number of reasons. First, b
values are typically no higher than 3,000 s/mm2, or equivalently 3 ms/
μm2. SANDI requires several much higher b values. Second, diffusion
times are typically much longer than 20 ms, the upper bound we have
identified for SANDI modelling to be valid. The ablation study demon-
strates that the MGH Adult Diffusion Dataset used in this work is an
example of a minimal dataset that meets these requirements: short
enough diffusion time, high enough b values, six b-shells to estimate five
model parameters.

Similar considerations hold for ex-vivo experiments but as these ex-
periments are commonly performed at room temperature, we must take
into account the resulting lower diffusivity. Typically, apparent diffusion
coefficient in ex-vivo brain at room temperature of 21 	C can be ~4 times
lower than in-vivo, suggesting that longer time scales (e.g. td � 80 ms)
and higher b values (e.g. >12,000 s/mm2, or equivalently 12 ms/μm2)
have to be used. The ex-vivo mouse brain dataset used in this study is an
example of a suitable ex-vivo experimental protocol.

Future directions and perspectives. The SANDI model presented here for
apparent soma size and density estimation is used to analyse DW-MRI
data acquired with simple classical MRI acquisition schemes like PGSE
or Pulsed Gradient Stimulated Echo sequences. However, other more
advanced acquisition schemes such as double diffusion encoding (DDE)
or B-tensor encoding, may provide improved accuracy and precision of
SANDI model parameters estimation. In fact, it has been shown that these
acquisitions provide additional information that can help disentangling
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the relative contribution of the different compartments modelled by
SANDI. For instance, B-tensor encoding has been successfully used to
improve the estimation of neurite density based on the standard model
Eq. (3) (Lampinen et al., 2017, 2019), while recent works using DDE
showed that this acquisition scheme can help disentangling different
sources of DW-MRI signal that can be linked to different features of the
underpinning tissue microstructure (Coelho et al., 2019; Henriques et al.,
2019b; Vincent et al., 2019; Shemesh et al., 2014). Future works will
focus on harnessing the orthogonal information offered by these
advanced acquisition schemes in order to maximize the sensitivity and
specificity of the measured DW-MRI signal to the soma contribution (e.g.
some encouraging preliminary results have been recently shown in
(Afzali, 2020)). Together with improving the acquisition, another target
of future work is the rigorous validation of the new parametric maps
provided by SANDI. As already mentioned, SANDI provides apparent
soma size and density maps in terms of MR measured spherical
compartment size and relative signal fraction, respectively. By model
design, these values are expected to correlate with the higher moments of
the actual soma size distribution and the soma density in the brain tissue.
However, histological validation is complex, expensive, and time
consuming. Histological measurements of cellular content have their
own inaccuracies and inconsistencies and appropriate metrics are diffi-
cult to fine tune. Preliminary investigation in ex-vivo mouse brain at
ultra-high field and comparison with histological staining for cell bodies
has already shown encouraging strong positive correlations between the
soma size and density estimated from SANDI and those directly measured
from histology (Palombo et al., 2019). Future work will extend such
investigation to different mouse brain regions, such as cerebellum and
olfactory bulb, and will provide more quantitative proof of the actual link
between SANDI model parameter and the actual brain tissue micro-
structure. Nevertheless, the qualitative results (Figs. 10 and 12) showing
trends consistent with known histological variation at macroscopic scale
support the first demonstration of the value of SANDI.

6. Conclusion

The current conjecture in brain microstructure imaging (Jespersen
et al., 2007; Zhang et al., 2012; Fieremans et al., 2011; Kaden et al., 2016;
Novikov et al., 2018a, 2019; Alexander et al., 2019; Panagiotaki et al.,
2012) envisions the brain tissue component in an MRI voxel as sub-
divided into two non-exchanging compartments: intra-neurite and
extra-neurite space. The total MRI signal is then given by the weighted
sum of the signals from water molecules diffusing in each compartment.
Although very successful in describing the DW-MRI signal in WM and GM
at relatively low b values (b � 3,000 s/mm2, or 3 ms/μm2) in both
healthy and diseased conditions (Jespersen et al., 2007, 2010; Zhang
et al., 2012; Fieremans et al., 2011; Kaden et al., 2016; Novikov et al.,
2018a, 2018b, 2019; Alexander et al., 2019; Lampinen et al., 2017, 2019;
Kroenke et al., 2004; Assaf and Basser, 2005; Sotiropoulos et al., 2012;
Ferizi et al., 2015; Jelescu et al., 2016), this microstructure model fails in
describing DW-MRI signal at high b values (b≫3,000 s/mm2, or 3
ms/μm2) (McKinnon et al., 2017; Veraart et al., 2019, 2020; Palombo
et al., 2018). Here we introduce a new picture: the tissue component of
an MRI voxel is subdivided into intra-cellular and extra-cellular non--
exchanging compartments. The total signal is the weighted sum of the
signal from water molecules diffusing in each compartment. Further-
more, the intra-cellular compartment is itself divided into two
non-exchanging sub-compartments: intra-neurite and intra-soma. The
intra-cellular MRI signal is then given by the weighted sum of the MRI
signal from water molecules diffusing within the two sub-compartments.
This new microstructure model that we call SANDI (Soma And Neurite
Density Imaging) directly accounts for one of the major differences be-
tween WM and GM: soma abundance in GM compared to WM, enabling
the non-invasive estimation of apparent soma density and size trough
MRI.

Using advanced numerical simulations, we identified the regime of
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validity of the assumption of non-exchanging intra-cellular sub-
compartments (neurites and soma) and propose SANDI as a new
method for non-invasive soma imaging. We demonstrate it in ex-vivo
DW-MRI mouse data and in-vivo cutting-edge human acquisitions. We
showed that the newmicrostructure model for soma imaging defines new
contrasts, dissimilar to the simple tensor analyses, representing new
complementary information on the brain cyto and myeloarchitecture.
Although still under validation (Palombo et al., 2019), the maps here
reported already show some interesting contrast that might provide new
insight into tissue architecture and provide markers of pathology, as well
as a new set of biomarkers of potential great value for biomedical ap-
plications and pure neuroscience. With the availability of powerful
human scanners like the Connectom (Jones et al., 2018), this technique
has the potential for translation into the clinic, opening a promising
avenue for more in-depth assessment of cellular microstructure in-vivo in
human brain.
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The authors regret that due to an error in the code used to process the data, the estimated parametric maps reported in Figure 9 are incorrect.

he corrected Figure 9 is included here. 

The primary differences to the original Figure 9 are in the estimated parametric maps D in , D ec and f ec . However, the observed contrast in f in , f is
nd r s is minimally affected and remains compatible with the histological counterparts shown in Figure 10-12, hence the main conclusions still hold.

Furthermore, it has been brought to the authors’ attention that our statement about the adequacy of the MGH Adult Diffusion Dataset is incorrect.

he statement drew inference from the results of the ablation study shown in Figure 8, which considers only the simulated intra-cellular signal (i.e. we

ssume f ec = 0; thus, f ec and D ec are not estimated, leaving only three free parameters). The in vivo human data have additional signal contributions

rom the extra-cellular space (f ec > 0 so f ec and D ec become relevant and the number of free parameters increases to five), which our simulations do

ot reflect. Thus, indeed, the conclusions may not extend to the in vivo human data and we would like to correct the following statement: 

• The original paragraph on page 10 (second column, third paragraph) reads: ‘ The ablation study is reported in Fig. 8, showing that a minimum of five b

values (or b shells), with two of them higher than 3,000 s/mm 

2 (or equivalently 3 ms/ 𝜇m 

2 ) are required to produce parameter estimates of reasonable

accuracy and precision. These results suggest that the in vivo human dataset used in this work (MGH Adult Diffusion Dataset) is adequate (third column

in Fig. 8), but less and/or lower b values would be insufficient, which would lead to MSE values 2 to 30 times larger (first and second column in Fig. 7). ’

• The corrected paragraph should read: ‘ The ablation study is reported in Fig. 8, showing that having four or more nonzero b values (or b shells), with

two of them higher than 3,000 s/mm 

2 (or equivalently 3 ms/ 𝜇m 

2 ), produces parameter estimates of reasonable accuracy and precision; but having less

than two b values (or b shells) higher than 3,000 s/mm 

2 (or equivalently 3 ms/ 𝜇m 

2 ) may be insufficient and can lead to MSE values 2 to 30 times

larger (first and second column in Fig. 8). ’ 

This highlights further that the results in Figure 9 come ostensibly from fitting five free parameters to a data set with only four independent data

oints (four nonzero b-shells). Despite the apparent underdetermination, the fitting procedure still provides robust estimates of four parameters (D ec ,

 ec , f in , and r s ) because the data has little or no sensitivity to D in and the random-forest regressor implicitly fixes it to a value close to the average

f the settings in the training data. An additional sensitivity analysis reported here in Figure X1 confirms this and shows that in fact adding more

ndependent data points with intermediate b-values has little effect on the estimated parameters. This observation prompts an additional correction

o the original manuscript: 

• The original paragraph on page 17 (first column, third paragraph, last sentence) reads: ’The ablation study demonstrates that the MGH Adult Diffusion

Dataset used in this work is an example of a minimal dataset that meets these requirements: short enough diffusion time, high enough b values, six b-shells

to estimate five model parameters.’ 

• The corrected paragraph should read: ‘ The ablation study demonstrates that a minimal dataset should meet these requirements: short enough diffusion

time, high enough b values. Of course the dataset must also have at least as many nonzero b-values as free parameters: three or more nonzero b-shells

to estimate the three model parameters (D in , f in , and r s ) when f ec = 0 as in the ablation study; five or more for real data where f ec is typically nonzero,

although fewer b-shells can still provide viable estimates if for example, as in the human data in Figure 9 , the fitting procedure implicitly fixes D in to
reasonable values. ’ 
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Figure X1. Sensitivity analysis showing the estimated (y-axis) versus ground truth (x-axis) values of the five SANDI model parameters. We added Rician noise 

corresponding to SNR = inf and 50 to signals simulated using equation (10) and 3125 combinations of the model parameters obtained from five values linearly 

spaced in the intervals: f ec = [0.15,0.85]; f in = [0.15,0.85]; D in = [0.5,2.5] μm 

2 /ms; r s = [2,10] μm; D ec = [0.5,2.5] μm 

2 /ms. We report results from three protocols: a) 

the original MGH Adult Diffusion Dataset: Δ/ 𝛿= 22/13 ms, b = [0,1,3,5,10] ms/μm 

2 ; b) a richer protocol: Δ/ 𝛿= 22/13 ms, b = [0,1,2,3,4,5,6,7,8,9,10] ms/μm 

2 ; c) a 

protocol achievable on clinical scanners: Δ/ 𝛿= 22/13 ms, b = [0,0.5,0.75,1.2,1.5,2,2.5] ms/μm 

2 . Black datapoints are the median values of the estimated parameters 

for the different combinations; error bars are their quartile deviations. Green data points are the ground truth values and the solid lines are the identity lines. 
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Figure 9. An example of the parametric maps of the proposed compartment model for brain microstructure, obtained by fitting Eq. (10) to the normalised direction- 

averaged DW-MRI data from a representative subject. 

 

d

We emphasise that the main conclusions of the original manuscript are not affected by these issues, since they are drawn from the results of the

etailed numerical simulations and the rich mouse dataset; the human data are included simply as a preliminary proof-of-concept for future work. 

The authors would like to apologise for any inconvenience caused. 
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