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A Crank-Nicolson finite difference approach on
the numerical estimation of rebate barrier option
prices

Nneka Umeorah®* and Phillip Mashele?

Abstract: In modelling financial derivatives, the pricing of barrier options are
complicated as a result of their path-dependency and discontinuous payoffs. In the
case of rebate knock-out barrier options, discount factors known as rebates are
introduced, which are payable to the option holder when the barrier level is brea-
ched. The analytical closed-form solution for the vanilla options are known but the
barrier options, owing to their discontinuous nature, can be obtained analytically
using the extended Black-Scholes formula. This research work captures the solution
of the corresponding option pricing partial differential equation on a discrete space-
time grid. We employ the Crank-Nicolson finite difference scheme to estimate the
prices of rebate barrier options, as well as to discuss the effect of rebate on barrier
option values. This work will further investigate the spurious oscillations which arise
from the sensitivity analysis of the Greeks of the barrier options using the Crank-
Nicolson scheme. The theoretical convergence of the Crank-Nicolson discretisation
scheme will be analysed. Furthermore, our research will compare the results from
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Barrier options are path-dependent exotic options
whose terminal values depend on the movement
of the underlying asset prices against specified
barrier levels. Investors can use them to reduce
potential risks in the market and the option either
becomes valid (knocks-in) or void (knocks-out)
once the barrier is breached. They are very
attractive to the investors because with the
rebates, some compensations are obtained when
the contract terminates prematurely. The values
of these financial contracts (options) are to be
known and paid upfront before the contract can
be sealed by the parties involved. In our research,
we used the Crank-Nicolson method (CNM) to
numerically estimate the prices of these barrier
options and then compared these numerical
values to the analytical prices. We further ana-
lysed the sensitivity and the convergence scheme
of the CNM. Finally, we observed that there exists
a positive correlation between the rebates and
the premium of these options.
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the extended Black-Scholes model based on continuous time monitoring, together
with the finite difference results from the Crank-Nicolson method.

Subjects: Analysis - Mathematics; Computational Numerical Analysis; Mathematical
Economics

Keywords: Black-Scholes model; barrier options; rebate barrier options; spurious
oscillations; Crank-Nicolson method; finite difference method

1. Introduction and literature review

Derivative securities over the years have offered investors an increased expected return, as well as
a reduction in risk exposures. In comparison to other exotic options in the financial markets, the
barrier options tend to be very popular. Their relative cheapness and marketability offer investors
a more flexible approach to hedging and speculation. Speculators can choose a variety of barrier
options that can help them to monitor possible asset price movements and this will, in turn, reduce
their potential loss. For example, if a speculator perceives that the underlying asset price will stay
at a specific price range, then the knock-out barrier option will offer more profit potential com-
pared to the vanilla option. If they perceive a significant fluctuation of the underlying price in such
a way that the possibility of hitting a specified level is high, then the knock-in option becomes
attractive. Barrier options are class of path-dependent exotic options whose payoffs depend on
whether the underlying asset price reaches a specified barrier level.

Generally, they are classified as knock-in options or knock-out options. The former becomes
activated once the underlying price reaches the barrier level, and the latter becomes extinguished
if the barrier is breached. A lot of research work exists on barrier options, and we shall adopt the
popular Black-Scholes model as the basis for our option valuation. Barrier options are generally
priced using the partial differential equation (PDE) approach and the expectation approach.
Consider Buchen (2012); he discussed the valuation of barrier options in the Black-Scholes frame-
work, using different formats of Method of Images which originates from option pricing PDE. He
applied the barrier condition in a continuous monitoring time. Merton (1973) obtained the exact
prices for the down-and-out barrier options using the PDE approach. Broadie, Glasserman, and Kou
(1997) applied the concept of simple continuity correction on the barrier level to approximate the
values of discrete barrier options, and Boyle and Lau (1994) used the binomial method to value
barrier options.

Based on the South African market, Kotzé (1999) gave a brief overview of the exotic and vanilla
options that are traded mainly in the South African financial markets. He focused on continuously
monitored barrier options, as well as discussing the risk parameters and the hedging of barrier
options. Pelsser and Vorst (1994) and Ioffe and Ioffe (2003) employed the binomial method and
the implicit finite difference methods (FDM) respectively, to value barrier options without a rebate.
Our recent work in barrier option pricing considered a comparative study of the zero-rebate knock-
out barrier options with European features, to the theoretical extended Black-Scholes prices
(Umeorah & Mashele, 2018). We employed the antithetic Monte-Carlo simulation (MCS) and
quasi MCS approach in the estimation of the option prices, which was an improvement of the
standard MCS. The underlying asset prices were simulated using the log-normal concept of option
pricing, the payoffs were discounted using the risk-free interest rates, the barrier condition was
applied and finally, the mean of the discounted payoffs was obtained which gave the estimated
option prices.

A significant problem of trading barrier option is that if the option is knocked-out or if the option
refused to knock-in prior to the contract’s expiration, the holder will face a greater risk of losing the
value of the contract. Thus, the introduction of rebate serves as compensation to the option holder.
Rebate is a positive discount which is paid to the option holder by the option writer in the event of
the problem stated above. It can be a time dependent or a constant function (usually a specific
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percentage of the underlying asset’s value). Lots of research work had been done on the barrier
option pricing, but without a rebate. The incorporation of rebates in barrier options give an avenue
for more research. Few researchers like Rich (1994) and Le, Zhu, and Lu (2016) focused on barrier
options with rebate. The former derived the closed-form solutions and the latter applied the
concept of continuous Fourier sine transform to solve the option PDE.

This paper, however, incorporates the rebate features (paid at knock-out and at expiry) of the
barrier options using the CN discretisation scheme. The significance of this research work is not to
present a new formula for pricing the barrier options. However, we seek to estimate the prices of
these exotic rebate barrier option (basing our estimated results on the theoretical prices found in
existing works of literature) using the Crank-Nicolson (CN) method. We base the choice of this
method on the fact that its accuracy is of second-order in space-time discretisation, as well as its
unconditional stability in time. We will further investigate the convergence analysis and sensitivity
analysis of the CN scheme in the barrier option pricing. We shall equally discuss and graphically
explain the effects of rebate on the down-and-out barrier options. The organisation of this
research work is as follows: Section 2 considers the problem valuation and the closed-form
valuation of the rebate barrier options. Section 3 discusses the numerical approximations of the
option pricing PDE by introducing the CN FDM, as well as examining the sensitivity analysis and the
convergence analysis of the scheme. Section 4 outputs some results obtained and then discussion
follows. Finally, Section 5 summarizes and concludes the study.

2. Valuation of barrier options

2.1. Problem formulation

Specific parameters like the underlying price S, the barrier level B, the time to expiration T, the
current time t, the strike price K, the risk-free interest rate r, the inherent volatility ¢, and the rebate
R, all affect the price of a rebate barrier option. Consider an asset price dynamics that follows
a geometric Brownian motion below:

dS(t) = S(rdt + sdW(t)), 2.1)

where W(t) is the standard Brownian motion. The above equation can be solved using Ito’s
calculus. Let V(t,S) be the value of a non-dividend paying down-and-out (DO) barrier option
which pays a rebate when the barrier is breached. Under the Black-Scholes framework (Black &
Scholes, 1973), the option price V(t,S) satisfies the Black-Scholes PDE below:

NV(LS) | (OV(LS) , oS PV(LS)

ot +1rS 7S 3 2 = rv(t,s), (2.2)
Subject to:
V(T,S) = max{S(T) — K,0}, (2.3)
V(t,B) =R, (2.4)
V(t,00) =S — Ke "9 (2.5)

We express the domain of the above PDE as D = {(t,S) : B< S < o, t € [0, T]}. Equation (2.3) is the
payoff; Equation (2.4) occurs when the barrier is breached and finally, (2.5) when the asset price
becomes very large. Applying the risk-neutrality concept of option pricing, we obtain the solution of
Equation (2.2) as

00

V(t,S) = e*’”fﬂj (S(T) — K)"f(T,S(T); t,S)dS(T) + RJTe”“”t)g(p; B,t,S)dp, (2.6)
t

K

where f is the density function for the underlying and g is the first passage time density of the
underlying S, at which a downstream barrier B is first hit by the Brownian motion W(t). The function
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Figure 1. Discontinuities of the
delta for barrier options.

g(p;B)dp = P(z5 € dp), where 7z = inf{t : S(t) = B}. The first part of the integral occurs when the
barrier is not breached and the second follows from the rebate features. The rebate payment is
expected to be redeemed over the interval [p,p + dp]. The functions f and g are known and the
integrals above can be valued by applying the concept of reflection principle and method of
images (Yue-Kuen, 1998).

2.2. Closed-form valuation

The closed-form solution for the vanilla options are known, but the closed-form prices for the
barrier option and the rebate barrier option are valued using the extended Black-Scholes pricing
formula, as given in Equation (2.7). Let ZRDO represent the value of the zero-rebate down-and-out
call option, RDOE is the value of down-and-out call option that pays a rebate Re~""-0 at expiry,
and RDO is the down-and-out call option that pays a rebate R at knock-out. Then, the closed-form
valuation for RDO call option, defined on continuous time monitoring is known® and it is given as

B 22 B 202
RDO = SN(d;) — Ke "T-ON(d'y) — {5 (§> N(d;) — Ke "T-1) (g) N(d', )}

(2.7)

R (g) 2171N(d3) n (g) N(d; — Zﬂam)} )
where

@+ (r+g)T-0 )+ (49T
d = . da=

oVl —t

n@) +(r+5)T-1
VT —t

The above conditions occur for K > B. For K < B, substitute K = B in d; and d, above. If moreover,R = 0
and R = Re~""-9), then Equation (2.7) outputs the values of ZRDO and RDOE, respectively. From Equation
(2.7), we can deduce that the value of a rebate down-and-out call which pays a rebate immediately at
knock-out is equal to the value for ZRDO + American cash-or-nothing put with payoff R and strike B.
Similarly, the value of up-and-out call that pays a rebate immediately at knock-out is equal to the value
for ZRDO + American cash-or-nothing call option with payoff R and strike B. Thus, the rebate term in the
barrier options with a constant rebate is the same as the value of the American digital option which pays
a specific amount once the underlying price crosses a specified value. The rebate is always less than the
premium paid upfront, and once the barrier is triggered before option’s expiration, there is always a loss
for the option holder. The rebate barrier option is American in nature since early exercise can be optimal.

2
, dy,=di;—oVT—t and A:Z’ZLZ"
2=dy (,

10 10

== European_call
— ZRDO_call

== European_call =g
— RDO_call xe®

o8

06
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o4

02

00? 100 1o 120 1] 80

w0
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(a) Delta for European call and ZRDO call
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(b) Delta for European call and RDO call
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If the underlying is heading towards the barrier and the option is deep-in-the-money, then it can be
worthwhile to exercise.

2.3. Delta for rebate barrier options

In risk management, we always encounter problem in hedging barrier options owing to their
discontinuities at the barrier. Figure 1 shows the delta of the rebate knock-out barrier options.
The parameters used are K =100,B =90,r =0.08,6 = 0.25,T = 0.25. As soon as the barrier is
breached by the underlying, the curve twirled, thus becoming discontinuous. Below the barrier, the
delta of the ZRDO call is 0 and that of the RDO call remains positively non-zero as a result of the
rebate features.? We also observed that as the underlying becomes increasingly large, the effect of
the barrier becomes insubstantial and thus, the delta of the ZRDO call option gradually coincides
with the delta of the European call option, as shown in Figure 1a. Moreover, when the rebate is 0,
Figure 1b becomes 1a. The exotic nature of the barrier options is noted in the discontinuity of the
curve at the barrier which affects the payoffs and thus complicates the hedging of these options.

3. Finite difference methods

In pricing financial derivatives using numerical methods, the PDE approach like the FDM, the
binomial or the trinomial approach and the MCS are basically employed (Brandimarte, 2013). The
FDM for solving the Black-Scholes PDE which describes the exotic option pricing involves solving the
associated PDE on a discrete space-time grid. The computational domain is [0, Smax] x [0, T] and we
discretise this domain by the uniform asset mesh and time mesh with steps AS and At. The payoff at
time T is known and hence the solution involves applying the concept of backward iteration on the
square or rectangular grid up until time t = 0. With regards to the Black-Scholes formula, the option
price is a function of the underlying price and time, and this can be obtained via iteration.

Consider the discretisations below:
S=0,AS,2AS,---,(m—1)AS,mAS = Smax  and
t=0,At,At,---, (n— DAL, NAt =T

Let Sy =kAS and T, =iAt, then the option price V(t,S) can be denoted in grid form by
Vik = V(t;,Sk), where k=0,1,2,---, mand i=0,1,---,n. Let Smax be the largest value that the
underlying can possibly have. The corresponding terminal and boundary conditions of the PDE
which give the values of the option prices at time t =T, S=0 and S = Sy are known. Thus, it
suffices to use the known values at the extreme end of the nodes to calculate the values for the
other interior nodes.

3.1. Terminal and boundary conditions

Rebate knock-out barrier options: The terminal and boundary conditions of the DO barrier call
options with rebate at knock-out, represented in Equations (2.3), (2.4) and (2.5) can be written in
discrete form as follows:

Vnk = max{kAS — K, 0}, (3.1)
Vie =R, (3.2)
Vimas = MAS — Ke "(n=Dat, (3.3)

For the rebate paid at expiry, all other conditions remain the same except for Equation (3.2) which
becomes Re—"(n—iAt,

3.2. Crank-Nicolson FDM

John Crank and Phyllis Nicolson developed the Crank-Nicolson method as a numerical solution of
a PDE which arises from the heat-conduction problems (Crank & Nicolson, 1996). It was introduced
to curb the instability, as well as to increase the efficiency and the accuracy of the implicit and the
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explicit method. Consider the Black-Scholes PDE defined in Equation (2.2). The discretised PDE for
the implicit FDM or the forward difference method is given as

Vik — Vicik Viakin —Viaka] | (0kAS)? [Viager —2Viqg+ Vi
At kAt 2AS T AS?

:| = rV,-_l_k. (34)

Let the approximations of the underlying at node (i — 1,k) and the node (i, k) be the same (Hull,
2006), then the discretised PDE for the explicit FDM or the backward difference method is

Vik — Vi_ik Vikpt = Vikea] | (6kAS)? [Vigsr — 2Vig + Vig 1
At RS 1T T AS?

:| = I’V,"k. (3.5)

The Crank-Nicolson (CN) method thus aims at combining and averaging the forward and the back-
ward difference method, using the same boundary conditions. Taking the average and re-arranging
Equations (3.4) and (3.5), we have

—rkAt  o2k2At At rkat  o2k2At
Vii1k-1 [T + A } + Vis1k {—1 — ?((;Zkz 4 r)} Vg {T n T}

kAt o2k2At At —rkAt  o2K2At
=Vik1 [r_ -7 } + Vik {—1 +5 (2K + r)} + Viks {_r -2 }

4 4 2 4 4
This can be written as
= AViciker + (=1 = BVicrk — mViciher = WVik—1 + (=1 + B Vik + mViksa (3.6)

fori=n-1n-2,---,1,0and k=1,2,---,m -1, where
zk:%[rk—azkz}, ﬂk:%(azkz—f—r) and nk:_TAt[rk—i—azkz}.

CN discretisation results in tridiagonal scheme which is solvable at each time step. The CN method
provides the best approximate value in comparison to the other FDM, like the explicit and the
implicit FDM (Hull, 2006).

3.3. Sensitivity analysis of the CN scheme

We observe some spurious oscillations when the coefficient of the diffusion term of the Black-
Scholes PDE is minimal or when the coefficient of the advection term of the PDE is substantial,
or when both occurs (Duffy, 2004). One of the critiques of the CN scheme on barrier option
pricing is the fact when the barrier condition is applied; it induces discontinuities in the
numerical solution. If we monitor the barrier options discretely, then discontinuities of the
option values can exist at each monitoring dates. These discontinuities, however, result in
spurious oscillations which affect the sensitivities of the option value. Spurious oscillations
are known to affect the hedging parameters or the Greeks of the derivatives, even though
the option values might appear to be correct and smooth. Figure 2 below shows the plot for
the Greeks of the continuously monitored barrier options with zero rebate, using the CN
scheme and Figure 3 considered the same Greeks but discretely monitored.

Figures 2 and 3 consider the parameters: S = 60,K = 50,B =35,r =0.05,6 =0.2,T=0.75,m =
150,n = 25 and Smax = 140. The figures show oscillations at the strike, owing to the discontinuous
payoffs. The delta for the barrier option approaches one as the underlying moves increasingly
away from the barrier position. Gamma, on the other hand, tends to assume the highest value
when the option is at-the-money. However, when we price the discrete barrier options, the Greeks
exhibit oscillations at the strike and also close to the barrier, as observed in Figure 3. Similar
findings were obtained by Tavella and Randall (2000), which explained that when At > z4, where

T4 = Eﬁ?;j is the characteristic grid diffusion, then spurious oscillations close to the barrier arise for
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Figure 2. Greeks for continu-
ously monitored barrier
options.

Figure 3. Greeks for discretely
monitored barrier options with
5 monitoring periods.
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the discretely monitoring case. When we choose our parameters such that At > z4 as depicted in
the figures below, oscillations are observed.

To correct this problem, however, series of research had been conducted. Pooley, Vetzal, and
Forsyth (2003) applied the concept of averaging the initial data, grid shifting and projection
method to smoothen the discontinuities. Khalig, Voss, and Yousuf (2007) developed a strong stable
(L-Stable) Padé scheme on exotic options with discontinuous payoffs. Duffy (2001) developed
a more robust difference scheme, also known as the exponentially fitted scheme which solves
the general two-point boundary value problem, with applications to the Black-Scholes PDE.
Rannacher suggested a modification of the CN method from the idea of smoothing the disconti-
nuities in the initial and at the barrier conditions for barrier option pricing (Giles and Carter (2006)
and Rannacher (1984)). The idea of Rannacher time stepping involves the discretisation of the
initial timesteps using backward Euler integration, with the aim of recovering the second order
convergence of the CN scheme.

Furthermore, Zvan, Forsyth, and Vetzal (1998) explained that the presence of spurious oscilla-
tions which results from the use of the central weighting scheme can be avoided if the Peclet
conditions are satisfied:

1 S r
AS,;% O'ZS,'
and
2 S 625,-2 1 n 1 ir
At 2 AS‘;%AS,‘ ASI‘+%AS,‘ ’

where ASH% =Si;1 —Siand AS; = %

The two conditions guarantee the positivity of the solution and the maximum principle has to
be applied to ensure that if the initial and boundary conditions of a continuous system in
a given domain is positive, then the solution in the interior domain will remain positive (Duffy,
2001). The positivity of the domain will further make the parameters A4 in Equation (3.6) to stay
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strictly positive, and thus, Fusai, Sanfelici, and Tagliani (2002) explained that the positive
eigenvalues of a given iteration matrix is a guarantee against such oscillations.

In this research, we employ the special time-step restriction on the CN method to avoid the
emergence of spurious oscillations. We first applied the concept of Tavella and Randall (2000) with
regards to the characteristic grid diffusion, and then applied the concept of maximum principle.
With CN method, we observe the presence of some numerical spikes which do not quickly decay as
a result of the discontinuities at the payoffs, monitoring dates (for discrete monitoring barriers)
and the barrier conditions. The spikes do not show the instability of the CN scheme, but they
explain that the sharp gradient which results when the option value is set to R, for S < B on the
rebate barrier options, takes time to decay completely in the CN scheme. Consider re-writing
Equation (3.6) in matrix form as

in—l,k = XV,')k, where
W = triad Sk _ Lskz -1+Al LS“ZJH AL (1S ﬁz
B AS  \AS ’ 2 \\AS "4 \AS \AS
rSk O'Sk 2 . At O'Sk 2 At rSk O'Sk 2
Xtrlad{ i (AS (A—S) )’1_7((A_5> +r)iz  as (as ,

with k=0,---,m and i=0,---,n.

We impose the following conditions found in (Milev & Tagliani, 2010), which explains that if the
discretisation scheme strictly follows the hypothesis §>1, then the following properties are

satisfied:

+ The solution is positive, that is, V; 1 x>0 and with r<o?, we have 5 — (“Assk>2<0. Furthermore,
the matrix W is an irreducible row diagonally dominant M — matrix, with properties
Wl >0, w1, < 1+'A‘

+ The maximum principle is satisfied with X > 0 and [|X||, =1 — %! > 0. That is,

__rAt
IViaklloe = WXVl [ = (W] Xl IVikl oo < 15 ,AtI\V,kH < [Vikllo

* Together with the time-step restriction At < +2( —~2 the eigenvalues of the iteration matrix W
are real and distinct. The time-step becomes prohibitively small, with an increase in the asset
space grid m. Thus, from Gerschgorin’s theorem, the eigenvalues of the matrix

1 1
WX e ; c(0,1).
(1 +5 4 At(g + (am)z))

Hence, if the time restriction and &% > r are ignored, positivity of the solution does not ensue,
and some eigenvalues will become negative or complex, leading to spurious oscillations.

When we apply the special time step restriction described above to the CN scheme on the Greeks
of the continuously monitored barrier options in Figure 2, then the resulting plots in Figure 4 are
obtained. The discontinuities which occur at the payoff conditions were smoothed out, and this
eliminates the spurious oscillations that were present before. Close to the strike price, gamma
assumes the highest positive value and theta assumes the highest negative value. This is abso-
lutely important in the construction of delta-neutral portfolio.
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Figure 4. Greeks for continu-
ously monitored barrier options
without oscillations.
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3.4. Convergence analysis
For simplicity, we transform the original Black-Scholes PDE in Equation (2.2) into heat equation of
the form

ou _ d%u

5 = ol —oco<Xx<oo, >0, (3.7)

using the change of parameters

x=logS+ (r—056%)(T—t) and 7=0.56%T—t), such that
u(x,7) = e,,<T,§_§) V(ex <”2_£71)T7 T— 2—5) )

O
Let uj; ~ u(x;,7j), wherei=1,--- ,Mandj=1,--- N.

Applying the CN discretisation scheme on Equation (3.7) results to

Uijr1—Uij  Uirgje1—2Ujje1 + Uigjy N Uip1j— 2U;j + Uiy

At 2Ax2 2Ax2 (3.:8)
Substituting ¢ = 58%; into Equation (3.8) and rearranging gives the difference equation:
Auijy 1 =Bujj, (3.9)

where Ay_1xm—1 = tridiag{—¢, 1+ 2¢, —¢} and By_1xm—1 = tridiag{¢, 1 — 2¢,¢}.

Next, we use the Lax Equivalence theorem to analyse the convergence of the CN scheme. The
theorem states that given a well-posed initial value problem, a consistent FDM is convergent if and
only if the scheme is stable. In investigating the numerical stability of the CN scheme, we use the
eigenvalues of the tridiagonal Toeplitz matrix (LeVeque, 2007). The two matrices A and B can be
written inform of constant tridiagonal matrices, as A=I1+¢(C and B=1I-¢C, where
C =tridiag{—1,2,-1}. Thus, Equation (3.9) becomes (I + (C)u;j,1 = (I—-{C0)u;; = (2I - A)u;;.
Thus, we have u;j, 1 = (2A~! —I)u; ;. Denote the eigenvalues of A with J;(A). Since C satisfies the
properties of Toeplitz matrix, the eigenvalues are given by:

lj(A) = ﬂj(I) + (iJ(C)

:1+4§sinz<%), for j—1,--- . M—1.

For stability, we ensure that for all j
1-4¢ sin? (%)
1+ 4¢sin? (%)

2
4(A)

—1‘<1¢
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Since all the eigenvalues of A are greater than 1, the stability condition of the CN scheme is
guaranteed and hence, for all >0 and with Az> 0. We observe the consistency of the CN scheme
in the analysis of the local truncation errors. LeVeque (2007) explains that the scheme exhibits
quadratic convergence in both space and time, that is, the truncation error is
u(x,7) = (x;,7j) = O(i* +j?). Thus, by Lax Equivalence theorem, the CN is convergent and the
numerical experiments are displayed in the result section.

4, Results and discussion

The results computed in this section considered the non-dividend rebate down-and-out call options,
with European features. In the numerical computation, we obtain our results using the program ipython
notebook. Let N be the discretisation steps of time; M, the discretisation steps for the underlying asset
and let CNV be the Crank-Nicolson values obtained. We use the following parameters below to output
the results in Table 1:

S =150,5nax = 140,K = 40,B = 20,r = 0.04,6 = 0.3 and T = 0.5. The exact value of the option
with rebate of 2.5 paid at knock-out is obtained using Equation (2.7), and the value is 11.3777.

In Table 1, the option pays a rebate value of 2.5 when the barrier is breached. We observe the
effect of increasing the space-time discretisation steps on the values obtained using the Crank-
Nicolson method. As space and time steps increase simultaneously, the observed values converge
to the true solution. In the FDM, the choice of Smax, (Maximum underlying price) which is an
artificial limit is yet to be known and a proper choice will lead to a faster convergence and more
accurate result. Finally, we observe that the computation time for the execution of the finite
difference algorithm increases with an increase in the discretisation steps.

In Table 2, we compare the values of rebate at knock-out barrier options obtained using both the
CN method, MCS and the AMCS. The parameters S, Smax, K, B, r,0,R and T, remain the same as in
Table 1. We differ the asset prices and restrict the asset and time steps to be N = M = 400 for the
CN method. We further considered 100000 simulations with 400 time steps. The values are seen in
the following table:

In Table 2, we observe that the values obtained using the CN method are fairly close to the exact
values. The probability of the values from the CN method approaching the exact value becomes
high when the asset and the time-step sizes are increased. With regards to the simulated values
from the MCS and the AMCS, the results are relatively accurate in comparison to the exact values.
The AMCS performs better than the MCS and this is based on the fact that the former is a variance
reduction method.

Table 1. Crank-Nicolson values on knock-out barrier options with rebate at knock-out

N M CNV Computation time
(secs)

150 150 11.4090 0.1722

200 200 11.3875 0.3572

250 250 11.3818 0.7278

300 300 11.3787 1.1481

350 350 11.3786 2.3930

400 400 11.3780 3.8790

450 450 13777 6.0094

500 500 113777 8.7626
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Table 2. Rebate at knock-out barrier option values using CN, MCS and the antithetic MCS

S Exact CNV MCS AMCS
70 30.8026 30.5945 30.8960 30.8853
65 25.8226 25.7657 25.7487 25.7761
60 20.8777 20.8655 20.8328 20.8870
55 16.0225 16.0208 16.0336 16.0103
50 11.3777 11.3780 11.3847 11.3768
45 7.1737 7.1755 7.1558 7.1622
40 3.7590 3.7635 3.7883 3.7408
35 1.4876 1.4866 1.4655 1.4670

For Table 3, we consider the parameters below: S = 100,B = 60,K = 100,r = 0.08,6 = 0.1,T = 0.5
and Smax = 260. The exact value of the rebate barrier option with rebate (R = 4% of the underlying) at
knock-out is 5.1563 (using Equation (2.7)). The outputs obtained are displayed below:

Table 3 considered the non-dividend DO rebate call option, with rebate paid at knock-out. It
compares the values obtained using the Crank-Nicolson method with differing discretisation steps.
It also outputs some results using the same increasing step sizes and different increasing step
sizes. We observe equality (up to 4 dp) in the estimated values when the time steps are twice that
of asset steps and when the asset steps are twice that of time steps. The convergence is very slow,
but when the asset steps and time steps are the same and increasing, the estimated values
converge to the true solution. Here, at N = M = 500.

Figure 5 compares the values of the zero-rebate DO; rebate DO which pays rebate at knockout and
rebate DO call options with rebate at expiry, to the vanilla call options. The parameters considered here
areB = 120,K = 125,r = 0.06,6 = 0.5,T = 2 and a rebate R = 5% of the underlying. Since call option is
been applied to all, we observe a decrease in the option value as the underlying price decrease. The
vanilla call option is generally more expensive than the barrier options since the former is a combination
of the knock-in and the knock-out barrier components.* We positioned the barrier at B = 120 and we
observe that as the underlying price is tending towards the barrier, the probability of it being knocked-out
is increased. The ZRDO call option pays nothing when the barrier is finally breached. For the rebate barrier
options, their values are generally more expensive compared to the ZRDO options because of the
presence of the rebate terms. Both the RDO and the RDOE pay 5% of the underlying as a rebate at knock-
out and at expiry respectively. The rebate term is added to the ZRDO option value to give the final option
value for the RDO and the RDOE. The value of the RDOE is always cheaper than that of the RDO because
the rebate term of the former is always discounted at a risk-free interest rate.

Table 3. Crank-Nicolson values with different increasing step sizes on DO rebate call options

N M CNV N M CNV M N CNV
300 600 5.1556 300 300 5.2787 300 600 5.1556
325 650 5.1556 325 325 5.2393 325 650 5.1556
350 700 5.1557 350 350 5.2057 350 700 5.1557
375 750 5.1558 375 375 5.1832 375 750 5.1558
400 800 5.1558 400 400 5.1700 400 800 5.1558
425 850 5.1559 425 425 5.1628 425 850 5.1559
450 900 5.1559 450 450 5.1590 450 900 5.1559
475 950 5.1560 475 475 5.1572 475 950 5.1560
500 1000 5.1560 500 500 5.1563 500 1000 5.1560
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Figure 5. Comparing barrier
option prices with European
Black-Scholes call values on
different underlying prices.
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Next, we consider the effect of increase in rebates on barrier option values. Table 4 depicts the effects
of an increase in rebates on option values. The parameters considered here are B = 120,K = 125,r =
0.06,6 = 0.5, T = 2 and different increasing rebate terms. The ZRDO option values remain the same at
each step of the underlying. Increasing the rebate (i.e., 5%, 12%, and 17%) increases the rebate value,
which in turn increases the option values. The above result is in harmony with Zhang (1998) who
explained that the presence of large rebates will tend to de-leverage the transaction and thus, leads to
more expensive option prices. We observe that the rebate term for the RDOE is lesser than that of RDO
and this makes the value of the RDOE to be cheaper than that of RDO. We also observed that at knock-
out, the RDO pays a specified percentage of the underlying, but it has to be discounted if the rebate is paid
at expiry. For instance, consider when S = B = 120 and suppose we choose a rebate of 5%, then the
rebate value becomes 6.0000 at knock-out. For the rebate at expiry, the rebate term becomes
Re"T-8 = 53215, We add these values are added to the value of the ZRDO to get the true rebate
barrier option value.

These are illustrated graphically in Figures 6 and 7. The green and the blue curve denote the
European call option value and the ZRDO call options, respectively. Both are constant with respect
to the rebate since they are unaffected by the rebate values. The red curve denotes the RDO and

Table 4. Effect of increase in rebates on option values

Zero rebate Rebate terms

s option value Rebate at knockout Rebate at expiry

5% 12% 17% 5% 12% 17%
200 87.3962 5.06901 12.1659 17.2350 4.4959 10.7902 15.2861
190 77.0044 5.2365 125676 17.8041 4.6443 11.1464 15.7908
180 66.5247 53973 12.9535 18.3507 4.7870 11.4887 16.2756
170 55.9353 5.5484 133161 18.8644 4.9210 11.8103 16.7313
160 45.2082 5.6860 13.6464 193324 5.0430 12.1033 17.1463
150 34.3070 5.8057 13.9338 19.7395 5.1492 12,3582 17.5074
140 23.1841 5.9023 141654 | 20.0677 5.2348 12.5636 17.7985
130 11.7765 5.9694 143266 | 20.2960 5.2944 12.7065 18.0009
120 0.0000 6.0000 14.4000 | 20.4000 53215 127717 18.0932
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Figure 6. Effect of increase in
rebates on option value: Rebate
at knock-out.

Figure 7. Effect of increase in
rebates on option value: Rebate
at expiry.
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RDOE option values at Figures 6 and 7 respectively, and furthermore, increasing the rebate terms
results in the shifting of the ZRDO option value, as denoted by the red curve. Figure 6 occurs when
the rebate at knock-out and Figure 7, when the rebate is paid is expiry.

5. Conclusion

This research work had considered the numerical valuation of the rebate barrier options which
pays a rebate at knock-out, as well as, at expiry. We employed the Crank-Nicolson finite difference
methods in the discretisation of the option pricing PDE, which was solved using the corresponding
boundary and the terminal value conditions. We observed that the increase in the discretisation
steps of both the underlying asset and time resulted in the convergence of the estimated values to
the true solution. Thus, path-dependent options like the barrier options can be successfully priced
using the Crank-Nicolson method. With regards to the effect of a rebate, there is a positive
correlation between the premium and the rebate, as the premium entirely depends on the size
of the specified rebate. We equally observed that since the rebate assumes a positive value, it
serves as compensation to the investors and as such, they are attractive to investors since they do
not lose out in event of an early knock-out. We observed the presence of spurious oscillations
when the Greeks of the barrier options are analysed using the CN scheme. This research, however,
applied a special time step restriction to dissolve the existing numerical spikes.

Future work will consider a higher order numerical approach, which handles the discontinuities on the
valuation of barrier options. We equally aim at extending the numerical valuation to double barrier
options.
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Notes

1. See Derman and Kani (1997); Douady (1999).

2. At Figure 1b, we choose the rebate value to be the
value of delta at 0.1.

3. For analysis of 62 <r, see (Milev & Tagliani, 2013).

4. This occurs only when the zero-rebate barrier options
are considered.
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