
Journal of Heuristics
https://doi.org/10.1007/s10732-022-09493-5

Finding fixed-length circuits and cycles in undirected
edge-weighted graphs: an application with street networks

R. Lewis1 · P. Corcoran2

Received: 16 November 2021 / Revised: 14 February 2022 / Accepted: 1 March 2022
© Crown 2022

Abstract
This paper proposes two heuristic algorithms for finding fixed-length circuits and
cycles in undirected edge-weighted graphs. It focusses particularly on a largely
unresearched practical application where we are seeking attractive round trips for
pedestrians and joggers in urban street networks. Our first method is based on identi-
fying suitable pairs of paths that are combined to form a solution; our second is based
on local search techniques. Both algorithms display high levels of accuracy, produc-
ing solutions within just a few meters of the target. Run times for the local search
algorithm are also short, with solutions in large cities often being found in less than
one second.

Keywords Heuristics · Graphs · Cycles · Circuits · Location-based services

1 Introduction

A location-based service is a piece of software that provides users with a service
related to their geographical location. The most common types are routing services,
which are available in vehicle navigation systems and online applications like Google
Maps and BingMaps. As input, routing services take a source and destination location
together with a required mode of transport. They then compute one or more useful
paths between these locations. The paths generated by routing software will generally
be constrained by the given mode of transportation. For example, if we want to walk
between locations, the network in questionwill correspond to footpaths and streetswith

B R. Lewis
lewisr9@cf.ac.uk

P. Corcoran
CorcoranP@cardiff.ac.uk

1 School of Mathematics, Cardiff University, CF24 4AX, Cardiff, Wales

2 School of Computer Science and Informatics, Cardiff University, CF24 4AX, Cardiff, Wales

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10732-022-09493-5&domain=pdf
http://orcid.org/0000-0003-1046-811X

R. Lewis, P. Corcoran

pedestrian access. What determines the usefulness of a solution will vary depending
on the user and context in question. In many cases, a user will prefer a solution that
minimises travel time; in others, they may want a solution that is safe (Hannah et al.
2018; Nunes et al. 2020) or simple to follow (in terms of the instructions needed
no negotiate and remember the route Duckham and Kulik 2003) while still having a
reasonably short travel time.

In this paper, we consider the problem of finding fixed-length routes on a map that
start and end at the same location. This has various practical applications such as (a)
planning a jogging route, (b) organising a cycling tour, or (c) determining a round
trip that allows us to complete our daily quota of steps as determined by our fitness
tracker. Hypothetically, routing services can be used to generate such round trips by
setting the source to be equal to the destination; however, difficulties will usually arise
because, as noted, these services tend to focus on minimum-length paths, making their
proposed solutions unsuitable.

From a different perspective, routing services can also assist in the formation of
fixed-length round trips by making use of intermediate geographical locations known
as waypoints. In this case, a user can plan a route by specifying a series of waypoints,
with each point being linked to its predecessor by a shortest path. This forms the basis
of applications such as Strava Routes, which also allows users to specify preferences
for routes involving hills, dirt tracks, and popular exercise trails. In this case, however,
the task of designing a route of a specific length is still left very much to the user who
will need to adopt a trial-and-error approach until an acceptable result is achieved.

In their simplest form, exercise routes of a specific length are easy to determine.
For example, we may choose to simply travel back and forth along the same street
repeatedly until the required distance is covered. Similarly, we might also perform
“laps” within a particular locality. In this paper, however, we want to consider ways of
producing routes that avoid repetition. Specifically, we want to avoid routes that ask
the user to travel along a street or footpath more than once.

To define this problem formally, it is useful to first review some standard definitions
from graph theory. Let G = (V , E) be an undirected edge-weighted graph with
n vertices and m edges, and let w(u, v) denote the weight (or length) of an edge
{u, v} ∈ E . A street network can be represented by such a graph by using vertices
for street intersections and dead ends, edges for street segments between vertices, and
edge-weights for the street segment lengths.

Definition 1 A walk is a series of pairwise incident edges in a graph; a trail is a walk
with no repeated edges; and a path is a trail with no repeated edges or vertices.

It is also usual to add the prefix u-v to the above terms to signify a walk/trail/path that
starts at vertex u and finishes at vertex v. The following terms can then also be used
in cases where u = v.

Definition 2 A u-v-walk/trail/path is considered closed whenever u = v. Closed trails
are usually known as circuits; closed paths are usually known as cycles.

Similarly to the above, the term u-circuit (cycle) can also be used to denote a circuit
(cycle) that contains the vertex u. We can also extend this to multiple vertices: for
example, a u-v-circuit is a circuit containing vertices u and v.

123

Finding fixed-length circuits and cycles in undirected...

Fig. 1 An example grid graph in
which all edge weights are
assumed to be one. In this
particular case k = 9, but no
s-circuit with this length exists.
Instead, the indicated solutions
feature lengths of eight and ten

In this paper, we propose several heuristics for producing fixed-length circuits with
a particular focus on tackling graphs resembling maps of roads and footpaths. For this
work, we consider undirected graphs only. This is appropriate for practical applica-
tions that involve determining jogging and walking routes for pedestrians, though it
is insufficient in situations involving vehicles and one-way streets.

An initial definition of this problem can be stated as follows:

Definition 3 (The k Circuit Problem) Let G = (V , E) be an undirected graph with
nonnegative edge weights, s ∈ V be a source vertex, and k be a required length. The
k circuit problem involves determining an s-circuit C = (u1, u2, . . . , ul) in G (where
ui ∈ V ∀i ∈ {1, . . . , l} and u1 = ul = s) such that the total length (weight) of its
edges L(C) = ∑l−1

i=1 w(ui , ui+1) is equal to k.

Note that this definition involves circuits as opposed to cycles. This means that a
route can visit a vertex more than once but it cannot traverse an edge more than once.
Due to our focus on street networks in this paper, here we choose to generalise this
definition slightly. This is for two reasons. The first reason is that, in cases where
circuits of length k cannot be found, it is desirable for two candidate solutions to be
produced: ¯C , where (k − L(¯C)) > 0 is minimal; and C̄ , where (L(C̄) − k) > 0 is
minimal. The lengths of ¯C and C̄ can therefore be seen as lower and upper bounds on
solution quality. An example is shown in Fig. 1.

Our second reason for generalising this problem is that street networks often contain
many edges that are bridges.1 By definition, circuits are not permitted to contain any
bridges {u, v} because their inclusion implies the need for a second (unavailable) u-v-
trail. In street networks, however, it might be desirable to allow bridges to occur twice
in a route, particularly in situations where the source s belongs to a relatively small
bridge-connected component. (See Fig. 2, for example.)

This generalised version of the k circuit problem, which is the focus of this paper,
is therefore stated as follows.

Definition 4 (The Generalised k Circuit Problem (GKCP)) Given the same input as
Definition 3, the GKCP involves determining a closed s-s-walk C = (u1, u2, . . . , ul)
in G such that the total length (weight) of its edges L(C) = ∑l−1

i=1 w(ui , ui+1) is
equal to k. Furthermore, edges can occur at most once in C except for bridges, which
can occur at most twice. In cases where L(C) = k cannot be achieved, two candidate

1 Recall that a bridge is an edge in a graph that, if removed, will increase its number of components.

123

R. Lewis, P. Corcoran

(a) (b)

Fig. 2 Part a shows an example graph featuring two bridge-connected components. These occur either
side of the bridge {u, v}. Only one s-circuit exists in this graph. Part b shows a solution in which {u, v} is
permitted to be used twice. This allows edges in the rightmost bridge-connected component to also be used

solutions are also required: ¯C , where (k − L(¯C)) > 0 is minimal; and C̄ , where
(L(C̄) − k) > 0 is minimal.

For convenience, the remainder of this paper will continue to use the term “circuit”
when referring to candidate solutions of the GKCP; however, we should be mindful
that they may involve using some edges twice, which does not fit the strict definition
of a circuit. Note also that in cases where G has no bridges and features an s-circuit
of length k the GKCP is equivalent to the k circuit problem given in Definition 3.

In the next section, we survey relevant research for this problem area. In Sect. 3,
we then develop our two main methods for the GKCP: one based on identifying
pairs of edge-disjoint paths, and one based on local search. In Sect. 4 we analyse the
performance of these methods on a wide range of problem instances. Section 5 then
shows how our methods can be adapted to cycles instead of circuits. Finally, Sect. 6
concludes the paper and makes suggestions for future research.

2 Problem analysis and existing work

From a computational perspective, very little work seems to have been conducted
on the problem of finding fixed-length circuits and cycles in edge-weighted graphs.
Various complexity results for related problems are known, however. For unweighted
graphs, the number ofwalks of length k betweenpairs of vertices canbe foundby taking
the binary adjacency matrix of a graph G and raising it to the kth power. Currently,
the best-known algorithms for matrix multiplication operate in O(nω) time, where
ω ≈ 2.37369 is the best-known exponent for the problem (Davie and Stothers 2013).
The overall runtime is, therefore, O(knω), which will be high for large values of k.
Basagni et al. (1997) have also noted that the problem of calculating an s-t-walk of
length k can be solved in polynomial time when using unweighted graphs providing
that k = nO(1); however, for edge-weighted graphs the problem is NP-hard. The
task of calculating s-t-paths of length k in a graph is also known to be NP-hard,
though certain topologies such as trees and directed acyclic graphs can be solved in
polynomial time. The problem of counting the number of s-t-paths in a graph is also
known to be #P-complete. Roberts and Kroese (2007), for example, have found that
random graphs of density d, have approximately

123

Finding fixed-length circuits and cycles in undirected...

n−2∑

i=0

(n − 2)!
i ! · dn−1+(3.32/n)−(5.16/(dn)) (1)

different paths between any two vertices on average.
For circuits and cycles, similar complexity results are known.The task of identifying

a circuit in a graph G is equivalent to the problem of identifying an Eulerian subgraph
in G (recall that an Eulerian graph is a connected graph in which the degrees of all
vertices are even); however, the problem of identifying the longest Eulerian subgraph
in G is known to be NP-hard, both for weighted and unweighted graphs (Skiena
1990). This tells us that the GKCP is alsoNP-hard since it is equivalent to the longest
Eulerian subgraph problem whenever k is set to a sufficiently large value. Similar
reasoning can also be applied to the problem of finding cycles of length k in a graph
due to its relationship with the NP-hard Hamiltonian cycle problem.

In terms of existing methods, Johnson (1975) has proposed an algorithm for enu-
merating all cycles in a directed graph. Each cycle is determined inO(n+m) steps, so
the overall run time isO(c(n +m)), where c is the total number of cycles. It is noted,
however, that the growth rate of c can exceed the exponential 2n , so run times will
be infeasible in most cases. Alon et al. (1995) have also proposed exact methods for
determining length-k paths and cycles in unweighted graphs. For undirected graphs,
their algorithms operate inO(2kn log n) and O(2knω log n) time for paths and cycles
respectively. Contrary to what is required here, these methods return any path/cycle
of length k, as opposed to those containing specific vertices.

One recently suggested exact method for finding s-cycles of length k in edge-
weighted graphs is due to Willems et al. (2018). This operates by first creating a
dummy vertex s′ whose set of neighbouring vertices �(s′) is made equal to that of s.
The task is to then identify an s-s′-path of length k that contains at least three edges. In
the original graph, this path corresponds to a cycle of length k. To determine a suitable
s-s′-path, Willems et al. suggest using the algorithm of Yen (1971). Yen’s algorithm
is designed to determine the K shortest paths between any two given vertices and
operates by finding the shortest path, followed by the second shortest path, the third
shortest path, and so on. In Willems et al.’s case, Yen’s algorithm is run until the first
s-s′-path of length ≥ k is observed. This approach has issues, however.

• First, the complexity ofYens algorithm isO(Kn(m+n log n)), where (m+n log n)

is an asymptotic bound ofDijkstra’s shortest path algorithm (using Fibonacci heaps
Cormen et al. 2009). This means that large values for K lead to long run times. In
this current application, the desired K is not known beforehand, so the algorithm
will be forced to continue iterating until a suitable s-s′-path has been found. For
large values of k, this can lead to serious scaling-up issues, as we will see in
Sect. 4.1.

• Second, as previously noted, graphs corresponding to street maps can contain
bridges and articulation points that need to be used more than once. However, this
method will not allow this to occur. One way of adapting to these circumstances
is to add dummy vertices to the graph to raise its vertex connectivity to two. To do
this, a dummy vertex v′ should be added for each articulation point v in the graph,

123

R. Lewis, P. Corcoran

(a) (b) (c)

Fig. 3 Part a shows an example graph with three articulation points and three bridges. Part b shows the
same graph with dummy vertices added for s and each articulation point. It also shows a valid s-s′-path.
However, Part c shows that this path does not correspond to a valid solution because some non-bridge edges
are used more than once

with �(v′) being set to that of �(v) in all cases. However, these modifications can
still lead to invalid solutions in some cases, as demonstrated in Fig. 3.

A variant of Yen’s algorithm is the O(m + n log n + K) algorithm of Eppstein for
finding the K shortest trails between two vertices in a graph (Eppstein 1998). However,
this is only designed for directed graphs and therefore allows opposing arcs (u, v) and
(v, u) to both occur in a trail. This is not suitable for the GKCP where undirected
non-bridging edges {u, v} can be used at most once.

3 Algorithms for the GKCP

In this section we propose two heuristic algorithms for the GKCP: one based on
generating pairs of edge-disjoint paths and one based on local search.2

As mentioned earlier, although repeated edges are not strictly permitted in circuits,
the GKCP allows for bridging edges to be included twice in a solution. This would be
necessary if we were to try and form a “circuit” containing vertex s in the graph shown
in Fig. 3a, for example. One way of allowing a bridges to be used twice is to modify
the graph so that, for each bridge {u, v}, we create two dummy vertices u′ and v′
together with the edges {u, u′}, {v, v′} and {u′, v′} such that w(u′, v′) = w(u, v) and
w(u, u′) = w(v, v′) = 0; however, in problem instances containing many bridges this
can make the underlying graph much larger. In our case, we therefore use specialised
mechanisms within our heuristics that allow bridges to be used twice, but only when
necessary.

Before executing our algorithms, some preprocessing can also be performed. Given
an edge-weighted graph G = (V , E) together with a source vertex s ∈ V , observe
that any vertex v whose distance is more than k/2 units from s can be removed since,
in such cases, all s-v-circuits will be longer than k. This results in smaller graphs for
lower values of k, helping to shorten run times. This step can be achieved by generating
a single shortest-path tree rooted at s using, for example, Dijkstra’s algorithm.

A second optional preprocessing step is to repeatedly remove any degree-one (leaf)
vertices, not including s itself. In street networks, leaf vertices correspond to dead-
ends and cul-de-sacs, and it might be undesirable for users to be asked to travel up and

2 A less developed version of the first heuristic was previously reported in Lewis (2020). This earlier
version did not contain our current methods for dealing with bridges and was unable to produce circuits
whose lengths exceeded k.

123

Finding fixed-length circuits and cycles in undirected...

down such streets. Removing leaves will therefore eliminate these options, helping to
reduce graph sizes and run times. On the other hand, their removal will also lead to
a smaller solution space and, potentially, less accurate solutions. The implications of
using this second preprocessing step are explored in Sect. 4.2 later.

3.1 Double path heuristic

Our first heuristic constructs solutions by generating a pair of edge-disjoint paths
between the source vertex s and a particular target vertex t . In an undirected graph, the
union of these s-t-paths forms an s-t-circuit. If these paths also happen to be vertex
disjoint, then their union will be an s-t-cycle. The aim is to now identify the vertex
t for which the sum of the lengths of the two generated s-t-paths is as close to k as
possible.

A single path between a pair of vertices can be formed in various ways. One strategy
is to use depth-first search, though this can often produce long meandering paths that,
for this application, could be unattractive to the user. Another alternative is breadth-
first search, which generates paths between vertices containing the minimum number
of edges. Maximum flow methods such as Dinitz’s O(n2m) algorithm (Dinitz 1970)
can also be used to find a maximally-sized set of edge-disjoint s-t-paths. Here, we
choose to focus on using shortest paths between vertices (in terms of the sum of the
edge-weights within the paths), as doing so allows various algorithm speed-ups to be
achieved, as we will see in Sect. 3.1.1.

A naïve method for determining two edge-disjoint paths between s and t is to
produce a single s-t-path, remove this path’s edges from the graph, and then find a
second s-t-path. However, this approach has faults. Figure 4a, for example, shows
a small edge-weighted graph and its corresponding shortest s-t-path. Removing the
edges of this path then disconnects s and t , preventing a second s-t-path from being
formed. Better techniques are therefore needed.

Suurballe (1974) and Bhandari (1999) have previously proposed methods for find-
ing the pair of edge-disjoint s-t paths whose edge-weight sum is minimal. An example
of Bhandari’s method is also given in Fig. 4. As shown, the shortest s-t-path P1 is
first found. In the second step, the graph is then modified by adding directions and
adjusting weights along P1. Specifically, each arc (u, v) in the path travelling from
s to t has its weight modified to B + w(u, v), where B is a large constant such that
B ≥ ∑

{u,v}∈E w(u, v) + 1. The weights of the reverse arcs (v, u) are then also set to
−w(u, v) before calculating the shortest s-t-path P2 in this modified graph. Finally,
the graph is reset, and the two paths are “unwoven” to form the final pair of paths, as
shown in Fig. 4c.

The unweaving process in this algorithm operates using the steps shown in Algo-
rithm 1. The output is an edge multiset C that corresponds to an Eulerian multigraph.
The edges of this multigraph can then be ordered into a circuit using the linear-time
algorithm of Hierholzer (1873). As shown in this algorithm, if an arc (u, v) appears in
P1 and its reverse (v, u) appears in P2, then the edge {u, v} is not included in C . This
is the case with edge {v1, v2} in Fig. 4c. On the other hand, the use of the constant B
in the graph modification process ensures that P1 and P2 are maximally edge-disjoint;

123

R. Lewis, P. Corcoran

(a
)

(b
)

(c
)

Fi
g.
4

Pa
rt
a
sh
ow

s
th
e
sh
or
te
st
s-
t-
pa
th

in
an

ex
am

pl
e
gr
ap
h
G
.P

ar
t
b
sh
ow

s
a
m
od
ifi
ed

ve
rs
io
n
of

G
an
d
th
e
co
rr
es
po

nd
in
g
sh
or
te
st
s-
t-
pa
th
;
Pa
rt
c
sh
ow

s
th
e
re
su
lta
nt

so
lu
tio

n
fo
rm

ed
by

“u
nw

ea
vi
ng

”
th
e
tw
o
pa
th
s

123

Finding fixed-length circuits and cycles in undirected...

consequently, an edge {u, v} will occur twice in C if and only if it is a bridge relative
to s and t in the original graph (Bhandari 1999). This is the case with {v5, t} in Fig. 4c.

Algorithm 1 Unweaving Procedure
1: Let C be an empty multiset. For all arcs (u, v) in P1, add (u, v) to C .
2: For all arcs (u, v) in P2, if (v, u) ∈ C then remove (v, u) from C , else add (u, v) to C .
3: Replace each arc (u, v) in C with an undirected edge {u, v}.

Algorithm 2 Double Path Heuristic
1: Given an edge-weighted graph G = (V , E), let T = (V − {s}) be the set of target vertices to check and

let S be a shortest-path tree of G rooted at s. In addition, set the lower bound LB = −∞ and the upper
bound UB = ∞.

2: Select and remove a target vertex t ∈ T and use S to determine the shortest s-t-path in G. Now use the
methods of Bhandari to generate the shortest s-t-circuit C .

3: If LB < L(C) ≤ k, then set ¯C = C and LB = L(¯C). If k ≤ L(C) < UB, then set C̄ = C and
UB = L(C̄).

4: If UB = LB or T = ∅ then return ¯C and C̄ ; else go to Step 2.

Having reviewed the methods for producing an s-t-circuit, the overall double path
heuristic is given inAlgorithm 2.As shown, the idea is to take each vertex t ∈ (V−{s})
in turn and generate the shortest possible s-t-circuit. The best-observed solutions, ¯Cand C̄ , are then returned. In terms of complexity, the main expense occurs in Step 2
which, in the worst case, is executed n − 1 times. This step involves modifying the
graph (an O(n) operation), determining the second s-t-path P2 and then unweaving.
Note that Dijkstra’s algorithm is not suitable for computing P2 because it cannot cope
with graphs featuring negatively weighted edges. We, therefore, need to turn to more
expensive alternatives such as the algorithms of Moore (1959) or Bellman and Ford
(Cormen et al. 2009), which both feature a complexity of O(nm). This makes the
overall complexity of the double-path heuristicO(n2m), though we can consider this
bound to be quite conservative because (a) the bounds of Bellman-Ford and Moore’s
algorithms are themselves known to be rather conservative (Sedgewick and Wayne
2011), and (b) further augmentations can be made to the algorithm that will shorten
run times, as we now discuss.

3.1.1 Vertex filtering and heuristic selection

Run times of the double path heuristic can be shortened in two ways: first, by using
information collected during a run to filter out members of T that cannot improve
solution quality; second, by strategically selecting members of T that are more likely
result in high-quality solutions being found earlier in a run. For the first point, consider
the following theorem.

Theorem 1 Let G = (V , E) be an edge-weighted graph with no negative weights. In
addition, let P1 be the shortest s-t-path in G, and let C be the shortest s-t-circuit,
determined using the methods of Bhandari (1999)).

123

R. Lewis, P. Corcoran

(i) If u ∈ C, then the shortest s-u-circuit in G has a length of at most L(C).
(ii) If u is a descendant of t in the shortest-path tree rooted at s, then the length of

any s-u-circuit in G is equal to or exceeds L(C).

Proof Part (i) is trivial. If u ∈ C , then C also defines an s-u-circuit; hence an s-
u-circuit of length L(C) is known to exist. To prove Part (ii), let P2 be the shortest
t-u-path inG. The shortest s-u-path therefore has length L(P1)+L(P2), where L(P2)
is nonnegative. In addition, using the methods of Bhandari let P ′

1 and P ′
2 be the second

paths generated from s to t and s to u respectively. We now need to show that L(C) =
L(P1)+ L(P ′

1) ≤ L(P1)+ L(P2)+ L(P ′
2) or, equivalently, L(P ′

1) ≤ L(P2)+ L(P ′
2).

To do this, assume the contrary, giving L(P ′
1) > L(P2)+L(P ′

2). This now implies that
the shortest s-t-circuit has length L(P1) + L(P2) + L(P ′

2), which is a contradiction.

�

Theorem 1 implies that we can filter out members of T through the application of
the following two rules. These should be applied between Steps 3 and 4 of the double
path heuristic given in Algorithm 2. (Recall that, at this point in the algorithm, C is
the shortest s-t-circuit in G).

1. If L(C) ≤ k, then remove all vertices u ∈ C from T . (All s-u-circuits will be equal
or inferior in quality compared to C .)

2. If L(C) ≥ k, then remove from T any descendants u of t in the shortest-path tree
rooted at s. (The lengths of each s-u-circuit in G will equal or exceed L(C).)

Instead of removing just one vertex from T in each iteration of the algorithm, these
rules allow the removal of several vertices, thereby speeding up the algorithm while
not compromising the quality of the solution produced.

A second strategy for improving the performance of the double path heuristic is to
modify Step 2 of Algorithm 2 so that t is chosen according to some selection rule.
We suggest three strategies here: furthest-first, where the vertex t ∈ T furthest from
the source s is selected; closest-first, where the t ∈ T closest to s is selected; and
the original random selection. Note that when using the furthest-first rule, the second
filtering rule above will never be applied because descendants of the selected vertex t
will already have been removed from T in previous iterations.

3.2 Local search heuristic

Our second algorithm for the GKCP is based on local search. Local search is a general-
purpose methodology that seeks to identify high-quality solutions within a space of
candidate solutions. It operates by moving from solution to solution within this space
using a neighbourhood operator that makes small alterations to the current solution.
This continues until a time limit is reached or until a solution of sufficient quality
is found. Because the methods considered in this paper are intended to be fast, here
our local search algorithm only accepts alterations that improve a solution. It also
halts as soon as local optima are identified. While it would be simple to extend these
methods to use metaheuristic frameworks such as simulated annealing or tabu search,
this would also involve longer run times. Methods for forming initial solutions for this
local search heuristic are discussed in Sects. 4.3 and 4.4.

123

Finding fixed-length circuits and cycles in undirected...

To define a suitable neighbourhood operator for this problem, let C = (s =
u1, u2, . . . , ul = s) be a candidate solution, written as a sequence of vertices. The
edges of C are therefore defined by the multiset {{ui , ui+1} : i ∈ {1, 2, . . . , l − 1}}.
Recall that individual vertices can occur multiple times in C ; on the other hand, edges
of G can occur only once in the edge multiset except in cases where the edge is a
bridge, in which case it can occur up to two times. The circuit shown in Fig. 4c, for
example, is written as C = (s, v1, v4, v5, t, v5, v2, v3, s) and has the edge multiset
{{s, v1}, {v1, v4}, {v4, v5}, {v5, t}, {t, v5}, {v5, v2}, {v2, v3}, {v3, s}}.

An intuitive neighbourhood operator for this problem is to select two vertices
ui , u j ∈ C , remove the current ui -u j -path in C , and replace it with a new ui -u j -
path. If using shortest paths, the determination of a new path can be achieved in
O(m + n log n) time via Dijkstra’s algorithm. Here, we use an extension of this oper-
ator that features the same asymptotic complexity. The idea is to take a single vertex
ui ∈ C and produce a shortest-path tree (rooted at ui) to all other vertices in C but
without using any of the edges in C . The best option among these different shortest
paths is then selected.

Recall that for this problem we maintain two solutions, ¯C and C̄ , representing the
best-observed solutions either side of the target k. The aim is to therefore increase the
length of ¯C and decrease the length of C̄ while ensuring that L(¯C) ≤ k ≤ L(C̄). Our
strategy is to run a local search procedure that alternates between these two tasks.

Algorithm 3 Local Search Iteration (Ascending)
1: Let G′ be a copy of G with the edges of ¯C removed. Also, let best = L(¯C).
2: Choose a vertex ui ∈ ¯C , and compute a shortest-path tree S in G′ rooted at ui .
3: For j ∈ ({1, . . . , l} − {i}) do:

a: Let C be the circuit formed by replacing the ui -u j -path in ¯C with the ui -u j -path in S.
b: If best < L(C) ≤ k then set i ′ = i , j ′ = j and best = L(C).
c: If k ≤ L(C) < L(C̄) then set C̄ = C . (An improvement to C̄ has been made.)

4: If best > L(¯C) then replace the ui ′ -u j ′ -path in ¯C with the ui ′ -u j ′ -path in S. (An improvement to ¯C has
been made.)

A single iteration of (ascending) local search using ¯C is described by the pseudocode
in Algorithm 3. As shown, this procedure seeks to lengthen ¯C by replacing a section
of it with a different path. It does this by performing the best move among the l − 1
different options given by the shortest-path tree S. If, during this process, a new solution
C is observed that happens to be superior to C̄ , then C̄ is also replaced, as described
in Step 3c.

A single round of (ascending) local search is achieved by applying Algorithm 3
repeatedly until improvements are not available from any of the vertices ui ∈ ¯C . A
similar (descending) local search is then carried out on C̄ . This is achieved in the
same way except that occurrences of ¯C and C̄ in the pseudocode are swapped, and the
inequalities are reversed. These alternating phases of ascent and descent are repeated
until neither solution is seen to improve, or until L(¯C) = L(C̄) = k.

Note that when applying the above neighbourhood operator, if ui ′ and u j ′ refer
to the same vertex in G, then a subcircuit of the circuit will be deleted. Similarly,

123

R. Lewis, P. Corcoran

(a) (b) (c)

Fig. 5 Part a shows an example solution on a small graph. Part b shows how an additional subcircuit can be
formed in this solution by using a different u-v-path. Part c shows how our second neighbourhood operator
is able to form a new subcircuit to the right of the articulation point u by considering the graph induced by
V ′

applications of this neighbourhood operator can also introduce additional subcircuits,
as demonstrated in Fig. 5a and b. On the other hand, there are also situations in which a
solution will need to be lengthened through the addition of a subcircuit, but where this
is not possible with the current operator due to the presence of articulation points in the
graph. In Fig. 5a, for example, we see that the edges to the right of the articulation point
u will never be added to the solution by this neighbourhood operator. An additional
operator is therefore required.

Because it can only increase the length of a circuit, our second neighbourhood
operator is applied to ¯C only. It operates by selecting a vertex ui ∈ ¯C that is an
articulation point in G. It then seeks to construct a ui -circuit in the subgraph induced
by the set V ′, where V ′ contains ui plus all of the vertices that would be separated
from ¯C if ui were to be removed from G. The task of forming an appropriate-length
ui -circuit in the graph induced by V ′ is, of course, a new (smaller) instance of the
GKCP in which the target length is k − L(¯C). In our case, we therefore apply the
double path heuristic on this subgraph, before splicing the resultant circuit into ¯C . An
example is provided in Fig. 5c.

Overall, our local searchmethod operates by alternating between periods of ascend-
ing local search and descending local search as described above. Once neither of these
is able to improve ¯C and C̄ , the second neighbourhood operator is applied. Here, this
is achieved by examining each articulation point in ¯C in random order. If an improv-
ing move is found, this is then applied, and the algorithm returns to performing the
alternating periods of local search. Otherwise, the process terminates, with ¯C and C̄
giving the final solutions of the algorithm.

4 Experimental analysis

In this section we analyse and compare the performance of our double path and local
search heuristics. We also examine the scaling-up issues surrounding the use of Yen’s
algorithm, as described in Sect. 2. Our heuristics were implemented in C++, while
Yen’s algorithmwas implemented in Java using publicly available code (Smock 2017).
In all cases, graphs were stored using adjacency lists, and priority queues were used in
conjunction with Dijkstra’s algorithm. All trials were executed on 3.2 GHtz Windows
7 machines with 8 GB RAM. Source code and a full set of our results are available
online at Lewis (2021). Additional charts, tables and usage instructions are also given
in this paper’s companion manuscript, available at Lewis and Cocoran (2021).

123

Finding fixed-length circuits and cycles in undirected...

As noted in Sect. 3.1, the complexity of the double path heuristic is O(n2m) due
to the (maximum of) n − 1 applications of an O(nm) shortest path algorithm. In
practice, however, we found that better run times could be achieved by replacing these
shortest path algorithmswith a version of Dijkstra’s algorithm that is suitablymodified
to cope with negatively weighted edges. This algorithm operates by taking a graph
G = (V , E), a source vertex s, and a target vertex t . It then follows the steps given in
Algorithm 4. In this pseudocode L(v) is used to denote the length of the path between
the source s and a vertex v, and P(v) gives the vertex that precedes v in the shortest
s-v-path. The method also halts as soon as the shortest s-t-path has been established.
This modified version of Dijkstra’s algorithm differs from the original in that vertices
can be inserted and removed from the set X more than once; however, this also brings
run times that are exponential in the worst case (Sedgewick and Wayne 2011). As an
alternative, Bhandari (1999) has suggested a modified version of Moore’s algorithm
that halts as soon as the shortest s-t-path is identified. This features the more desirable
complexity of O(nm). Despite this, in our experimentation, we still found that the
modified Dijkstra’s algorithm generally gave shorter run times. It is therefore used in
all applications of the double path heuristic unless specified otherwise.

Algorithm 4Modified Dijkstra’s Algorithm
1: For all v ∈ V , set L(v) = ∞. Now let X = ∅ be the set of visited vertices, and let L(s) = 0.
2: Choose a vertex u ∈ V such that (a) u /∈ X , (b) L(u) < ∞, and (c) L(u) is minimal among the available

options. If no such vertex exists, or if u = t then exit; otherwise, add u to X and go to Step 3.
3: For all neighbouring vertices v of u, if L(u) + w(u, v) < L(v) then: (a) set L(v) = L(u) + w(u, v),

(b) set P(v) = u, and (c) remove v from X if present. Now return to Step 2.

As previously noted, in this paper wewant to focus on graphs resembling real-world
networks of roads and footpaths. However, to help analyse algorithmic behaviour, we
also want to be able to alter their edge densities. We therefore started by looking at the
central districts of five large cities, namely Amsterdam, Kolkata, London, Melbourne
and New York. These were found to have approximately 400 vertices (intersections)
per square km. We then generated a set of planar graphs that emulated these features.
Recall that planar graphs are those that can be drawn on a plane so that no edges cross.
In that sense, like road networks, they are quite sparse. Note that when roads and paths
physically intersect on land, there will often be an opportunity to transfer from one to
the other; hence, the underlying graph will be planar. However, this is not always the
case, such as when one road crosses another via a road bridge, so the analogy is not
exact.

To generate a planar graph, we started by taking a 10×10 km square and placing
40,000 vertices within it at random coordinates. A Delaunay triangulation was then
generated from these vertices, and a subset of its edges was randomly selected to
form a connected planar graph. Edge weights were then set to the Euclidean distances
between endpoints, rounded to the nearest meter. To allow circuits in any direction,
the source vertex was also placed at the centre of the square. For our experiments, we
considered three types of planar graphs: sparse, medium, and dense, featuring 50,000,

123

R. Lewis, P. Corcoran

Table 1 Features of the real-world street networks used in our tests (ordered by density)

City Num. Vertices n Num. Edges m Density

London 70,315 92,794 0.000038

Melbourne 39,066 57,787 0.000076

Amsterdam 35,543 49,247 0.000078

New York 37,740 62,237 0.000087

Kolkata 28,667 38,222 0.000093

Fig. 6 12×12 km street networks of central London (left) and central Kolkata (right)

75,000 and 100,000 edges respectively. Twenty such graphs were generated in each
case.

In addition to these planar graphs, we also tested our algorithms on the actual street
networks of the above five cities. These were generated using the OSMnx library
(Boeing 2017) using a 12×12 km bounding square positioned over the city centres.
Our algorithms were then tested using source vertices within the central square km of
these networks. Details and visualisations of these networks are shown in Table 1 and
Fig. 6.

Finally, we also considered random graphs. These were generated by taking an
empty graph on n vertices and then adding �d(n

2

) randomly selected edges, where d
is the desired density. The weight of each edge was set to a randomly selected value
from the set {0, 1, . . . , 10000}.

4.1 Performance of Yen’s algorithm

Ourfirst set of experiments examines the implications of using the approach ofWillems
et al. (2018) with our planar graphs. The bars in Fig. 7 show how, due to the preprocess-
ing step described at the start of Sect. 3, the number of vertices in the resultant graphs
increases for larger values of k. For the sparse graphs, we also see that significant

123

Finding fixed-length circuits and cycles in undirected...

 0

 20

 40

 60

 80

 100

 120

 140

 100 200 300 400 500 600 700
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800
n

C
PU

 T
im

e
(s

ec
)

k

Dummy vertices
Other vertices

CPU Time

 0

 20

 40

 60

 80

 100

 120

 140

 100 200 300 400 500 600 700
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

n

C
PU

 T
im

e
(s

ec
)

k

Dummy vertices
Other vertices

CPU Time

 0

 20

 40

 60

 80

 100

 120

 140

 100 200 300 400 500 600 700
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

n

C
PU

 T
im

e
(s

ec
)

k

Dummy vertices
Other vertices

CPU Time

Fig. 7 Graph sizes and execution times of Yen’s algorithm for various values of k using, respectively, sparse,
medium and dense planar graphs. Each point in the charts is the mean across twenty problem instances

numbers of dummy vertices need to be added to eliminate bridges and articulation
points.

For values of k up to around 500meters, we see that the execution ofYen’s algorithm
is quite fast; however, beyond these values, the required run times increase rapidly due
to the very large numbers of paths that need to be produced. Indeed for k > 700meters,
solutions were never found within our imposed 30-minute time limit, suggesting that
this method is unsuitable for practical-sized problems.

4.2 Double path heuristic performance

We now assess the performance of the double path heuristic on our planar and real-
world graphs. Figure 8 shows the accuracy of the heuristic on planar graphs in two
ways: the gap in quality between the two returned solutions ¯C and C̄ ; and the success
rate, calculated as the proportion of runs where solutions of length k are found.

For larger values of k we see that solution lengths are closer to the target. This is
because the corresponding graphs are larger,meaning thatmore solutions are generated
for the double path heuristic to choose between. For similar reasons, accuracy also
seems to increase slightly with the denser graphs because the additional edges result
in a greater number of vertices being within k/2 meters of the source.

On the other hand, increases in k (and therefore graph size) also give lengthier runs.
In Fig. 9 we show the execution times corresponding to the results of Fig. 8. Here,
five variants of the double path heuristic are presented: each of the three heuristics

123

R. Lewis, P. Corcoran

−15

−10

−5

 0

 5

 10

 15

 2000 4000 6000 8000 10000
 0

 0.2

 0.4

 0.6

 0.8

 1
G

ap
 (m

et
er

s)

Su
cc

es
s

R
at

e

k

Gap (meters)
Success Rate

−15

−10

−5

 0

 5

 10

 15

 2000 4000 6000 8000 10000
 0

 0.2

 0.4

 0.6

 0.8

 1

G
ap

 (m
et

er
s)

Su
cc

es
s

R
at

e

k

Gap (meters)
Success Rate

−15

−10

−5

 0

 5

 10

 15

 2000 4000 6000 8000 10000
 0

 0.2

 0.4

 0.6

 0.8

 1

G
ap

 (m
et

er
s)

Su
cc

es
s

R
at

e

k

Gap (meters)
Success Rate

Fig. 8 The shaded areas show the gap (in meters) between the two solutions returned by the double path
heuristic for differing values of k. The lines show the corresponding success rates. Each point is the mean
across twenty problem instances for, respectively, sparse, medium, and dense planar graphs

given in Sect. 3.1.1; one using random selection with no vertex filtering; and one using
random selection, no filtering, andBhandari’sO(nm) adaptation ofMoore’s algorithm
for calculating the second shortest path P2 (Bhandari 1999). To reduce noise in these
timings, note that we also executed the double path heuristic until T = ∅ in all cases.
That is, the algorithm did not halt early if a solution of length k was achieved.

Figure 9demonstrates that the use of vertexfiltering shortens run times.Thequickest
runs occur when this is used in conjunction with furthest-first and, for sparse graphs,
random selection. With the furthest-first rule, short run times occur because, in the
early stages of runs, it tends to produce circuits with many vertices. This allows larger
numbers of elements to be removed from T . On the other hand, the closest-first rule
is the least favourable because, in early iterations, the solutions it produces are too
short and contain few vertices; consequently, less filtering takes place. The results also
suggest that the modified version of Dijkstra’s algorithm gives better run times than
Moore’s algorithm, despite its exponential worst-case complexity.

The differences between these five variants of the double path heuristic are more
obvious in Fig. 10, where we show the times at which the best-observed solutions
were found. (In many cases, these gaps were of size zero, and would therefore result
in early termination.) This further demonstrates the superiority of using vertex filtering
in conjunction with the furthest-first rule, where mean run times have fallen to less
than ten seconds in all cases.

Table 2 shows the performance of the double path heuristic (using vertex filtering
and the furthest-first rule) with our five chosen cities. Here, CPU times again indicate

123

Finding fixed-length circuits and cycles in undirected...

 0

 50

 100

 150

 200

 0 2000 4000 6000 8000 10000

C
PU

 T
im

e
(s

)

k

Furthest First
Closest First

Random
Random, no filtering

Random, no filtering, w/ Moore’s

 0

 50

 100

 150

 200

 0 2000 4000 6000 8000 10000

C
PU

 T
im

e
(s

)

k

Furthest First
Closest First

Random
Random, no filtering

Random, no filtering, w/ Moore’s

 0

 50

 100

 150

 200

 0 2000 4000 6000 8000 10000

C
PU

 T
im

e
(s

)

k

Furthest First
Closest First

Random
Random, no filtering

Random, no filtering, w/ Moore’s

Fig. 9 Mean run times for differing variants of the double path heuristic using various values of k for
(respectively) sparse, medium, and dense planar graphs. All points are the mean across twenty problem
instances

entire runs; however, we note thatwhen solutions of length k were achieved, this tended
to occur in the early stages, so run timeswill bemuch shorter in these cases. The results
show that the solutions returned by the double path heuristic are consistently within
just a few meters of the target k. Patterns consistent with the previous figures are also
evident, with accuracy generally increasing with denser graphs and larger values for
k. Higher values of k and higher network densities also result in longer run times, with
London being the most notable example.

Table 2 also shows that run times with these instances can be approximately halved
by using the additional preprocessing step of removing leaf vertices (as discussed at
the start of Sect. 3). However, the removal of these vertices also results in fewer can-
didate solutions being considered by the algorithm. This brings slightly less accurate
solutions, as shown.

4.3 Local search heuristic performance

In this section, we compare the performance of the double path and local search
heuristics. In all cases, the double path heuristic variant used vertex filtering together
with the furthest-first selection rule.

Three different variants of the local search heuristic are considered here. The first
takes as an initial solution the best solution returned by the double path heuristic. The
second uses the s-t-circuit generated by Bhandari’s method, where t is the vertex in

123

R. Lewis, P. Corcoran

 0

 10

 20

 30

 40

 50

 0 2000 4000 6000 8000 10000

C
PU

 T
im

e
(s

)

k

Furthest First
Closest First

Random
Random, no filtering

Random, no filtering, w/ Moore’s

 0

 10

 20

 30

 40

 50

 0 2000 4000 6000 8000 10000

C
PU

 T
im

e
(s

)

k

Furthest First
Closest First

Random
Random, no filtering

Random, no filtering, w/ Moore’s

 0

 10

 20

 30

 40

 50

 0 2000 4000 6000 8000 10000

C
PU

 T
im

e
(s

)

k

Furthest First
Closest First

Random
Random, no filtering

Random, no filtering, w/ Moore’s

Fig. 10 Times at which the best gap was achieved for differing variants of the double path heuristic. Other
experimental details are the same as those in Fig. 9

G whose distance from the source s is closest to but not exceeding k/2. The final
method is identical to the previous except that, instead of generating a shortest-path
tree in each iteration of the local search procedure, a breadth-first search (BFS) tree
is used instead. Note that BFS trees are generated in O(n + m) time as opposed to
the O(m + n log n) time required by Dijkstra’s algorithm. On the other hand, paths
generated by BFS do not consider the weights of edges; instead, they simply minimise
the number of edges in the paths. The changes in length caused by applications of the
BFS neighbourhood operator therefore tend to vary more widely.

Figure 11 demonstrates the accuracy of these four algorithms on planar graphs. For
all values of k we see that the addition of local search to the double path heuristic
brings the best solutions on average; hence, local search is consistently able to make
improvements on the solutions returned by this heuristic. The solutions returned by the
other two variants of the local search heuristic are also mostly superior to the double
path heuristic, the exception being for small values of k with sparse planar graphs.

The execution times of these runs are given in Fig. 12. In these cases, runs of the
double path heuristic were permitted to halt if a solution of length k was generated.
This allows more meaningful comparisons with the local search variants and brings
slightly shorter run times than those seen in Fig. 9. We see that, despite providing
much better solutions, the addition of local search to the double path heuristic brings
a negligible increase in time. That said, it is also obvious that the other two variants
of local search are much faster, with average run times taking less than one second,
even for the largest graphs.

123

Finding fixed-length circuits and cycles in undirected...

Ta
bl
e
2

A
cc
ur
ac
y
an
d
sp
ee
d
of

th
e
do
ub
le
pa
th

he
ur
is
tic

on
fiv

e
ci
tie
s.
E
ac
h
fig

ur
e
is
a
m
ea
n
ac
ro
ss

50
ru
ns

us
in
g
ra
nd
om

ly
se
le
ct
ed

so
ur
ce

ve
rt
ic
es

w
ith

in
1
km

of
th
e
ci
ty

ce
nt
re
.C

PU
tim

es
(i
n
se
co
nd
s)
ar
e
st
at
ed

as
th
e
m
ea
n
ac
ro
ss

50
ru
ns
,p

lu
s/
m
in
us

th
e
st
an
da
rd

de
vi
at
io
n

C
ity

k
=

10
00

k
=

50
00

k
=

10
,
00

0

L
B

−
k

U
B

−
k

C
PU

T
im

e
(s
)

L
B

−
k

U
B

−
k

C
PU

T
im

e
(s
)

L
B

−
k

U
B

−
k

C
PU

T
im

e
(s
)

L
on

do
n

−1
.2

1.
8

0.
04
6

±
0.
01

6
−0

.1
0.
1

11
.8
35

±
0.
86

7
0.
0

0.
0

19
3.
48

4
±

9.
51

1

M
el
bo

ur
ne

−1
.4

2.
1

0.
03
1

±
0.
01

6
−0

.1
0.
1

8.
28
5

±
1.
59

1
−0

.2
0.
2

63
.8
00

±
7.
23

6

A
m
st
er
da
m

−3
.1

3.
0

0.
01
0

±
0.
00

3
−0

.7
0.
9

1.
99
7

±
0.
26

4
−0

.4
0.
4

21
.6
82

±
2.
00

9

N
ew

Y
or
k

−5
.7

4.
9

0.
00
4

±
0.
00

1
−0

.4
0.
5

2.
11
6

±
0.
25

3
−0

.2
0.
2

25
.9
34

±
2.
09

9

K
ol
ka
ta

−6
.1

9.
2

0.
00
2

±
0.
00

1
−1

.3
1.
0

0.
97
6

±
0.
17

6
−0

.5
0.
5

13
.0
38

±
1.
38

8

(R
em

ov
e
de
gr
ee
-1

ve
rt
ic
es
)

L
on

do
n

−2
.2

3.
8

0.
02
2

±
0.
00

8
−0

.7
0.
6

3.
51
8

±
0.
32

4
−0

.3
0.
3

48
.2
19

±
3.
42

5

M
el
bo

ur
ne

−3
.4

4.
9

0.
01
4

±
0.
00

8
−0

.3
0.
3

3.
56
4

±
1.
37

6
−0

.4
0.
4

22
.9
35

±
5.
21

5

A
m
st
er
da
m

−5
.7

5.
3

0.
00
6

±
0.
00

2
−1

.1
1.
2

0.
89
3

±
0.
13

2
−0

.6
0.
8

7.
92
4

±
0.
79

1

N
ew

Y
or
k

−9
.7

8.
4

0.
00
3

±
0.
00

1
−0

.4
0.
7

1.
08
9

±
0.
19

3
−0

.3
0.
3

13
.9
83

±
1.
53

4

K
ol
ka
ta

−1
3.
9

14
.3

0.
00

1
±

0.
00

1
−1

.8
1.
8

0.
48
5

±
0.
10

7
−1

.3
1.
2

4.
60
4

±
0.
62

2

123

R. Lewis, P. Corcoran

 0

 1

 2

 3

 4

 5

 0 2000 4000 6000 8000 10000

G
ap

 (U
B

−
LB

)

k

Double−path
Double−path + LS

Furthest + LS
Furthest + LS (BFS)

 0

 1

 2

 3

 4

 5

 0 2000 4000 6000 8000 10000

G
ap

 (U
B

−
LB

)

k

Double−path
Double−path + LS

Furthest + LS
Furthest + LS (BFS)

 0

 1

 2

 3

 4

 5

 0 2000 4000 6000 8000 10000

G
ap

 (U
B

−
LB

)

k

Double−path
Double−path + LS

Furthest + LS
Furthest + LS (BFS)

Fig. 11 Accuracy of the double path and three local search heuristics for differing values of k using
(respectively) sparse,medium, anddenseplanar graphs.All points are themean across 100problem instances

 0

 1

 2

 3

 4

 5

 0 2000 4000 6000 8000 10000

C
PU

 T
im

e
(s

)

k

Double−path
Double−path + LS

Furthest + LS
Furthest + LS (BFS)

 0

 1

 2

 3

 4

 5

 0 2000 4000 6000 8000 10000

C
PU

 T
im

e
(s

)

k

Double−path
Double−path + LS

Furthest + LS
Furthest + LS (BFS)

 0

 1

 2

 3

 4

 5

 0 2000 4000 6000 8000 10000

C
PU

 T
im

e
(s

)

k

Double−path
Double−path + LS

Furthest + LS
Furthest + LS (BFS)

Fig. 12 Execution times of the trials given in Fig. 11 for (respectively) sparse, medium, and dense problem
instances

123

Finding fixed-length circuits and cycles in undirected...

Similar patterns can also be seen with the real-world street networks, as shown
in Table 3. Here, the accuracy of the results are better than those of the double path
heuristic seen earlier in Table 2. The run times of the latter two local search variants
are also superior to the first, though for small values of k, its results are marginally
less accurate.

4.4 Random graphs

We now consider random graphs. Although these seem to have fewer practical appli-
cations than our previous graphs, they are useful for stress testing our algorithms.
Equation (1) seen earlier characterises the number of paths between pairs of ver-
tices in random graphs. In our case, the (uniformly distributed) random assignment of
weights to these edges means that, in all but the sparsest of graphs, very short paths
are likely to exist between all pairs of vertices. This means that vertices are nearly
always within k/2 units from the source, rendering the associated preprocessing step
redundant. For larger values of k this also makes our double path heuristic unsuitable,
because the circuits it produces are much too short. We therefore only consider the
local search heuristic here.

In our trials, initial solutions were produced by selecting a random vertex t ∈
(V − {s}) and then forming an s-t-circuit using Bhandari’s methods. Because this
uses shortest paths, these are usually too short and need to be lengthened by the local
search procedure. In initial tests, we found that, when using shortest-path trees with
our first neighbourhood operator, this lengthening took considerable time because
each accepted move would only increase the length of the circuit by a small amount,
meaning that long series ofmoveswere required to gain high-quality solutions.Abetter
alternative is to therefore use BFS trees with this neighbourhood operator because the
proposed changes in solution length are subject to fluctuate more widely, meaning
fewer changes will be needed overall.

Figure 13 shows the accuracy of solutions using random graphs with 2000 vertices,
densities ranging from0.0 to 1.0, and values of k up to 100,000. Two algorithm variants
are considered: one that uses BFS with the local search heuristic as described, and
one that also applies a second stage of local search using shortest-path trees once the
BFS stage has reached a local optimum. The rationale for using this second stage is
that it will make the final refinements to solutions using an operator that brings small
changes in length. A selection of these results are also tabulated in Table 4, and the
corresponding execution times are shown in Fig. 14.

Figure 13 shows that this refinement stage does indeed improve the quality of the
solutions produced, though this comes at the expense of slightly longer run times. We
also see that lengthier runs occur with high values of k and high densities. This is
because higher k’s require more steps of local search, and because the larger number
of edges in these graphs increases the run times of BFS and Dijkstra’s algorithm. That
said, all mean times reported in these figures are less than ten seconds.

123

R. Lewis, P. Corcoran

Ta
bl
e
3

A
cc
ur
ac
y
an
d
sp
ee
d
of

th
e
L
S
he
ur
is
tic

on
fiv

e
ci
tie
s.
E
ac
h
fig

ur
e
is
a
m
ea
n
ac
ro
ss

50
ru
ns

us
in
g
a
ra
nd
om

ly
se
le
ct
ed

so
ur
ce

ve
rt
ex

w
ith

in
1
km

of
th
e
ci
ty

ce
nt
re
.

C
PU

tim
es

(i
n
se
co
nd
s)
ar
e
st
at
ed

as
th
e
m
ea
n
ac
ro
ss

50
ru
ns
,p

lu
s/
m
in
us

th
e
st
an
da
rd

de
vi
at
io
n

C
ity

k
=

10
00

k
=

50
00

k
=

10
,
00

0

L
B

U
B

C
PU

T
im

e
(s
)

L
B

U
B

C
PU

T
im

e
(s
)

L
B

U
B

C
PU

T
im

e
(s
)

D
ou
bl
e
Pa

th
+
L
S

L
on

do
n

−0
.4

1.
0

0.
03
4

±
0.
02

0
0.
0

0.
0

2.
94

7
±

3.
07

1
0.
0

0.
0

23
.7
95

±
12

.6
16

M
el
bo

ur
ne

−0
.7

0.
6

0.
01
4

±
0.
01

6
0.
0

0.
0

2.
08

0
±

2.
58

6
0.
0

0.
0

13
.2
34

±
20

.0
40

A
m
st
er
da
m

−0
.8

0.
7

0.
01
0

±
0.
00

5
0.
0

0.
0

0.
98

3
±

0.
76

3
0.
0

0.
0

8.
91

3
±

8.
03

1

N
ew

Y
or
k

−2
.1

1.
5

0.
00
5

±
0.
00

3
0.
0

0.
0

0.
83

0
±

0.
86

2
0.
0

0.
0

7.
70

8
±

8.
42

5

K
ol
ka
ta

−4
.3

4.
6

0.
00
3

±
0.
00

1
−0

.2
0.
2

0.
62
2

±
0.
42

9
0.
0

0.
0

6.
20

9
±

5.
44

8

F
ur
th
es
t+

L
S

L
on

do
n

−0
.8

0.
5

0.
01
0

±
0.
00

7
0.
0

0.
0

0.
15

0
±

0.
16

9
0.
0

0.
0

0.
64

1
±

1.
00

4

M
el
bo

ur
ne

−0
.9

2.
4

0.
00
6

±
0.
00

5
0.
0

0.
0

0.
12

9
±

0.
13

0
0.
0

0.
0

0.
67

6
±

1.
01

5

A
m
st
er
da
m

−1
.2

1.
3

0.
00
4

±
0.
00

2
0.
0

0.
0

0.
07

1
±

0.
07

4
0.
0

0.
0

0.
21

7
±

0.
21

2

N
ew

-Y
or
k

−8
.6

2.
3

0.
00
3

±
0.
00

2
0.
0

0.
0

0.
06

1
±

0.
06

3
0.
0

0.
0

0.
14

6
±

0.
11

3

K
ol
ka
ta

−1
6.
1

11
.6

0.
00

2
±

0.
00

1
−0

.1
0.
1

0.
06
0

±
0.
05

8
−0

.1
0.
1

0.
24
6

±
0.
24

8

F
ur
th
es
t+

L
S
us
in
g
B
F
S

L
on

do
n

− 0
.9

0.
5

0.
00
4

±
0.
00

3
0.
0

0.
0

0.
05

3
±

0.
04

6
0.
0

0.
0

0.
25

4
±

0.
23

4

M
el
bo

ur
ne

−0
.7

2.
0

0.
00
3

±
0.
00

2
0.
0

0.
0

0.
04

4
±

0.
04

1
0.
0

0.
0

0.
23

5
±

0.
32

4

A
m
st
er
da
m

−1
.9

1.
1

0.
00
2

±
0.
00

1
0.
0

0.
0

0.
02

3
±

0.
01

7
0.
0

0.
0

0.
08

4
±

0.
09

2

N
ew

-Y
or
k

−5
.2

2.
7

0.
00
2

±
0.
00

1
0.
0

0.
0

0.
02

2
±

0.
01

9
0.
0

0.
0

0.
07

6
±

0.
04

8

K
ol
ka
ta

−1
5.
4

13
.5

0.
00

1
±

0.
00

1
−0

.2
0.
2

0.
02
3

±
0.
02

0
−0

.1
0.
1

0.
08
8

±
0.
07

4

123

Finding fixed-length circuits and cycles in undirected...

 50000
 100000

 0.25
 0.5

 0.75
 1

 0
 200
 400
 600
 800

 1000

k Density

G
ap

 (m
et

er
s)

 50000
 100000

 0.25
 0.5

 0.75
 1

 0
 200
 400
 600
 800

 1000

k Density

G
ap

 (m
et

er
s)

Fig. 13 Accuracy of the local search algorithms using random graphs of varying densities and different
values of k. Accuracy is measured using the difference between the lower and upper bound, averaged across
20 instances. The first chart shows the local search algorithm based on BFS; the second shows the algorithm
augmented with a second step of local search using shortest paths

Table 4 Selection of the results shown in Fig. 13. The left half of the table shows the local search algorithm
based on BFS; the right shows the algorithm augmented with a second step of local search using shortest
paths

k Local Search (BFS) Local Search (BFS + SP)

d = 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

1000 974.35 725.90 526.00 540.40 4.95 3.90 5.45 0.00

25000 629.05 562.40 416.00 403.35 23.40 54.10 2.90 15.00

50000 397.15 459.40 400.90 430.85 41.95 46.60 30.80 29.45

75000 322.30 382.30 449.30 420.25 65.50 140.50 138.85 152.20

100000 303.80 372.85 314.40 217.65 101.05 135.00 119.25 49.25

 50000
 100000

 0.25
 0.5

 0.75
 1

 0

 5

k Density

C
PU

 ti
m

e
(s

ec
)

 50000
 100000

 0.25
 0.5

 0.75
 1

 0

 5

k Density

C
PU

 ti
m

e
(s

ec
)

Fig. 14 Mean run times of the local search algorithms using randomgraphs of varying densities and different
values of k. Other details are the same as Fig. 13

5 Adaptation to cycles

In this section, we now describe how our double path and local search heuristics
can be adapted to produce cycles instead of circuits (refer to Definition 2). For the
GKCP, recall that it is sometimes necessary to allow bridging edges to occur twice in
a solution. Similarly, for cycles it is also necessary for articulation points to sometimes
occur more than once in a solution. Mechanisms that allow this must therefore be built
into our methods.

To form a cycle, the double path heuristic can be applied in the same way as before.
The only difference lies in the way that, given a shortest s-t-path P1, the graph is
modified for the generation of P2. Figure 15 illustrates this graph modification process
using the graph and path from Fig. 4a as an example. As shown, the process involves

123

R. Lewis, P. Corcoran

Fig. 15 Illustration of how
graphs are modified to produce
the shortest pair of
minimally-vertex disjoint paths.
Here, B assumes the same value
as described in Sect. 3.1

splitting each internal vertex of P1 into two, and then adding and adjusting edges
incident to these vertices. Once P1 and P2 have been unwoven in the same fashion
as before, the result is the shortest possible s-t-cycle in G. This “cycle” may contain
repeated vertices and edges, but only if they are articulation points or bridges relative
to s and t in the original graphG. Note that because cycles are special cases of circuits,
Theorem 1 also holds, meaning that vertex filtering can be applied in the same way as
before.

For the local search heuristic, the only modification required is in Step 3 of the
algorithm given in Sect. 3.2. Now, before evaluating the cost of replacing the ui -u j -
path inC with the ui -u j -path from S, it is first necessary to check whether this change
will result in multiple occurrences of an inappropriate vertex in a solution. This is
done by scanning the internal vertices of the ui -u j -path in S and checking to see if
they are already present in C . If this is true for a vertex that is not an articulation point
in G, then the move is immediately rejected as it would result in an illegal solution.

For space reasons, charts and tables showing the results of our experiments with
cycles are not given here; instead, we refer the reader to this paper’s companion
manuscript for a full listing (Lewis and Cocoran 2021). In summary, the differences
in performance between circuits and cycles with the double path heuristic were neg-
ligible, with virtually identical patterns to those reported above. For the local search
heuristic, the solution space of cycles is a subset of that of circuits, leading to lower-
quality solutions in general; however, these differences were again small, with average
differences being less than twometers for our planar graphs with k > 1000. Due to the
extra checks required by the neighbourhood operator, run times with cycles were also
slightly higher, ranging from approximately 20% increases in time with k = 1000 to
approximately 100% increases with k = 10, 000.

6 Conclusions and further work

This paper has proposed two fast-acting heuristics for the NP-hard generalised k
circuit problem (GKCP).Withminimal adjustments, thesemethods can also be applied
to the more restricted problem of finding cycles of length k. We have seen that these
heuristics regularly produce solutions of the required length.When this is not achieved,
the lengths are usually within a small number of meters from the target.

123

Finding fixed-length circuits and cycles in undirected...

Fig. 16 Ten km solutions from central London (left) and Kolkata (right) determined using the double path
heuristic

There are several avenues for further research. The first of these concerns the aes-
thetics of a solution. Figure 16, for example, shows two 10 km solutions generated
using our double path heuristic. While these are quite regular in shape, the way that
this heuristic uses pairs of shortest paths also means that solutions can be rather elon-
gated. On the other hand, our local search algorithm can sometimes result in solutions
that look illogical or have many turns, particularly if many neighbourhood moves are
performed from the initial solution. One option in this regard is to introduce a term
into the objective function that measures the visual appeal of a solution. This could
involve measuring a solution’s similarity to a convex polygon (Arkin et al. 1991),
and/or avoiding routes with too many sharp turns. As noted by Rossit et al. (2019),
our understanding of visual attractiveness in routing problems is still rather vague,
however.

Several other practical factors may also influence solution viability. These can
include:

• Avoiding undesirable streets, such as those with high traffic densities, inadequate
footpaths, steep hills, or too much street furniture;

• Prioritising certain streets such as those popular with runners, or those that travel
through parkland or along the coast;

• Ensuring that users are not asked to stray too far from their starting point;
• Making routes that are easy to memorise.

Some of these requirements might be incorporated by augmenting the objective func-
tion and/or by modifying the weights of specific edges in the graph. One relevant
example here is the work of Hannah et al. (2018), who use additional weights and
graph expansion techniques to generate short paths for pedestrians that avoid too
many road crossings. Similar techniques have also been used by Nunes et al. (2020)
for creating safe paths for cyclists.

A further practical issue involves the incorporation of other compulsory locations
in a route. For example, a user may want to leave their home, visit a supermarket,
a pharmacy, and a cafe (in some order) and then return home while still travelling
a specific distance. This situation can be considered a generalisation of the GKCP
in which there are multiple source vertices s1, s2, . . . , sl . There are also connections
with the travelling salesman problem here; indeed, an optimal TSP tour that visits all

123

R. Lewis, P. Corcoran

vertices in {s1, . . . , sl} will provide a lower bound on the length of any solution for
this problem. Our suggested methods would need to be modified here to ensure that
all vertices in {s1, . . . , sl} are always present in a solution.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)
Arkin, E., Chew, L., Huttenlocher, D., Kedem, K., Mitchell, J.: An efficiently computable metric for com-

paring polygonal shapes. IEEE Trans. Pattern Anal. Mach. Intell. 13(3), 209–216 (1991)
Basagni, S., Bruschi, D., Ravasio, S.: On the difficulty of finding walks of length k. Theor. Inform. Appl.

31(5), 429–435 (1997)
Bhandari, R.: Survivable networks. Kluwer Academic Publishers, Netherlands (1999)
Boeing, G.: OSMnx: new methods for acquiring, constructing, analyzing, and visualizing complex street

networks. Comput. Environ. Urban Syst. 65, 126–139 (2017)
Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to algorithms. The MIT Press, Cambridge

(2009)
Davie,A., Stothers,A.: Improvedbound for complexity ofmatrixmultiplication. Proc.Royal Soc.Edinburgh

143(2), 351–369 (2013)
Dinitz, Y.: Algorithm for solution of a problem of maximum flow in a network with power estimation.

Doklady Akademii Nauk SSSR 11, 1277–1280 (1970)
Duckham, M., Kulik, L.: “Simplest” paths: Automated route selection for navigation. In International

Conference on Spatial Information Theory, volume 2825, pages 169–185, 05 (2003)
Eppstein, D.: Finding the k shortest paths. SIAM J. Comput. 28(2), 652–673 (1998)
Hannah, C., Spasić, I., Corcoran, P.: A computational model of pedestrian road safety: the long way round

is the safe way home. Accid. Anal. Prev. 121, 347–357 (2018)
Hierholzer, C.: Ueber die möglichkeit, einen linienzug ohne wiederholung und ohne unterbrechung zu

umfahren. Mathematische Annalen (in German) 6, 30–32 (1873)
Johnson, D.: Finding all the elementary circuits of a directed graph. Siam J. Comput. 4(1), 77–84 (1975)
Lewis, R.: A heuristic algorithm for finding attractive fixed-length circuits in street maps In computational

logistics number 12433 in Lecture notes in computer science. Springer, Berlin (2020)
Lewis, R.: Source code and results. http://rhydlewis.eu/resources/kcircuit.zip, (2021) Accessed 2021-09-31
Lewis, R., Cocoran, P.: Additional materials. http://rhydlewis.eu/resources/kcircuita.pdf, (2021) Accessed

2021-11-01
Moore, E.: The shortest path through the maze. In Proceedings of the International Symposium on the

Theory of Switching, 1957, Part II, pages 285–292. Harvard University Press, (1959)
Nunes, P., Moura, A., Santos, J.: Evolutionary approach for the multi-objective bike routing problem. In

Computational Logisitics, volume 12433 of Lecture Notes in Computer Science, pages 311–325.
Springer, (2020)

Roberts, B., Kroese, D.: Estimating the number of s-t paths in a graph. J. Graph Algorithms Appl. 11(1),
195–214 (2007)

Rossit, D., Vigo, D., Tohme, F., Frutos, M.: Visual attractiveness in routing problems: a review. Comput.
Op. Res. 103, 13–34 (2019)

Sedgewick, R., Wayne, K.: Algorithms. Pearson Education, 4th edition, isbn: 9780 321 573513 (2011)
Skiena, S.: Implementing discrete mathematics: Combinatorics and Graph Theory withMathematica, chap-

ter Eulerian Cycles, pages 192–196. Addison-Wesley, Reading, MA., (1990)

123

http://creativecommons.org/licenses/by/4.0/
http://rhydlewis.eu/resources/kcircuit.zip
http://rhydlewis.eu/resources/kcircuita.pdf

Finding fixed-length circuits and cycles in undirected...

Smock, B.: K-shortest-paths. https://github.com/bsmock/k-shortest-paths, (2017) Accessed 2021-09-31
Suurballe, J.: Disjoint paths in a network. Networks 4, 125–145 (1974)
Willems, D., Zehner, O., Ruzika, S.: On a technique for finding running tracks of specific length in a road

network. In N. Kliewer, J. Ehmke, and R. Borndörfer, editors, Operations Research Proceedings 2017,
pages 333–338, Cham, Springer International Publishing (2018)

Yen, J.: Finding the K shortest loopless paths in a network. Manag. Sci. 17(11), 661–786 (1971)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://github.com/bsmock/k-shortest-paths

	Finding fixed-length circuits and cycles in undirected edge-weighted graphs: an application with street networks
	Abstract
	1 Introduction
	2 Problem analysis and existing work
	3 Algorithms for the GKCP
	3.1 Double path heuristic
	3.1.1 Vertex filtering and heuristic selection

	3.2 Local search heuristic

	4 Experimental analysis
	4.1 Performance of Yen's algorithm
	4.2 Double path heuristic performance
	4.3 Local search heuristic performance
	4.4 Random graphs

	5 Adaptation to cycles
	6 Conclusions and further work
	References

