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Abstract

The proliferation in Internet of Things (IoT) devices is demonstrated by their promin-

ence in our daily lives. Although such devices simplify and automate everyday tasks,

they also introduce tremendous security flaws. Current security measures are insuf-

ficient, making IoT one of the weakest links to breaking into a secure infrastructure

which can have serious consequences. Subsequently, this thesis is motivated by the

need to develop and further enhance novel mechanisms tailored towards strengthening

the overall security infrastructures of IoT ecosystems.

To estimate the degree to which a hub can improve the overall security of the eco-

system, this thesis presents a design and prototype implementation of a novel secure

IoT hub, consisting of various built-in security mechanisms that satisfy key security

properties (e.g. authentication, confidentiality, access control) applicable to a range of

devices. The effectiveness of the hub was evaluated within a smart home IoT network

upon which popular cyber attacks were deployed.

To further enhance the security of the IoT environment, the initial experiments towards

the development of a three-layered Intrusion Detection System (IDS) is proposed. The

IDS aims to: 1) classify IoT devices, 2) identify malicious or benign network packets,

and 3) identify the type of attack which has occurred. To support the classification

experiments, real network data was collected from a smart home testbed, where a range

of cyber attacks from four main attack types were targeted towards the devices.

Lastly, the robustness of the IDS was further evaluated against Adversarial Machine
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Learning (AML) attacks. Such attacks may target models by generating adversarial

samples which aim to exploit the weaknesses of the pre-trained model, consequently

bypassing the detector. This thesis presents a first approach towards automatically gen-

erating adversarial malicious DoS IoT network packets. The analysis further explores

how adversarial training can enhance the robustness of the IDS.
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Chapter 1

Introduction

The Internet of Things (IoT) is defined as the system of interconnected electronic

devices embedded with software, sensors, actuators, and network connectivity which

enable them to connect and exchange data [69]. Smart devices such as wearable

devices, home appliances, alarms and camera systems routinely collect personal in-

formation and provide various functionalities which automate and support our daily

activities and needs. As a result, the popularity of such devices has significantly in-

creased over the past few years. This is due to their affordability, as well as their

ubiquitous connectivity which allows them to communicate and exchange information

with other technologies, their intelligence, and their decision-making capabilities to

invoke actions [121]. This provides seamless user experiences which significantly en-

hances people’s every day lives and is demonstrated by how prominent such devices

are today.

The proliferation of smart devices is not only within the domestic environment, but it is

also the driving force behind the development of an interconnected knowledge-based

world; our economies, societies, machinery of government, and Critical National Infra-

structure (CNI) [182]. However, although these concepts support everyday life tasks,

their dependency on Information Communication Technology (ICT) and IoT devices

introduce severe security risks [64]. Whereas security protocols and best practices

for traditional Information Technology (IT) is well-understood and broadly adopted,

security for IoT devices is nascent and is rarely sufficient.
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Cyber attacks against IoT can lead to disastrous effects including personal informa-

tion leakage, damage to hardware, disrupting the system’s availability, causing system

blackouts, and even physically harm individuals [63]. Thus, the scale of the impact of

the attacks performed on IoT networks can vary significantly depending on the targeted

device. Subsequently, given that IoT devices have a direct impact on our lives, security

and privacy considerations must become a high priority [95].

Two of the main reasons that make IoT devices vulnerable to cyber attacks include

their limitations in computational power and their heterogeneity. More specifically, it is

generally not feasible for IoT devices with restricted computational power, memory, ra-

dio bandwidth, and battery resource to execute computationally intensive and latency-

sensitive security tasks that generate heavy computation and communication load [208].

As a result, it is not possible to employ complex and robust security measures. In ad-

dition, the heterogeneity which surrounds IoT devices in terms of hardware, software,

and protocols [62] poses a great challenge towards developing and deploying security

mechanisms that can endure with the scale and range of devices [62]. Consequently, it

is evident that there is a major gap between security requirements and security capab-

ilities of the IoT devices that are currently available.

1.1 Motivation and Problem Definition

Although IoT is considered as being the next ‘Technological Revolution’ [97] which

is shifting how we as individuals, economic entities, and governmental organisations

interact with the physical world, such technologies come with enormous security flaws

[209, 106, 218, 117].

Several well established enterprises and organisations [21, 30] have demonstrated that

IoT devices are subject to a range of security flaws, including heartbleed, Man-In-The-

Middle (MITM), Denial of Service (DoS), data leakage, weak passwords, and more

[63, 30]. In addition, IoT devices have recently been employed as part of botnets, such



1.1 Motivation and Problem Definition 7

as Mirai, and have launched several of the largest Distributed Denial of Service (DDoS)

and spam attacks [123].

As a result, the research in this thesis is motivated by the main matter of principle:

given the insecurity of such devices, and given that they are often deeply embedded

in networks, IoT may be considered as being the ‘weakest link’ for breaking into a

secure infrastructure. Thus, such devices are attractive targets for cyber attacks. Con-

sequently, there is a significant need for the development of novel security mechanisms

that work across many different paradigms and improve not only the defence of IoT

against a range of cyber attacks, but also the detection of such attacks, and subsequently

their mitigation from IoT networks.

In an attempt to enhance the security of IoT devices, several studies have focused

on achieving specific individual security objectives such as authentication, confiden-

tiality, integrity, and access control [219, 125, 132, 161, 213, 138]. However, due to

their heterogeneity, applying these security mechanisms in a uniform way to a range

of IoT devices may be challenging. IoT hubs are currently among the most popular

IoT management models [215]. Several studies have proposed such hubs to tackle

the heterogeneity in IoT environments [176, 147, 101, 167, 58, 107]. However, these

approaches mainly focus on handling the big data that is generated by smart devices,

attempt to overcome constraints of their computational power, their scalability, and not

to enhance the overall security of the ecosystem. These approaches will be discussed

in more detail in Chapter 3. Therefore, this leads to the first research question:

RQ1 What security mechanisms can be incorporated within a smart home IoT hub

that can be uniformly applied to a range of heterogeneous devices?

Nevertheless, as secure as an infrastructure may be, it is still in the nature of an ad-

versary to attempt to compromise its security. In this case, it is also important to con-

sider the implementations of the monitoring and detection tools which aim to capture

such intrusions. Traditional IT security mechanisms consist of a range of tools, such as
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firewalls and Intrusion Detection System (IDS), which assist in monitoring networks.

However, due to their heterogeneity and scalability, such mechanisms cannot handle

IoT deployments and device and/or vendor constraints [215, 203]. Furthermore, as IoT

devices operate deep inside the network, traditional perimeter defences are inadequate

as they can help block external attacks, but often fail to prevent them from internal

devices or applications [99]. Finally, as the number of IoT devices increases exponen-

tially [106], the number of unknown vulnerabilities and threats also increases, making

traditional signature-based IDS systems ineffective.

In an attempt to combat these constraints, current research [60, 141, 145, 168, 80]

has focused on using machine learning approaches to develop more adaptable IDSs

specifically for IoT ecosystems. However, as discussed further in Chapter 4, such ap-

proaches come with a range of limitations. More specifically, such systems are limited

to detecting one type of attack at a time, have been evaluated using simulated network

data, and only focus on detecting whether network activity is malicious or benign.

This may mean that current IDS implementations are limited to unrealistic network

behaviours and are inefficient against a range of attacks. To address these limitations,

network traffic from a representative IoT smart home network may be collected. This

leads to the second research question:

RQ2 Can supervised machine learning approaches support the automatic detection

of a range of cyber attacks based on network packet features collected from a

range of IoT devices?

Additionally, such systems lack focus on device type classification and profiling. Pre-

vious work on device classification mostly focuses on distinguishing whether a device

is IoT or non-IoT, or identifying the specific vendor of the devices. This is achieved by

using statistical traffic features which may be collected and extracted using additional

tools and software. Device profiling is an important feature within an IDS for two main

reasons. Firstly, it allows the assets within the network to be identified. Given the first
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reason, it may be possible to detect anomalies outside of the device’s ‘normal’ beha-

viour, subsequently allowing countermeasures to be launched towards those devices.

In this case, and to align with RQ2, this leads to the third research question:

RQ3 Can supervised machine learning algorithms successfully classify different IoT

devices based on network packet features?

However, such approaches do not attempt to identify the exact type of attack that has

occurred. This is a critical piece of information which may significantly increase the

response rate, and therefore the mitigation of the attack by launching appropriate coun-

termeasures. Without this information, identifying the exact type of attack requires

significant human effort, specifically in networks with a large number of devices [7].

This can lead to a delayed launch of countermeasures and can have significant con-

sequences. This motivates the fourth research questions:

RQ4 Given RQ2, can supervised machine learning algorithms further identify the

main type of attack which has occurred?

Subsequently, an IoT tailored IDS implementation which focuses on these three aspects

and addresses the aforementioned limitations has the potential to significantly enhance

the security of the ecosystem.

It is also important to consider the robustness of such detection systems. Given the

popularity of such solutions, adversaries have turned towards Adversarial Machine

learning (AML). Such techniques allow the vulnerabilities surrounding the machine

learning approach which forms the basis of the IDS to be exploited, subsequently al-

lowing adversaries to bypass the detectors. To the best of our knowledge, thus far,

there is no comparable research which investigates the effects of AML in the context

of IoT networks. However, there exists several studies which explore the application of

AML towards email spam classifiers, malware detectors, and Industrial Control Sys-

tems (ICS) [148, 221, 132, 222]. This motivates the fifth research question:
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RQ5 Can AML techniques be used to evaluate the robustness of a supervised IDS for

the IoT?

Finally, it is important to examine methods that may aid in enhancing the robustness of

the supervised detector against AML attacks. A popular approach for defending against

AML attacks is adversarial training. This involves including a subset of adversarial

samples in the original training set and re-training the model. This leads to the sixth

research question:

RQ6 Can adversarial training enhance the robustness of a supervised IDS for the

IoT?

1.2 Research Aims and Objectives

Motivated by the aforementioned research questions discussed in Section 1.1, the

overarching goal of this thesis is to explore how security mechanisms tailored for

the IoT ecosystem can enhance its security. As previously discussed, heterogeneous

IoT devices within a home introduce a new threat vector that may have severe con-

sequences. As such, given the different applications of IoT, the variety of different

vendors, and their low computational power, there is a need to create a framework that

can accommodate and secure a range of diverse devices. Following a secure frame-

work to deploy IoT within a home, it is equally important to implement mechanisms

to monitor the network traffic of the local IoT network to detect attacks effectively. Fi-

nally, it is crucial to examine the robustness of such tools by evaluating against attacks

that may be obscured, increasing trust and adoption while retaining security. Overcom-

ing heterogeneity and being able to uniformly apply a range of security mechanisms,

addressing the gap in effective security monitoring solutions, and gaining an under-

standing around how the robustness of such security solutions, all contribute to the

research outcome; creating a secure IoT environment.
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More specifically, within this work, two core novel security mechanisms are proposed;

one to defend and one to detect attacks in IoT environments. Both mechanisms are

essential to create a more robust and complete security model.

In order to address the overarching goal of this thesis, the following key objectives

were identified:

1. Analyse the literature surrounding the state-of-the-art approaches towards de-

fending and detecting attacks in IoT environments to identify the limitations of

current approaches.

2. Design a prototype of a secure hub framework to defend against cyber attacks

that may threaten a smart home network.

3. Design and implement a typical IoT smart home network to deploy and eval-

uate the proposed hub using a traditional penetration testing methodology that

corresponds to the attacker’s objectives as defined in the contribution Chapter.

4. Identify the key requirements of a supervised IDS tailored for IoT environments.

5. Evaluate the feasibility and the performance of the proposed IDS using real net-

work data derived from a typical IoT testbed consisting of a range of devices.

This performance will be measured using standard machine learning classifica-

tion metrics; Precision, Recall, F1-score. The goal is to maximise these measures

as higher values correspond to better classification performance.

6. Further evaluate the robustness of the IDS against AML attacks. This will be

achieved by developing a methodology to generate adversarial DoS packets and

observing the classification performance metrics when such packets are presen-

ted to a trained supervised machine learning model.

7. Explore the effectiveness of adversarial training in increasing the robustness of

machine learning detectors against AML attacks. This will be achieved by eval-

uating the performance of adversarial training.
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To achieve the research objectives presented herein, the scope of the experiments are

designed within the context of smart home IoT environments. In this case, a review

of the literature surrounding the definition of a smart home, its properties, the type of

devices that are included within such environments, and the types of interactions with

such devices was conducted. These are discussed in more detail within the testbed

sections, 3.5.1 and 4.2, in each contribution Chapter.

1.3 Research Methodology

Given the technical nature of this work, and its focus on detecting attacks and defend-

ing the IoT environment, an empirical methodology based on a quantitative research

framework is adopted. As noted by Rasinger [164], quantitative research is deductive;

that is, research questions are developed from prior theories, and are then proven (or

disproven) during the empirical investigation. Having reviewed relevant and compar-

able literature (Chapter 2), the research methodology herein combines the core prin-

ciples of several acknowledged quantitative approaches (e.g.[108, 201]). This includes

reviewing relevant literature for appropriate research methods, designing the research

methods and strategies to achieve the aforementioned research objectives, designing

and implementing testbeds to facilitate experimental work (including identifying the

relevant tools required to configure and communicate with IoT devices), collecting rel-

evant data (including identifying the variables to measure), analysing such data, and the

interpretation and presentation of results. In addition, rather than conducting a qual-

itative user-focused study, to inform our design choices for the testbed (see Sections

3.5.1, 4.2, 4.3.1, 3.2), and collect data by interacting with such devices, previous stud-

ies concerning smart home network configurations, the devices in such networks, and

the number of and interactions with such devices are to be reviewed and adopted where

relevant. Figure 1.1 illustrates a graphical representation of the quantitative research

methodology followed in this thesis as identified also by [108].
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The following steps, and as illustrated in Figure 1.2, describe the exact steps followed

in the aforementioned quantitative methodology used to structure the work presented

in this thesis which focuses on fulfilling the research objectives identified in Section

1.2.

1. The first part of the research raises the need to comprehend the applicability of

a hub architecture towards uniformly securing a range of heterogeneous devices

on a smart home network. This is achieved by:

• Step 1 and Step 2: Reviewing related literature to identify the configura-

tions and design of existing secure IoT hubs, their limitations, the config-

urations and design of traditional smart home networks, which smart home

devices and how many are often connected to such networks, and which

cyber attacks are the most impactful threat towards them.

• Step 3: Designing, configuring, and implementing a smart home testbed.

• Step 4 and Step 5: Designing, configuring, and implementing a secure hub.

• Step 6: The validation of the proposed hub is achieved by using an un-

biased, industry standard penetration testing methodology.

The results of the penetration testing evaluation provides the essential justifica-

tions which demonstrate the success of the hub’s design in increasing the security

of heterogeneous devices on a traditional IoT smart home network.

2. The second part of the research raises the need to comprehend the applicability of

a supervised IDS tailored towards detecting maliciousness in IoT environments.

This is achieved by:

• Step 1, Step 2, and Step 3: Reviewing related literature to identify the

configurations and design of existing IDSs and their limitations.

• Step 4: Designing, configuring, and implementing a smart home testbed.
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• Step 5: Collecting network packet data when the devices on the testbed

are in their natural state (including when they were interacted with them)

and are under attack. To determine the interactions with the devices, user-

focused literature is reviewed to identify the common interactions in a smart

home network.

• Step 6: Evaluating the performance of a selection of state-of-the-art su-

pervised classifiers. The validation of such classifiers is achieved using a

cross-validation approach, a re-sampling method that uses different por-

tions of the data to test and train a model on different iterations, where the

goal is to estimate how accurate a predictive model will perform in prac-

tice. In addition, the validation of the best performing classifier is achieved

by analysing how the outcomes are re-distributed following classification.

This investigation provides insight into whether any frequent misclassific-

ations occur between similar devices and attack types, or conversely, the

model can distinctly discriminate between device and attack type beha-

viours with high accuracy.

The results of this analysis provide the essential justifications which demonstrate

the success of a supervised machine learning approach in identifying malicious

network packets with high accuracy. Subsequently, this result raises the need

to evaluate the robustness of the proposed IDS against AML attacks. This is

achieved by:

• Step 6a: Analysing the performance of the IDS when presented with ad-

versarial samples. The validation of such analysis is achieved by comparing

the original classification performance of the IDS against its performance

when such adversarial samples are present.

• Step 6b: In a similar fashion, analysing the model’s performance following

adversarial training. The validation of such analysis is achieved by com-

paring such results against prior performances.
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The results of this analysis provides the essential information that the proposed

supervised IDS is vulnerable towards AML attacks, as well as the success of

adversarial training in enhancing its robustness.
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1.4 Research Contributions

The four main research contributions presented herein are as follows:

C1 As a response to RQ1, this contribution proposes the first design and prototype

implementation of a secure and heterogeneity-aware hub for the IoT. The pro-

posed hub can defend against two attacker models which take into consideration

some of the most popular attacks that may threaten IoT smart home networks.

To defend against these types of adversaries, the hub contains built-in security

mechanisms that satisfy the following security properties: secure user authentic-

ation, secure access control, confidentiality, device cloaking, and user/attacker

behaviour monitoring. More specifically, the hub uses dynamically loadable add-

on modules to communicate with various diverse IoT devices, provides policy-

based access control and secure authentication, limits the exposure of the local

IoT devices through cloaking, and offers a canary-function based capability to

monitor attack behaviours.

C2 To address RQ2, RQ3, and RQ4, this contribution includes an investigation into

how supervised machine learning algorithms can be utilised to support a novel

three layer IDS tailored towards the IoT. The detection system aims to: 1) clas-

sify the IoT devices connected on the network, 2) identify whether network pack-

ets are malicious or benign, and 3) given malicious packets in 2), identify the

type of attack which has occurred. To the best of our knowledge, thus far, no

research has investigated into the development of such three-dimensional IDS in

this context.

C3 To address RQ5, this contribution includes an exploration of how AML tech-

niques can be applied to evaluate the robustness of a machine learning based

IDS tailored towards the IoT. The proposed approach aims to showcase how ma-

nipulating malicious network packet features can force a machine learning model

to misclassify malicious packets as benign, consequently bypassing the detector.
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To the best of our knowledge, thus far, there is no comparable research which

investigates the effects of AML in the context of IoT networks.

C4 To address RQ6, this contribution includes an investigation of how adversarial

training may be used to enhance the robustness of a supervised IDS for the IoT.

The contributions presented in this thesis have formed and extended a number of peer-

reviewed research papers:

C1 Anthi, E., Ahmad, S., Rana, O., Theodorakopoulos, G. and Burnap, P., 2018.

EclipseIoT: A secure and adaptive hub for the Internet of Things. Computers&

Security, 78, pp.477-490. [62]

C2 Anthi, E., Williams, L., Słowińska, M., Theodorakopoulos, G. and Burnap, P.,

2019. A Supervised Intrusion Detection System for Smart Home IoT Devices.

IEEE Internet of Things Journal, 6(5), pp.9042-9053. [66]

C2 Anthi, E., Williams, L. and Burnap, P., 2018. Pulse: an adaptive intrusion detec-

tion for the Internet of Things. Living in the Internet of Things: Cybersecurity

of the IoT-2018. (pp. 1-4). IET. [64]

C3 & C4 Anthi, E., Williams, L., Javed, A. and Burnap, P., 2021. Hardening Machine

Learning Denial of Service (DoS) Defences Against Adversarial Attacks in IoT

Smart Home Networks. Computers & Security [65]

The following peer-reviewed publication contributes to the literature review provided

in Chapter 2:

Anthi, E., Javed, A., Rana, O. and Theodorakopoulos, G., 2017. Secure data sharing

and analysis in cloud-based energy management systems. In Cloud Infrastructures,

Services, and IoT Systems for Smart Cities (pp. 228-242). Springer. [63]
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1.5 Thesis Structure

The outline for the remainder of this thesis is as follows:

• Chapter 2 - Background - Introduces IoT and the key challenges surrounding

cybersecurity in such systems, as well as their comprising topics and the key

concepts related to this research.

• Chapter 3 - A Secure and Heterogeneity-Aware Hub for IoT Smart Homes -

Introduces the architecture of a novel and secure hub for the IoT environment.

This Chapter presents contribution C1.

• Chapter 4 - A Supervised Intrusion Detection System for the IoT Environment -

Explores how supervised machine learning algorithms can be utilised to support

a novel three layer IDS tailored for the IoT. This Chapter presents contribution

C2.

• Chapter 5 - Adversarial Attacks on Machine Learning Cybersecurity Defences

in IoT - Investigates how AML can be used to evaluate the robustness of su-

pervised attack detectors, as well as applying AML techniques to enhance their

capabilities in detecting cyber attacks. This Chapter presents contribution C3

and C4.

• Chapter 6 - Results and Contributions - Summarises the research contributions

and findings presented in this thesis.

• Chapter 7 - Conclusions and Future Work - Concludes the thesis, discusses the

real-world implementation of the research outcomes, highlights the limitations

surrounding such mechanisms, as well as highlighting proposals for future work.
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Chapter 2

Background

2.1 Introduction

Due to the rapid proliferation of smart devices and their prominence in our daily lives,

the past decade has seen substantial research revolving around the security of IoT in-

frastructures. Although such devices may simplify and automate our everyday tasks,

they also introduce significant security flaws. Current insufficient security measures

employed to defend smart devices make IoT one of the weakest links to breaking into

a secure infrastructure, and therefore an attractive target to attackers [64]. As a result,

the field of IoT security has become a critical area of research as it coincides with the

rapid increase in the motivations, opportunities, and impact of cyber attacks towards

IoT devices.

The purpose of this Chapter is twofold. Firstly, the key challenges surrounding cy-

bersecurity in IoT are discussed. This includes the heterogeneity of smart devices and

the application of hubs as a unified security mechanism in the ecosystem. This also

includes the application of machine learning as an approach towards implementing ad-

aptive and intelligent security mechanisms for detecting malicious behaviour in IoT

networks. Secondly, an insight of the wider research revolving around machine learn-

ing and cybersecurity is provided, which is used as a basis for reflecting on the research

contributions of the work presented in this thesis. The following methodology [26] was

followed to identify current, relevant, and comparable state-of-the-art research used to
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motivate the work presented in this thesis:

1. Identify a research topic; in this case, literature revolving around or with the

following keywords: secure IoT hubs/architectures, security mechanisms, intru-

sion detection systems for IoT (signature/anomaly/machine learning based), and

bypassing intrusion detection systems.

2. Search for papers in IEEE Xplore, ACM Digital Library, Google, Google Scholar

using the aforementioned keywords.

3. Review secondary sources to gain an overview of the topic, such as Intrusion de-

tection systems in Internet of Things: A literature review, A review of intrusion

detection systems using machine and deep learning in internet of things: Chal-

lenges, solutions and future directions, A review of security concerns in Internet

of Things.

4. Determine relevant preliminary sources and primary research journals (e.g. Com-

puters & Security, IEEE Internet of Things Journal) and extract the references of

other relevant research publications.

5. To determine the relevance of the sources the following points were evaluated:

• the topic - abstracts and conclusions were read to consider the relevance of

the work to the research topic investigated herein and whether it covered

the topic adequately.

• the publication date - to ensure that it is sufficiently current for the research

topic investigated herein. More specifically, for this work, where possible,

literature from 2014 onwards were reviewed.

• quality of publication - we further investigated the credentials of the authors

of the source and the quality of venue to determine their level of expertise

and knowledge about the subject.
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6. Based on the above, select specific articles to review in more depth.

7. Read articles and prepare bibliographic information and notes on each article

with their limitations and their importance.

8. Evaluate the research reports and formulate research questions to expand/or ad-

dress the limitations of these papers. Subsequently, design an appropriate exper-

imental methodology to address such research questions.

This Chapter is divided into the following main Sections: Section 2.2 defines the aims

and objectives of IoT devices, as well as providing context for their applications. Sec-

tion 2.3 introduces the basic components of the IoT ecosystem and discusses the issues

surrounding the heterogeneity of smart devices with respect to cybersecurity. Section

2.4 discusses the cybersecurity vulnerabilities surrounding IoT. Section 2.5 and Sec-

tion 2.6 discuss both the mitigation and detection of cyber attacks in IoT respectively,

including the integration of machine learning in IDS for IoT networks. Section 2.7 dis-

cusses the vulnerabilities associated with machine learning algorithms in the context

of attack detection. Finally, Section 2.8 summarises the main topics discussed in this

Chapter.

2.2 Internet of Things (IoT)

The term IoT was originally coined by Kevin Ashton, who discussed the possibility of

linking the then new idea of RFID technology in supply chains with the Internet [69].

Since then, and with the evolution of technology, the definition of IoT has evolved to

describing a wider range of applications within different domains, such as transport and

health care [194, 106]. Today, IoT is used to describe a things-connected ecosystem of

electronic devices which are embedded with software, sensors, actuators, and network

connectivity, which enable them to connect and exchange data from their environment

without human intervention [162, 69].
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IoT devices, such as smart and wearable devices, home appliances, and alarm and

camera systems provide various functionalities which automate and support our daily

activities and needs. Due to their ubiquitous connectivity which allows them to com-

municate and exchange information with other technologies, their intelligence, and

their decision making capabilities to invoke actions [121], the number of smart devices

has increased dramatically. Statista Research Department [42] predicts that by 2025,

there will be over 75 billion IoT devices connected around the world, overtaking the

number of personal computers and smartphones combined [209]. Figure 2.1 illustrates

the increase in the number of connected IoT devices per year between 2015 and 2025.

Figure 2.1: Number of connected IoT devices worldwide from 2015 - 2025 as

predicted by Statista Research Department [42] (in billions).

2.2.1 Applications of IoT

IoT devices may be embedded in several different domains. Such devices are widely

used particularly in the domestic environment. One of the most popular applications

of IoT is within smart homes [71]. Smart home appliances include smart thermostats,
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lighting, meters, and locks which may be controlled remotely from a smart phone or

laptop. Users are able to monitor the usage of such devices, providing more inform-

ation and allowing the user to make a more informed decision as to when to change

such usage. For example, a user may want to schedule their heating system to switch

off once it has reached a certain temperature to save energy and money. Other devices

may include smart fitness trackers and wearables such as Fitbit which allow users to

track their physical movements in order to measure and set personal fitness goals.

However, the use of IoT devices is not limited to smart homes and wearable devices.

IoT infrastructures have become the driving force being the development of an inter-

connected knowledge-based world; our economies, societies, machinery of govern-

ment, and CNI [182]. These include concepts that may be necessary for a country

to function and upon which our daily life depends on, such as smart cities, intelli-

gent transport systems, smart grids, and health care systems [71]. For example, smart

meters and energy regulators are embedded into smart grids to measure energy trends

in order to efficiently distribute energy across demand [63].

It is therefore evident that IoT is transforming the way in which such domains operate

by providing real-time, more accurate, and automated measurements and functionalit-

ies [129].
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2.3 The IoT Ecosystem

The concept behind IoT infrastructures is as powerful as it is complex. IoT refers to a

broad and diverse ecosystem that includes a wide range of devices, applications, pro-

tocols, and use cases (see Figure 2.3). As a result, in order to better understand how an

IoT ecosystem operates, such infrastructures are separated into seven key layers [88].

As seen in Figure 2.2, each layer consists of a variety of different devices, technologies,

and operations.

Figure 2.2: Internet of Things reference model [24]

In more detail:

1. Physical devices and controllers (Perception Layer) - This is the lowest layer

in the IoT ecosystem architecture. It consists of a range of different sensors and

devices that are responsible for gathering information from the environment.

2. Connectivity (Communication Layer) - This is the core layer of in the IoT sys-

tem and is responsible for connecting the sensors, network devices, and servers.

Various types of technologies are used in this layer, such as Wi-Fi, WAN, Local

Area Network (LAN), 4G, 5G, LoRA, etc. [76].
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3. Edge computing (Cloud Edge or Gateway) - This layer interfaces the data

and control planes to the higher layers of the cloud or software layers. Protocol

conversion, routing to higher layer software functions, and “fast path” logic for

low latency decision making are implemented in this layer [212].

4. Data accumulation (Middleware Layer) - This layer is responsible for storing,

analysing, and processing the data received from the sensors and devices. [206]

5. Data abstraction - In this layer, the data collected from the sensors is organised

and pre-processed in order to be able to used for further processing.

6. Application - This layer sits at the top of the architecture and is responsible

for delivering application-specific services to the user. Moreover, it defines the

various domains in which IoT can be deployed, as discussed in Section 2.2.1

[177, 76].

7. Collaboration and processing - In this layer, the processed data in the lower

layers is integrated into business applications. The main challenge here is to

effectively leverage the value of IoT and its services and to translate it into eco-

nomic growth, efficient decision making, and business optimisation.
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2.4 Cybersecurity in IoT

Following the discussion in Section 2.2.1, it is evident that IoT is one of the fastest

growing technologies which has huge impact in various domains [48]. However, al-

though IoT comes with several advantages, one of the main issues surrounding such

devices are their tremendous security flaws.

A prominent study in the field is by Hewlett Packard Enterprise [15], who, in 2016,

demonstrated that 70% of the most popular IoT devices on the market are vulnerable

to a range of security threats. In particular, they discovered that each device had a

recklessly high number of security vulnerabilities, each suffering from, on average,

25 issues. Other, later surveys, found similar limitations, such as the OWASP top 10

IoT vulnerabilities [30] and a study by Synopsys [43] and Abouzakhar et al. [49] who

revealed a lack of security in medical devices. More recently, IoT devices have been

employed as part of botnets and have launched several of the largest DDoS attacks

[22]. A recent study by the IBM X-Force showed a 500% increase in overall IoT

attacks which was largely driven by a new botnet variant; Mozi [159].

Since then, IoT devices have been developed to include some security improvements,

such as transport encryption. However, statistics show that as the number of IoT

devices increase, the number of cybersecurity attacks against them also increase and

the majority of these devices are still insecure. More specifically, in 2019 Avast soft-

ware [17] reported that a German-manufactured childrenâs smart watch was recalled

by the EU when its controller app was found to have significant vulnerabilities. The

device could potentially have been compromised to allow hackers to track the childâs

movements in real time, or spoof the GPS location data to deceive parents. Further-

more, another study by Kumar et al. [126] discovered that many IoT devices had ports

and protocols left open, even if they are not exclusively used by the device. In addition,

they reported that many devices were found to have the File Transfer Protocol (FTP)

and Telnet services open. In more detail, 17.4% of devices had weak FTP credentials

while 2.1% had weak Telnet credentials. An even more recent study conducted in 2020
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by Mangino et al. [140], revealed that a large number of IoT devices found online were

susceptible to the aforementioned vulnerabilities. AAs a result, as threats towards IoT

progressively increase in their complexity and severity, it is evident that the state of

their security remains weak; thus, requiring further attention.

There are three main reasons as to why IoT devices are vulnerable to cyber attacks:

1. The heterogeneity of devices significantly expands the attack surface of IoT eco-

systems. As such, implementing security mechanisms that can be universally

applied to IoT consists a complex challenge.

2. The restrictions in the computational power of IoT devices severely affect their

security. It is generally not feasible for IoT devices with restricted computational

power, memory, radio bandwidth, and battery resource to execute computation-

ally intensive and latency-sensitive security tasks that generate heavy computa-

tion and communication load [63, 218]. As a result, it is not possible to employ

light-weight, complex, and robust security measures.

3. It is difficult to update the software or apply patches on such devices [183].

Given that they suffer from security vulnerabilities and that they are often deeply em-

bedded in networks, IoT devices are considered as being one of the weakest links for

breaking into a secure infrastructure.

2.4.1 Cyber Attacks in IoT Ecosystems

Multiple studies (e.g. [158, 179, 120, 146, 61]) have demonstrated that IoT devices are

vulnerable to a wide range of cyber attacks. Figure 2.4 captures a range of different

types of attacks that can occur in IoT networks. These include physical, network-based,

firmware, and encryption attacks.

Physical and Close Proximity Attacks
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Figure 2.4: Types of cyber attacks in which IoT devices are vulnerable against

[61].

Physical attacks focus on damaging the hardware components of a device by targeting

their ports, memory, power source, etc. Such attacks can disrupt the device’s func-

tionality and can alter its behaviour. In order for an adversary to deploy these attacks,

they are required to have physical access to the devices. The following are examples

of physical attacks in which IoT devices are vulnerable against:

• Radio Frequency Interference/Jamming: This mostly refers to DoS attacks that

can be caused by creating and transmitting noise signals over radio frequency.

• Physical Penetration: The adversary can potentially access an exposed device in-

terface (e.g. JTAG), and thus can readily access memory, sensitive key material,

passwords, configuration data, and a variety of other sensitive parameters [172].

• Physical Damage: The attacker physically damages the device in order to impact

the availability of service.

• Malicious Node Injection: An attacker deploys a rogue device on the network

that can potentially be used to monitor the network traffic and intercept the com-

munications. This attack can also be considered as a network based attack.

Social Engineering Attacks
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• Social Engineering: Rather than the device itself, these psychological attacks are

directed towards the user of an IoT device. The aim is to gather the user’s trust

towards sharing sensitive information [111].

Network-Based Attacks

Network-based attacks may be deployed on IoT ecosystems via the network from any-

where in the world. An attacker does not need to have physical access to the devices

to launch attacks such as:

• Passive Traffic Analysis: The adversary passively monitors the network in order

to try and intercept sensitive user data. Information can be gathered by monitor-

ing the network’s traffic. An attacker can also interfere with traffic flow, known

as MITM [144].

• Spoofing: During such attacks, adversaries impersonate legitimate devices to

make malicious entities seem as if they are legitimate ones so that attacks may

be launched [218].

• Sinkhole: A compromised device attempts to attract network traffic by advert-

ising fake routing updates. One of the impacts of such attacks is that it can be

used to launch other attacks [149].

• DoS/DDoS: DoS and DDoS are the most common kinds of attacks that occur

in IoT networks. Such attacks reduce, interrupt, or completely eliminate the

network’s communications and range from relatively simple jamming to more

sophisticated attacks. They can be launched remotely and are difficult to detect

before the network or service becomes unavailable [117].

• Sleep Deprivation: In IoT networks, the devices have the ability to enter power-

saving modes in order to preserve their lifetime and reduce their power consump-

tion. This attack focuses on forbidding these devices from going into power-
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saving mode by continually sending traffic to them and therefore exhausting their

battery resources [63].

• MITM attack: is an attack in which an attacker makes an independent connection

with the victims B and C, making them believe that they are communicating with

each other. The attacker intercepts the message coming from B to C, and vice

versa, and re-routes them [139].

Firmware Attacks

Firmware attacks are associated with the software which is installed on the IoT device.

More specifically:

• Backdoors: The attacker modifies the firmware of the device by inserting code

which allows them to gain remote access to the device when it is connected to

the network.

• Unencrypted Information: Attackers reverse engineer the compiled firmware and

investigate it in order to find encrypted passwords, API keys, and public-key

certificates. This information allows them to intercept the communication of the

devices and gain access to sensitive user data.

• Malicious Firmware: Attackers may not only modify the device’s firmware in

order to create backdoors, but also to launch other attacks such as DDoS.

Encryption Attacks

Encryption attacks target any form of encryption mechanism that is employed on an

IoT network [223], such as:

• Side Channel Attack: Attackers deploy this attack to bypass the encryption in

IoT devices. This is possible by eavesdropping on the device’s side channel

emissions and waiting for an encryption key to be used to access the device.
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• Cryptanalysis-Based Attacks: These attacks assume the possession of ciphertext

or plaintext. Their purpose is to find the encryption key used by breaking the

encryption scheme of the system. Examples of cryptanalysis attacks on IoT sys-

tems include Known-plaintext attack, Chosen-plaintext attack, Chosen Cipher-

text attack, and Ciphertext-only attack.

• Ciphertext Only Attack: In this methid, the attacker can access the ciphertext

and determine the corresponding plaintext.

• Known Plaintext Attack: In this method, the attacker knows the plaintext and a

few parts of the ciphertext. The adversary’s aim is to decrypt the remaining part

of the ciphertext utilizing this information.

2.4.2 Consequences of Cyber Attacks on IoT

The consequences associated with the attacks discussed in Section 2.4.1 may vary,

from digital loss of data to physical harm. For example, a seemingly harmless de-

authentication attack can cause no significant damage. But if it is deployed on a device

with critical significance, such as the steering wheel of a smart car, it can pose a threat

to human life. Other high severity security attacks against, for example, CNI concepts,

can disrupt the system’s availability and energy resources, causing system blackouts

and other indiscriminate and long-lasting damage. The effects of these security issues

may cause major interference to the operation of services. For example, public trans-

portation networks can be targeted to cause chaos during peak travel periods and at-

tacks to power grids can result in wasting huge amounts of energy and a possible black-

out of the system [63, 6]. In addition, such attacks may lead to financial implications.

A recent survey by Irdeto Global Connected Industries [1] showed that IoT-related cy-

ber attacks may have high financial impact. More specifically, 700 organisations in the

transport, manufacturing, and healthcare domains have suffered financial losses that

exceed $300,000 each due to IoT-related cyber attacks.
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As a result, given that the most important aspect of IoT devices is their inter-connectivity,

and ultimately, their connection to the Internet, network based attacks may impact the

majority of devices. Along with the combination of the severity of the consequences

that such cyber attacks pose towards IoT and their heterogeneity, this thesis is motiv-

ated by the research surrounding network based attacks in IoT; in particular, securing

heterogeneous smart devices and detecting such type of attacks.

2.5 Mitigating IoT Cyber Attacks

There are several studies which concern the security of IoT. Such work focus on mit-

igating specific security elements, such as:

• Authentication - which aids IoT to distinguish legitimate source nodes and ad-

dress identity-based attacks such as spoofing [207] (e.g.[219, 125, 160, 211]).

• Access control - which prevents unauthorised users from accessing IoT resources

[59] (e.g. [213, 138, 113, 136]).

• Confidentiality and Integrity - which ensures that the data is only readable by

the intended recipient and has not been altered (e.g. [132, 161, 89, 188]).

However, given the heterogeneity surrounding IoT, such security mechanisms may not

be applicable to all of the devices connected to the network. Additionally, such security

solutions may also generate a heavy computation and communication load specifically

in outdoor IoT devices, such as cheap sensors with lightweight security protections

[207].

As discussed in Section 2.3, IoT ecosystems do not consist of a single technology.

Rather, it is an accumulation of various different technologies that work together as

part of a robust architecture [177]. This emphasises that IoT is a heavily heterogeneous

environment.
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More specifically, in the context of IoT, heterogeneity refers to the implementation of

a wide diversity of hardware, software, protocols, platforms, policies, etc. [153]. For

instance, not all IoT devices are sold by the same vendor and are built for the same

purpose. Depending on their applications and use case, IoT devices include several

different features to severe different usages [62, 124]. Subsequently, IoT devices may

be categorised into different types by taking into consideration parameters such as their

size (e.g. small or large), their portability (e.g. portable or fixed), their power source

(e.g. battery or external source), and their processing capabilities (e.g. commercial or

embedded) [48].

In addition, depending on the task they were designed to do, IoT devices use dif-

ferent communication protocols to connect to the Internet, gateways, or with each

other [62, 177]. Few of the most common communication technologies used among

IoT devices include IEEE 802.15.4, low power WiFi, 6LoWPAN, RFID, Sigfox, Lor-

aWAN, Bluetooth Low Energy (BLE), and Zigbee [177]. Each of these protocols have

different attributes that make them suitable for different types of devices. For example,

if a device has limited battery storage, it may be best to use BLE as it does not consume

a lot of energy in comparison to other protocols [177].

It is therefore evident that due to the range of different technologies used within IoT

infrastructures and the restriction of computational power of such devices, one of the

biggest challenges posed in this infrastructure is the application of common security

mechanisms [104]. As a result, it is critical to develop unified security mechanisms for

heterogeneous devices in the IoT ecosystem.

One of the most current models to manage heterogeneous devices in a uniformed way is

IoT hubs [215]. IoT hubs allow the control of multiple devices from one central point,

which often allows additional security controls. Given this feature, the first research

question which is explored in Chapter 3 is:

RQ1: What security mechanisms can be incorporated within a smart home IoT

hub that can be uniformly applied to a range of heterogeneous devices?
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Section 2.5.1 provides an overview of current hub implementations in the IoT ecosys-

tem.

2.5.1 IoT Hubs

The fundamental idea of IoT hubs is to allow devices and sensors with low computa-

tional power to focus solely on the task they are designed to do (e.g. measuring the

temperature), without having to consider more complex functions (e.g. network con-

nectivity, data processing) [214]. These functions are handled by the core of the hub,

the gateway, which has significantly more computational power and storage in compar-

ison to the devices and sensors themselves [215]. IoT hubs also have the capability of

connecting a wide range of diverse smart devices and sensors (e.g. thermostats, smart

locks, light sensors) by using wireless technologies.

There exist several frameworks which focus mainly on addressing heterogeneity and

big data within IoT. Such frameworks include [147, 176, 101, 167, 58, 107]. However,

such implementations have limitations which include limited inter-operation capab-

ilities between devices from different vendors and protocol heterogeneity. Thus, to

address the requirements needed by the communication interface, programming ab-

straction, and community-driven device support, Mozzami et al. [147] implemented

SPOT, Extensible Markup Language (XML) based hub. SPOT uses device drivers to

support additional devices. However, this technique can be extremely time-consuming

and not user friendly. Additionally, this hub only includes OAuth authentication as a

security mechanism, and the hub’s overall security performance is not evaluated.

Saxena et al. [176] propose an implementation of an IoT gateway which is expected

to operate over 5G networks, with the main focus being on resolving the challenge of

resource constrained wireless networks. However, this approach does not address core

security concerns, and similar to Mozzami et al. [147], was not evaluated against cyber

attacks. Furthermore, Gloria et al. [101] designed an IoT gateway that addresses IoT
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heterogeneity by supporting all the available wired and wireless communication proto-

cols. However, this approach focuses only on low-level embedded devices and does not

support commercial smart home devices. Additionally, this solution does not focus on

security, and the authentication mechanism that is employed is primarily for platform

configuration purposes. Moreover, to tackle heterogeneity and to control the large data

volume generated by IoT, Razafimandimby et al. [167] proposed a Bayesian Inference

Approach (BIA). This model is based on a hierarchical architecture which consists

of simple nodes, smart gateways and data centers. It employs probabilistic techniques

in order to avoid sending useless data to the network. Although this approach is suc-

cessful in reducing resource consumption, it does not address the security of the IoT

ecosystem. Alsheri & Sandhu [58] propose an architecture where virtual objects use

publish and subscribe (PubSub) topics to deliver services to users through a security

policy. Although this approach is successful in eliminating scalability, heterogeneity,

and provides a secure access control mechanism, the system does not provide any other

security mechanisms and has not been evaluated against a range of attacks.

Commercial implementations such as Samsung Smart Things, Apple HomeKit, and

Google Smart Home provide similar solutions to Mozzami et al. [147], and are capable

of supporting limited devices from various third party vendors. In addition, they may

also be able to provide device cloaking and isolation if they are used in combination

with a separate sub-network. However, this is subject to device and hub compatibility

as the incorporation of IoT devices within a new sub-network may cause the function-

alities and interactions with the included IoT devices to be lost (e.g. the Philips Hue

lamps must be on the same sub-network as their interacting devices. Changing light-

ing settings with a smartphone is therefore not possible from the main network). In

this case, such hubs by default do not provide this mechanism. It is also important to

highlight, that often, these hubs are not able to inter-operate with each other.

Other technologies from vendors such as IFTTT, Nest Thermostat, and AllJoyn [18, 16,

29, 27] do not provide third-party extensibility or security mechanisms. As a result,
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they cannot provide a unified interface, which further demonstrates that heterogeneity

within IoT products and services is a current problem. Guoqiang et al. [107] pro-

pose a centralised framework which employs a gateway which allows different com-

munication protocols to be plugged in to support various networks. Nevertheless, this

approach requires advanced configuration techniques and changes in the physical hard-

ware, which can be costly and is not easily extensible. Finally, this framework does not

include a security policy or other mechanisms to improve the security of IoT devices.

To summarise these approaches, Table 2.1 describes existing frameworks, along with

the the features they provide. A definition of these is as follows:

• Authentication - The hub provides a mechanism to verify the identity of a user

(e.g. via the creation of an account)

• Confidentiality - The hub provides mechanisms to protect the data against un-

intentional, unlawful, or unauthorized access (e.g. via TLS or AES).

• Access Control - The hub provides a mechanism that regulates who and when

they can interact the devices (e.g. via access control polices).

• Device Cloaking - The hub should camouflage the IoT devices, in order to in-

crease the difficulty for an attacker to locate them.

• Heterogeneity Aware - The hub supports devices from different vendors.

• Monitoring Attacker Behaviours - The hub includes mechanisms that aid in

monitoring user/attacker behaviours (e.g. using IoT canary functions)

It is evident that previous propositions, which aim to tackle the heterogeneity of IoT, do

not specialise in improving the security of the ecosystem. Instead, the focus is on hand-

ling the big data that is generated by smart devices, attempting to overcome constraints

of their computational power and their scalability. While security is a key concern

within these existing approaches, the supported security requirements are limited and
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only partially addressed as they may provide a maximum of two security mechanisms,

leaving the hubs exposed to attackers.
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2.6 Detecting Cyber Attacks in IoT

Incorporating security mechanisms into the initial design process of IoT devices or se-

curing multiple heterogeneous devices using a hub, is critical when mitigating cyber at-

tacks. However, in an attempt to bypass the system defenses, adversaries continuously

develop new attack techniques to compromise the devices. As discussed in Section

2.4.1, given that the main characteristic of IoT devices is their connectivity, attackers

may employ network-based attacks more often to compromise such devices as physical

access is not required to launch these attacks. As a result, to enhance the security of

IoT networks, several tools which focus on detecting attacks at the network-level have

been developed (discussed in Section 2.6.2).

A traditional IT security ecosystem consists of a variety of tools which aid early at-

tack detection and, subsequently, the mitigation of the deployment of a range of cyber

attacks. Examples of such tools include static perimeter network defences (e.g. fire-

walls), ubiquitous use of end-point defences (e.g. anti-virus), and software patches

from vendors.

One of the most effective and valuable security mechanisms for detecting malicious

network behaviour is an Intrusion Detection System (IDS) [131]. Specifically, in the

context of IoT, developing mechanisms that detect attacks at the network-level may

also offer some significant advantages such as [187]:

• Network-level mechanisms can be implemented across a range of IoT devices,

rather than device-level security which may be specific to a particular device/vendor.

• Network-level security tools can be enhanced on a continuous basis, unlike device-

level security mechanisms which are hard to update and patch.

• Network-level security tools add an extra layer of protection that can augment

any device-level security implemented by the manufacturer.
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As a result, it is important to focus on developing more effective IDSs tailored for the

IoT ecosystems.

2.6.1 Intrusion Detection Systems (IDS)

An IDS may generally be described as a software application or hardware appliance

which monitors network traffic and alerts the system administrator if suspicious activ-

ity is found [131]. The design of an IDS often includes a data collection module which

collects data from the network, an analysis module which processes the collected data

in order to detect and identify malicious network behaviour, and finally an attack re-

porting mechanism which notifies the network administrators of such behaviours.

More specifically, IDSs may differ in their implementations of the following compon-

ents:

Data Sources

• Host-Based: The IDS is deployed on the host device itself and often requires

software to operate.

• Network-Based: The IDS is deployed on the network itself and analyses its

traffic.

Detection Methods

• Signature-Based: The IDS observes network traffic to find the patterns and signa-

tures of known attacks and abnormalities. This approach is considered as being

unsophisticated as it does not learn the nature of the environment, and is thus

ineffective towards unseen attack signatures.

• Anomaly-Based: Also known as ‘behaviour-based detection’, the IDS models

the natural behaviour of the network and raises an alarm when it significantly
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deviates from a calculated threshold from this state. Thus, such systems are

assumed to be able to detect unseen attacks [184], though with the risk of gener-

ating a large amount of false positive alarms.

• Hybrid-Based: In an attempt to overcome their disadvantages, this IDS model

is formed by using a combination of both signature-based and anomaly-based

detection methods.

Times of Detection

• Online Networks: The IDS is deployed to detect attacks on a live network.

• Offline Networks: The IDS is deployed on data retrieved from a network which

is no longer online.

Architectures

• Centralised: The IDS is deployed in a centralised manner when it is installed on

a single host. A single IDS can monitor a wide subnet; however, it may be faced

with a bottle neck when monitoring the traffic of a busy network.

• Distributed: The IDS is deployed in a distributed manner when it is installed on

multiple nodes in the network. Multiple deployments of an IDS may be more

suited for handling busy networks; though, it is more difficult to manage these

multiple instances [157].

There currently exist various IDS solutions which have mainly been designed and im-

plemented to satisfy the requirements of conventional IT networks. For example, pop-

ular IDSs, such as SNORT and Bro, are particularly effective on traditional IP-only

networks as they are static and use signature-based techniques [215, 171].

In the context of IoT, early IDS frameworks were developed for Wireless Sensor Net-

works (WSN) (e.g. [216, 217, 54, 119]). However, due to the proliferation of IoT
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devices and the increase in their heterogeneity, such IDS solutions, as well as IDS solu-

tions for traditional IT infrastructures, are ineffective within current IoT environments

as they are unable to adapt and scale to the device’s range of possible normal beha-

viours, their heterogeneous platforms and protocols, and array of cyber attack threats

[146, 215].

2.6.2 IDSs in IoT

A significant amount of existing examples of IDSs in IoT have based their detec-

tion methods on signature-based, anomaly-based, and hybrid-based implementations.

However, the recent advancements in technology and the rapid increase in the amount

of data produced from such technologies has opened a greater range of attacks making

these techniques less effective in securing IoT devices [184].

To overcome this limitation, research has focused on developing machine learning

based IDSs. Nevertheless, the majority of such systems are designed to detect one type

of attack at a time, for example, DoS attacks such as Hello Flood (e.g.[190, 91, 193]),

routing attacks (e.g. [166, 180, 158, 152]), and IoT botnet activity (e.g. [141, 145,

144]). Therefore, due to the significant increase of various types of cyber attacks in

IoT, it is necessary to implement IDSs which focus on a broader spectrum of attacks.

In addition, several of these systems have been evaluated using simulated network

data. In this case, current IDSs have not been designed to detect cyber attacks in real

IoT networks. Although their performances may be promising, it is necessary to take

into consideration that simulated data may significantly deviate from real network data,

as it may not be a true representation of how IoT devices are truly used.

Table 2.2 summarises existing state-of-the-art IDS solutions tailored towards the IoT

ecosystem. In particular, they are categorised according to their detection methods, the

security threats they detect, and their validation strategy (i.e. whether they are evalu-

ated on simulated or real network traffic). As a result, it is evident that previous IDS
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proposals dedicated for the IoT ecosystem are still at the early stages of development.

Several approaches have used data from network simulations or have evaluated the

system on a small array of IoT devices, which may significantly decline from a real-

istic environment. Additionally, such approaches focus on detecting whether specific

cyber-attacks have occurred (i.e. whether packets are malicious or benign), but do not

attempt to identify the type of attack. This is an important feature of an IDS, as specific

countermeasures can be employed for specific attack types.
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2.6.2.1 Signature/Event/Rule Based IDSs

Stephen and Arockiam [190] suggest a lightweight, hybrid, and centralised approach

towards the detection of Hello Flood and Sybil attacks in IoT networks, which use the

Routing over Low Power and Lossy Networks (RPL) as a routing protocol. Their sys-

tem is based on an algorithm that uses detection metrics, such as the number of packets

received and transmitted, to validate the Intrusion Ratio (IR) by the IDS agent. Raza et

al. [166] implemented a real-time IDS for the IoT called SVELTE. This system consists

of a 6LoWPAN Mapper (6Mapper), a intrusion detection module, and a mini firewall.

It analyses the mapped data to identify any intrusions in the network. Its performance

in detecting various attacks seems promising. However, it has only been tested to detect

spoofed or altered information, sinkhole, and selective-forwarding attacks. Shreenivas

et al. [180] extended SVELTE by adding another intrusion detection module that uses

an Expected Transmission (ETX) metric to identify malicious activity on the network.

They also proposed a geographic hint to detect malicious nodes that conduct attacks

against ETX-based networks. Their results demonstrated that the overall true positive

rate increases when they combine the EXT and rank-based mechanisms.

Pongle and Chavan [158] propose a centralised and distributed architecture for a hybrid

IDS, which they implemented based on simulated scenarios and networks. It focuses

on detecting routing attacks such as the wormhole attack. Jun and Chi [118] presented

an event-processing-based IDS for the IoT. This system is specification-based and it

uses Complex Event Processing techniques for attack detection. This system collects

data from IoT devices, extracts various events, and performs security event detection

by attempting to match events with rules stored in a Rule Pattern Repository. Although

it is more efficient than traditional IDS, it is CPU intensive. Summerville, Zach, and

Chen [193] developed an IDS for IoT based on a deep packet analysis approach which

employs a bit-pattern technique. The network payloads are treated as a sequence of

bytes called bit-pattern, and the feature selection operates as an overlapping tuple of

bytes called n-grams. When the corresponding bits matches all positions, a match
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between the bit-pattern and n-grams occurs [175]. The system is evaluated by deploy-

ing four attacks and demonstrates a very low false positive rate.

Midi et al. [146] proposed Kalis, a knowledge-driven, adaptive, and lightweight IDS. It

collects knowledge about features and entities of the monitored network and leverages

it to dynamically configure the most effective set of detection techniques. It can be

extended for new protocol standards, whilst at the same time providing a knowledge

sharing mechanism that enables collaborative incident detection [175]. Results showed

that the system had a high accuracy in detecting mainly DoS and routing attacks. Fur-

thermore, Thanigaivelan et al. [196] proposed a hybrid IDS for IoT. In this system,

each node on the network monitors its neighbor. If abnormal behavior is detected, the

monitoring node will block the packets from the abnormally behaving node at the data

link layer and reports to its parent node. Oh et al. [152], implemented a distributed

lightweight IDS for IoT, which is based on an algorithm that matches packet payloads

and attack signatures. They evaluate the IDS by deploying conventional attacks and by

using attack signatures from traditional IDSs such as SNORT. The results demonstrated

that this system’s performance is promising. Finally, Ioulianou et al. [116] proposed

a hybrid lightweight signature-based IDS, in an attempt to mitigate two variations of

DoS attacks: “Hello” flood and version number modification. However, although their

results look promising, their system is tested in a simulated environment using Cooja.

2.6.2.2 Machine Learning Based IDSs

The integration of machine learning in IDS systems has shown promising results and

tackles the majority of the aforementioned limitations of existing systems. This is

because such approaches allow more flexibility in the detection of cyber attacks, as

they are able to automatically derive and learn patterns from network traffic and sub-

sequently identify whether unseen incoming packets are malicious or not [154].

In machine learning, classification is the problem of identifying to which from a set

of categories (i.e. malicious or benign) an unseen instance (i.e. network traffic) be-
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longs to, based on a training dataset. Several machine learning approaches have been

explored. The following Sections introduce the two state-of-the-art approaches used to

support IoT network IDS applications, unsupervised, and supervised machine learning.

2.6.2.3 Unsupervised Machine Learning Approaches

Unsupervised machine learning differs significantly from supervised approaches. The

key difference is that such approaches do not require a label dataset. The models

use statistical inferences to learn structured patterns from unlabelled data. In general,

unseen predictors which exhibit a distinct similarity in the features they contain are

grouped together, subsequently classifying similar data points as the same target value.

This common example of unsupervised learning is known as clustering. Another unsu-

pervised learning technique is known as association. Such models allow associations

among data objects within large datasets to be established. This unsupervised tech-

nique focuses on discovering relationships between variables to establish their target

values.

Researchers have explored how unsupervised learning techniques may be applied in

network intrusion detection. Early examples of applying unsupervised learning in IoT

tailored IDSs include [174, 90, 52, 195].

In more detail, Meidan et al. [144] and McDermott et al. [141] both focus on the

detection of botnets in the IoT ecosystem and employ deep learning techniques, such

as autoencoders and Long Short Term Memory (LSTM)s, to achieve this. The results

in both cases are promising as they can successfully detect the botnets; however, these

methods have not been deployed to detect a range of attacks and have been evaluated

in a simulated environment. Restuccia et al. [168] review the security threats in IoT

networks and discuss a potential security solution which employs a combination of

machine learning algorithms and polymorphic software and hardware. However, no

description of the experimental setup, implementation, and evaluation of the proposed

system is provided. Brun et al. [80] designed a deep learning based approach using
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dense Random Neural Networks (RNN)s for the detection of network attacks. Al-

though this approach often successfully detects attacks, the system was evaluated on

a testbed consisting of only three devices and simplistic cyber attacks were employed.

Additionally, the packet features were associated to specific attacks; for example, to

identify DoS attacks, the frequency of packets over a specific period of time was ob-

served, limiting the attack space.

Furthermore, Diro and Chilamkurti [90] designed a distributed attack detection mech-

anism for social IoT, which employs shallow neural networks. Nevertheless, this

approach was evaluated using the KDDCUP99 dataset. Rathore and Park [165] in-

troduced a fog-based attack detection framework that relies on the fog computing

paradigm and a newly proposed ELM-based Semi-supervised Fuzzy C-Means (ES-

FCM) method. However, their system was evaluate using the NSL-KDD dataset.

Saeed et al. [174] present an intrusion detection and prevention mechanism which

employs RNNs. However, this work focuses on detecting out-of-bound memory ac-

cesses.

Although unsupervised approaches may seem as an attractive option due to the fact that

network data does not need to be labelled, such approaches come with a few challenges.

Firstly, when using unsupervised learning, it is not clear how many classes will be

identified in the training set. Furthermore, it is often difficult to interpret how the

model makes its decisions and how it is learning the patterns from the data. Finally,

it may also be challenging to evaluate its performance without providing ground truth

labels.

2.6.2.4 Supervised Machine Learning Approaches

In order to predict whether network traffic is benign or malicious, supervised learning

methods depend on the existence of annotated training datasets. Training data usually

consists of two parts; predictors and target values. Predictors are the data points (i.e.

network packets) that need to be classified. These are often represented as feature vec-
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tors; an n-dimensional array of numerical values that represent the presence of features

in the network data. Target values, often referred to as class labels, are the known

categories that a predictor belongs to. Supervised approaches are mostly used for clas-

sification problems as it is possible to clearly define the number of classes contained

within a specific problem. As a result, the classifier can learn a decision boundary

to distinguish different classes accurately. These features make this approach partic-

ularly attractive in the context of intrusion detection, particularly when distinguishing

between benign and malicious packets, as well as the known devices on the network.

Several studies have developed supervised machine learning approaches to support

IoT tailored IDSs. Amouri, Alaparthy, and Morgera [60] developed an IDS for IoT

networks which employs linear regression. The IDS attempts to profile the benign be-

haviour of the nodes and identify anomalies in the network traffic. The results demon-

strate that the system is able to successfully distinguish benign and malicious nodes.

However, the IDS’s performance is evaluated within a simulated network and not a real

testbed. Therefore, further evaluation is required to test the efficiency of their system

against a larger array of attacks and devices. Doshi et al. [91], investigated the effect-

iveness of a range of machine learning algorithms (e.g. decision tree, random forest,

neural network) in IoT networks to detect DDoS attacks. They show that by utilising

features relevant to IoT-specific network behaviors (e.g. limited number of endpoints

and regular time intervals between packets), they can achieve high accuracy of DDoS

detection in IoT network traffic with a variety of machine learning algorithms. Never-

theless, the experiments focus only on detecting DDoS attacks. Additionally, Shukla

[181] proposed an IDS that uses a combination of machine learning algorithms such as

K-means and decision tree, to detect wormhole attacks on 6LoWPAN IoT networks.

The results from this work are promising; however, the evaluation of the proposed IDS

was based on a simulation and the effectiveness of the IDS has not been tested against

other attacks. Finally, Canedo and Skjellum [82] investigated how Artificial Neural

Networks (ANN) can be used in a gateway in order to detect anomalies in the data

sent from the edge devices. Nevertheless, their approach was evaluated using mostly
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embedded devices/sensors such as Arduino Uno. Additionally, they focus on detecting

modified data received from these sensors.

Finally, there are a few commercially available solutions that employ machine learning

algorithms to detect cyber attacks provided by companies such as Darktrace [8] and

Veracode [44]. However, there is no transparency of the methodology and algorithms

employed by these companies and therefore it is not possible to directly compare this

work with these products. Finally, they focus mainly on identifying malicious activity

and do not attempt to classify the attack that is occurring on the network.

Nevertheless, these approaches are still at the early stages of development. More spe-

cifically, as shown in Table 2.2, the majority of these studies have used data from net-

work simulations or have evaluated the system on a small array of IoT devices, which

may significantly deviate from a realistic environment. Furthermore, the proposed sys-

tems focus on detecting one or two attacks; in particular, routing attacks and DoS. This

motivates the second research question:

RQ2: Can supervised machine learning approaches support the automatic de-

tection of a range of cyber attacks based on network packet features collected

from a range of IoT devices?

Additionally, as shown in Table 2.2, previous work lack focus in device profiling. This

is important in networks consisting of various IoT devices as it allows the assets within

the network to be identified, and subsequently it may be possible to detect anomalies

outside of the device’s ‘normal’ behaviour. Furthermore, understanding the behaviour

of each device can assist in detecting malfunctions or attacks initiating from the IoT

devices themselves. Although other work has considered IoT device classification (e.g.

[145, 185, 72], such approaches utilise traffic flow features and other statistical attrib-

utes to identify the devices, such as device activity cycles and signalling patterns. Such

metrics may be extracted using additional tools and software, which in the context of

this work which utilises network traffic, would increase the time and effort to perform
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feature engineering. Furthermore, device profiling has a received less attention in the

context of IDSs and mostly focus on distinguishing between whether a device is IoT or

non-IoT, or identifying the vendor of the devices. In this case, and to align with RQ2

which utilises packet features to distinguish between malicious and benign packets,

RQ3 aims to answer the question of whether the same packet features used in RQ2

may also be used to successfully classify the devices connected on the network. This

motivates the third research question:

RQ3: Can supervised machine learning algorithms successfully classify different

IoT devices based on network packet features?

To the best of our knowledge, to date, there is no published research that has shown the

ability to identify attack types in IoT networks. Bolozoni et al. [78] propose a machine

learning approach to classify the different types of cyber attacks detected by Alert

Based Systems (ABS) in traditional IT networks. To achieve this, byte sequences were

extracted from alert payloads triggered by a certain attack. Sequences were compared

to previous alert data. Although this technique is effective in these networks, such

approach relies on the alerts produced by the ABS, which may not be effective in

IoT environments due to the large number of devices. Additionally, as the detection

method uses payload values to detect attacks, attacks which IoT systems are vulnerable

to and which do not alert the payload (e.g. DoS) are not detected. Subba et al. [192]

implemented a model that uses feed forward and the back propagation algorithms to

detect and classify cyber attacks. However, to evaluate their system, they used the NSL-

KDD dataset which is collected from a traditional IT network. As a result, there is no

evidence that this approach would be as effective if deployed in a heterogeneous IoT

environment, which consists of many more protocols, devices, and network behaviours.

Table 2.2 highlights that current IDSs to not attempt to identify the type of attack that

has occurred. According to the Cyber Security Incident Response Guide (CSIR) [7]

and National Cyber Security Centre (NCSC), one of the toughest challenges for organ-

isations is to identify the type of cyber attack which is occurring on the network without
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having to perform an in depth investigation, which can be a very time consuming pro-

cess. This may be a particularly challenging task in IoT networks due to the amount of

connected devices and the larger attack vector. As a result, without this information,

significant human effort is needed to respond to alerts, determine the severity of an

attack, and launch countermeasures. This motivates the fourth research question:

RQ4: Given RQ2, can supervised machine learning algorithms further identify

the main type of attack which has occurred?

2.7 Adversarial Machine Learning

Section 2.6.2.2 provides an overview of machine learning and how such technologies

can be used to automatically detect network intrusion. However, the introduction of

such IDSs has also created an additional attack vector; the learning models may also

be subject to cyber attacks.

The act of deploying attacks towards machine learning based intrusion systems is

known as Adversarial Machine Learning (AML). The aim of AML is to automatically

introduce slight perturbations to unseen data points in order to confuse the pre-trained

model. The model’s effectiveness may be reduced as it is presented with unseen data

points that it cannot associate target values to, subsequently increasing the number of

misclassifications and bypassing the detector.

Such techniques have been studied extensively in other research areas. Figure 2.5

illustrates an AML example in the area of computer vision, where calculated noise is

introduced to the pixels in an image causing the trained model to misclassify it as a

different object [103, 150].

Due to the advancement in machine learning, there has been a substantial increase in

IDSs which use such techniques for IoT networks. Table 2.2 presents a summary of

such systems and the machine learning methods they employ. Nevertheless, there has
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Figure 2.5: Deploying adversarial machine learning in images [102]

been significantly less focus on AML in this context. In the field of cyber security,

such research has mainly focused on email spam classifiers [148], malware detection

[105, 114, 74], and recently against network IDSs for traditional networks [169] and

Industrial Control Systems (ICS) [222, 212, 93, 67].

In more detail, both Nelson et al. [148] and Zhou et al. [221] demonstrated that an ad-

versary can exploit and successfully bypass the machine learning methods employed

in spam filters by modifying a small percentage of the original training data. Moreover,

Grosse et al. [105] evaluate the robustness of a neural network trained on the DREBIN

Android malware dataset. They report that it is possible to confuse the model by per-

turbing a small amount of the features in the training set. Such an attack is considered

as being a grey-box attack, as in order to be successful, the adversary must have ac-

cess or knowledge of the dataset and the features it includes. Furthermore, Hu and

Tan [114] proposed a more advanced adversarial technique which uses the concept

of Generative Adversarial Networks (GAN) to successfully attack malware classifiers

without requiring any knowledge of the data and the system. This is known as a black

box attack.

In the context of IoT, there exist only a handful of investigations into AML attacks;

the majority of which focus on machine learning detection methods for malware. Par-

ticularly, Abusaina et al. [50] investigated a range of off-the-self methods to craft

adversarial IoT software and a Graph Embedding and Augmentation (GEA) method.

The results show that all adversarial samples were successful in bypassing the detector.
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Moreover, Liu et al. [110] developed a framework which employs genetic algorithms

in order to generate adversarial samples for IoT Android applications. The framework

demonstrated to have a success rate of nearly 100%. Furthermore, there exist a few

studies that focus on detecting and defending against adversarial samples in IoT. For

instance, Baracaldo et al. [74] use contextual information about the origin and the

transformation of data points in the training set to identify perturbed data in a sensors’

measurement dataset.

Recent work has focused on AML against traditional network IDSs and ICS. More spe-

cifically, Rigaki et al. [169] use the KDD’99 dataset to generate adversarial samples

and demonstrate the effectiveness of AML against supervised algorithms. Moreover,

Zizzo et al. [222] showcase a simple AML attack against an LSTM classifier which

was applied on an ICS dataset. Yaghoubi and Fainekos [210] propose a gradient based

search approach which was evaluated on a Simulink model of a steam condenser. How-

ever, this approach is efficient only against a handful of systems that may specifically

employ RNN with smooth activation functions. Finally, Erba et al. [93] demonstrate

two types of real-time evasion attacks, using RNN models and an autoencoder to gen-

erate adversarial samples.

Consequently, the existence of such techniques means that networks which incorporate

machine learning based IDSs may be at risk of being vulnerable to such attacks. This

leads to the fifth research question:

RQ5 Can AML techniques be used to evaluate the robustness of a supervised IDS for

the IoT?

Finally, there is a need to develop methods to defend against AML attacks and build

more robust machine learning models. Currently, a few methods towards defending

AML attacks have been proposed in the literature. Two of the most popular techniques

include adversarial training and adversarial sample detection. The former has been

explored in the field of visual computing, where Goodfellow et al. [103] demonstrated
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that re-training the classifier on a dataset containing both the original and adversarial

samples significantly improves its efficiency against adversarial samples. The latter

technique involves the implementation of mechanisms that are capable of detecting

the presence of such samples using direct classification, neural network uncertainty, or

input processing [222]. This motivates the sixth research question:

RQ6 Can adversarial training enhance the robustness of a supervised IDS for the

IoT?

Evidently, it is understandable that machine learning based IDSs in the context of IoT

require further evaluation against AML attacks.

2.8 Summary

This Chapter has explored the subject of cybersecurity in IoT. To gain a full under-

standing of the topic, the aims and objectives of IoT devices were discussed, as well

as providing context for their applications. Additionally, the architectures of IoT en-

vironments were outlined. In addition to their advantages, it was identified that one of

the disadvantages of IoT is their vulnerability to cyber attacks and their security flaws.

Subsequently, the array of attacks that IoT ecosystems are most vulnerable to and the

consequences of such attacks were described.

One of the key characteristics of IoT devices is their heterogeneity. In this case, this

Chapter has focused on methods for both detecting cyber attacks in heterogeneous

devices and the mitigation of such attacks. In particular, IoT hubs were discussed as

a tool for controlling the security of multiple devices from one central point. Addi-

tionally, IDSs were identified as being one of the most effective security mechanisms

for detecting malicious network behaviour. The different implementations of such sys-

tems were presented. Particular attention was paid towards machine learning based

systems, including both supervised and unsupervised approaches. Finally, an overview
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of how the learning models which support such IDSs may be subject to AML attacks

was provided.

Finally in this Chapter, the relevant work surrounding the aforementioned IoT subjects

was also discussed and a range of research gaps were identified. This led to the de-

velopment of six research questions which are addressed in the respective contribution

Chapters:

Contribution 1: Chapter 3 contributes towards addressing RQ1, where a novel design

of a secure and heterogeneity-aware IoT hub prototype and network architecture is

proposed. Although other hubs exist, they mainly aim to tackle the heterogeneity and

big data in IoT and do not focus on security. Such approaches may include one or

two standalone security mechanism(s) such as authentication or access control, leav-

ing other security vulnerabilities exposed. In particular, this thesis aims to develop a

secure and heterogeneity-aware hub that is able to defend against two attacker models

which take into consideration some of the most popular attacks that may threaten IoT

smart home networks. To achieve this, the hub contains the following security mechan-

isms: policy-based access control and secure user authentication, transport encryption,

limits exposure of local IoT devices through cloaking, and offers a canary-function

based capability to monitor attack behaviours. Finally, the hub uses dynamically load-

able add-on modules to communicate with various diverse IoT devices, tackling het-

erogeneity. The hub’s architecture and implementation are discussed, along with its

use within a smart home testbed consisting of commercially available devices. The

effectiveness of the hub was further evaluated by simulating various attacks such as

spoofing, MITM, and DoS. The results demonstrated that direct attacks upon the hub

were successfully mitigated due to the security techniques used.

Contribution 2: Chapter 4 contributes towards addressing RQ2, RQ3, and RQ4. Al-

though there has been substantial research revolving around machine learning based

IDSs in IoT, such approaches come with a range of limitations. Firstly, the majority

of these systems have been evaluated on simulated data or on a very small number of
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devices, which may significantly deviate from a realistic environment. Secondly, they

lack focus on device classification and profiling, which aids in IoT asset identification

and detecting anomalies outside of the device’s ‘normal’ behaviour. Thirdly, they fo-

cus on detecting one or two attacks and fourthly, they do not attempt to identify the

type of attack that has occurred. Without this information, significant human effort is

needed to respond to alerts, determine the severity of an attack, and launch counter-

measures. This may have severe consequences ranging from data and financial loss to

physical harm. To address the aforementioned limitations, this Chapter introduces a

novel design of a supervised three layer IDS which: 1) classifies the type and profile

the normal behaviour of each IoT device connected to the network, 2) identifies ma-

licious packets on the network for a range of cyber attacks, and 3) given 2) classify

the type of the attack that has been deployed. To investigate the effectiveness of the

system, the Chapter presents the initial classification experiments of an IoT tailored

IDS which utilises network data from a smart home IoT testbed. Furthermore, the sys-

tem is evaluated against 12 attacks from four main categories. The performance of the

system’s three core functions resulted in an F1-score of over 90%, demonstrating the

efficiency of the proposed approach.

Contribution 3: Chapter 5 contributes towards addressing RQ5. Although there has

been substantial research in machine learning based IDSs for IoT, there has been sig-

nificantly less focus on AML. The use of machine learning in such systems has intro-

duced an additional attack vector; the trained models may also be subject to attacks.

This may be achieved by introducing calculated perturbations to malicious data points.

Such attacks are critical as they can be exploited by adversaries in order to bypass

the supervised based detector. Subsequently, this Chapter provides the first analysis

on how AML can be applied in the context of an IoT smart home network. The ana-

lysis focuses on manipulating DoS packets, one of the most critical attacks against IoT

devices. The results demonstrated that by modifying a selected set of features, the

classifier’s performance decreased by a maximum of 31.7 percentage points.
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Contribution 4: Following the positive findings from Contribution 3, Chapter 5 also

contributes towards addressing RQ6. Specifically, it explores how adversarial training

may contribute towards increasing the robustness of a supervised IDS for IoT against

AML attacks. By including adversarial samples in the training set and re-training the

model, the results show that the classifier’s performance increases, showcasing the

effectiveness of this approach.
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Chapter 3

A Secure and Heterogeneity-Aware

Hub for IoT Smart Homes

3.1 Introduction

One of the core characteristics of the IoT ecosystem is the heterogeneity of devices.

This attribute significantly expands the attack surface of IoT networks. As a result,

implementing universal IoT security mechanisms is a complex challenge. One of the

most current models to manage heterogeneous devices in a uniform way is IoT hubs

[215]. Hubs allow the control of multiple devices from one central point, which often

allows additional security controls.

Although there exist several IoT hubs (e.g. [147, 176, 101]), such approaches have

primarily focused on tackling device heterogeneity and may partially include one or

two standalone security mechanisms such as authentication or access control, leaving

other security vulnerabilities exposed. Furthermore, commercial hub implementations

(e.g. [36, 23, 41]), have limited inter-operation capabilities between devices from dif-

ferent vendors, and often prioritise connection with devices from their own vendor

and pay less attention to the security of the IoT network. As a result, such hubs, and

subsequently the IoT devices they control, are still vulnerable to adversaries.

To combat the aforementioned limitations, the work presented in this Chapter focuses

on a novel and heterogeneity-aware hub design and implementation for the IoT which
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is able to defend a smart home ecosystem against two attacker models. Such attacker

models are based on existing literature (e.g. [151, 96, 98]), and take into considera-

tion some of the most popular network based attacks one would expect to target a smart

home environment [56, 31]. Given that previous work is yet to be able to defend against

such attacks, this Chapter presents the first design of a secure and heterogeneity-aware

hub that is capable of securing against such attacker models. More specifically, the

proposed hub was designed to contain five built-in security mechanisms that provide

secure authentication, policy based access control, capability to monitor attack beha-

viours using IoT canary functions, device cloaking and isolation, and confidentiality.

This aims to address the first research question introduced in this thesis:

RQ1: What security mechanisms can be incorporated within a smart home IoT

hub that can be uniformly applied to a range of heterogeneous devices?

In answering this question, the following research contribution is made:

C1: A novel design and prototype implementation of a secure and heterogeneity-

aware hub for the IoT, which significantly increases the security of a smart home

network.

More specifically, this Chapter is divided into the following main sections: Section

3.2 identifies the vulnerabilities of a traditional smart home network configuration and

presents the two attacker models considered. Section 3.3 presents an overview of the

proposed hub architecture and its security properties. Section 3.4 presents the proto-

type implementation of the hub. Section 3.5 discusses the security evaluation of the

hub using a penetration testing methodology. Finally, Section 3.7 summarises the find-

ings and highlights the research contributions of this Chapter. Parts of this Chapter

have been published in [62].
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3.2 Traditional Smart Home Topology

One of the most popular approaches to IoT networking in a smart home is a star topo-

logy, where all the smart devices communicate to a central access point [87, 133, 191].

More specifically, in a typical smart home, traditional computers and smart devices

gain Internet access by connecting to the same access point. Figure 3.1 illustrates an

example of a conventional network topology of such ecosystem. This particular ex-

ample of a network topology consists of one central router provided by the Internet

Service Provider (ISP), conventional IT devices (e.g. laptops), and IoT devices which

are connected to the access point by a power line adaptor across Wi-Fi or Ethernet

whilst the user is able to control them via the individual mobile/web applications they

provide. It is worth highlighting that smart home devices often support multiple users

at the same time. As a result, more than one user can control and change the settings

of smart devices in the network.

Vendor specific devices and sensors, such as the Philips Hue lamps and the Samsung

Smart Things motion sensor, are connected to their control hubs via Zigbee or BLE. It

is worth noting that the IoT devices considered herein communicate through a wired

or WiFi network connection, and that media such as Bluetooth, ZigBee, Z-Wave, and

6LowPAN are out of the scope of this thesis.

Nevertheless, although this is a traditional network configuration, the smart devices are

exposed to anyone that may have access to the local network, subsequently increasing

their security risks. As a result, the devices may be vulnerable to various wireless

attacks such as passive sniffing, MITM attacks, DoS, and more [66].

3.2.1 Threat Model

There are many reasons why an adversary may wish to compromise IoT devices within

a smart home. Firstly, IoT devices such as smart cameras may be used for physical se-

curity purposes. Therefore, attackers may use active attacks (e.g. DoS) to cause a
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Figure 3.1: Traditional smart home IoT network illustrating multiple means of

connection.

camera to black out, allowing the coast to be clear to physically access a home without

creating digital forensic evidence [151]. Devices such as smart robot vacuum clean-

ers, which have some mobility around the house, can potentially provide adversaries

with information about the home’s layout. This information can be used to further

plan activities and movements [20]. Furthermore, other devices such as wearables

may have access to sensitive user information such as usernames, passwords, and even

credit card details which may be compromised. Moreover, an adversary can hijack,

and subsequently control an IoT device. Such attacks are considered difficult to detect

as the adversary does not change the basic functionality of the device in obvious ways.

More specifically, an adversary may compromise a smart lock and may choose to un-

lock it in an unusual time frame (e.g. in the middle of the night). Finally, an adversary

may passively monitor the network traffic of a smart home in order to perform privacy

based attacks. Research has demonstrated that a smart home network observer can in-

fer privacy sensitive in-home activities by analysing Internet traffic from smart homes

containing commercially available IoT devices even when the devices use encryption
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[68].

3.2.1.1 Attacker Models

It is evident that IoT infrastructures may be subject to most types of network attacks as

discussed in Chapter 2. By exploiting these attacks, adversaries can intercept, interfere,

or change the behavior of the IoT devices in various ways. Some of these approaches

may require physical access to the devices - which can significantly increase the diffi-

culty of launching the attacks; but other attacks, which are often the most severe, can

be deployed over the Internet from near proximity or a remote location [130]. Such at-

tacks can target specific IoT devices directly i.e. by taking advantage of search engines

that index vulnerable IoT devices in the world, such as Shodan [39] or ZoomEy [47].

Alternatively, adversaries can compromise a traditional device and then target the IoT

devices from this point. In the former case, it is not guaranteed that the IoT devices

will be indexed by these search engines. Therefore, if an adversary has a specific target

in mind, they may not be able to find any relevant vulnerable devices online. It is also

worth noting that given that the testbed was deployed within an actual home, adding an

IoT device on these search engines to conduct experiments was considered too risky.

Additionally, due to the limited capabilities and processing power of the devices, com-

promising one specific IoT device would significantly limit the attacker’s range/scope

of the attack as they might not be able to pivot to other vulnerable IoT devices within

the network. However, in the latter case, an adversary will be able to cause maximum

damage by deploying a range of attacks against any devices within the smart home.

As a result, given the high impact of such attacks, the experiments presented in this

Chapter focuses on replicating the possible attacking behaviour deployed by the afore-

mentioned adversaries.

Subsequently, based on the IoT smart home network topology discussed in Section 3.2,

and the possible network threats faced by a smart home [31, 56], the experiments herein

consider two attacker models which utilise two possible and realistic methods of gain-
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ing access to the smart work network. Such attacker models can cause the most damage

by enabling the adversary to deploy a range of attacks targeting multiple devices. These

models are based on those presented in other relevant work [220, 151, 96, 98, 109] and

include the most popular network-based types of attacks that IoT devices are vulner-

able to. Subsequently, the focus of this Chapter is to develop a hub framework which is

able to defend IoT devices from attacks as part of the aforementioned attacker models

[220, 31, 56].

Attacker Model #1

In the first model, it is assumed that the attacker does not have physical access to the

IoT devices, but has successfully retrieved the password for the central access point

within the smart home network. This type of attacker may be physically located within

the wireless range of the targeted user’s smart home network. An attacker with control

over the wireless router can access devices over the local network and can deploy

several different attacks [198, 199, 200]. Such an attacker may have a pre-existing

relationship with the victim and was given administrative access to the router/network

[151] when they were present in the home. The purpose of this attacker is to actively

deploy attacks upon the IoT devices and network in order to obtain more information

about the devices, to make them unavailable to the users, and to intercept sensitive

data. More specifically:

The attacker has the following capabilities:

• Scan the network.

• Passively eavesdrop on the wireless communications.

• Deploy active attacks such as MAC/ARP Spoofing, DoS, and MITM.

The attacker may have the following objectives:

• to collect information about the connected devices (i.e. what devices are connec-

ted, what ports are open).
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• control the IoT devices.

• intercept sensitive user data.

• make the devices unavailable to the intended user.

Attacker Model #2

In the second attacker model, it is considered that an attacker has remotely comprom-

ised a device (e.g. laptop) and has gained access to the main smart home network by

utilising e.g. a phishing attack. For the purposes of the experiments herein, this ad-

versary is assumed to have the same privileges as a legitimate user. The objective of

this adversary is to gain unauthorised access to the IoT devices and their functions.

More specifically, they attempt to remain undetected by not interrupting the device

functionality or by actively deploying attacks. Their goal is to use the legitimate device

functionalities to cause further damage (e.g. unlocking the smart lock in the middle of

the night).

Subsequently, as highlighted in Table 2.1, although existing implementations may

provide one or two security mechanisms, the aforementioned attackers would still be

able to deploy direct attacks on the hubs to make them unavailable to the user (i.e.

DoS), scan the network to identify the connected devices, perform MITM attack to

intercept sensitive data, and access the devices.

3.3 Hub Architecture Overview

To combat the attacker models discussed in the previous Section, this Chapter proposes

an architecture of a novel secure and heterogeneity-aware hub. More specifically, Fig-

ure 3.2 visualises the main hub architecture, which consists of three main components;

a gateway, a policy server, and a sub-network. The IoT devices, together with the gate-

way and policy server, are placed within a separate isolated sub-network. The rationale
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behind this is so that the sub-network camouflages the aforementioned components and

the IoT devices so that they are no longer visible to the users that join the main net-

work. At the same time, devices on the sub-network are no longer able to connect

or access other devices on the main network. This prevents the spread of attacks and

isolates possibly problematic devices that cannot be immediately taken offline.

Within the sub-network, the gateway of the proposed hub is the core of the network

and the only externally visible device to the user. Subsequently, the gateway is the

main point of communication to the other IoT devices. The gateway is able to commu-

nicate securely with a range of commercial and embedded devices. Furthermore, users

are able to interact with the gateway over a secure communications channel which is

established after a three-step authentication process is completed. The communication

channels between the gateway and the user and gateway and IoT devices are encrypted

and protect the data in transit from eavesdropping.

Once a user has authenticated, they can begin to interact with a device which is con-

nected to the network by sending their request to the gateway. Prior to this request

being fulfilled, it is redirected by the gateway to the policy server. The policy server

then queries the policy database in order to determine whether the request satisfies the

predefined attributes associated with the user making the request. Depending on the

result, the policy server grants or rejects the request. If the request is denied, the policy

server also triggers a specific action i.e. notifies the administrator. Finally, to mon-

itor user access to the devices, IoT tailored canary functions are incorporated to the

available modules in the gateway in order to monitor unauthorised access to the IoT

devices.

Table 3.1 summarises the security properties that are incorporated within the proposed

hub and can defend against the aforementioned attacker models. Section 3.4.3 dis-

cusses how the hub is able to communicate with various diverse devices. This is

achieved by using custom add-on modules and device Application Programming In-

terface (API)s.
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Figure 3.2: Proposed hub consisting of a gateway, a policy server, and a sub-

network.
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3.4 Hub Prototype

To investigate the feasibility of the hub infrastructure discussed in Section 3.3, a pro-

totype of the proposed gateway scheme was implemented, and its application within

a smart home IoT testbed was evaluated. Sections 3.4.1 and 3.4.4.1 discuss in more

detail the configurations and the technologies used in both the gateway and policy

server respectively. Finally Section 3.4.5 discusses the integration of the hub within a

sub-network.

3.4.1 Gateway

The following Sections discuss the gateway components and their functionalities in

more detail.

3.4.1.1 Cloud Service Provider

In the case of many IoT-driven enterprises, the choice is often between establishing a

costly, vulnerable, and non-scalable on-site server infrastructure, or choosing an IoT

cloud-based solution that allows for avoiding unnecessary costs while presenting no

major trade-offs on platform functionality [156, 77, 3, 28].

Several works surrounding IoT (e.g. [189, 53, 81, 92, 94]) review the benefits of cloud-

based services, noting that some of their greatest advantages include their:

• Increased Data and Processing Power: Cloud services provide enormous storage

facilities and processing power which support the analysis of large and complex

datasets generated by IoT devices.

• Scalability: As the need for new computing resources and services arises, the

large routing architecture of the Cloud’s model allows IoT-based applications to

scale up to larger sizes based on the new requirements without having to invest
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heavily in the new resources added [92]. Conversely, in on-premise IoT network

infrastructures, scaling up requires purchasing more hardware, investing more

time and increasing configuration efforts to make it run efficiently.

• Accessibility and Collaboration: Cloud allows IoT data to be accessed from any-

where and anytime as long as the IoT’s have Internet connection [81] and shared

among different IoT applications and a group of users. Such accessibility is es-

pecially important when concerning IoT projects which involve real-time mon-

itoring and management of connected devices.

• Dynamic Provisioning of Services: An advanced IoT cloud provider offers the

tools to provision, manage, and update the IoT devices and process and commu-

nicate with the acquired data remotely and in real-time, whilst adapting to the

rapidly changing business need and policies in a cost-effective manner [127].

• Multi-Tenancy and Resource Optimisation: Allows instances of IoT applica-

tions to share the same service infrastructure of Cloud. It also allows integrating

several services (Infrastructure, platform, and software) from different service

providers available on Clouds and to meet the tailor-made demand of the user.

This reduces the cost of operation and gains in the service’s quality.

• Cheaper Upfront and Long Term Costs: There is often a large initial upfront

investment and increased risk when implementing an in-house IoT system. In

addition, there is the issue of ongoing hardware maintenance and IT person-

nel costs. From the Cloud perspective, these challenges are addressed as there

are significantly reduced up-front costs, there is often a flexible pricing scheme

based on the actual usage, and the Cloud providers are responsible for updating

and maintaining the hardware and the overall infrastructure.

However, as cloud servers are typically more targeted by cybercriminals, one of the

biggest factors which may influence migrating from an on-premise IoT infrastructure

to the Cloud is the inherent security risk to critical data. Companies have to trust that
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providers have safeguards in place against vulnerabilities. In the event of data leaks,

businesses will be at the mercy of providers. However, it is important to note that most

reliable providers operate under strict security regulations. In addition, any problem on

the Cloud may suspend access to data, whilst on-site solutions still support mission-

critical systems [94].

In the hub infrastructure presented herein, given the aforementioned discussion, the

communication links between the gateway and the user and the gateway and the policy

server are supported by a cloud service provider. For this work, the suitability of a

range of popular cloud service providers which allow users and IoT devices to inter-

act with each other was examined. Some of these providers included Dweet.io [11],

KURA [12], and Pubnub [35].

Some cloud service providers are subject to privacy and security concerns. For ex-

ample, it is anticipated that Dweet.io may not be suitable for enterprise-level security

unless a specific licence is purchased. Moreover, although KURA provides some se-

curity mechanisms such as TLS, it does not allow provisioning the security through the

cloud or the configuration of the security post-deployment.

Subsequently, after evaluating the features of the aforementioned technologies, it was

determined that Pubnub was the most suitable cloud provider. Pubnub is an Infrastructure

as a service (IaaS) which allows users to control and connect various heterogeneous

IoT devices. Their API provides device monitoring and security provisioning cap-

abilities to connect devices and to create multiple IoT gateways. They also supply

well-documented references for a range of programming languages and operating sys-

tems.

More specifically, Pubnub’s free tier was used for this prototype. This access provides

a service for up to 100 devices and 1 million messages per month. With the em-

ployment of Pubnub, the hub provides a middleware solution which uses a Publish-

Subscribe (Pub-Sub) architecture with security support. More specifically, a publisher

(i.e. any source of data) pushes messages out to interested subscribers (i.e. receivers
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of data) using live-feed data streams known as channels or topics. The subscribers of

a specific publisher channel are immediately notified when new messages have been

published on that channel, and the message data (or payload) is received together with

the notification [34]. This technique allows users who interact with IoT devices to

authenticate with the gateway using a three-step process, which ultimately creates a

secure channel. The channel is analogous to a topic, in which the gateway and the user

both provide permission to publish and subscribe. Requests by the users and responses

from the gateway are securely passed through PubNub’s DSN. On top of these afore-

mentioned features, due to the secure nature of Pubnub, by using this service to interact

with their smart home devices instead of the native mobile applications for each device,

users can also be sure that their data is not shared with any third party providers for

marketing purposes. For instance, the SmartThings app collects and shares personal

user information with providers such as Google Analytics [33].

Table 3.2 presents the main channels that were implemented for the secure IoT hub.

Channel Name Description

policy_server
The gateway forwards the users’ request to this channel,

where they are being processed/validated by the policy server.

gateway_auth

When a user joins this channel, their presence is detected via

PubNub’s presence() function and the 3-step authentication

process begins.

admin_channel

This channel is generated once the gateway is initialised.

It is used for administrative tasks such as creating add-on

modules remotely via PasteBin.

uuid_channel(s) Every user has a unique channel associated with their UUID.

Table 3.2: Main PubNub communication channels
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3.4.2 Authentication Mechanism

Prior to sending instructions to the hub’s gateway, users are required to complete a

three-step authentication process. Once a user has authenticated, a secure communica-

tion channel using TLS is created. In addition to transport encryption, it is also possible

to employ AES256 algorithm to achieve application level encryption. PubNub provides

the main functionality for both mechanisms. In more detail, the authentication process

is as follows:

1. Firstly, the user is required to join the Gateway Authentication (gateway_auth)

channel by subscribing to it. Once the client is subscribed, the gateway is able

to detect the presence of the user. Then, the gateway creates a channel where the

channel’s name corresponds to the user’s Unique User Identification (UUID),

which is a unique string of up to 64-characters that is used to identify a client

(end user, device or server) that connects to the PubNub platform. If a UUID is

not set by the user, PubNub Software Development Kit (SDK) will generate a

random one.

2. Once the UUID channel is created, the gateway computes the hash of the user’s

UUID number and forwards it to the user over the Gateway Authentication chan-

nel. The user is notified that their channel has been established. When the user

receives the hash from the gateway, unless it is already computed, the hash of

their own UUID must be created and compared with that which is received.

3. If the two hashes correspond, the user is able to join this specific UUID channel,

establishing a one-to-one communication with the gateway.

4. At this point, the gateway must ensure that only one user is on the channel and

that the correct user is on the correct channel by checking the user’s UUID. If

these two conditions are met, the gateway will send an authentication key to

the client over the UUID channel. This particular configuration also allows for
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the AES256 key to be sent over the same channel, allowing the user to send

encrypted requests.

5. Lastly, the secured communication is formed by using a secure/locked channel,

which utilises the TLS protocol.

Enhanced Confidentiality using AES

As mentioned in the previous Section, PubNub’s channels employ TLS/SSL in order

to achieve point-to-point encryption. With TLS/SSL enabled, the data is encrypted as

it traverses through the network/Internet, but is decrypted, processed, and re-encrypted

as it passes through the PubNub network. To ensure the highest levels of message

integrity and end-to-end data security, it is possible to use TLS/SSL in combination

with AES256 in order to achieve application-level encryption of the payload. As a

result, even if an adversary manages to perform a MITM attack and strip the TLS/SSL,

the data will still be encrypted [13]. In this work, two versions of the prototype were

implemented: TLS-only and TLS in combination with AES256.

3.4.3 Module-Based Adaptation

The hub’s primary function for handling device heterogeneity is achieved by the in-

clusion of add-on modules within the gateway. These represent the interfaces of each

smart device connected on the network and are responsible for various device features,

such as adjusting the brightness of a smart lamp. The add-on modules are implemented

in Python and support a range of IoT devices. The modules interact with the devices

using their API. If there was no API associated with the device’s vendor, an API de-

veloped by a third-party was used. All the APIs used in this implementation employed

TLS, thus the communication between the gateway and IoT device was also secure.

However, due to compatibility issues, the add-on module for these devices had lim-

ited functionality. Nevertheless, this demonstrates that add-on modules for a range of

commercial and embedded devices can be written and installed in the hub’s gateway,
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making it possible to communicate with various heterogeneous devices. Table A2 in

the Appendix describes the modules that were implemented for each device and the

functions they contained.

3.4.4 Access Control

As discussed in Section 3.2.1.1, the second attacker model may attempt to gain un-

authorised access to the IoT devices. To prevent this threat, the hub incorporates two

mechanisms for access control: a policy server and IoT tailored canary functions.

3.4.4.1 Security Policy Server

The security policy server operates separately to the gateway. Each request sent by

a user to interact with the smart devices within the sub-network is forwarded to the

gateway. Before being fulfilled, the requests are sent from the gateway to the policy

server. The main role of the policy server is to ensure that each request complies with

the policies that are defined on the server. These requests are verified by the policy

server, which queries the database for various security attributes i.e. the time of the

request. Once the result is determined, if it complies with the policies, the gateway

executes the IoT function that the user has requested. Otherwise, the user is informed

that their request was rejected. The policy server logs all the access attempts. An

administrator can set access policies that take into consideration attributes such as time

of the request and previous failed attempts. For the purposes of this prototype, three

examples of policies were implemented. These included:

• The time of the request is within the acceptable access time-frame for the partic-

ular module.

• The user has not been rejected access three or more times in the same day [79].
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• The user’s latest access was not rejected under a minute prior to the current

access request [79].

The current implementation of the policy server also allows for a versatile remote con-

figuration, which enables administrators to remotely call functions in order to create

new policies or modify existing ones.

3.4.4.2 IoT Canary Functions

To further enhance the security of the proposed hub, and particularly the access control,

IoT tailored canary functions were implemented. These functions are complementary

to the policy server and offer an extra layer of defence. They are used mostly for

detecting unusual user/adversary behaviour whilst the policy server aims to prevent

unauthorised access to the devices. These functions are based on the canary files used

within traditional IT systems. A canary file is a forged file which is typically placed

amongst genuine ones in order to support the early detection of unauthorised data ac-

cess, copying, or modification [204]. Its name originates from the use of canaries as

sentinel species within coal mining environments to warn workers of the build up of

gasses such as carbon monoxide underground [112]. In this context, if an unauthorised

user attempts to interact or gain access to these functions, a specific action is triggered.

In the proposed implementation, bogus add-on modules and functions that represent

sensitive operations of IoT devices were created and deployed. These are displayed

to users as regular module functions. In order to lure attackers, the canary functions

represented bogus sensitive and important device operations. For example, a module

named Smart Lock is assumed to operate a smart lock, and it contains a function called

get pin.

In the proposed implementation, various severity grades that correspond to different

actions were implemented. More specifically, the severity of the canary function is

classified according to one of the following three categories:
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• Grade A - Severe: A function classified as grade A would prevent unauthorized

access by causing the system to shut down and notify an administrator by email.

• Grade B - Average severity: A grade B canary would notify the administrator by

email and blacklist the user from further access.

• Grade C - Least severe: A grade C function would only notify an administrator

by email and no further action would be taken.

As a result, if a user has requested to access any of the functions that are enlisted

as being bogus, the policy server will query the database to inspect the severity of

invoking the specific canary function and will trigger a possible action.

3.4.5 Network Configuration of the Hub

A second access point (router) was used to create a sub-network to which IoT devices,

irrespective of their manufacturer, can connect and communicate securely. Within the

sub-network, the gateway of the proposed hub is the core of the network and the only

externally visible device. Moreover, the gateway is also the main point of commu-

nication to the other IoT devices that sit within the sub-network. The sub-network

configuration provides additional security, as users who join the main/local network

can no longer view the connected smart devices as they are camouflaged. This is due

to the ‘hidden’ setting of the sub-network’s router. It is worth highlighting that security

through obscurity is not considered to be among the best practises when used as the

principal means of security. However, in this use case, it is used as an additional feature

to support a more robust and secure architecture.

Furthermore, devices on the sub-network can no longer connect or access other devices

on the main network due to the IP Access Control Lists (ACL) configurations on the

sub-network’s router. From a security perspective, this configuration reduces the risk

of attacks that are targeted towards vulnerable devices (e.g. default password attacks),
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as well as aligning IoT networks with typical home and corporate networks. This

mitigates the attacks targeted towards IoT devices. Finally, the sub-network protects

the main network by isolating vulnerable and infected IoT devices. Isolating the IoT

devices and components in a separate network significantly increases the difficulty

of an adversary to locate them, as pivoting across the two networks would require

considerable effort from the attacker.

Figure 3.3 illustrates the proposed network and hub configuration. More specifically,

it illustrates the smart home’s main access point (top-left of the Figure) connected to

two conventional laptops. A user interacts with the devices in the sub-network through

PubNub and the hub’s gateway. A second access point (bottom-centre of the Figure)

is used to create a sub-network (illustrated by the green dashed line) which contains

all the components of the proposed hub, i.e. the hub’s gateway, the policy server, the

database, and the connected IoT devices (e.g. Samsung Hub connected to a smart plug

and a motion sensor and Philips Bridge Hub connected to a smart bulb).
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It is also important to note that the inclusion of the gateway within the IoT network

enhances heterogeneity and interoperability. Without the gateway, the incorporation of

IoT devices within a new sub-network may cause the functionalities and interactions

with the included IoT devices to be lost. For instance, the Philips Hue lamps must be

on the same sub-network as their interacting devices. Changing lighting settings with a

smartphone is therefore not possible from the main network. However, the inclusion of

a gateway resolves this issue as it receives its Internet connectivity through Pubnub’s

cloud platform. Consequently, a user can access the gateway using a secure channel

from the main network and can control the smart devices from anywhere using the

Internet.

Table 3.3 summarises the key components of the proposed hub, their functionalities,

and the security aspects they enhance.

Component Functionality Advantage

Authentication Enhanced Access Control

Gateway User Requests State Change, secure communication

IoT tailored Canary Files Early unauthorised access detection

Module creation remotely Post-deployment configuration

Accepts/Rejects requests Enhanced request control mechanism

Policy Server Add/Edit/Delete policy remotely Post-deployment configuration

Create canary functions remotely Post-deployment configuration

Manage canary triggers Alerting system administrators

Sub-network Isolates/Camouflages devices and hub Enhances overall security

Table 3.3: Hub components and their functionalities

3.5 Evaluation

In order to evaluate the security of the proposed hub architecture, several attacks were

performed on a traditional IoT smart home testbed, both when the hub was and was

not deployed. The robustness of the proposed hub architecture was evaluated using
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a traditional penetration testing methodology. The following Sections describe the

testbed configurations and the evaluation methodology.

3.5.1 Smart Home Testbed

Cisco’s VNI [4] report that between 2017-2019, the average household in North Amer-

ica, Western Europe, and Central and Eastern Europe had on average 8, 5.4, and 2.5

smart devices respectively. A smart home is the symbiosis of different devices, i.e.,

sensors, connections, and applications that build a dynamic heterogeneous architecture

with the aim of efficiently managing home devices, and providing advanced services

to users [100]. To support the experiments described in this Chapter and to evaluate

the proposed hub, an IoT testbed deployed in a home environment was configured in

a star topology (where all the smart devices communicate to a central access point) as

this is one of the most popular IoT network setups [87, 133, 191]. The testbed com-

prised of a range of IoT devices emulating a smart home environment, was designed

and implemented. In more detail, the testbed consisted of existing and readily avail-

able commercial IoT devices of different types/applications: lighting, entertainment,

safety cameras, sensors, and embedded devices [128]. Such devices included a TP-

Link NC200 IP camera, the Samsung SmartHub with a connected motion and door

sensors, an LG Television, the Philips Hue starter kit, and a Raspberry Pi 3 was used

to emulate a user device which controlled Light Emitting Diode (LED) lights. The

specific devices were chosen based on their popularity, availability, affordability and

other relevant work (e.g. [185, 134, 57, 186]).The gateway and policy server were

installed onto an additional Raspberry Pi 3 and a Raspberry Pi Zero Wireless system

respectively. The rationale for this, was mostly the affordability and popularity of the

Raspberry Pi devices. This testbed was deployed in a home environment.
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3.5.2 Evaluation Methodology

In order to assess the effectiveness of the proposed prototype, a penetration testing

methodology was followed. The penetration testing process involves analysing a tar-

get system in order to discover possible vulnerabilities that may be a result of incorrect

system configurations, vulnerable hardware or software, and lack of security mechan-

isms. This analysis is typically carried out from the perspective of a potential attacker

and can include the exploitation of vulnerabilities [142].

For the purposes of this evaluation, and to design an appropriate, valid, and non-biased

methodology to evaluate the proposed hub, the core steps involved in a typical penetra-

tion testing approach were followed [5, 2]. These included 1) defining the scope of the

penetration testing, 2) defining the attack vector and establishing the tools to be used,

3) information gathering, 4) vulnerability exploitation, and 5) reporting of the results.

Due to the knowledge surrounding the network infrastructure schematics during the

evaluation, the penetration testing strategy was considered as being white-box testing.

More specifically, this process involved:

1. Scope of penetration testing - The scope of the penetration testing was defined.

The aim was to target the IoT devices in the smart home network. The goal of

the test was to evaluate if an adversary could deploy a range of network-based

attacks that correspond to the attacker objectives as defined in Section 3.2.1.1.

Subsequently, the attack vector included network scanning, passive eavesdrop-

ping, spoofing, DoS, and MITM.

2. Attack vector and tools - During this step, the appropriate tools that would

be used for the assessment were chosen. These were selected based on industry

standards, ease of use, available documentation, and cost. As such, the following

tools were selected:

• Nmap and Zenmap were used for Reconnaissance.
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• Airodump-ng was used to identifying near proximity access points.

• Deauth, aireplay-ng, Ping flood, and hping3 were used to deploy DoS at-

tack.

• The arpspoof was used for spoofing.

• The tcpdump was used for passive network sniffing.

• The Wi-Fi Pineapple device/tool was used for the Evil Twins attack.

3. Information gathering: For the purposes of this experiment, it was assumed that

an attacker has compromised the central access point and has access to the main

network. Therefore, passive information gathering approaches and Open Source

Intelligence Techniques were not used. The focus of this step was to use the

relevant tools in order to collect information about the connected devices on the

network including secondary access points, connected devices, MAC addresses,

etc.

4. Vulnerability exploitation: Once vulnerabilities or vulnerable devices were

identified, there was an attempt to exploit them or gain control of the device.

5. Reporting: Documenting and reporting the results of the tests, discussing future

defence mechanisms, and reverting the network to its previous state in the event

that information and settings were altered.

3.5.3 Attack Deployment

Subsequently, and based on the aforementioned methodology, the traditional IoT smart

home network when both the hub was and was not deployed were evaluated. The

penetration testing methodology which was followed to evaluate the hub is described

below and is separated according to the attacker objectives considered previously:

Attacker Objective 1: Collect information about the connected devices on net-

work (i.e. near proximity Access Points, what devices are connected to each, MAC
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addresses, etc.

The first step, which is also the first attacker objective, involved discovering all the

devices and possible sub-networks connected to the main network. This included

identifying connected devices and their MAC addresses and Basic Service Set Iden-

tifiers (BSSIDs) of near proximity Access Points. To achieve this, the network was

scanned using the airodump-ng tool. In the traditional IoT setup, the main/central Ac-

cess Point was identified. By focusing on this central Access Point, all the connected

devices, both traditional IT and IoT, became immediately visible.

On the other hand, when the proposed hub was deployed, the tool identified three

Access Points in range. These included the main access point that the attacker was

already connected to, an Access Point that did not advertise its SSID - which was the

proposed hub’s sub-network Access Point, and a third near proximity Access Point. At

this point, and as the adversary only had access to the main network’s Access Point,

only the connected traditional IT devices such as such as laptops and desktops were

revealed and subsequently accessible to them.

Following this, in order for the adversary to identify what other devices are within

the home, they needed to iterate over the other two Access Points to investigate what

devices are connected to each one. The Access Point with the hidden SSID was shown

to have significantly a strongest signal as reported by the PWR attribute provided by

airodump-ng. It is important to highlight that, by limiting the range of this Access

Point, it could have been more challenging to detect it. Therefore, it was assumed that

this Access Point was the one most relevant to the targeted smart home. As such, the

next step involved attempting to identify the SSID of this Access Point. To achieve this,

the aireplay-ng tool was used to forcefully disconnect a client from the target Access

Point. The SSID was then broadcasted and captured when the client attempted to

reconnect. Having retrieved the SSID of the hidden Access Point, its reachability was

tested by sending an Internet Control Message Protocol (ICMP) echo packet. There

was no response from the Access Point, as this was disabled in its configuration.
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Finally, following the success of identifying the SSID and MAC address of the sub-

networkâs router, the next step was to attempt to capture the WPA handshake in order to

gain access to the sub-network. Subsequently, 4 deauthentication packets were sent to

the Access Point. Once the clients were disconnected and reconnected, the handshake

was captured and the hash of the password was taken. However, at this point brute-

forcing the passwords was unsuccessful.

Attacker Objective 2: Gain Information about the network topology and devices

To gain further information about the network topology and the devices that are con-

nected, Zenmap and Nmap were used. In the traditional IoT network, it was possible

to reveal the topology and information about all the devices connected on the network,

such as IP addresses, names, and open ports. It was noted that few of the IoT devices

had between three and six ports open. On the contrary, when the proposed hub was

deployed, it was only possible to gain information about the traditional IT devices that

were connected on the main network. In both cases, these demonstrated to also have

SSH and HTTP ports open. However, it was not possible to view and gather additional

information about the smart devices on the sub-network.

Attacker Objective 3: Make the devices unavailable to the intended user

Given that all the devices on the traditional IoT network were exposed and their IP/MAC

addresses were successfully identified in the previous steps, it was possible to per-

form Denial of Service (DoS) attacks to any smart device by using the deauth, Ping

flood, and hping3 tools. On the contrary, when the proposed hub was deployed, the

IoT devices were hidden/isolated within the sub-network, increasing the difficulty in

identifying them and performing DoS attacks upon them.

DoS attacks often leverage ARP spoofing to link multiple IP addresses with a single

targetâs MAC address. As a result, traffic that is intended for many different IP ad-

dresses will be redirected to the target‘s MAC address, overloading the target with

traffic [10]. Given that in the traditional IoT smart home network it was possible to
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successfully gain information regarding all of the devices, ARP spoofing was success-

fully performed in multiple smart devices, using the arpspoof tool. However, when the

proposed hub was deployed, it was not possible to gain enough information regarding

the connected devices, leading to an unsuccessful attack.

Attacker Objective 4: Intercept sensitive user data

Following the previous steps, the next step was to attempt to intercept sensitive data

by passively sniffing the network. In the traditional IoT network, all IoT devices apart

from one, employed the TLS protocol and, therefore, intercepting any traffic in plain

text was not possible. When concerning the one device that did not employ TLS, it was

possible to successfully intercept the credentials necessary to log in onto the devices‘s

web interface. For the purposes of this attack, we assumed that the adversary had

successfully managed to brute-force the password of the sub-network’s Access Point.

In this case passive sniffing was also performed in the secondary network. However,

as the hub employs both the TLS and AES algorithm, it was not possible to intercept

any traffic in plain text.

As part of intercepting sensitive user data an attempt to perform a Man-In-The-Middle

attack in the form of Evil Twins against the sub-network’s router was also attempted.

However, this attack was unsuccessful due to the WPA configuration of the wireless

Access Point.

Attacker Objective 5: Control the IoT devices

As part of the evaluation, the scenario where a seemingly legitimate user attempts to

‘unusually‘ control the devices was also examined. In the traditional IoT smart home

setting, there is no mechanism that aids in identifying unusual user behaviour (i.e. a

user attempts to unlock the door in the middle of the night). As such, an adversary may

be interacting with the smart devices undetected. However, when the proposed hub

was deployed and due to the time frame defined policies and canary functions, such

adversary is possible to be detected. In this case, when a user attempted to interact
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with a device outside the specified time frame, the policy server rejected the request.

Additionally, when a user attempted to run one of the canary functions, the system sent

a notification to the admin and blacklisted the specific user.

A summary of these attacks as well as their results in both network typologies can be

found in Table 3.4.

Attack Attack Method Target IoT Proposed hub

Device Detection airodump-ng/Nmap Network Identification 3 7

MAC Spoofing airodump-ng System Blackout 3 7

ARP Spoofing arpspoof System Blackout 3 7

Passive Sniffing Wireshark Data Leakage 3 7

MITM Evils Twin Data Leakage 3 7

DoS deauth, ping flood, hping3 System Blackout 3 7

Table 3.4: Attacks used to evaluate the security of both the traditional network

and the network once the hub is deployed. The 3and 7markers denote that the

attack was successful and unsuccessful respectively.

Overall, the experiments demonstrate that the proposed hub implementation signific-

antly enhances the overall security of the IoT ecosystem as it was able to defend against

most of the attacks that are traditionally deployed on a conventional IoT network. How-

ever, it is important to highlight that further evaluation should be considered to deploy

more complex and sophisticated attacks and to consider other attacker models. Differ-

ent adversaries may be able to attack the same system by utilising different methods.

As such, although the penetration testing methodology used was designed to consider

popular attacks within such networks and considers adversaries that may cause signi-

ficant damage, it is limited to the researcher’s mindset and experience.

Additionally, it is important to note that the security of the proposed hub can be further

enhanced or reduced depending on the exact configuration settings and hardware that

is used to deploy this framework. For instance, if the signal range of the sub-network’s

Access Point was configured to be more more limited, it would have been more chal-
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lenging to detect it. Another example is, if a weaker or more common password was

used for the sub-network’s AP, it would be possible for the attacker to brute-force it

and gain access to that network. Equally, if a a cutting-edge secure router consisting

with advanced security and privacy features is used, then the overall hub’s security

will dramatically increase. Therefore, an in-depth assessment of the most appropri-

ate configurations and components used as part of the proposed hub is needed before

deploying the hub in a real IoT network.

3.5.4 Performance Evaluation

To measure the performance of the hub, the execution time of the round-trip of the

user’s request to the gateway, policy server, and the response back was measured. As

the hub has two variants of implementations, one that employs only the TLS protocol

and another that employs the TLS in combination with AES algorithm, both cases were

assessed. Due to the centralised and synchronous architecture of the hub, more devices

on the sub-network may mean that there are more requests made to the gateway and

policy server. As a result, the overhead may increase, resulting in possible delays or

blackouts.

As mentioned in Section 3.4.3, the implemented add-on modules contain several func-

tions that serve different operations for each IoT device. Therefore, as each function

has its own execution time, they were measured separately. Each function was ex-

ecuted 100 times and the average time was calculated in seconds (s). For example,

Figure 3.4 illustrates the execution time of the lg_tv.py module which operates an LG

smart TV and contains the largest amount of functions in the network.

This Figure demonstrates that the performance of the proposed hub varies according

to the configurations that the user has selected. Specifically, the delay is greater when

more security mechanisms are employed, in this case, when TLS is used in combina-

tion with AES in the application layer. However, it is up to the user to decide which
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Figure 3.4: Execution times of the functions contained within the module that

controls the LG smart TV.

of these mechanisms should be supported given the additional overhead. Nevertheless,

the performance of the proposed hub could be improved. Currently when a request is

being processed by the gateway, few other functions cannot operate at the same time

and therefore there is a delay. Additionally, the performance of the system may also

be affected in a larger network. Both of these issues may be addressed by making the

framework operate asynchronously.

3.6 Limitations

One of the main limitations surrounding this work is that the hub relies on a third-

party provider (i.e. PubNub) to support the core security functionalities within the
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framework. If such third-parties halted their services, the operations on the framework

would be affected. In addition, the framework always requires online access to manage

local security, which by default may introduce new security risks as it maintains an

always open socket connection to every device.

Secondly, although APIs provide an accessible and user-friendly interface to access,

add, and control the smart devices, they are often subject to offering the control of

limited device functionality and may have limits for the number of requests that they

can receive. In addition, not all devices have an official API that can be used to control

them, and therefore, third party APIs may be used. In this case, it is essential to assess

the security and the legitimacy of these APIs, as they may also introduce new security

and privacy risks to the hub if they are not secure (e.g. use request rate limiting, encrypt

data via TLS, etc.).

The time-consuming and skill overhead associated with the need to manually develop

module scripts and policies for each new device on the network is also considered as

a limitation of this work. Aligning with this limitation is therefore the limited number

of devices used to evaluate the performance of the hub.

Finally, the limited financial resources restricted the number of devices that could be

purchased to be included in the testbed. As such, it is worth noting that the work

presented in this Chapter was designed with a limited number of devices in mind, and

if the Hub was to be expanded, the proposed solution which makes use of PubNub’s

free tier would need to be updated to use the paid version as it supports more devices.

Moreover, the use of PasteBin’s free tier to remotely create new modules may also in-

troduce security and privacy risks if the developer includes sensitive information, such

as passwords or usernames, as the free tier only allows public modules which may

expose such information. The paid version of PasteBin may be used as it would signi-

ficantly increase the security of the proposed solution due to the inclusion of features

that are not included in the free tier, such as private bins and encryption capabilities.
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3.7 Summary

The aim of this Chapter was to examine the feasibility of using a hub architecture to

address the heterogeneity and enhance the security in IoT smart home environments.

To tackle the limitations of existing hub implementations, which focus mainly on big

data or scalability and may partially satisfy a maximum of two security mechanisms,

this Chapter introduced the first design of a secure and heterogeneity-aware hub which

fulfils five essential security properties that can defend against two attacker models that

may threaten IoT smart home networks. These properties are: user authentication, ac-

cess control, user/attacker behaviour monitoring, device cloaking, and confidentiality.

More specifically, the proposed hub implementation consists of three main compon-

ents: a gateway, a policy server, and a sub-network. The main role of the gateway is to

communicate with heterogeneous IoT devices regardless of their vendors via add-on

modules, whilst allowing the users to access their devices over a secure communica-

tions channel. Simultaneously, the policy server maintains accountability for user ac-

cess. Both these components are integrated within a sub-network which is configured

to camouflage the IoT devices. This adds an extra layer of security as it provides seg-

mentation between the IoT devices and traditional IT devices, whilst increasing the

difficulty for an attacker to locate them. Furthermore, the hub provides secure com-

munication channels between the users and the gateway. Finally, IoT tailored canary

functions were included in the add-on modules to further enhance the overall security

of the system by monitoring user behaviours.

To evaluate the effectiveness of the proposed hub architecture, a prototype of the hub

was implemented and incorporated within a smart home IoT testbed containing a range

of commercially available devices. A penetration testing methodology was applied to

evaluate the robustness of the hub implementation and the results of when the hub

was and was not deployed were compared. The results showed that the proposed hub

significantly improved the security of the heterogeneous IoT network, as it was able to

mitigate against most attacks which affect conventional smart home IoT networks.
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Implementing secure IoT hubs is critical in order to defend heterogeneous IoT devices

from cyber attacks. However, it is nowhere near a complete security model as adversar-

ies will continuously develop new attack techniques to compromise such systems. As

a result, to enhance the security of IoT networks even further, tools which focus on

detecting malicious network behaviour must be present. In this case, Chapter 4 in-

vestigates the feasibility of employing supervised machine learning to support an IDS

tailored for the IoT.
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Chapter 4

A Supervised Intrusion Detection

System for the IoT Environment

4.1 Introduction

IDS systems have emerged as successful attack detection and identification methods

in IoT networks. Due to the proliferation of IoT devices, their heterogeneity, and the

amount of data which is produced from such technologies, IDSs face a greater array of

attacks to mitigate against. To overcome these limitations, machine learning techniques

have been integrated to support IDSs in IoT networks.

Although there has been substantial research on machine learning based IDSs in IoT

(e.g. [60, 91, 80, 144]), such approaches come with a range of limitations as identi-

fied in Table 2.2 in Chapter 2. These include the use of simulated network data and

the evaluation of such systems on a small number of devices and cyber attacks. Ad-

ditionally, existing literature lack focus on device profiling and classification. This is

an important feature as it allows IoT assets to be identified and subsequently may aid

in detect anomalies outside of the device’s ‘normal’ behaviour. Furthermore, such sys-

tems do not investigate the automated identification of the type of attack which has

occurred, which is critical for early attack response. According to the CSIR and NCSC

[7], one of the main challenges faced by organisations is to identify the type of cyber

attack which is occurring on the network without having to perform an in depth in-
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vestigation. As a result, this may cause a delay in the attack detection and mitigation,

which may subsequently lead to consequences ranging from data and financial loss to

physical harm. Therefore, the ability to automatically detect the exact attack type may

significantly reduce the human effort associated with responding to alerts, determining

the severity of an attack, and launching effective countermeasures.

This Chapter introduces the initial classification experiments which form the basis of

a novel supervised three layer IDS. A dataset containing both benign and malicious

traffic was generated from a representative smart home IoT testbed. This dataset sup-

ported classification experiments involving a range of supervised classifiers. The ex-

periments aided in answering the following research questions:

RQ2 Can supervised machine learning approaches support the automatic detection

of a range of cyber attacks based on network packet features collected from a

range of IoT devices?

RQ3 Can supervised machine learning algorithms successfully classify different IoT

devices based on network packet features?

RQ4 Given RQ2, can supervised machine learning algorithms further identify the

main type of attack which has occurred?

In answering these questions the following research contribution was made:

C2 An investigation into how supervised machine learning algorithms can be utilised

to support a novel three layer IDS tailored towards the IoT.

The remainder of this Chapter is divided into the following main sections: Section

4.2 presents the implementation of a representative example of a smart home testbed.

Section 4.3 discusses the generation and collection of IoT network traffic including the

design, implementation, and deployment of cyber attacks. Sections 4.4, 4.5, and 4.6
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discuss the preparation of the collected network traffic data for classification experi-

ments. Sections 4.7 evaluates and reports the performance of the supervised classifica-

tion experiments using the collected network data. Finally, Section 4.9 summarises the

findings and highlights the research contributions of this Chapter. Parts of this Chapter

have been published in [66] and [64].

4.2 IoT Testbed

Due to accessibility and location reasons, a new IoT testbed based on the same cri-

teria listed in the previous Chapter was implemented. In particular, as defined in

Chapter 3, a smart home is the symbiosis of different devices, i.e., sensors, connec-

tions, and applications that build a dynamic heterogeneous architecture with the aim of

efficiently managing home devices, and providing advanced services to users [100]. To

support the experiments described in this Chapter, and in contrast to existing studies

revolving around IDSs in IoT, a testbed - housed at the University’s campus - emu-

lating a typical ‘smart environment’ was designed and implemented. For the same

reasons discussed in Chapter 3, the devices were connected in a star topology. This

configuration consisted of existing and readily available commercial IoT devices of

different types/applications; lighting, entertainment, safety cameras, sensors, and ap-

pliance control [128]. Such devices included the Belkin NetCam camera, TP-Link

NC200 Camera, TP-Link Smart Plug, Amazon Echo Dot, Lifx Lamp, and a Samsung

Smart Things Hub and a British Gas Hive each connected to two sensors: a motion

sensor and a window/door sensor. The specific devices were chosen based on their

popularity, availability, affordability, and their use in other relevant and comparable

work (e.g. [185, 134, 57, 186]). Table 4.1 summarises these devices, including their

type and their connectivity protocol.

In addition to these devices, a laptop was connected to the IoT network in order to de-

ploy various network based attacks. This designated machine was a Lenovo ThinkPad
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IoT Device Type Protocol(s) Firmware Version

Amazon Echo Dot (2nd Gen) Multimedia Wi-Fi 661664720

Belkin NetCam HD+ (F7D7606v1) Multimedia Wi-Fi WW_2.00.7217.PVT

TP-Lik NC200 Multimedia Wi-Fi NC200_v2.1.7

Hive Hub Sensors Ethernet, ZigBee 1.0.0-7002-N105.3

Samsung Smart Things Hub (v3) Sensors Ethernet, BLE 0.24.22

TP-Link SmartPlug (HS100) Sensors Wi-Fi 1.0.8

Apple TV (5th Gen) Multimedia Wi-Fi tvOS 10.1.1

Lifx Smart Lamp (3rd Gen) Lamp Wi-Fi, ZigBee v2.9

Table 4.1: IoT devices included in the smart home testbed

configured to run the Kali Linux operating system [25]. At the same time, a network

traffic capture tool was set to run on the access point in order to continually record

the network traffic and save the log files in the syslog server. Figure 4.2 illustrates the

network architecture of the IoT testbed.

Figure 4.1: Overview of the architecture of the IoT testbed
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4.3 Data Collection

In order to collect network traffic, the testbed was designed to capture all the packets

on the network. All the inbound and outbound traffic from the smart devices were

captured using the tcpdump [46] tool, which was running continually on the Access

Point indicated with red circular marker in Figure 4.2. The data collection process

was automated using Cron jobs and bash scripts. Network packets were continuously

captured and saved to the Syslog Server in a Packet Capture (PCAP) format. Files were

generated in one-minute intervals and were accessed remotely via SSH to connect to

the Syslog Server. To conform to comparable research (e.g. [185]), three weeks worth

of benign data was collected. For two weeks, attacks were systematically launched

to generate and collect malicious data from the testbed. Overall, an estimated total of

over six million benign and three million malicious packets were collected.

4.3.1 Benign Network Data

In order to generate a dataset consisting of benign network traffic, the IoT devices on

the testbed were regularly interacted with. The interactions were decided based on the

intended use of the device, its feasibility within the lab, and other relevant research.

• Smart Things Hub: The door and motion sensors were attached to the office

door which was regularly used.

• Belkin NetCam & TP-Lik NC200: Both cameras were constantly on and posi-

tioned in the office.

• TP-Link SmartPlug & Lifx Smart Lamp: The smart plug was used to power

the smart lamp and was scheduled to turn off in the morning and on in the after-

noon. When on, the lamp was interacted with to change its colour [180].



102 4.3 Data Collection

• Apple TV: The Apple TV was used to occasionally stream videos from You-

Tube. However, due to the environment of the testbed and the use case of the

Apple TV, it was impractical to interact with the device as much as the others

in the testbed. Subsequently, the amount of network traffic generated from this

device was significantly less than the other devices on the testbed, and thus was

omitted from the classification experiments herein.

• Hive Hub: The hub was also connected to a door and motion sensor. The door

sensors was attached to a desk draw and the motion sensor faced the main en-

trance of the office.

• Amazon Echo Dot: The Amazon Alexa was asked to complete some of its most

popular types of interactions. Because the number of possible interactions with

this device is not binary (e.g. on/off), a user-based study [135], that explored the

the most popular interactions with it, was taken into consideration to inform our

decisions. As such, these included: checking the weather, finding facts, listening

to news, tell a joke, play music, set time, and check the time. However, due to

the limited selection of devices, and the fact that the smart plug was scheduled

to control the lamp using its own application, the Echo Dot was not connected

to the other devices on the testbed. In this case, the Alexa was not asked to

control their functionalities, such as turning the lamp on and off. This may be

considered as a limitation within the study as this command is amongst Alexa’s

most popular use cases.

4.3.2 Malicious Network Data

Acquiring malicious network activity required the design and deployment of a range

of cyber attacks. Although most IoT devices support a range of communication pro-

tocols, such as IEEE 802.15.4, Bluetooth, ZigBee, Z-Wave, LoRaWAN, and Cellular

(GPRS/2G/3G/4G), the experiments in this thesis focus on the WiFi and Ethernet pro-
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tocols. This is due to the following main two reasons: 1) the majority of the IoT devices

in the testbed have Wi-Fi connectivity, and 2) such attacks can be launched remotely

over the Internet making them particularly hazardous.

The details of the attacks that were deployed on the testbed are described in the fol-

lowing Sections. These attacks can be categorised into four main attack types: Recon-

naissance, DoS, MITM/Spoofing, and multi-stage (iot-toolkit). They were selected for

the experiments herein as they constitute some of the most popular attacks that may

threaten an IoT ecosystem [65, 64, 66]. The specific configurations of these attacks

can be found in Table A3 in the Appendix. To deploy the attacks the tools were chosen

based on the same criteria as discussed in Chapter 5 which include industry standards,

ease of use, available documentation, and cost.

In addition to the design, implementation, and launching of such attacks, logs were

generated to record the date, time, type, and variation of the attack that was deployed.

This was to support the labelling of malicious data discussed in Section 4.4. Addi-

tionally, the logs of all the outputs generated during the attacks, including the output

returned by the tools used, were created for debugging purposes.

Reconnaissance Attack

After gaining access to a network, adversaries are able to perform reconnaissance in

order to explore and learn more about the available targets. In the experiments herein,

a range of attacks which fall under the reconnaissance attack type, and are widely used

by both adversaries and cybersecurity professionals, were deployed using Nmap [137].

A detailed glossary reporting the exact scans deployed can be found in Table A3 in the

Appendix.

Denial of Service (DoS) Attack

Adversaries launch DoS attacks in order to make machines or network resources un-

available to their intended users by temporarily or indefinitely disrupting the services

of a host connected to the Internet. The most common type of DoS attack is Flooding,
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during which a large number of communication requests are sent to the target. To de-

ploy the DoS attacks described here, the hping3 tool [14] was used. A detailed glossary

reporting the exact DoS attacks deployed can be found in Table A3 in the Appendix.

Man-In-The-Middle (MITM) Attack

Adversaries launch MITM attacks in order to intercept, replay, and possibly alter the

communications between two legitimate parties. MITM attacks can be classified as

being either active or passive. During a passive MITM attack, the adversary captures

the transmitted data and passes it on to the original recipient. In an active attack, the

adversary not only captures the data, but also modifies it. In the experiments herein,

network traffic was collected for both passive and active MITM attacks.

In order to launch the passive MITM attack on the IoT testbed, both the Arpspoof and

Ettercap tools were tested. Arpspoof is a command line tool which allows the attacker

to intercept packets on a switched LAN by redirecting the traffic between two devices

by forging ARP reply packets. This specific attack exploits the lack of authentication

mechanism when updating the ARP cache. This results in new IP-to-MAC mappings

which overwrite the previous values in the ARP cache. As it is distributed as part of the

Kali Linux installation, the Arpspoof tool was mainly used for automating the launch

of the MITM attack herein. To deploy the ARP poisoning attack, the following steps

were taken:

1. The packet forwarding was configured on the attacker’s laptop so that it would

not drop the packets that were destined to other devices. The port forwarding

makes the machine act like a router, as it will then receive every packet and

forward it to another destination.

2. For this attack, the adversary is placing themselves between the Access Point

and one of the IoT devices.

3. The machine running the Arpspoof was setup to spoof the ARP cache so that

packets originating from the IoT devices to the router would pass through the
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attacker’s machine and vice versa.

The active MITM attack against the IoT devices herein involved injecting a spoofed

ICMP packet crafted using Scapy [37], to force the host and router to make an ARP

request. As a response, an illegitimate ARP replay is generated. By forging an ARP

reply, an attacker may easily change the IP and MAC association contained in a host

ARP cache which effectively routes the victim’s traffic to the attacker’s machine. Al-

though this is not a traditional MITM attack, it plays an important role in data theft.

ICMP is one of the most widely used protocols in the networking field. It operates in

the network layer and is mainly used for diagnostic purposes. Unlike other protocols,

any IP network device has the capability to send, receive, or process ICMP messages.

Multi-stage Attack using iot-toolkit

The iot-toolkit [40] was developed for SI6 Networks by Fernando Gont. The tool

consists of a set of security assessment and trouble-shooting tools. More particularly,

it can be used to assess the resilience of specific TP-Link smart devices by scanning

for vulnerable devices, gather information about their specifications, and toggle them

to change their operating status (e.g. ON/OFF). Given that such devices were included

in the testbed, this tool was used to evaluate their security.

The toolkit includes a switch/toggle functionality which aims to switch the devices on

and off. The implementation of this attack relies on the injection of JSON packets with

altered payloads. Due to the physical nature of the plug, this type of attack has the

capability of causing substantial damage to the device that it supports. Thus, the data

generated from launching this attack was captured for the experiments herein.

4.3.2.1 Attack Scenarios

In order to generate a more representative and broad sample of malicious network

activity, it was important to introduce some randomness to the deployment of the at-

tacks discussed in Section 4.3. In this case, the automated launching of attacks at
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random intervals were implemented using bash scripts. Randomisation was achieved

by implementing a timer which launched the attacks at random, for a random period of

time ranging between five seconds and 20 minutes. The idle time between the launch

of each attack was also randomised using the same principle. The speed of the toggle

attack, i.e. the amount of malicious packets sent to the device, launched using the

iot-toolkit was also randomised.

As a result, in addition to launching of the aforementioned stand alone attacks, four

automated attack scenarios were implemented and deployed. These scenarios were as

follows:

1. Network Scanning

In this scenario, either one type of quick scan or one type of quick scan followed

by one type of intense scan was launched. The intense scan was launched with

the probability of 0.5. The rationale for this scenario was that an attacker will

often perform an attack with a quick scan to determine the available hosts and

then decide whether to proceed to a more complex attack.

2. Network Scanning and DoS

This scenario also incorporates a quick type of reconnaissance; however the at-

tacker also performs one or more of the aforementioned DoS attacks on the target

network. A maximum of six DoS attacks were performed one after another. The

random duration of the attack, as well as the idle times between each, were ran-

domised. The attacks were targeted towards each IoT device connected to the

testbed at random using their known IP addresses.

3. Network Scanning and MITM

This scenario also incorporates a quick type of reconnaissance followed by a

MITM attack performed using ARP spoofing. This attack uses passive mon-

itoring only or ICMP packet injection with a chosen probability of 0.5. The

launching of these attacks, their idle times, as well as the number of injected

packets were selected randomly.
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4. Complete Attack with iot-toolkit

In this scenario, the TP-Link smart plug on the testbed is targeted using the iot-

toolkit. More specifically, the three attacks distributed as part of the iot-toolkit

were launched. Again, the launching of these attacks along with the aforemen-

tioned consideration were selected randomly.

4.4 Data Labeling

Supervised machine learning relies on annotated training datasets, where the target

value to which a predictor belongs is known. There exists various pre-annotated net-

work traffic datasets; these are mostly collected from conventional IT systems.

Such datasets often contain packet-based or flow-based information about the network.

While flow-based data contains meta information about network connections, packet-

based data contains finer grain information about the transmitted packets. Flow-based

network data may be captured using specialised software (e.g. NetFlow [86], IPFIX

[85], sFlow [19], and OpenFlow [143]). Capturing network traffic on a packet-level

can be achieved by using a network tap or by mirroring ports of the network devices.

The information contained within the network datasets dictate the features that can

be derived to support machine learning experiments. In the context of packet-based

data, features including packet headers, network and transport protocols such as TCP,

UDP, ICMP, and IP, and metadata such as sequence number, TCP flags, and checksum

values can be found. Whereas flow-based network data contains volume-based meta

information such as transmitted bytes per second, packets per second, flow-size, and

number of transmitted packets and bytes [85].

For supervised machine learning experiments, other than the features which represent

the network data, such data points must also be associated with a target value. In the

context of cyber attacks, predictors are often labelled as whether they are malicious

or benign. There exists few studies, such as [78] and [192], which have focused on
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classifying the type of attacks which have occurred on a network, such as DoS and

DDoS.

There are two main approaches to labelling network traffic. Several datasets have

been manually labelled using human annotators (e.g. [55]). Others have employed an

automated approach by associating the deployment time of the attack with the packets

(e.g. [170]).

In order to create a gold standard for the supervised classification experiments in this

Chapter, the dataset collected in Section 4.3 was labelled according to following three

points:

1. Given that the IP addresses of the devices on the testbed would change when they

were under specific attacks (e.g. DoS), outbound packets from each device were

labelled using their known MAC addresses. Packets were therefore labelled as

one of the following devices: Amazon Echo Dot, Belkin Net, TP-Lik NC200, Hive

Hub, Samsung Smart Things Hub, TP-Link SmartPlug, and Lifx Smart Lamp.

2. As attacks were launched systematically, malicious outbound packets from the

dedicated attacking laptop were identified and labelled using its MAC address

and the time frame of when the attacks were launched. In order to avoid the mis-

labelling of packets, the services and applications (e.g. e-mail and web browsers)

on the attacker’s laptop were deactivated. Packets that were collected from the

aforementioned devices outside of these time frames were labelled as benign.

3. Given the aforementioned point, malicious packets were labelled with the type

of attack that was launched using the same approach. Malicious packets were

therefore labelled as one of the following attack categories: DoS, MITM, Scan-

ning, or iot-toolkit.
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4.5 Sample Size Reduction and Class Balancing

Datasets containing a significantly large number of packets, such as those produced

here, require high computational power and processing time when they are used to

support machine learning experiments. Given the large volume of data collected over

the three week period, and therefore the local computational power required to process

such data, to determine a representative sample of benign activity, data collected from

the first seven days of collection was selected. This included weekdays where there

was substantial activity and a Saturday and Sunday where there was much less.

A possible limitation of the approach towards the sampling of this data is the possible

change in activity at different time periods. For example, a device may incur a firmware

update during the second week of data collection. In this case, packet sizes may be

larger, and are subsequently not represented in the final dataset used to train and test

the models. As a consequence, the final model may be unable to accurately decide

whether such packets are malicious or benign.

As discussed in Section 4.3, in order to generate a representative dataset of malicious

network activity, the configurations of the attacks were initialised and launched at ran-

dom. In order to extract a sample of malicious data, the first 110,395 packets were

selected.

Figures 4.2 - 4.4 show the distribution of packets across all the classes for each sampled

dataset. For device type classification, the sample size contained a total of 994,341

packets. For attack detection, the sample size contained a total of 220,785 packets. For

attack type classification, the sample size contained a total of 110,395 packets.

Weka [45], a popular suite of machine learning software, was used to support both the

data sampling and classification experiments in this Chapter. An uneven balance of

class labels across each experiment has the potential to negatively affect classification

performance. Given this, the ‘spread sub-sampling’ and ‘class balancing’ filters avail-

able as part of Weka were applied to generate a random sub-sample of packets, and to
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subsequently balance the distribution of classes within those samples.

For device type classification, the final sample size used for the experiments herein

contained 70,000 packets, with 10,000 packets per device. For attack detection, the

final sample size contained 80,000 packets, 40,000 and 40,000 of benign and mali-

cious packets respectively. Finally, for attack type classification, the final sample size

contained 40,000 packets, with 10,000 packets for each attack category.

Figure 4.2: Distribution of packets across IoT devices
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Figure 4.3: Distribution of packets across attack detection

Figure 4.4: Distribution of packets across attack types
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4.6 Feature Selection

The aim of the initial experiments herein is to investigate the feasibility of classifying

device types and whether malicious behaviour has occurred by analysing individual

network packets. The reasoning behind this approach is, as single packets are the

smallest piece of network information, they are quicker to process, and subsequently

improve the speed of identifying malicious activity. It is important to note that ana-

lysing individual packets may be effective when attacks/malicious behaviours do not

consist of a sequence of actions to be deployed (e.g. reconnaissance or DoS). By de-

ploying these attacks, adversaries aim to achieve maximum damage as soon as they

gain access to the system [83]. However, this approach may be ineffective in detecting

more sophisticated attacks where the adversary attempts to modify the system dis-

cretely over a period of time, by deploying attacks that involve sequencing of activities

(e.g. installing a backdoor). This is because the supervised model does not consider

the relationships between each packet or the sequencing of time.

Subsequently, to extract the necessary packet features, the raw PCAP files contain-

ing the network packets were first converted to a Packet Description Markup Lan-

guage (PDML) [32] format. The reason for this conversion is because Wireshark

[46], a popular open-source software for analysing packets, only allows access to 11

packet attributes (packet ID, time, source, destination, protocol, length, frame is ig-

nored, info, delta time, frequency, and DSCP/CoS). Conversely, PDML conforms to

the XML standard and contains details for Layers 2-7 of the OSI model [73]. As a

result, it allows access to several packet attributes which can be used as features.

A network packet consists of a series of layers (Physical, Data Link, Network, Trans-

port, and Application), with each layer being a child of the previous layer, built from

the lowest layer up [38]. Each layer has its own header composing of a range of dif-

ferent fields providing protocol specific information (e.g. IP flags) and general packet

information (e.g. packet length). For the classification experiments in this Chapter, all

of the fields which compose each of the aforementioned layers were extracted resulting
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in a total of 133 features. In addition to the aforementioned attributes, other fields were

also included such as frame information [46].

From this feature set, features which represented identifying properties, such as source

IP address, timestamp, packet ID, etc., were removed. This was to ensure that the

model was not dependent on specific network configurations and that the features of

the network behaviour were captured, rather than the network actors and devices. Fi-

nally, as the network traffic was encrypted, the payload information from the Applic-

ation Layer was not considered as a feature. Subsequently, Table A1 in the Appendix

reports the final feature set which contained 121 features. In order to be compatible

with Weka, the PDML files were further converted to Attribute-Relation File Format

(ARFF) format using a Python script.

At this stage, it is important to highlight that all features, apart from IP version, flags,

and ports, were defined as having numerical values. The aforementioned features were

defined as categorical as they can only have a specific range of values (e.g. flags are

binary and can only be 0 or 1).

After projecting the packets onto their labels (discussed in Section 4.4), the packet

data was represented as a feature vector. For all three experiments, each packet was

represented as a double: (network packet features), where each value represents each

of the 121 packet features, and (class label) which represents the label assigned to the

packet. For example, a malicious DoS packet sent from the attacker’s machine would

be represented as the following two feature vectors, reporting the values for the first ten

features (len, caplen, frame.encap_type, frame.offset_shift, frame.len, frame.marked,

frame.ignored, eth.lg, eth.ig):

(64, 64, 1, 0, 50, 50, 0, 0, 0, 0, ...︸ ︷︷ ︸
Network Packet Features

Malicious)︸ ︷︷ ︸
Class Label
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(50, 50, 1, 0, 50, 50, 0, 0, 0, 0, ...︸ ︷︷ ︸
Network Packet Features

DoS)︸ ︷︷ ︸
Class Label

4.7 Network Traffic Classification

Once the network traffic data was annotated, the dataset was split into training and

testing data. A supervised classification algorithm was then used to predict the class

label of unseen test instances, based upon their correspondence with the training data.

Several supervised machine learning classifiers exist. The “no free lunch” theorem

suggests that there is not a universally best learning algorithm [205]; in other words, the

choice of an appropriate classification algorithm should be based on its performance

for the particular problem at hand, and the properties of data that characterise that

problem.

As such, the suitability of eight supervised machine learning algorithms was investig-

ated. The selection of these algorithms was based on their ability to support multi-class

classification problems - this is essential due to the multi-layered nature of the proposed

IDS, high-dimensional feature space - this is necessary due to the vast amount of packet

features included within the dataset, and low computational complexity - this is critical

in IoT environments as the IDS needs to be lightweight to be able to be deployed in

low powered IoT devices. In addition, the classifiers included generative models that

consider conditional dependencies in the dataset or assume conditional independence

(e.g. Bayesian Network, Naive Bayes) and discriminative models that aim to maximise

information gain or directly map data to their respective classes without modeling any

underlying probability or structure of the data (e.g. J48 Decision Tree, Support Vector

Machine). Finally, the algorithms were also chosen as they produce classification mod-

els that can be easily interpreted, allowing a better understanding of the classification
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results.

• Bayesian network is a probabilistic model that represents a set of variables and

their conditional dependencies via a Directed Acyclic Graph (DAG). These mod-

els are mostly used for taking an event that occurred and predicting the likelihood

that any one of several possible known causes was the contributing factor.

• Naïve Bayes classifiers are simple probabilistic models which are based on Bayes’

theorem. Such models assume conditional independence, i.e. each individual

feature, independent of other features, is assumed to be an indication of the target

value. Subsequently, the goal is to analyse the relationships between the features

and the target value to estimate a conditional probability that correspond unseen

data points to a target value.

• Support Vector Machines (SVM) are discriminative classifiers formally defined

by a separating hyperplane. In other words, given labeled training data, the al-

gorithm outputs an optimal hyperplane which categorizes unseen data points. In

two dimensional space, this hyperplane is a line dividing the plane in two parts

where each target value lays on either side.

• C4.5 (J48) Decision Tree is an algorithm used to generate a decision trees and

is mostly used for classification problems. The goal is to create a model that

predicts the value of a target variable by learning simple decision rules inferred

from the data features.

• Random Forest is an ensemble method as it generates many decision trees, re-

ferred to as a forest. Each tree is constructed using a different sample from the

original data using a tree classification algorithm. Once the forest is formed,

unseen data points are classified by traversing the nodes of each tree. Each tree

provides a vote which indicated the tree’s decision as to whether the unseen data

points should be assigned to the target value of its nodes. Finally, a voting al-
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gorithm processes all the votes to determine the final decision as to which target

value the unseen data points is classified as.

• Zero R is considered to be one of the simplest classification method, which relies

on the target and ignores all predictors. ZeroR classifier simply predicts the

majority category (class). Although there is no predictability power in ZeroR,

it is useful for determining a baseline performance as a benchmark for other

classification methods.

• One R which is also known as "One Rule", is a simple, yet accurate, classific-

ation algorithm that generates one rule for each predictor in the data. It then

selects the rule with the smallest total error as its "one rule". To create a rule for

a predictor, a frequency table for each predictor against the target is construc-

ted. It has been shown that OneR produces rules only slightly less accurate than

state-of-the-art classification algorithms while producing rules that are simple

for humans to interpret.

• Simple Logistic is a type of linear logistic regression model and is used to predict

the categorical dependent variable with the help of independent variables.

4.7.1 Experimental Results

To explore how well classification algorithms can use network traffic to learn to distin-

guish between IoT device, whether outbound packets from such devices are malicious

or benign, and given malicious packets, the type of attack which has occurred, the per-

formance of a range of supervised classifiers were evaluated. Classifiers included gen-

erative models that consider conditional dependencies in the dataset or assume condi-

tional independence (e.g. Bayesian Network, Naive Bayes), and discriminative models

that aim to maximise information gain or directly maps data to their respective classes

without modeling any underlying probability or structure of the data (e.g. J4.8 De-

cision Tree, SVM). Moreover, the aforementioned algorithms were also chosen as they
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produce classifications models that can be easily interpreted, allowing a better under-

standing of the classification results. Given a test dataset, network traffic classification

can be evaluated relative to the training dataset, producing four outputs:

• True Positives (TP) - packets are predicted as being malicious, when they are

indeed malicious.

• True Negatives (TN) - packets are predicted as being benign, when they are

indeed benign.

• False Positives (FP) - packets are predicted as being malicious, when in fact, they

are benign.

• False Negatives (FN) - packets are predicted as being benign, when in fact, they

are malicious.

These four counts constitute a confusion matrix shown in Table 4.2.

Predicted

Benign Malicious

Actual
Benign True positive False negative

Malicious False positive True negative

Table 4.2: Confusion matrix for binary classification

There are several measures which can be used to evaluate the performance of a classi-

fier. The goal is to maximise all measures, which range from 0 to 1. Therefore, higher

values correspond to better classification performance. The most common measures

are precision, recall, F-measure, and accuracy.

Precision (P) measures the proportion of malicious packet identification was correct,

whereas recall (R) measures what proportion of malicious packets were identified cor-
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rectly. Both metrics can be calculated using the equations in (4.1).

P =
TP

TP + FP
, R =

TP

TP + FN
, F = 2 · P ·R

P +R
(4.1)

Precision and recall are not often taken into account alone. The two measures may be

used together in F-measure, which provides a single weighted metric to evaluate the

overall classification performance. A specific version of the F-measure, F1-score (F),

is measured by calculating the harmonic mean of precision and recall (Equation (4.2)).

F1− score = 2× P ×R
P +R

(4.2)

Others use accuracy as a measure of performance. Accuracy (Equation (4.3)) measures

the number of packets that were correctly classified. However, the problem of using

accuracy to measure the effectiveness of a classifier is that if the classifier always pre-

dicts a particular class, a strategy that defeats the purpose of building a classifier, it will

achieve high accuracy. This is also known as the accuracy paradox.

Accuracy =
TP + TN

TP + FN + FP + TN
(4.3)

When classifying network traffic, evaluating the performance of the classifier concerns

both measuring its effectiveness and efficiency. It is crucial that the classifier it not

only effective in its predictions, but is also efficient in making such predictions. As a

result, the classifier’s ability to correctly predict unseen network traffic in an optimal

time frame is evaluated.

Weka (version 3.8.3) was used to perform classification experiments using the default

hyper-parameters. To comply with other comparable research which employ machine

learning techniques to detect cyber attacks in traditional and IoT networks (e.g. [197,

173]), eight supervised classifiers were selected based on their ability to support multi-

class classification and high-dimensional feature spaces.
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Table 4.3 demonstrates the results following 10-fold cross-validation on the balanced

gold standard created in Section 4.5, reporting classification models with the highest

performance with each using the default parameters. The overall performance repres-

ents weighted-averaged results. Overall, Weka’s implementation of the J4.8 Decision

Tree method [163] without pruning achieved the best performance, resulting in an F1-

score of 97.4%, 98.6%, and 98.6% for each experiment respectively.

Device Classification Malicious or Benign Attack Type

Classifier P R F P R F P R F

Naive Bayes 81.4 79.8 78.6 94.4 93.8 93.7 89.7 86.3 85.6

Bayesian Network 97.3 97.1 97.1 95.6 95.6 95.6 98.9 98.9 98.9

J48 97.6 97.4 97.4 99.9 99.9 99.9 98.6 98.6 98.6

Zero R 0.0 14.3 0.0 0.0 50.0 0.0 0.0 25.0 0.0

One R 90.5 80.4 82.4 92.4 92.2 92.1 97.8 97.7 97.7

Simple Logistic 94.1 93.5 93.5 97.3 97.2 97.2 99.2 99.2 99.2

SVM 93.2 92.6 92.6 97.4 97.3 97.3 99.1 99.1 99.1

Random Forest 97.4 97.4 97.3 99.9 99.9 99.9 98.5 98.1 98.1

Table 4.3: Weighted average results following cross-validation

Confusion matrices given in Tables 4.4-4.6 show how classification outcomes are re-

distributed across the classes in each experiment. When classifying which device,

the classifier demonstrated a high percentage of correct predictions, thus less often

misclassifying devices. This may be explained by the fact that such devices are distinct,

and therefore, so are their network behaviours. In this case, features may exist in some

packets from one device, but are missing in packets from others. For example, the

behaviour of the TP-Link NC200 is notably different in comparison to the behaviour

of the TP-Link SmartPlug as their use cases are different. In this case, features within

the TP-Link NC200 packets include the connection-less protocol, UDP; whereas the

TP-link SmartPlug uses TCP. Confusion occurs in some instances where devices are

incorrectly classified. For example, the Hive Hub is misclassified as the Belkin Net

camera, and vice versa. These confusions may be explained by the fact that such
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devices may have incurred similar network behaviour during data collection, such as

when firmware updates were deployed.

Detecting whether network packets are malicious or benign and identifying the type

of attack which has occurred also demonstrated very little confusion. For attack type

classification, these results may be explained by the fact that the attacks that were

performed during data collection were off-the-shelf attacks distributed as part of open

source tools such as hping, nmap, iot-toolkit and resources which may not be con-

sidered as being sophisticated in their implementations. In this case, the features of

malicious and benign packets may be distinct, and therefore few classification confu-

sions have occurred. For instance, malicious packets may contain distinct flag values

indicating an attack has occurred, which subsequently increases their discrimination

from benign packets.

Predicted

a b c d e f g

Amazon Echo Dot a 9,990 3 5 2 0 0 0

Belkin Net b 1 9,838 154 5 0 0 2

Hive Hub c 5 1,485 8,495 3 1 2 9

Actual Samsung Smart Things Hub d 0 0 0 9,981 0 1 18

Lifx Smart Lamp e 0 0 0 0 9,983 0 17

TP-Link NC200 f 2 2 0 2 0 9,904 90

TP-Link SmartPlug g 1 0 0 0 0 0 9,999

Table 4.4: Confusion matrices when classifying IoT devices

Predicted

a b

Actual Malicious a 39,984 16

Benign b 20 39,980

Table 4.5: Confusion matrices when classifying network traffic as malicious or

benign.
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Predicted

a b c d

DoS a 9,910 90 0 0

Actual MITM b 0 10,000 0 0

Scanning c 0 160 9,849 0

iot-toolkit d 0 191 0 9,809

Table 4.6: Confusion matrices when classifying attack type

The classification results herein have demonstrated the efficiency of a supervised ma-

chine learning IDS tailored towards an IoT smart home. More specifically, the results

show that the J48 classifier can classify the IoT devices on the network, whether a

packet is malicious or not, and subsequently, what type of attack has occurred with

high accuracy. In a real use case, this means that very few packets would be incor-

rectly identified as being benign or malicious, which means that the false-positive rates

are very low. This is an important characteristic of an IDS, as it increases its reliabil-

ity towards detecting malicious behaviour and subsequently launching the appropriate

countermeasures at the most critical times.

However, it is important to note, based on the aforementioned analysis of the confu-

sion matrices, with more similar device types on the network, it is possible that the

overall accuracy of the model may decrease as the behaviours of each device will be

more challenging to distinctly identify, subsequently increasing the model’s confusion.

Similarly, it is also important to highlight that the reason behind the high accuracy of

the model when classifying benign and malicious packets and attack types is due to the

unsophisticated nature of the attacks deployed on the testbed. In particular, as these

attacks were deployed using off-the-shelf tools, their packets include distinct feature

values which aid in discriminating between benign and malicious packets. If more

sophisticated attacks are deployed, i.e. having packets with less distinct feature values,

the accuracy of the model may decrease. The following Section provides an insight

into the features that aid the J48 model to distinctly discriminate between benign and
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malicious packets. Finally, Sections 4.7.3 and 4.7.4 further discuss how the model

behaves when unseen data is presented, as well as the real-world use case of the IDS

presented herein.

4.7.2 Feature Analysis

To gain a better understanding of the classifier’s high performance, particularly in de-

tecting the attack and its type, the InfoGain Ratio Attribute Evaluation Filter provided

in Weka was used to identify which features best discriminate between the attack types.

This filter evaluates the importance of the features in the training dataset by measuring

their information gain with respect to the classes. In more detail, this filter measures

how each feature contributes in decreasing the overall Entropy H(x) in the dataset - a

measure to calculate the degree of disorder or uncertainty. Subsequently, an import-

ant feature is one which holds the most information and reduces the most the entropy

[178]. Both the Entropy and InfoGain are defined respectively:

H(Class) = −
∑

p(Class) log p(Class)

I(Class, Attribute) = H(Class)−H(Class|Attribute)

Following the application of the InfoGain filter on the dataset, Table 4.7 illustrates the

top features which best discriminate between the different attack types (see Table A1

in the Appendix for the descriptions of these features).

More specifically, among the top which affect the decision tree are: packet length,

ip.ttl, tcp.time_delta, IP and TCP flags, ICMP fields, and TCP/UDP ports. In more

detail, packet length can be an indicator of malicious behaviour, specifically when the

packet is significantly larger or smaller than usual. The ip.ttl feature can also indicate

the presence of an attack specifically when packets have unusual TTL values. In this
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Attribute Weight

len 1.48

tcp.time_delta 0.876

ip.flags 0.789

ip.ttl 0.781

ip.flags.df 0.625

tcp.srcport 0.567

tcp.seq 0.533

tcp.dstport 0.527

tcp.window_size 0.442

tcp.window_size_value 0.440

tcp.hdr_len 0.411

tcp.ack 0.410

tcp.flags.ack 0.395

tcp.flags.syn 0.388

ip.flags.mf 0.238

tcp.flags.push 0.149

udp.srcport 0.077

icmp.type 0.031

icmp.code 0.031

tcp.flags.cwr 0.015

tcp.flags.enc 0.015

tcp.flags.urg 0.015

tcp.flags.fin 0.012

tcp.flags.reset 0.011

Table 4.7: Feature importance ranking
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case, the majority of the packets of the attacks deployed seemed to have very specific

TTL values ranging between 60 and 64. Different attacks also have different tcp delta

times. Higher rates of delta time is often an indication of a DoS attack. Moreover, the

destination port of a packet is another useful feature for detecting activity such as port

scanning which generally involves several probes to one or more ports. When present,

ICMP code options such as fragment protection and packet protection can also indicate

a DoS attack. Scanning methods and DoS (e.g. syn flood) mostly involve having

modified TCP flags to invalid or improper settings. Additionally, specific TCP flag

responses such as TCP SYN check and TCP SEQ check or ICMP packet transmission,

can indicate a MITM attack. As a result, the various combinations of flags are crucial

indicators of malicious activity. IP flags are indicators of IP fragmentation attacks and

can take several forms such as UDP (an attack used against the IoT). These may be

considered as being properties of a DoS attack as they make the device unavailable.

4.7.3 Unseen Validation Experiments

To ensure that the J48 classifier is not over-fitting, we performed additional exper-

iments using the original datasets which resulted in no change in the classification

performances:

• Classification using an unpruned decision tree.

• As the feature space is relatively large, all packet features may not be relevant.

In this case, a known method that aids in avoiding over-fitting is to reduce the

feature dimensionality to reduce noise and randomness from the data. Here, the

feature space was reduced to the top 10 features as shown in Table 4.7 and the

models were re-trained and tested.

To evaluate the performance of the trained models generated in Section 4.7.1 even

further, the trained classifiers were applied to unseen datasets. Such datasets included

packets that were represented in the original datasets discussed Section 4.5.
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More specifically, for device type classification, the unseen dataset contained 40,000

packets in total, with 10,000 packets generated from each of the four IoT devices on

the testbed. For classifying malicious packets, the unseen dataset contained a total of

4,200 packets, 2,100 malicious and 2,100 benign packets. Finally, for classifying the

attack type, the unseen dataset contained 436 packets, 109 packets for each of the four

attacks.

As shown in Table 4.8, the results demonstrate that for the device type classification

and for identifying malicious packets, the accuracy of the classifiers decreased (from

98.8% to 96.2% and from 97.0% to 90.0% respectively). However, the performance of

the classifier in distinguishing the types of attacks, did not change significantly (from

99.0% to 98.0%).

Given the minor decrease in classification performances, such results demonstrate that

the model can generalise the data well and it is therefore assumed that it is not over-

fitting.

Device Classification Malicious or Benign Attack Type

P R F P R F P R F

96.2 96.8 96.9 90.0 89.9 88.8 98.0 99.0 99.0

Table 4.8: Weighted average results for each experiment on unseen validation

data using the trained J48 models.

4.7.4 Scalability

The main use case for the IDS proposed in this Chapter is to be able to detect real time

malicious behaviour in smart home IoT environments and identify the type of attack

which has occurred. However, IoT in its own right is a large concept which includes a

significant number of heterogeneous devices.

Larger networks with several other IoT devices are traditionally segmented into sub-
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networks, each including a set of devices. In this case, when considering the scaling up

of the proposed IDS, to detect malicious activity in environments with more devices,

the IDS can be deployed on each sub-network. Having several instances of the IDS

may ultimately lead to sharing network activity data between each sub-network. The

data from one sub-network containing different devices to other sub-networks may be

used to train the IDS to identify malicious activity in such devices when they are newly

connected to the sub-network.

4.8 Limitations

One of the main limitations surrounding this work includes the over-head associated

with accurately labelling packet data and the feature engineering required to represent

such data to a machine learning model. In addition, the effectiveness of the system

needs to be evaluated against more sophisticated attacks and within a much larger IoT

network.

Furthermore, the model may face some limitations when new attack types and when

new devices are added to the network. The current model may be able to detect mali-

cious behaviour if such behaviours are similar to those that it previously seen. How-

ever, if a new type of attack has occurred, the model will attempt to classify such attack

as one of the four it has been trained upon. This is a similar case when a new device

is added. This increases the risk of false positives and may impact on the response to

the attack. As supervised machine learning was used to support the experiments, the

data from new and unseen attack categories and new devices must be collected and

labeled. Due to the limited number of available devices and given that the focus was

to demonstrate the feasibility of detecting malicious behaviour and device type using

individual network packet data, this was not evaluated in this work. In this case, the

model must be re-trained to reflect the current state of the network. To address this,

commercially deployed supervised IDSs (e.g. [8]) are set to automatically re-train the
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model periodically or when a new device is added to the network. To avoid interrupt-

ing the smooth functionality of the system, this can be scheduled to occur at non-peak

times (e.g. middle of the night).

Finally, as with Chapter 3, the limited financial resources restricted the number of

devices that could be purchased to be included in the testbed. As such, it is worth

noting that the work presented in this Chapter was designed with such devices in mind.

4.9 Summary

The aim of this Chapter was to examine the reliability and effectiveness of supervised

machine learning algorithms in classifying the IoT devices on a network, identifying

whether packets are malicious or benign, and given malicious packets, the type of at-

tack which has occurred. These experiments form the basis of the architecture of a

novel supervised three layered IDS which can significantly enhance the security of IoT

and has the potential to reduce the incident response rate. More specifically, the three

layers of the proposed system address the limitations of existing work which lack focus

on device profiling, focus on detecting a limited set of attacks, and most importantly, do

not attempt to identify the exact type of attack that has occurred. Without this inform-

ation, significant human effort is needed to respond to alerts, determine the severity of

an attack, and launch countermeasures, which may have severe consequences ranging

from data and financial loss to physical harm.

To support the classification experiments, real network data was collected from a smart

home testbed consisting of eight commercially available IoT devices. In order to gen-

erate a representative sample of malicious network behaviour, a range of cyber attacks

which were categorised into four main attack types were selected, configured, and

targeted towards the IoT devices on the testbed. Once collected, the packets were pro-

cessed individually and represented as feature vectors consisting of 121 features. In

order to evaluate the performance of supervised classifiers, three classification experi-
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ments were performed using eight classifiers that are comparative to other research. To

explore how well supervised classifiers can learn to differentiate between IoT devices

and network behaviour, 10-fold cross-validation experiments were performed. Over-

all, the J4.8 Decision Tree outperformed other classifiers, achieving an F1-score of

97.4%, 99.9%, and 98.6% respectively. This analysis indicates the potential of using

supervised classifiers to support IDSs in IoT networks using features extracted from

individual packets. Given the positive findings of the initial study, the next step is to

implement this system in real time, so that it can be deployed in a real, much larger,

heterogeneous IoT and Industrial IoT environment. This will allow the system to be

further evaluated on more complex and more sophisticated attacks. Most importantly,

it is critical to evaluate the robustness of supervised IDSs against AML attacks, which

target the learning model itself and may allow adversaries to bypass such detectors.

These attacks will be discussed in Chapter 5.
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Chapter 5

Adversarial Attacks on Machine

Learning Cybersecurity Defences in

IoT

5.1 Introduction

As discussed and demonstrated in Chapter 4, supervised IDS systems have emerged as

a successful attack detection and identification method in IoT networks. However, the

implementation of such systems has introduced an additional attack vector; the trained

models may also be subject to attacks. The act of deploying attacks towards machine

learning based systems is known as Adversarial Machine Learning (AML). The aim

of AML is to exploit the weaknesses of the pre-trained model. More specifically, by

automatically introducing perturbations to the unseen data points, the model may cross

a decision boundary and classify the data points as a different class to its true class. As

a result, the model’s effectiveness may be reduced, subsequently increasing the number

of misclassifications.

Although there has been substantial research on machine learning based IDSs for IoT,

there has been significantly less focus on AML. In the context of IoT, AML can be used

to manipulate data and network traffic from the devices, causing malicious data to be

classified as benign, consequently bypassing the machine learning based detector. This
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has the potential to significantly delay attack detection, and given the success of the

attack that otherwise could have been prevented, this may lead to personal information

leakage, damaged hardware, and financial loss.

Given the impact that these attacks may have, the motivation behind this work is to

evaluate the robustness of a supervised IDS against AML attacks. More specifically,

this Chapter explores the application of AML in the context of IoT, as well as present-

ing an approach towards generating malicious adversarial packets. These adversarial

samples are subsequently used to measure the robustness and effectiveness of the IDS

presented in Chapter 4. This analysis answers the following research question:

RQ5 Can AML techniques be used to evaluate the robustness of a supervised IDS for

the IoT?

In answering this question, the following contribution was made:

C3 A first approach towards investigating how AML techniques can be applied to

evaluate the robustness of a supervised IDS tailored towards the IoT.

Given the positive results from the adversarial experiments which showed that the clas-

sifier’s performance can be decreased by a maximum of 31.7 percentage points, this

Chapter also investigates adversarial training. This method can be used to enhance the

robustness of the model by introducing perturbed samples within the original training

set and evaluating the retrained model. This answers the following research question:

RQ6 Can adversarial training enhance the robustness of a supervised IDS for the IoT?

In answering this question, the following research contribution was made:

C4 A first approach towards investigating how adversarial training can be used to

enhance the robustness of supervised machine learning algorithms.
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The remainder of this Chapter is divided into the following main sections: Section

5.2 discusses AML attack types and approaches, Section 5.3 presents an approach

to generate malicious adversarial packets, Section 5.4 evaluates the performance of

the model against AML samples, Section 5.5 evaluates the performance of the model

following adversarial training, and Section 5.7 summarises the findings and highlights

the research contributions of this Chapter.

5.2 Adversarial Machine Learning

To reiterate, the aim of AML is to automatically introduce perturbations to unseen data

points in order to exploit the weaknesses of a pre-trained machine learning model. The

following sections introduce the different types of AML attacks, as well as the methods

used to automatically generate adversarial samples.

5.2.1 Adversarial Attack Types

Depending on the phase and aspect of the model that is being targeted, AML attacks

can be described in terms of four primary vectors: [75, 115]:

• Attack Influence: An attack can have a causative influence if it aims to introduce

vulnerabilities to be exploited at the classification phase by manipulating train-

ing data, or an exploratory influence if the attack aims to find and subsequently

exploit vulnerabilities at classification phase. The attacker’s capabilities might

also be influenced by the presence of data manipulation constraints.

• Security Violations affect either the integrity of the model when the adversarial

samples cause misclassifications, or when the high rate of misclassifications

causes the model to become unusable.
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• Specificity refers to targeted attacks, where the adversarial samples aim to target

a specific target value, or indiscriminate attacks, where the samples do not target

a specific target value.

• Privacy refers to attacks where the adversary’s goal is to extract information

from the classifier.

Papernot et al. [155] further categorise adversarial attacks based on:

• Their complexity. The consequences of such attacks can range from slightly

reducing the confidence of a model’s predictions to causing it to misclassify all

unseen data points.

• The knowledge an adversary may have. A white box attack refers to when an

attacker has useful knowledge related to the learning model, such as its archi-

tecture, the network traffic it reads, and the features used to support its training.

An attack is considered as gray box when some aspects of the system are know

(e.g. only the features used). Finally, an attack is considered as being a black

box attack when an adversary has no information about the internal workings of

the target model.

5.2.2 Adversarial Sample Generation Methods

There exists various methods by which adversarial samples can be generated. Such

methods vary in complexity, the speed of their generation, and their performance. The

methods discussed in Chapter 2 provide sophisticated approaches towards generating

adversarial samples. However, such approaches may be too complex as an initial ap-

proach towards understanding the difference in behaviours between benign and mali-

cious IoT packets, as well as generating adversarial network packets.

Given that the training dataset and its features are known, as well as the targeted clas-

sifier, the AML attack discussed herein focuses on grey box methods. In this case, two
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relevant techniques towards automatically generating perturbed samples in a white box

attack scenario include the Fast Gradient Sign Method (FGSM) and the Jacobian based

Saliency Map (JSMA), presented by Goodfellow et al. [102] and Papernot et al. [155]

respectively. Rigaki et al. [169] evaluate the aforementioned methods on the NSL-

KDD dataset for traditional IT systems and demonstrate that such approaches can suc-

cessfully generate adversarial samples that reduce the performance of the supervised

classifier. Given these findings, these approaches form the basis of the methodology

behind generating malicious adversarial samples in IoT presented herein.

Both FGSM and JSMA follow the methodology, that when adding small perturbations

(δ) to the original sample (X), the resulting sample (X∗) can exhibit adversarial char-

acteristics (X∗ = X + δ) [169] in that X∗ is now classified differently by the targeted

model. Moreover, both methods are usually applied by using a pre-trained Multilayer

Perceptron (MLP) network as the underlying model for the adversarial sample genera-

tion.

The FGSM method aims to target each of the features of the input data by adding a

specified amount of perturbation. The perturbation noise is computed by the gradient of

the cost function J with respect to the input data. Let θ represent the model parameters,

x are the inputs to the model, y are the labels associated with the input data, ε is a value

which represents the extent of the noise to be applied, and J(θ,x,y) is the cost function

used to train the targeted neural network.

x∗ = x+ ε sign (∇xJ(θ, x, y)) (1)

On the other hand, the JSMA method generates perturbations using saliency maps. A

saliency map identifies which features of the input data are the most relevant to the

model’s decision being one class or another. These features, if altered, most likely

affect the classification of the target values. More specifically, an initial percentage

of features (θ) is chosen to be perturbed by an amount of noise (γ). Then, the model

establishes whether the added noise has caused the targeted model to misclassify or
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not. If the noise has not affected the model’s performance, another set of features is

selected and a new iteration occurs until an adversarial sample affects the algorithm’s

performance [155].

Given that the JSMA method may take a few iterations to generate adversarial samples,

the FGSM is computationally faster [155]. However, as opposed to FGSM which alters

each feature, JSMA is a more complex and elaborate approach which represents more

realistic attacks as it progressively alters a small percentage of features at a time. This

method often allows for more finer grained AML attacks, as adversaries are able to

define both the percentage of features to perturb and the amount of perturbation to

include when generating the adversarial samples.

Such methods have recently been successful in exploiting the weaknesses of machine

learning based detection systems in ICS environments. Presenting a pre-trained model

with AML samples generated from a dataset of industrial IoT device measurements

demonstrated to significantly reduce its performance by 20 percentage points [67].

Given measurement data from IoT devices, such as recorded temperatures from a

sensor, these approaches may also be applicable.

However, such approaches assume that all features can be equally perturbed by the

same predefined constant. Thus, when considering network packet features, this may

mean that perturbing these values outside of their valid ranges may jeopardise the valid-

ity of the packet, and subsequently the attack. For instance, a flag can only be 0 or 1 and

the packet length must have a maximum integer value of 64 Kilobytes. Therefore, the

aforementioned methods for generating adversarial samples may be ineffective when

applied on network packets.

5.3 Generating Adversarial Samples

With the limitations of the approaches discussed in Section 5.2.2 in mind, this Chapter

proposes a rule-based approach towards generating AML attack samples which aim to
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target the IDS presented in Chapter 4.

The proposed approach is evaluated using malicious DoS packets against IoT devices.

The rationale for choosing this type of attack is twofold; 1) DoS is one of the most

catastrophic attacks against IoT devices [202, 84, 91], and 2) DoS attacks are not con-

nection based; therefore, the packets are self contained and their features can be manip-

ulated without voiding the attack. It is also important to highlight that it is significantly

more challenging to manipulate the packet features in other attacks when tools such as

Ettercap or iot-toolkit are used to deploy them. When an attack is launched from an

application, packet level attributes are often inaccessible and it may not be possible to

manipulate them.

Inspired by the JSMA and FGSM methods, the proposed approach aims to manipulate

DoS attack packet features by considering:

1. Feature Importance - identifying the most important features that aid in attack

detection.

2. Practicality - perturbing packet features that an adversary is able to modify using

packet crafting tools such as Scapy [38].

3. Validity - given their practicalities, perturbing packet feature values between

their valid ranges.

5.3.1 Feature Selection

In order to demonstrate how AML can be applied in the context of bypassing a super-

vised based IoT IDS, the dataset discussed in Section 4.3 was used. More specifically,

all benign and DoS packets were extracted. The dataset consisted of 41,236 DoS and

110,390 benign data points. Given the uneven number of classes, the dataset was bal-

anced to consist of 41,236 samples of both packet types. Subsequently, a random subset

of approximately 60% of the dataset was selected for training, with 24,741 samples of
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each class. The remaining 40% of the dataset was used for testing, with 16,495 samples

of each class.

Table A1 in the Appendix reports the feature set which contained 121 features. For

this analysis, it is essential to highlight that capture related features provided by the

network sniffer (e.g. tcpdump) such as: caplen, frame.enacp_type, frame.offset_shift,

frame.len, frame.cap_len, frame.marked, frame.ignored), excluding the tcp.delta time,

were omitted from the feature space. The rationale behind this is that such features

are not included in the original packet feature space and are generated by the network

traffic tool. Therefore, these features cannot be manipulated by an attacker directly.

However, the tcp.delta time feature can be indirectly manipulated by an attacker who

may want to increase or delay the time between the sending of DoS packets.

Having removed the aforementioned attributes from the dataset, the InfoGain Ratio

Attribute Evaluation Filter was used. This filter was also discussed in the previous

Chapter 4 in Section 4.7.2. Following the application of the InfoGain filter on the

dataset, Table 5.1 illustrates the top 15 features which best discriminate between benign

and DoS packets with their respective information weight ranking (see Table A1 in the

Appendix for a detailed description of the attributes). The remaining features resulted

in a much lower importance score. Given that the full training dataset is accessible and

the target model is known, the AML approach presented in this work is classified as a

being a white-box attack.

Based on the feature importance results, as well as domain knowledge and practicality,

the following features were chosen to be manipulated in order to generate adversarial

packets; len, tcp.time_delta, ip.flags.df, ip.flags.mf, ip.ttl, tcp flags.urg, tcp flags.cwr,

and tcp flags.enc. More specifically, adversaries may increase the network packet size

by introducing padding to the packet header or they may reduce its size by fragmenting

a single packet into more packets [122]. TCP delta time measures how much time has

elapsed between the prior and current packet. Lower values of delta times correspond

to higher rates of transmitted packets, which may indicate that a DoS attack is occur-
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Attribute Weight

len 0.873

tcp.time_delta 0.731

ip.flags.df 0.675

ip.flags.mf 0.298

ip.frag_offset 0.278

ip.ttl 0.178

tcp.seq 0.169

ip.proto 0.091

icmp.type 0.040

icmp.code 0.040

tcp.window_size 0.021

tcp.flags.urg 0.021

tcp.flags.cwr 0.021

tcp.len 0.021

tcp.flags.ecn 0.021

Table 5.1: Feature importance ranking

ring. Although this is a feature calculated by the network sniffer tool (i.e. tcpdump),

it will be used in this work to explore how a lower rate flow of packets can affect the

supervised classifier. The IP flags df can be set to indicate that a packet cannot be

fragmented for transmission. The IP flags mf can be set to indicate that the packet

contains more fragments. Time To Live (TTL) refers to the amount of time or number

of hops a packet is set to exist inside a network before being discarded by a router.

When crafting or manipulating packet features, the TTL value can be specified and set

between 0 and 255. Finally, the TCP flags can also be set or unset; the URG flag is

used to indicate to abort other segments so that the given segment is given priority, the

CWR indicates that the host received a TCP segment with the ECE flag set and had

responded in congestion control mechanism, and the ECN flag is used to echo back
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the congestion indication. An adversary is able to craft packets where an invalid or

unusual combination of flags can be set.

In order to better understand the structure of benign IoT packets, and subsequently,

define the ranges in which these features can be perturbed, the distribution of the values

of the benign packets for each of the given features that do not have binary value and

excluding tcp.delta_time were analysed. These features are len and ip.ttl.

Figure 5.1 reports the distributions of the values for the len feature for both packet

types. The minimum len value for benign packets was reported as 52, with the max-

imum value being 1,514. A significantly large number of len values for the benign

packets (22,921) fall between the ranges of 54 and 194.

Figure 5.1: The distribution of len values for benign packets

Figure 5.2 reports the distributions of the values for the ip.ttl feature for both packet

types. The minimum ttl value for benign packets was reported as 1, with the maximum

value being 255. A significantly large number of ttl values for the benign packets
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(20,633) fall between the ranges of 30 and 70.

Figure 5.2: The distribution of ip.ttl values for benign packets

5.3.2 Generating Perturbed Samples

Based on the above observations, and to support the initial AML experiments within

this Chapter, a range of feature combinations were perturbed, forming nine datasets.

Firstly, to investigate how perturbing individual features may affect the classifier, ad-

versarial samples were generated where only one of the features was modified at a

time.

The aim of this approach is to mask adversarial samples to benign packets as closely

as possible. Given the distributions in Section 5.3.1, the packet length and ip.ttl feature

values were perturbed between the ranges of 54 and 194 and 30 and 70 respectively.

For the flag features, the adversarial samples were generated by randomly setting the

flag (1) or unsetting the flag (0). To explore whether a lower rate of packet flow can
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affect the classifier’s performance, the delta time feature was altered by increasing

their values incrementally by five percent up to 50%. Finally, to explore whether DoS

packets with lower delta time values are misclassified as being benign, adversarial

samples were generated when all features, excluding delta time, were perturbed. Table

5.2 shows an example of how a malicious DoS packet may be perturbed given this

approach.

Packet len ip.ttl ip.flag.mf ip.flag.df

Original Packet 50 64 0 0

Perturbed Packet 60 72 1 0

Table 5.2: An example of how malicious packet features are perturbed

It is worth highlighting, although such method of perturbation may be considered

forceful, this level of perturbation is possible to be achieved by an adversary, spe-

cifically in IoT networks. This is due to the fact that the behaviour of the devices

are not considered as being variable and do not have extreme deviations. As a result,

an attacker can employ passive sniffing techniques to observe the activity of the IoT

network, and thus craft and deploy AML attacks.

5.4 Evaluating the Model on Adversarial Samples

Given the findings in Chapter 4, the J48 classifier was first evaluated on the training

dataset using 10-fold cross-validation and applied on the original testing dataset. The

F1-scores achieved were 99.9% and 99.9% respectively.

To explore how an AML attack affects the performance of the trained classifier, ad-

versarial samples were generated for all malicious DoS data points present in the test-

ing data by individually perturbing each of the features discussed in Section 5.3.1, as

well as perturbing all features, excluding delta time. The rationale behind this is to

investigate the model’s behaviour when the adversary only alters packet features and
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not the rate of the attack. The original malicious packets were excluded from the test-

ing data. The adversarial samples were subsequently included along with the benign

testing data points and presented to the trained model.

Table 5.3 reports the average precision, recall, and F1-score following 20 iterations of

generating perturbed samples for each feature-set.

Perturbed Features Precision Recall F1-Score

all_features (excluding time_delta) 77.8 60.2 52.7

ip.flags.df 83.3 75.0 73.3

ip.flags.mf 99.9 99.9 99.9

tcp.flags.cwr 99.9 99.9 99.9

tcp.flags.ecn 99.9 99.9 99.9

tcp.flags.urg 99.9 99.9 99.9

ip.ttl 81.6 70.9 68.2

len 99.1 99.1 99.1

tcp.time_delta 99.9 99.9 99.9

Table 5.3: Classification performance on generated adversarial samples

When the tcp.flags.cwr, tcp.flags.ecn, tcp.flags.urg, tcp.time_delta, and len were per-

turbed individually, the model achieves the same F1-score of 99.9%. This demonstrates

that perturbing these features individually has no impact on the model’s performance.

This may be explained by the fact that such features have a lower importance score

(see Table 5.1) and also may rely on the values of other features in order to distinctly

discriminate between both packet types.

When all features excluding tcp.time_delta were perturbed, the classification perform-

ance of the J48 model achieved an F1-score of 52.7%, a decrease of 47.2% percentage

points in comparison to its performance when classifying the original testing data.

This may be because the malicious DoS packets were significantly modified, therefore

their similarity to the benign packets was increased. In addition, when perturbing the
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ip.flags.df and ip.ttl features individually, the model’s performance achieved an F1-

score of 73.3% and 68.2% respectively, a decrease in 26.6 and 31.7 percentage points.

This may be explained by the fact that the majority of the benign packets and a small

number of DoS packets had the ip.flags.df set. Due to the tools used to deploy the DoS

attacks, the default ttl value for these packets were set as 64. As a result, perturbing the

ttl value between the aforementioned ranges significantly altered the distribution of the

feature values. Subsequently, this demonstrated to impact the classifier’s performance.

Given these results, in order to achieve the most impact, an adversary would have to

perturb all selected features excluding modifying the rate of the attack (tcp.time_delta)

in order to successfully reduce the performance of the machine learning based IDS,

and subsequently divert malicious data points.

The confusion matrices in Tables 5.5, 5.6, and 5.7 provide a better insight into the

performance of the classifier across the experiments. In comparison to the original

classification distributions in Table 5.4, the model demonstrates a significant increase

in false positives when all features excluding tcp.time_delta and only ip.ttl are per-

turbed. That is, data points with an actual target value of DoS are misclassified as

being benign. In addition to these results, when the ip.flags.df feature is perturbed, the

model reports a higher false positive rate of almost 50%.

Predicted

a b

Actual DoS a 16,495 0

Benign b 1 16,494

Table 5.4: Confusion matrix for the original test set

The experiments herein have demonstrated the efficiency of AML against a supervised

detector for IoT. More specifically, following the analysis of the malicious DoS packet

values against the benign, it was identified that simultaneously perturbing nine packet

features had a significant effect on the model’s performance, leading to malicious DoS

packets being misclassified as being benign.
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In a real use case, this means, if an adversary has successfully gained access to the

IoT smart home network, it is possible for them to monitor the network activity of the

home over a period of time, even if the traffic is encrypted [51]. This allows the ad-

versary to observe the network’s normal behaviour and subsequently craft and adjust

their attacks to map very closely to the benign activity. As such, if a supervised IDS is

deployed on the network, an adversarial attack as described can be deployed success-

fully, where malicious packets bypass the detector. This may have a significant effect

on the homeowner, as the attacker’s behaviour on the network may go undetected. This

also demonstrates, although supervised-based detectors may show high efficiency, their

robustness against adversarial attacks must be extensively evaluated as they can signi-

ficantly reduce their reliability and may cause severe consequences. To address this,

the following Section investigates the effectiveness of adversarial training in defending

against such attacks.

Predicted

a b

Actual DoS a 3,345 13,150

Benign b 1 16,494

Table 5.5: Confusion matrix after perturbing all select features excluding

tcp.time_delta.

Predicted

a b

Actual DoS a 6,901 9,594

Benign b 1 16,494

Table 5.6: Confusion matrix after perturbing ip.ttl
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Predicted

a b

Actual DoS a 8,245 8,250

Benign b 1 16,494

Table 5.7: Confusion matrix after perturbing ip.flags.df

5.5 Defending against Adversarial Machine Learning

A few methods towards defending against AML attacks have been proposed in the liter-

ature. Two of the most popular techniques include adversarial training and adversarial

sample detection. The former has been explored in the field of visual computing, where

Goodfellow et al. [103] demonstrated that re-training the neural network on a dataset

containing both the original and adversarial samples significantly improves its effi-

ciency against adversarial samples. The latter technique involves the implementation

of mechanisms that are capable of detecting the presence of such samples using direct

classification, neural network uncertainty, or input processing [222]. However, these

detection mechanisms have been found to be weak in defending again AML [70, 222].

Subsequently, given the positive findings of how AML affects supervised detectors,

the robustness of the IDS presented in Chapter 4 against AML is further evaluated

using adversarial training. In this case, a random sample of 10% of the adversarial

data points (1,650 packets) when all features excluding tcp.time_delta were perturbed,

which decreased the model’s performance the most (iteration 1, F1-Score = 52.6%),

were included in the original training dataset. The experiments described in Section

5.4 were repeated by retraining the model on the newly generated training data and

applying the model on the unseen adversarial samples generated in the remaining it-

erations (iterations 2-20). Table 5.8 reports the average precision, recall, and F1-score

following 20 iterations which included newly selected random perturbed samples in

the training set.

The results demonstrate that including adversarial samples in the training data in-
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Perturbed Features Precision Recall F1-Score

all_features (except time_delta) 99.5 99.5 99.5

ip.flags.df 99.7 99.7 99.7

ip.flags.mf 99.9 99.9 99.9

tcp.flags.cwr 99.9 99.9 99.9

tcp.flags.ecn 99.9 99.9 99.9

tcp.flags.urg 99.9 99.9 99.9

ip.ttl 99.8 99.8 99.8

len 99.1 99.1 99.1

tcp.time_delta 99.9 99.9 99.9

Table 5.8: Classification performance on generated adversarial samples

creased the performances of the J48 model. For each combination of features, the

classification performance achieved an F1-score of over 90%, an increase of over 25%

percentage points in comparison to the classification performances reported in Table

5.8. These results may be intuitive, as during adversarial training, the classifier is

trained upon both types of packets with a range of feature values.

This approach has demonstrated the efficiency of applying adversarial training to en-

hance the robustness of a supervised machine learning based detector against AML.

More specifically, following the inclusion of adversarial samples into the training data

and subsequently re-training the J48 model, the resilience of the detector against such

attacks was increased. In a real use case, this means that perturbed malicious pack-

ets may be detected with high accuracy. Although this approach demonstrated to be

efficient, its applicability in a real use case would be challenging. This is because it

requires the anticipation of every possible combination of valid malicious packets so

that they can be included within the training data. As a result, increasing the volume

of training data to attempt to capture all possible adversarial attacks may impact the

computational time taken to train the model.
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5.6 Limitations

One of the main limitations surrounding this work is the crude approach towards the

perturbation of the chosen features. That is, here, we assume that the adversary has

full knowledge of the dataset and the trained model. Therefore, following the analysis

of the benign packets, the adversary can identify the ranges in which the feature values

fall into and subsequently map the malicious packets to mimic the behaviours of the

benign. The manual overhead associated with this approach may be addressed by

utilising a more sophisticated method of generating perturbed packets (e.g. Iterative

Gradient Sign, Carlini Wagner, Generative Adversarial Networks).

The work presented in this Chapter focuses on perturbing malicious DoS packets to

bypass the detector. However, this is only the tip of the iceberg; therefore, the applic-

ability of such an approach and other AML approaches of bypassing machine learning-

based IDSs need to be further investigated for other attack types.

Lastly, with regards to adversarial training, the results demonstrated the efficiency of

such an approach to increase the robustness of the IDS. However, it is important to

highlight that this method may not always be sufficient as it is difficult to anticipate all

possible types of AML attacks against a given system. Therefore, there is a need to

investigate other possible defence mechanisms.

5.7 Summary

Due to their effectiveness and flexibility, machine learning based IDSs are now recog-

nised as fundamental tools for detecting cyber attacks in IoT systems. Nevertheless,

such systems are vulnerable to attacks that may severely undermine or mislead their

capabilities, commonly known as AML. Such attacks may have serious consequences

in IoT infrastructures, as adversaries could potentially modify malicious data points in

order to bypass the IDSs, causing delayed attack detection, sensitive information leak-
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age, and extensive damages. Thus, it is evident that understanding the applicability

of these attacks in IoT systems is necessary in order to develop more robust machine

learning based IDSs.

This Chapter explored how adversarial attacks can be used to target supervised models

by generating adversarial samples, presenting such samples to a trained model, and

understanding their classification behaviours. To support the experiments presented

herein, an IoT network dataset containing benign and DoS packets were used to train

and test a J48 Decision Tree, the best performing classifier for detecting malicious and

benign packets in Chapter 4. The experiments focused on DoS attack packets as it is

one of the most severe attacks against IoT devices, it is feasible to deploy by crafting

custom packets, and finally, due to the nature of DoS, an adversary can manipulate

packet features without voiding the attack. To identify which features can be manipu-

lated, the importance of the features for discriminating against both packet types was

measured. Based on these results, the top ranked features were selected for perturba-

tion to generate adversarial packets. Firstly, to investigate how individual features may

affect the classifier, adversarial samples were generated where only one of the features

at a time was modified. In addition, an adversarial dataset was generated where all

features excluding time delta were perturbed. Such samples were evaluated against

the trained model. The results demonstrate that perturbing all features, excluding time

delta, achieved the highest impact as the classification performance decreased by 47.2

percentage points.

Given these positive findings, the analysis also included the exploration of how ad-

versarial samples can enhance the robustness of supervised models using adversarial

training. A random sample of 10% of the generated adversarial data points when all

the features were perturbed was included in the original training dataset. The model

was retrained and applied to all unseen adversarial samples, excluding the adversarial

samples included in the training set. Overall, the classification performance signific-

antly increased when adversarial samples were present in the model’s training.
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Chapter 6

Research Contributions

The research presented in this thesis forms four contributions that can be grouped into

two primary areas: (i) detecting and (ii) defending against cyber attacks in a smart

home environment. Together, these two areas support the holistic focus of this thesis:

to improve upon the limitations found in various approaches towards enhancing the

robustness and completeness of IoT smart home security models.

6.1 Defending IoT Smart Home Environments

Current insufficient security measures employed to defend smart devices make IoT one

of the weakest links to breaking into a secure infrastructure, and therefore an attractive

target to attackers [64]. As illustrated in Figure 3.1 in Chapter 3 , in a traditional net-

work configuration within a smart home, a number of heterogeneous IoT devices are

all connected to a centralised point with little to no means of security. One of the key

challenges in increasing the cyber-defence in these networks is the heterogeneity of

IoT devices, and subsequently, the application of hubs as a unified security mechanism

in the ecosystem. Therefore, this thesis proposed the first design and prototype imple-

mentation of a unified, heterogeneity-aware hub for the IoT environment (Chapter 3),

implemented and validated within the context of a smart home network. Revisiting the

previous situation shown in Figure 3.3 of Chapter 3, Figure 6.1 illustrates the novel hub

design which now extends the robustness of previous heterogeneity-aware frameworks
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[147, 176, 101, 167, 58, 107]. These are often vendor-specific and therefore expose

the security vulnerabilities of other devices. The novel work produced in Chapter 3

enabled new dynamically loadable add-on modules to communicate with a range of

diverse IoT devices at once to provide the following key security mechanisms: secure

authentication, access control using a policy server, limiting the exposure of local IoT

devices through cloaking, employs cryptographic protocols to ensure confidentiality,

and offers a canary-function capability to monitor user and attack behaviours. The

effectiveness of the hub was successfully evaluated by deploying cyber attacks that

complied with attacker objectives that may threaten a traditional smart home network

topology. This formed the first main contribution of this thesis, which supports the new

knowledge that a range of heterogeneous IoT devices from different vendors may all

be defended successfully against malicious behaviour under the proposed hub’s infra-

structure:

C1 A design and prototype implementation of a novel secure and heterogeneity-

aware hub for the IoT, which enhances the security of an IoT smart home net-

work.

6.2 Detecting Malicious Behaviour in IoT Smart Home

Environments

In addition to defending smart home environments, the robustness of the hub and the

completeness of the overall security model can be further supported by including a

machine learning based IDS on the network; with evidence that supervised models

can be utilised to support the automatic detection of malicious behaviour and which

device may be compromised. The proposed IDS in Chapter 4 extends existing machine

learning approaches [190, 91, 193, 166, 180, 158, 152, 141, 145, 144], which are often

designed to detect one type of attack at a time and do not attempt to identify the exact
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type of attack that has occurred. However, attack type information can aid in reducing

the significant human effort needed to respond to alerts, determining the severity of an

attack, and launch countermeasures. To enhance the previous contribution, Figure 6.1

also shows how the approach improves existing IoT architectures by adding a novel

method which analyses network packets and enables the identification of the exact

attack type that has occurred in the system. Previously this was not feasible, therefore,

this enhanced the ability to understand how to better respond to evolving IoT attacks

tailored to the specific attack type. This leads to the following additional contribution:

C2 An initial exploration towards utilising supervised machine learning algorithms

to support a novel three layer IDS tailored towards IoT.
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While the previous contribution has shown where and how an additional level of IoT

security can be enabled by adding a novel machine learning based approach towards

classifying the exact type of attack - this has also introduced a new vulnerability -

namely, the ability to evade the machine learning detection method (see Figure 6.1).

This can occur when attackers manipulate their attack to confuse the output of trained

models, also known as Adversarial Machine Learning (AML). The research in Chapter

5 investigated how such attacks can be deployed on an IoT network and found that

the robustness of the proposed IDS can indeed be compromised using AML; with

evidence that the predictive performance of the models significantly decreased when

such attacks were deployed. This leads to the following additional contribution:

C3 An investigation into how AML techniques can be applied to evaluate the robust-

ness of a supervised IDS tailored towards the IoT.

The understanding of the potential impact of AML attacks against supervised IDSs for

IoT and the lack of research in this context is the core motivation in investigating how

to defend such systems against AML attacks. Therefore, to enhance the security of

the proposed IDS, and as shown in Figure 6.1, Chapter 5 also includes the exploration

of how adversarial training can enhance the robustness of the supervised IDS; with

evidence that its performance significantly increased when adversarial training was

deployed, denoting that the IDS can detect AML attacks with high accuracy. This

forms the fourth main contribution of this thesis:

C4 An investigation into how adversarial training may enhance the robustness of

supervised IDSs.

Previous AML research focuses on other areas in cyber security (i.e. email spam and

malware detection) and has yet to address the subject of how AML may affect super-

vised machine learning based IDSs trained on IoT network traffic data. Both C3 and C4
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shed new light upon how an AML attack can be successfully deployed in an IoT net-

work, subsequently bypassing current detection methods. This widens the knowledge

base surrounding AML attacks in such environments, which supports the development

of mechanisms towards defending against them.

To summarise, Figure 6.1 illustrates how all the contributions are linked together and

play a key role in holistically securing an IoT smart home network.
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Chapter 7

Conclusions and Future Work

7.1 Introduction

The research in this thesis was motivated by the fact that IoT devices, despite their

proliferation in domestic environments and CNIs, introduce tremendous security flaws,

and subsequently are subject to a range of cyber attacks. As such devices are often

deeply embedded in networks, IoT may be considered as being the ‘weakest link’ for

breaking into a secure infrastructure. Consequently, there is a significant need for the

development of novel mechanisms to improve not only the defence of IoT against a

range of cyber attacks, but also the detection of such attacks, and subsequently their

mitigation from IoT networks.

Due to their limitations in computational power and their heterogeneity, securing the

IoT ecosystem is considered as being a great challenge. This is because it is not feas-

ible for IoT devices with restricted computational power to execute computationally

intensive and latency-sensitive security tasks. As a result, it is not possible to employ

complex and robust security measures. Moreover, the heterogeneity which surrounds

IoT devices in terms of their hardware, software, and protocols poses as an obstacle

towards developing and deploying security mechanisms that can endure with the scale

and range of devices.

The central research of this thesis focused on the designs, implementations, and eval-

uations of mechanisms that aim to enhance the overall security of the IoT ecosys-
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tem, whilst considering the aforementioned limitations. Firstly, this thesis presented a

design and prototype implementation of a secure IoT hub. The proposed hub consists

of various built-in security mechanisms that satisfy key security properties which can

be applied to a range of devices, including authentication, confidentiality, and access

control. The effectiveness of the hub was evaluated within a smart home IoT network

consisting of a range of IoT devices upon which a number of popular cyberattacks

were deployed. The evaluation demonstrated that the hub was successful in defending

against such attacks.

Secondly, to complement the aforementioned secure hub and to further enhance the

security of the ecosystem, this thesis investigated the feasibility of an IDS tailored

for an IoT environment based on machine learning. As such, the initial experiments

towards the development of a supervised three-layered IDS were presented. More

specifically, the detection system aims to: 1) classify the IoT devices connected on the

network, 2) identify whether network packets are malicious or benign, and 3) given

malicious packets identified in 2), identify the type of attack which has occurred. To

support the classification experiments, real network data was collected from a smart

home testbed consisting of a range of IoT devices. The results demonstrate that the

J4.8 Decision Tree outperformed other classifiers, achieving an F1-score of 97.4%,

99.9%, and 98.6% respectively.

Lastly, given the high performance of the detector, further evaluation against AML

was conducted to investigate its robustness. Within this thesis, the initial experiments

and a first approach towards automatically generating malicious DoS adversarial IoT

network packets were presented. The results demonstrated that the performance of the

proposed IDS is significantly decreased by a maximum of 31.6 percentage points when

a range of packet features are perturbed. Subsequently, given the effectiveness of this

attack, this work also explored how adversarial training can be used to enhance the

robustness of supervised IDSs. Following adversarial training, the results show that

the performance of the proposed IDS significantly improves.
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Table 7.1 identifies where each research objective described in Chapter 1 was met

within this thesis. While the contributions of this thesis have focused on improving

upon the limitations found in various other approaches presented in the wider research

space, some limitations remain and are discussed in Section 7.3 These form part of the

future directions of this work discussed in Section 7.4.
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7.2 Real-World Implementation

The overarching goal of this thesis was to explore how core limitations such as hetero-

geneity and low computational power, can be bypassed in order to create mechanisms

that will aid in enhancing the security within an IoT home. It is evident that the inclu-

sion of heterogeneous IoT devices within a home introduces a new threat vector that

may have severe consequences. As a result, creating a well-rounded security infra-

structure for IoT homes is crucial. Such an infrastructure consists of mechanisms that

aim to secure the system in order to defend it from adversaries. Secondly, there is a

need to be able to detect attacks within the IoT networks in order to be able to launch

countermeasures faster and more efficiently. However, to increase the trust in these

detectors, it is necessary to evaluate them further by presenting to them attacks that

may be more challenging to detect (e.g. their behaviour is similar to legit traffic). Sub-

sequently, by overcoming the heterogeneity of the devices and being able to apply a

range of security mechanisms in a uniform way such devices, by introducing effective

security monitoring solutions to aid in faster incidence response, and by bridging the

gap of understanding around how robust these security solutions could be, this work

has contributed in creating a more secure IoT environment.

More specifically, in order to apply uniformed security mechanisms to a range of IoT

devices within a smart home network, Chapter 3 presents a novel secure hub that can

defend a smart home ecosystem against two popular attacker models. The proposed

hub is designed to contain five built-in security mechanisms that provide secure authen-

tication, finer-grained policy-based access control, capability to monitor attack beha-

viours using IoT canary functions, device cloaking, and confidentiality, which enhance

the overall security of the IoT ecosystem.

In a real use case, the prototype implementation of the hub may be deployed as it is

currently configured. However, the user/admin would have to generate their own API

keys for Pubnub and each module that uses an API to control the IoT devices. To add

a new device to the hub infrastructure, a new module/interface must be implemented
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and added to the gateway and a secure API must be available for the device to be

controlled. This process can be completed remotely by the user/admin, by using the

hub’s dedicated remote access channel. Once the hub has been configured to support

the devices within a smart home, users can control and access the devices remotely and

securely. This is particularly useful to be able to perform traditional remote tasks such

as turning on the thermostat before arriving home. To access the hub, a mobile or web

application may be useful to connect and control the devices from one access point.

In terms of scaling up the hub to cover several networks, a separate instance may be

deployed in each sub-network. This will ensure that the devices are segregated and

secured in their own ecosystem, ensuring that if a compromise occurs in one network,

it will not propagate to the other networks.

In addition to defending smart home environments, it is equally important to be able

to detect malicious activity on the network. The IoT smart home IDS presented in

Chapter 4 demonstrated the efficiency of supervised machine learning to support the

classification and identification of devices on the network, whether a packet is mali-

cious or not, and subsequently, what type of attack has occurred with high accuracy.

This means that very few packets would be incorrectly identified, which means that

the false-positive rates are very low. This is an important characteristic of an IDS,

as it increases its reliability towards detecting malicious behaviour and subsequently

launching the appropriate countermeasures at the most critical times.

In a real use case, this tool may be implemented as a multi-label classification task,

where each label represents the classification of devices, malicious or benign beha-

viour, and type of attack. Before deploying the tool on the network, and due to its

supervised nature, a training phase is needed, where data from this specific network is

collected and labelled. The labelling of such data can be automated using the MAC ad-

dress of the devices on the network and associating this information with the vendors of

the devices. This is an initial requirement for understanding the network’s normal be-

haviour. To represent malicious network data, prior malicious labelled network packets
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from well-known attacks may be integrated into the system. Such data can be accessed

from resources such as a cyber range or open-source research datasets (e.g. [9]).

In order for the tool to detect the latest threats, as well as being able to recognise new

devices added to the network, the model must be periodically retrained to capture such

events. To address this, the system may be set to automatically re-train the model

periodically or when a new device is added to the network. To avoid interrupting the

smooth functionality of the system, this can be scheduled to occur at non-peak times

(e.g. middle of the night).

Finally, given the possibly large number of IoT devices in a smart home, the IDS may

be deployed in two ways. First, more devices may be added to the network and the

model may be re-trained upon this data. However, this may affect the overall accuracy

of the model, as it may be challenging for the model to distinctly recognise the network

behaviours. Alternatively, it is good practice to segregate large networks into smaller

sub-networks. In this case, the IDS may be deployed on each sub-network. This can

ultimately lead to collaboration between the separate instances of the IDS to share their

observations of possible attack indicators.

Before deploying the IDS on a smart home network, and having demonstrated how

the robustness of such systems can be affected by AML attacks in Chapter 5, AML

training can be used proactively to enhance the training dataset and subsequently the

IDS’s performance. More specifically, the collected network training dataset may be

extended to also include possible perturbed malicious network packets. The method-

ology followed in Chapter 5, where malicious DoS packets were perturbed to mimic

benign activity, can be adapted to include all possible DoS perturbations in the original

training dataset. This has the potential to significantly increase the IDS’s capability in

detecting all DoS type of attacks. A similar approach as investigated herein may be

applicable to other attack types.

To tie the aforementioned approaches together, in a real-world IoT network within a

smart home, the proposed hub and its components may be employed to enhance the
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security of the devices in a uniformed way. These mechanisms are key in significantly

enhancing the security of IoT devices within a smart home network, subsequently mak-

ing penetrating the network a challenge. However, adversaries will always continue to

develop new attack techniques to compromise such systems. Therefore, in order to de-

velop a more complete security model, the hub may be complemented with the addition

of an IDS to automatically detect attacks and their types. The IDS may be positioned

on the hub’s gateway within the IoT hub’s sub-network, where it would monitor the

IoT network activity.

7.3 Limitations

Given the contributions and key observations discussed in Chapter 6, it is essential

to highlight the limitations of the proposed methods which aim to detect and defend

against cyber attacks in smart home networks.

One of the main limitations surrounding the proposed hub implementation is that it

relies on a third-party provider to support the core actions within the framework. Sub-

sequently, the hub always requires online access to manage local security which by

default may introduce new security risks as it maintains an always open socket con-

nection to every device. In addition, if such third-parties halted their services, the

operations on the framework would be affected. Secondly, although APIs provide an

accessible and user-friendly interface to access, add, and control the smart devices,

they are often subject to offering the control of limited device functionality and may

have limits for the number of requests that they can receive.

Regarding the proposed supervised machine learning IDS, one of the main limitations

surrounding this work included the effort associated with the data labelling and feature

engineering. In addition, the effectiveness of the system needs to be evaluated against

more sophisticated attacks and within a much larger IoT network consisting of more

devices of different types. Furthermore, as supervised machine learning was used to
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support the experiments, the model must be re-trained to consider the classification of

new and unseen attack categories. Finally, because the model is classifying individual

packets based on packet features, it is possible to bypass such models using AML and

it is also possible that the tool will be ineffective against attacks that are sequence-

based and deployed over a period of time. For both the proposed Hub and the IDS, the

limited financial resources restricted the number of devices that could be purchased to

be included in the testbed. As such, it is worth noting that the work presented in this

thesis was designed with such devices in mind.

Finally, regarding the proposed methods to evaluate and enhance the robustness of

the supervised machine learning detector, one of the main limitations surrounding this

work is the crude approach towards the perturbation of the chosen features and the

manual overhead associated with analysing benign packet feature values. In addition,

the applicability of this approach and other AML approaches of bypassing machine

learning-based IDSs need to be further investigated for other attack types. Lastly, with

regards to adversarial training, it is important to highlight that this method may not

always be sufficient as it is difficult to anticipate all possible types of AML attacks

against a given system. Therefore, there is a need to investigate other possible defence

mechanisms.

As a whole, the main limitations of the work presented in this thesis include the access

to a limited set of IoT devices of different types and the availability of a consistent

IoT testbed environment. These two limitations contribute to the fact that the proposed

mechanisms presented herein were not tested as part of one infrastructure. Such mech-

anisms were implemented and tested separately using a subset of common device types

and within similar environments (i.e. local network). Given the positive findings, this

demonstrates the potential that both mechanisms may be used in one secure framework

and complement each other to secure and defend an IoT smart home.
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7.4 Future Work

The contributions in this thesis can also be used as a foundation for future work, spe-

cifically in investigations towards developing more effective and lightweight security

mechanisms for IoT ecosystems. While the security mechanisms implemented herein

have demonstrated to successfully improve upon the limitations found in various com-

mon conventions in the wider research space, as discussed above, some limitations

remain. These form part of the future directions of this work.

More specifically, as discussed in Chapter 3, given the hub’s initial positive perform-

ance, it would be beneficial to scale up the framework by including more devices.

Moreover, it would be beneficial to examine ways to improve its performance by in-

tegrating and monitoring other architectural aspects, such as installing a local broker

(e.g. Mosquitto (mqtt)) to the gateway as opposed to utilising a third-party cloud pro-

vider. Furthermore, it would also be valuable to expand the threat model so that IoT

devices are not only protected from cyber attacks deployed outside of the network, but

also from attacks that initiate from other devices within the network itself.

Given the positive findings in Chapter 4, future work surrounding the presented IDS

framework would include its implementation and evaluation in a real, much larger, het-

erogeneous IoT environment. This would allow the system to be further evaluated on

more complex and sophisticated attacks. Moreover, in order to bypass the extensive

need of feature engineering and date labeling, deep learning techniques can also be

applied to automatically determine which packet features have an impact on the identi-

fication of malicious activity within the IoT environment. Finally, due to the vast attack

surface and zero-day attacks, the effectiveness of unsupervised approaches, which do

not depend on labeled data, can be explored.

Finally, Chapter 5 demonstrated that AML can pose as a serious threat on IDS sys-

tems that employ supervised machine learning. However, it is important to note that

there exists several other methods that can potentially be employed to generate ad-
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versarial samples in a more automated and sophisticated manner. Such approaches

include black-box AML attacks, where the attacker has no knowledge of the system

or the dataset, and thus utilise different models as a source for generating adversarial

samples. The robustness of supervised IDSs may be demonstrated using adversarial

training. Given the limitations associated with having to train a model to defend against

all possible AML attack types, the robustness of such IDSs may be further improved

by exploring other, more sophisticated defense mechanisms.



166 7.4 Future Work



167

Bibliography

[1] 2019 global survey | iot-focused cyberattacks are

the new normal. https://irdeto.com/news/

new-2019-global-survey-iot-focused-cyberattacks-are-the-new-normal/.

(Accessed on 05/06/2020).

[2] Advanced penetration testing methodologies & frameworks | purplesec. https:

//purplesec.us/penetration-testing-methodologies/. (Accessed on

03/30/2021).

[3] Amazon web services for iot. https://aws.amazon.com/iot/. (Accessed on

06/30/2021).

[4] Cisco visual networking index: Forecast and trends 2017-2022. https:

//www.cisco.com/c/en/us/solutions/collateral/service-provider/

visual-networking-index-vni/white-paper-c11-741490.html. (Ac-

cessed on 03/26/2019).

[5] Crest penetration testing guide. https://www.crest-approved.org/

wp-content/uploads/CREST-Penetration-Testing-Guide.pdf. (Accessed

on 03/30/2021).

[6] Cyber hackers can now harm human life through smart meters: Smart

grid awareness. https://smartgridawareness.org/2014/12/30/

hackers-can-now-harm-human-life/. (Accessed on 01/08/2020).

https://irdeto.com/news/new-2019-global-survey-iot-focused-cyberattacks-are-the-new-normal/
https://irdeto.com/news/new-2019-global-survey-iot-focused-cyberattacks-are-the-new-normal/
https://purplesec.us/penetration-testing-methodologies/
https://purplesec.us/penetration-testing-methodologies/
https://aws.amazon.com/iot/
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.crest-approved.org/wp-content/uploads/CREST-Penetration-Testing-Guide.pdf
https://www.crest-approved.org/wp-content/uploads/CREST-Penetration-Testing-Guide.pdf
https://smartgridawareness.org/2014/12/30/hackers-can-now-harm-human-life/
https://smartgridawareness.org/2014/12/30/hackers-can-now-harm-human-life/


168 Bibliography

[7] Cyber security incident response guide (csir). https://www.crest-approved.

org/wp-content/uploads/2014/11/CSIR-Procurement-Guide.pdf. (Ac-

cessed on 07/30/2019).

[8] Darktrace | world-leading ai for cyber security. https://www.darktrace.com/en/.

(Accessed on 07/28/2020).

[9] Datasets overview | stratosphere ips. https://www.stratosphereips.org/

datasets-overview. (Accessed on 03/16/2021).

[10] dsniff: a network auditing and penetration testing tool suite. https://www.

monkey.org/~dugsong/dsniff/. (Accessed on 05/20/2020).

[11] Dweet.io: Share your thing like it ain’t no thang. https://dweet.io/. (Ac-

cessed on 11/14/2017).

[12] Eclipse kura: An open source framework for iot. https://www.eclipse.org/

kura/. (Accessed on 11/14/2020).

[13] Encrypting messages | pubnub chat. https://www.pubnub.com/docs/chat/

reference/encryption. (Accessed on 07/12/2020).

[14] Github | a bash script for recon and dos attacks. https://github.com/

GinjaChris/pentmenu. (Accessed on 02/17/2020).

[15] Hewlett packard | study reveals 70 percent of internet of things devices vul-

nerable to attack. https://www8.hp.com/us/en/hp-news/press-release.

html?id=1744676. (Accessed on 01/08/2020).

[16] Homeos: Enabling smarter homes for everyone.

https://www.microsoft.com/en-us/research/project/

homeos-enabling-smarter-homes-for-everyone/. (Accessed on

11/03/2020).

https://www.crest-approved.org/wp-content/uploads/2014/11/CSIR-Procurement-Guide.pdf
https://www.crest-approved.org/wp-content/uploads/2014/11/CSIR-Procurement-Guide.pdf
https://www.stratosphereips.org/datasets-overview
https://www.stratosphereips.org/datasets-overview
https://www.monkey.org/~dugsong/dsniff/
https://www.monkey.org/~dugsong/dsniff/
https://dweet.io/
https://www.eclipse.org/kura/
https://www.eclipse.org/kura/
https://www.pubnub.com/docs/chat/reference/encryption
https://www.pubnub.com/docs/chat/reference/encryption
https://github.com/GinjaChris/pentmenu
https://github.com/GinjaChris/pentmenu
https://www8.hp.com/us/en/hp-news/press-release.html?id=1744676
https://www8.hp.com/us/en/hp-news/press-release.html?id=1744676
https://www.microsoft.com/en-us/research/project/homeos-enabling-smarter-homes-for-everyone/
https://www.microsoft.com/en-us/research/project/homeos-enabling-smarter-homes-for-everyone/


Bibliography 169

[17] How vulnerable is the internet of things | avast. https://blog.avast.com/

how-vulnerable-is-the-internet-of-things. (Accessed on 06/14/2021).

[18] If this then that (ifttt). https://ifttt.com/. (Accessed on 11/03/2020).

[19] An industry standard technology for monitoring high speed switched networks.

https://sflow.org/sflow_version_5.txt. (Accessed on 02/04/2020).

[20] Inside the smart home: Iot device threats and attack scenarios. https:

//www.trendmicro.com/vinfo/us/security/news/internet-of-things/

inside-the-smart-home-iot-device-threats-and-attack-scenarios.

(Accessed on 07/17/2020).

[21] Internet of things research study. https://d-russia.ru/wp-content/

uploads/2015/10/4AA5-4759ENW.pdf. (Accessed on 06/15/2020).

[22] Internet of threats | iot botnets drive surge in network

attacks. https://securityintelligence.com/posts/

internet-of-threats-iot-botnets-network-attacks/. (Accessed

on 06/14/2021).

[23] ios home | apple (uk). https://www.apple.com/uk/ios/home/. (Accessed on

11/03/2017).

[24] Iot reference model white paper. http://cdn.iotwf.com/resources/

71/IoT_Reference_Model_White_Paper_June_4_2014.pdf. (Accessed on

07/29/2020).

[25] Kali linux, the penetration testing distribution documentation. https://docs.

kali.org/. (Accessed on 02/15/2018).

[26] Literature review and focusing the research. https://www.sagepub.com/

sites/default/files/upm-binaries/29986_Chapter3.pdf. (Accessed on

06/07/2021).

https://blog.avast.com/how-vulnerable-is-the-internet-of-things
https://blog.avast.com/how-vulnerable-is-the-internet-of-things
https://ifttt.com/
https://sflow.org/sflow_version_5.txt
https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/inside-the-smart-home-iot-device-threats-and-attack-scenarios
https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/inside-the-smart-home-iot-device-threats-and-attack-scenarios
https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/inside-the-smart-home-iot-device-threats-and-attack-scenarios
https://d-russia.ru/wp-content/uploads/2015/10/4AA5-4759ENW.pdf
https://d-russia.ru/wp-content/uploads/2015/10/4AA5-4759ENW.pdf
https://securityintelligence.com/posts/internet-of-threats-iot-botnets-network-attacks/
https://securityintelligence.com/posts/internet-of-threats-iot-botnets-network-attacks/
https://www.apple.com/uk/ios/home/
http://cdn.iotwf.com/resources/71/IoT_Reference_Model_White_Paper_June_4_2014.pdf
http://cdn.iotwf.com/resources/71/IoT_Reference_Model_White_Paper_June_4_2014.pdf
https://docs.kali.org/
https://docs.kali.org/
https://www.sagepub.com/sites/default/files/upm-binaries/29986_Chapter3.pdf
https://www.sagepub.com/sites/default/files/upm-binaries/29986_Chapter3.pdf


170 Bibliography

[27] Nest learning thermostat. https://nest.com/uk/thermostats/

nest-learning-thermostat/overview/. (Accessed on 11/03/2020).

[28] On-premises vs. cloud iot deployment | behrtech blog. https://behrtech.

com/blog/on-premises-vs-cloud-iot-deployment-which-is-best/.

(Accessed on 06/30/2021).

[29] openhab: Open source automation software for your home. https://www.

openhab.org/. (Accessed on 11/03/2020).

[30] Owasp internet of things project. https://www.owasp.org/index.php/

OWASP_Internet_of_Things_Project. (Accessed on 01/08/2020).

[31] Owasp top 10 internet of things. https://wiki.owasp.org/index.

php/OWASP_Internet_of_Things_Project#tab=IoT_Top_10. (Accessed on

07/26/2020).

[32] Pdml - the wireshark wiki. https://wiki.wireshark.org/PDML. (Accessed

on 03/27/2020).

[33] Privacy policy. https://www.smartthings.com/privacy. (Accessed on

03/29/2021).

[34] Publish-subscribe (pub/sub). https://www.pubnub.com/learn/glossary/

what-is-publish-subscribe/. (Accessed on 11/05/2020).

[35] Pubnub | making realtime innovation simple. https://www.pubnub.com. (Ac-

cessed on 11/07/2020).

[36] Samsung smartthings. https://www.samsung.com/uk/smartthings/. (Ac-

cessed on 03/23/2020).

[37] Scapy. https://scapy.net/. (Accessed on 05/05/2020).

[38] Scapy: Packet encapsulation. https://thepacketgeek.com/

scapy-p-04-looking-at-packets/. (Accessed on 05/14/2020).

https://nest.com/uk/thermostats/nest-learning-thermostat/overview/
https://nest.com/uk/thermostats/nest-learning-thermostat/overview/
https://behrtech.com/blog/on-premises-vs-cloud-iot-deployment-which-is-best/
https://behrtech.com/blog/on-premises-vs-cloud-iot-deployment-which-is-best/
https://www.openhab.org/
https://www.openhab.org/
https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project
https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project
https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=IoT_Top_10
https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=IoT_Top_10
https://wiki.wireshark.org/PDML
https://www.smartthings.com/privacy
https://www.pubnub.com/learn/glossary/what-is-publish-subscribe/
https://www.pubnub.com/learn/glossary/what-is-publish-subscribe/
https://www.pubnub.com
https://www.samsung.com/uk/smartthings/
https://scapy.net/
https://thepacketgeek.com/scapy-p-04-looking-at-packets/
https://thepacketgeek.com/scapy-p-04-looking-at-packets/


Bibliography 171

[39] Shodan. https://www.shodan.io/. (Accessed on 03/29/2021).

[40] Si6 networks. https://www.si6networks.com/tools/iot-toolkit/. (Ac-

cessed on 05/05/2020).

[41] Smart home devices and home automation systems, google store.

https://store.google.com/gb/category/connected_home. (Accessed on

03/23/2020).

[42] Statista internet of things: The number of connected devices world-

wide 2012-2025. https://www.statista.com/statistics/471264/

iot-number-of-connected-devices-worldwide/. (Accessed on

02/14/2020).

[43] Synopsys report. https://www.synopsys.com/content/dam/synopsys/

sig-assets/reports/medical-device-security-ponemon-synopsys.

pdf. (Accessed on 03/16/2020).

[44] Veracode | your guide to application security solutions. https://info.

veracode.com/. (Accessed on 07/28/2020).

[45] Weka 3 - data mining with open source machine learning software in java.

https://www.cs.waikato.ac.nz/ml/weka/. (Accessed on 20/20/2020).

[46] Wireshark. https://www.wireshark.org/. (Accessed on 07/18/2018).

[47] Zoomeye - cyberspace search engine. https://www.zoomeye.org/. (Accessed

on 03/29/2021).

[48] Mohamed Abomhara et al. Cyber security and the internet of things: vulner-

abilities, threats, intruders and attacks. Journal of Cyber Security and Mobility,

4(1):65–88, 2015.

[49] Nasser S Abouzakhar, Andrew Jones, and Olga Angelopoulou. Internet of things

security: A review of risks and threats to healthcare sector. In 2017 IEEE Inter-

https://www.shodan.io/
https://www.si6networks.com/tools/iot-toolkit/
https://store.google.com/gb/category/connected_home
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/medical-device-security-ponemon-synopsys.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/medical-device-security-ponemon-synopsys.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/medical-device-security-ponemon-synopsys.pdf
https://info.veracode.com/
https://info.veracode.com/
https://www.cs.waikato.ac.nz/ml/weka/
https://www.wireshark.org/
https://www.zoomeye.org/


172 Bibliography

national Conference on Internet of Things (iThings) and IEEE Green Computing

and Communications (GreenCom) and IEEE Cyber, Physical and Social Com-

puting (CPSCom) and IEEE Smart Data (SmartData), pages 373–378. IEEE,

2017.

[50] Ahmed Abusnaina, Aminollah Khormali, Hisham Alasmary, Jeman Park, Afsah

Anwar, and Aziz Mohaisen. Adversarial learning attacks on graph-based iot

malware detection systems. In 2019 IEEE 39th International Conference on

Distributed Computing Systems (ICDCS), pages 1296–1305. IEEE, 2019.

[51] Abbas Acar, Hossein Fereidooni, Tigist Abera, Amit Kumar Sikder, Markus

Miettinen, Hidayet Aksu, Mauro Conti, Ahmad-Reza Sadeghi, and Selcuk

Uluagac. Peek-a-boo: I see your smart home activities, even encrypted! In

Proceedings of the 13th ACM Conference on Security and Privacy in Wireless

and Mobile Networks, pages 207–218, 2020.

[52] Amaal Al Shorman, Hossam Faris, and Ibrahim Aljarah. Unsupervised intelli-

gent system based on one class support vector machine and grey wolf optimiz-

ation for iot botnet detection. Journal of Ambient Intelligence and Humanized

Computing, pages 1–17, 2019.

[53] Atif Alamri, Wasai Shadab Ansari, Mohammad Mehedi Hassan, M Shamim

Hossain, Abdulhameed Alelaiwi, and M Anwar Hossain. A survey on sensor-

cloud: architecture, applications, and approaches. International Journal of Dis-

tributed Sensor Networks, 9(2):917923, 2013.

[54] Patrick Albers, Olivier Camp, Jean-Marc Percher, Bernard Jouga, Ludovic Me,

and Ricardo Staciarini Puttini. Security in ad hoc networks: a general intrusion

detection architecture enhancing trust based approaches. In Wireless Informa-

tion Systems, pages 1–12, 2002.

[55] Mouhammd Alkasassbeh, Ghazi Al-Naymat, Ahmad Hassanat, and Mohammad

Almseidin. Detecting distributed denial of service attacks using data mining



Bibliography 173

techniques. International Journal of Advanced Computer Science and Applica-

tions, 7(1):436–445, 2016.

[56] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose. Sok: Security evaluation

of home-based iot deployments. In 2019 IEEE Symposium on Security and

Privacy (SP), pages 1362–1380, 2019.

[57] Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose. Sok:

Security evaluation of home-based iot deployments. In 2019 IEEE symposium

on security and privacy (sp), pages 1362–1380. IEEE, 2019.

[58] Asma Alshehri and Ravi Sandhu. Access control models for cloud-enabled in-

ternet of things: A proposed architecture and research agenda. In Collaboration

and Internet Computing (CIC), 2016 IEEE 2nd International Conference on,

pages 530–538. IEEE, 2016.

[59] Mohammad Abu Alsheikh, Shaowei Lin, Dusit Niyato, and Hwee-Pink Tan.

Machine learning in wireless sensor networks: Algorithms, strategies, and ap-

plications. IEEE Communications Surveys & Tutorials, 16(4):1996–2018, 2014.

[60] Amar Amouri, Vishwa T Alaparthy, and Salvatore D Morgera. Cross layer-

based intrusion detection based on network behavior for iot. In Wireless and

Microwave Technology Conference (WAMICON), 2018 IEEE 19th, pages 1–4.

IEEE, 2018.

[61] Ioannis Andrea, Chrysostomos Chrysostomou, and George Hadjichristofi. Inter-

net of things: Security vulnerabilities and challenges. In Computers and Com-

munication (ISCC), 2015 IEEE Symposium on, pages 180–187. IEEE, 2015.

[62] Eirini Anthi, Shazaib Ahmad, Omer Rana, George Theodorakopoulos, and Pete

Burnap. Eclipseiot: A secure and adaptive hub for the internet of things. Com-

puters & Security, 78:477–490, 2018.



174 Bibliography

[63] Eirini Anthi, Amir Javed, Omer Rana, and George Theodorakopoulos. Secure

data sharing and analysis in cloud-based energy management systems. In Cloud

Infrastructures, Services, and IoT Systems for Smart Cities, pages 228–242.

Springer, 2017.

[64] Eirini Anthi, Lowri Williams, and Pete Burnap. Pulse: An adaptive intrusion de-

tection for the internet of things. Living in the Internet of Things: Cybersecurity

of the IoT-2018, pages 1–4, 2018.

[65] Eirini Anthi, Lowri Williams, Amir Javed, and Pete Burnap. Hardening machine

learning denial of service (dos) defences against adversarial attacks in iot smart

home networks. Computers & Security, page 102352, 2021.

[66] Eirini Anthi, Lowri Williams, Gosia Malgortzata, George Theodorakopoulos,

and Pete Burnap. A supervised intrusion detection system for smart home iot.

IEEE Internet of Things & Journal, 78:477–490, 2018.

[67] Eirini Anthi, Lowri Williams, Matilda Rhode, Pete Burnap, and Adam Wedg-

bury. Adversarial attacks on machine learning cybersecurity defences in indus-

trial control systems. arXiv preprint arXiv:2004.05005, 2020.

[68] Noah Apthorpe, Dillon Reisman, Srikanth Sundaresan, Arvind Narayanan, and

Nick Feamster. Spying on the smart home: Privacy attacks and defenses on

encrypted iot traffic. arXiv preprint arXiv:1708.05044, 2017.

[69] Kevin Ashton et al. That âinternet of thingsâ thing. RFID journal, 22(7):97–114,

2009.

[70] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give

a false sense of security: Circumventing defenses to adversarial examples. arXiv

preprint arXiv:1802.00420, 2018.

[71] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A

survey. Computer networks, 54(15):2787–2805, 2010.



Bibliography 175

[72] L. Bai, L. Yao, S. S. Kanhere, X. Wang, and Z. Yang. Automatic device clas-

sification from network traffic streams of internet of things. In 2018 IEEE 43rd

Conference on Local Computer Networks (LCN), pages 1–9, 2018.

[73] Mario Baldi and Fulvio Risso. Using xml for efficient and modular packet pro-

cessing. In GLOBECOM’05. IEEE Global Telecommunications Conference,

2005., volume 1, pages 6–pp. IEEE, 2005.

[74] Nathalie Baracaldo, Bryant Chen, Heiko Ludwig, Amir Safavi, and Rui Zhang.

Detecting poisoning attacks on machine learning in iot environments. In 2018

IEEE International Congress on Internet of Things (ICIOT), pages 57–64. IEEE,

2018.

[75] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D Joseph, and J Doug

Tygar. Can machine learning be secure? In Proceedings of the 2006 ACM

Symposium on Information, computer and communications security, pages 16–

25. ACM, 2006.

[76] Muhammad Bilal. A review of internet of things architecture, technologies

and analysis smartphone-based attacks against 3d printers. arXiv preprint

arXiv:1708.04560, 2017.

[77] Abdur Rahim Biswas and Raffaele Giaffreda. Iot and cloud convergence: Op-

portunities and challenges. In 2014 IEEE World Forum on Internet of Things

(WF-IoT), pages 375–376. IEEE, 2014.

[78] Damiano Bolzoni, Sandro Etalle, and Pieter H Hartel. Panacea: Automating

attack classification for anomaly-based network intrusion detection systems. In

International Workshop on Recent Advances in Intrusion Detection, pages 1–20.

Springer, 2009.

[79] Sacha Brostoff and M Angela Sasse. âten strikes and you’re outâ: Increasing

the number of login attempts can improve password usability. 2003.



176 Bibliography

[80] Olivier Brun, Yonghua Yin, and Erol Gelenbe. Deep learning with dense random

neural network for detecting attacks against iot-connected home environments.

Procedia computer science, 134:458–463, 2018.

[81] McAfee Cloud BU. 11 advantages of cloud computing and how

your business can benefit from them. Retrieved from in 2022

https://www.skyhighnetworks.com/cloud-security-blog/11-advantages-of-

cloud-computing-and-how-your-business-can-benefit-from-them, 2015.

[82] Janice Canedo and Anthony Skjellum. Using machine learning to secure iot

systems. In 2016 14th Annual Conference on Privacy, Security and Trust (PST),

pages 219–222. IEEE, 2016.

[83] Alvaro A Cárdenas, Saurabh Amin, Zong-Syun Lin, Yu-Lun Huang, Chi-Yen

Huang, and Shankar Sastry. Attacks against process control systems: risk as-

sessment, detection, and response. In Proceedings of the 6th ACM symposium

on information, computer and communications security, pages 355–366, 2011.

[84] Qifeng Chen, Haoming Chen, Yanpu Cai, Yanqi Zhang, and Xin Huang. Denial

of service attack on iot system. In 2018 9th International Conference on Inform-

ation Technology in Medicine and Education (ITME), pages 755–758. IEEE,

2018.

[85] Benoit Claise and Stewart Bryant. Specification of the ip flow information ex-

port (ipfix) protocol for the exchange of ip traffic flow information. Technical

report, RFC 5101, January, 2008.

[86] Benoit Claise, Ganesh Sadasivan, Vamsi Valluri, and Martin Djernaes. Cisco

systems netflow services export version 9. 2004.

[87] Luigi Coppolino, Valerio DAlessandro, Salvatore DAntonio, Leonid Levy, and

Luigi Romano. My smart home is under attack. In 2015 IEEE 18th International

Conference on Computational Science and Engineering, pages 145–151. IEEE,

2015.



Bibliography 177

[88] Laura Daniele, Monika Solanki, Frank den Hartog, and Jasper Roes. Interop-

erability for smart appliances in the iot world. In International Semantic Web

Conference, pages 21–29. Springer, 2016.

[89] Ria Das and Indrajit Das. Secure data transfer in iot environment: Adopting both

cryptography and steganography techniques. In 2016 Second International Con-

ference on Research in Computational Intelligence and Communication Net-

works (ICRCICN), pages 296–301. IEEE, 2016.

[90] Abebe Abeshu Diro and Naveen Chilamkurti. Distributed attack detection

scheme using deep learning approach for internet of things. Future Generation

Computer Systems, 82:761–768, 2018.

[91] Rohan Doshi, Noah Apthorpe, and Nick Feamster. Machine learning ddos detec-

tion for consumer internet of things devices. arXiv preprint arXiv:1804.04159,

2018.

[92] IBM Cloud Education. Benefits of cloud computing. Retrieved from in 2022

https://www.ibm.com/cloud/learn/benefits-of-cloud-computing, 2018.

[93] Alessandro Erba, Riccardo Taormina, Stefano Galelli, Marcello Pogliani,

Michele Carminati, Stefano Zanero, and Nils Ole Tippenhauer. Real-time eva-

sion attacks with physical constraints on deep learning-based anomaly detectors

in industrial control systems. arXiv preprint arXiv:1907.07487, 2019.

[94] Evolvit. Cloud vs local servers: Weighing up the pros and cons. Re-

trieved from in 2022 https://evolvit.co.uk/it-support/server-support/cloud-vs-

local-servers-weighing-up-the-pros-and-cons/, 2019.

[95] Ashfaq Hussain Farooqi and Farrukh Aslam Khan. Intrusion detection systems

for wireless sensor networks: A survey. Communication and networking, pages

234–241, 2009.



178 Bibliography

[96] Kassem Fawaz, Kyu-Han Kim, and Kang G Shin. Protecting privacy of {BLE}

device users. In 25th {USENIX} Security Symposium ({USENIX} Security 16),

pages 1205–1221, 2016.

[97] Mohamed Ali Feki, Fahim Kawsar, Mathieu Boussard, and Lieven Trappeniers.

The internet of things: the next technological revolution. Computer, 46(2):24–

25, 2013.

[98] David Formby, Preethi Srinivasan, Andrew M Leonard, Jonathan D Rogers, and

Raheem A Beyah. Who’s in control of your control system? device fingerprint-

ing for cyber-physical systems. In NDSS, 2016.

[99] Andreas Fuchsberger. Intrusion detection systems and intrusion prevention sys-

tems. Information Security Technical Report, 10(3):134–139, 2005.

[100] Dimitris Geneiatakis, Ioannis Kounelis, Ricardo Neisse, Igor Nai-Fovino, Gary

Steri, and Gianmarco Baldini. Security and privacy issues for an iot based smart

home. In 2017 40th International Convention on Information and Communica-

tion Technology, Electronics and Microelectronics (MIPRO), pages 1292–1297.

IEEE, 2017.

[101] André Glória, Francisco Cercas, and Nuno Souto. Design and implementation

of an iot gateway to create smart environments. Procedia Computer Science,

109:568–575, 2017.

[102] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-

versarial nets. In Advances in neural information processing systems, pages

2672–2680, 2014.

[103] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and har-

nessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.



Bibliography 179

[104] Quandeng Gou, Lianshan Yan, Yihe Liu, and Yao Li. Construction and

strategies in iot security system. In 2013 IEEE international conference on

green computing and communications and IEEE internet of things and IEEE

cyber, physical and social computing, pages 1129–1132. IEEE, 2013.

[105] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and

Patrick McDaniel. Adversarial examples for malware detection. In European

Symposium on Research in Computer Security, pages 62–79. Springer, 2017.

[106] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu Palan-

iswami. Internet of things (iot): A vision, architectural elements, and future

directions. Future generation computer systems, 29(7):1645–1660, 2013.

[107] Shang Guoqiang, Chen Yanming, Zuo Chao, and Zhu Yanxu. Design and im-

plementation of a smart iot gateway. In Green Computing and Communications

(GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE Inter-

national Conference on and IEEE Cyber, Physical and Social Computing, pages

720–723. IEEE, 2013.

[108] Anne Håkansson. Portal of research methods and methodologies for research

projects and degree projects. In The 2013 World Congress in Computer Science,

Computer Engineering, and Applied Computing WORLDCOMP 2013; Las Ve-

gas, Nevada, USA, 22-25 July, pages 67–73. CSREA Press USA, 2013.

[109] Jun Han, Albert Jin Chung, Manal Kumar Sinha, Madhumitha Harishankar,

Shijia Pan, Hae Young Noh, Pei Zhang, and Patrick Tague. Do you feel what i

hear? enabling autonomous iot device pairing using different sensor types. In

2018 IEEE Symposium on Security and Privacy (SP), pages 836–852. IEEE,

2018.

[110] Te Han, Chao Liu, Wenguang Yang, and Dongxiang Jiang. A novel adversarial

learning framework in deep convolutional neural network for intelligent dia-

gnosis of mechanical faults. Knowledge-Based Systems, 165:474–487, 2019.



180 Bibliography

[111] Ian G Harris. Social engineering attacks on the internet of things. IoT Newslet-

ter, 2016.

[112] Blake T Henderson. A honeypot for spies: Understanding internet-based data

theft. Technical report, NAVAL POSTGRADUATE SCHOOL MONTEREY

CA MONTEREY United States, 2018.

[113] Chia-Chun Hsu. Enhanced access control in lte advanced systems, January 20

2015. US Patent 8,938,233.

[114] Weiwei Hu and Ying Tan. Generating adversarial malware examples for black-

box attacks based on gan. arXiv preprint arXiv:1702.05983, 2017.

[115] Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and

J Doug Tygar. Adversarial machine learning. In Proceedings of the 4th ACM

workshop on Security and artificial intelligence, pages 43–58. ACM, 2011.

[116] Philokypros Ioulianou, Vasileios Vasilakis, Ioannis Moscholios, and Michael

Logothetis. A signature-based intrusion detection system for the internet of

things. Information and Communication Technology Form, 2018.

[117] Qi Jing, Athanasios V Vasilakos, Jiafu Wan, Jingwei Lu, and Dechao Qiu. Se-

curity of the internet of things: Perspectives and challenges. Wireless Networks,

20(8):2481–2501, 2014.

[118] Chen Jun and Chen Chi. Design of complex event-processing ids in internet

of things. In Measuring Technology and Mechatronics Automation (ICMTMA),

2014 Sixth International Conference on, pages 226–229. IEEE, 2014.

[119] Oleg Kachirski and Ratan Guha. Intrusion detection using mobile agents in

wireless ad hoc networks. In Proceedings. IEEE Workshop on Knowledge Media

Networking, pages 153–158. IEEE, 2002.

[120] Prabhakaran Kasinathan, Claudio Pastrone, Maurizio A Spirito, and Mark

Vinkovits. Denial-of-service detection in 6lowpan based internet of things. In



Bibliography 181

Wireless and Mobile Computing, Networking and Communications (WiMob),

2013 IEEE 9th International Conference on, pages 600–607. IEEE, 2013.

[121] Rafiullah Khan, Sarmad Ullah Khan, Rifaqat Zaheer, and Shahid Khan. Fu-

ture internet: the internet of things architecture, possible applications and key

challenges. In 2012 10th international conference on frontiers of information

technology, pages 257–260. IEEE, 2012.

[122] Richard Lippmann Engin Kirda and Ari Trachtenberg. Recent advances in in-

trusion detection. Lecture Notes in Computer Science, 5758, 2009.

[123] Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Jeffrey

Voas. Ddos in the iot: Mirai and other botnets. Computer, 50(7):80–84, 2017.

[124] Jahoon Koo, Se-Ra Oh, and Young-Gab Kim. Device identification interoper-

ability in heterogeneous iot platforms. Sensors, 19(6):1433, 2019.

[125] Thomas Kothmayr, Corinna Schmitt, Wen Hu, Michael Brünig, and Georg

Carle. A dtls based end-to-end security architecture for the internet of things

with two-way authentication. In Local Computer Networks Workshops (LCN

Workshops), 2012 IEEE 37th Conference on, pages 956–963. IEEE, 2012.

[126] Deepak Kumar, Kelly Shen, Benton Case, Deepali Garg, Galina Alperovich,

Dmitry Kuznetsov, Rajarshi Gupta, and Zakir Durumeric. All things considered:

an analysis of iot devices on home networks. In 28th {USENIX} Security Sym-

posium ({USENIX} Security 19), pages 1169–1185, 2019.

[127] Shantha Kumari. Agility on cloud â a vital part of cloud computing. Re-

trieved from in 2022 https://blog.sysfore.com/agility-on-cloud-a-vital-part-of-

cloud-computing/, 2015.

[128] Changmin Lee, Luca Zappaterra, Kwanghee Choi, and Hyeong-Ah Choi. Secur-

ing smart home: Technologies, security challenges, and security requirements.



182 Bibliography

In 2014 IEEE Conference on Communications and Network Security, pages 67–

72. IEEE, 2014.

[129] In Lee and Kyoochun Lee. The internet of things (iot): Applications, invest-

ments, and challenges for enterprises. Business Horizons, 58(4):431–440, 2015.

[130] Shancang Li. Chapter 1 - introduction: Securing the internet of things. In

Shancang Li and Li Da Xu, editors, Securing the Internet of Things, pages 1–

25. Syngress, Boston, 2017.

[131] Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin, and Kuang-Yuan

Tung. Intrusion detection system: A comprehensive review. Journal of Net-

work and Computer Applications, 36(1):16–24, 2013.

[132] Donggang Liu, Peng Ning, and Rongfang Li. Establishing pairwise keys in

distributed sensor networks. ACM Transactions on Information and System Se-

curity (TISSEC), 8(1):41–77, 2005.

[133] Yu Liu, Kin-Fai Tong, Xiangdong Qiu, Ying Liu, and Xuyang Ding. Wireless

mesh networks in iot networks. In 2017 International Workshop on Electro-

magnetics: Applications and Student Innovation Competition, pages 183–185.

IEEE, 2017.

[134] Franco Loi, Arunan Sivanathan, Hassan Habibi Gharakheili, Adam Radford,

and Vijay Sivaraman. Systematically evaluating security and privacy for con-

sumer iot devices. In Proceedings of the 2017 Workshop on Internet of Things

Security and Privacy, pages 1–6, 2017.

[135] Irene Lopatovska, Katrina Rink, Ian Knight, Kieran Raines, Kevin Cosenza,

Harriet Williams, Perachya Sorsche, David Hirsch, Qi Li, and Adrianna Mar-

tinez. Talk to me: Exploring user interactions with the amazon alexa. Journal

of Librarianship and Information Science, 51(4):984–997, 2019.



Bibliography 183

[136] Rongxing Lu, Kevin Heung, Arash Habibi Lashkari, and Ali A Ghorbani. A

lightweight privacy-preserving data aggregation scheme for fog computing-

enhanced iot. IEEE Access, 5:3302–3312, 2017.

[137] Gordon Fyodor Lyon. Nmap network scanning: The official Nmap project guide

to network discovery and security scanning. Insecure, 2009.

[138] J Ma, Y Guo, J Ma, J Xiong, and T Zhang. A hierarchical access control

scheme for perceptual layer of iot, jisuanji yanjiu yu fazhan/comput. Res. Dev,

50(6):1267–1275, 2013.

[139] Parikshit N Mahalle, Neeli Rashmi Prasad, and Ramjee Prasad. Threshold

cryptography-based group authentication (tcga) scheme for the internet of things

(iot). In 2014 4th International Conference on Wireless Communications,

Vehicular Technology, Information Theory and Aerospace & Electronic Systems

(VITAE), pages 1–5. IEEE, 2014.

[140] Antonio Mangino, Morteza Safaei Pour, and Elias Bou-Harb. Internet-scale

insecurity of consumer internet of things: An empirical measurements perspect-

ive. ACM Transactions on Management Information Systems (TMIS), 11(4):1–

24, 2020.

[141] Christopher D McDermott, Farzan Majdani, and Andrei V Petrovski. Botnet

detection in the internet of things using deep learning approaches. In 2018 In-

ternational Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE,

2018.

[142] James P McDermott. Attack net penetration testing. In Proceedings of the 2000

workshop on New security paradigms, pages 15–21, 2001.

[143] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry

Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow:

enabling innovation in campus networks. ACM SIGCOMM Computer Commu-

nication Review, 38(2):69–74, 2008.



184 Bibliography

[144] Yair Meidan, Michael Bohadana, Yael Mathov, Yisroel Mirsky, Asaf Shabtai,

Dominik Breitenbacher, and Yuval Elovici. N-baiotânetwork-based detection

of iot botnet attacks using deep autoencoders. IEEE Pervasive Computing,

17(3):12–22, 2018.

[145] Yair Meidan, Michael Bohadana, Asaf Shabtai, Juan David Guarnizo, Martín

Ochoa, Nils Ole Tippenhauer, and Yuval Elovici. Profiliot: a machine learn-

ing approach for iot device identification based on network traffic analysis. In

Proceedings of the Symposium on Applied Computing, pages 506–509. ACM,

2017.

[146] Daniele Midi, Antonino Rullo, Anand Mudgerikar, and Elisa Bertino. Kalisâa

system for knowledge-driven adaptable intrusion detection for the internet of

things. In Distributed Computing Systems (ICDCS), 2017 IEEE 37th Interna-

tional Conference on, pages 656–666. IEEE, 2017.

[147] Mohammad-Mahdi Moazzami, Guoliang Xing, Daisuke Mashima, Wei-Peng

Chen, and Ulrich Herberg. Spot: A smartphone-based platform to tackle hetero-

geneity in smart-home iot systems. In Internet of Things (WF-IoT), 2016 IEEE

3rd World Forum on, pages 514–519. IEEE, 2016.

[148] Blaine Nelson, Marco Barreno, Fuching Jack Chi, Anthony D Joseph, Ben-

jamin IP Rubinstein, Udam Saini, Charles A Sutton, J Doug Tygar, and Kai Xia.

Exploiting machine learning to subvert your spam filter. LEET, 8:1–9, 2008.

[149] Edith CH Ngai, Jiangchuan Liu, and Michael R Lyu. On the intruder detection

for sinkhole attack in wireless sensor networks. In ICC, volume 6, pages 3383–

3389. Citeseer, 2006.

[150] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily

fooled: High confidence predictions for unrecognizable images. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 427–

436, 2015.



Bibliography 185

[151] TJ OConnor, William Enck, and Bradley Reaves. Blinded and confused: un-

covering systemic flaws in device telemetry for smart-home internet of things.

In Proceedings of the 12th Conference on Security and Privacy in Wireless and

Mobile Networks, pages 140–150, 2019.

[152] Doohwan Oh, Deokho Kim, and Won Woo Ro. A malicious pattern detec-

tion engine for embedded security systems in the internet of things. Sensors,

14(12):24188–24211, 2014.

[153] Se-Ra Oh and Young-Gab Kim. Security requirements analysis for the iot. In

2017 International Conference on Platform Technology and Service (PlatCon),

pages 1–6. IEEE, 2017.

[154] Suad Mohammed Othman, Fadl Mutaher Ba-Alwi, Nabeel T Alsohybe, and

Amal Y Al-Hashida. Intrusion detection model using machine learning al-

gorithm on big data environment. Journal of Big Data, 5(1):34, 2018.

[155] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay

Celik, and Ananthram Swami. The limitations of deep learning in ad-

versarial settings. In 2016 IEEE European Symposium on Security and Privacy

(EuroS&P), pages 372–387. IEEE, 2016.

[156] Tamas Pflanzner and Attila Kertész. A survey of iot cloud providers. In 2016

39th International Convention on Information and Communication Technology,

Electronics and Microelectronics (MIPRO), pages 730–735. IEEE, 2016.

[157] Abhishek Pharate, Harsha Bhat, Vaibhav Shilimkar, and Nalini Mhetre. Clas-

sification of intrusion detection system. International Journal of Computer Ap-

plications, 118(7), 2015.

[158] Pavan Pongle and Gurunath Chavan. Real time intrusion and wormhole attack

detection in internet of things. International Journal of Computer Applications,

121(9), 2015.



186 Bibliography

[159] Segun I Popoola, Bamidele Adebisi, Ruth Ande, Mohammad Hammoudeh,

Kelvin Anoh, and Aderemi A Atayero. Smote-drnn: A deep learning algorithm

for botnet detection in the internet-of-things networks. Sensors, 21(9):2985,

2021.

[160] Pawani Porambage, Corinna Schmitt, Pardeep Kumar, Andrei Gurtov, and Mika

Ylianttila. Two-phase authentication protocol for wireless sensor networks in

distributed iot applications. In 2014 IEEE Wireless Communications and Net-

working Conference (WCNC), pages 2728–2733. Ieee, 2014.

[161] H Pranata, R Athauda, and Geoff Skinner. Securing and governing access in ad-

hoc networks of internet of things. In Proceedings of the IASTED International

Conference on Engineering and Applied Science, EAS, pages 84–90, 2012.

[162] Kathy Pretz. Exploring the impact of the internet of things: A new ieee group is

taking on the quest to connect everything. The Institute, 2013.

[163] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106,

1986.

[164] Sebastian M Rasinger. Quantitative methods: Concepts, frameworks and issues.

Research methods in linguistics, pages 49–67.

[165] Shailendra Rathore and Jong Hyuk Park. Semi-supervised learning based dis-

tributed attack detection framework for iot. Applied Soft Computing, 72:79–89,

2018.

[166] Shahid Raza, Linus Wallgren, and Thiemo Voigt. Svelte: Real-time intrusion

detection in the internet of things. Ad hoc networks, 11(8):2661–2674, 2013.

[167] Cristanel Razafimandimby, Valeria Loscrí, Anna Maria Vegni, and Alessandro

Neri. A bayesian and smart gateway based communication for noisy iot scen-

ario. In Computing, Networking and Communications (ICNC), 2017 Interna-

tional Conference on, pages 481–485. IEEE, 2017.



Bibliography 187

[168] Francesco Restuccia, Salvatore DâOro, and Tommaso Melodia. Securing the in-

ternet of things in the age of machine learning and software-defined networking.

IEEE Internet of Things Journal, 5(6):4829–4842, 2018.

[169] Maria Rigaki. Adversarial deep learning against intrusion detection classifiers,

2017.

[170] Markus Ring, Sarah Wunderlich, Deniz Scheuring, Dieter Landes, and Andreas

Hotho. A survey of network-based intrusion detection data sets. Computers &

Security, 2019.

[171] Martin Roesch et al. Snort: Lightweight intrusion detection for networks. In

Lisa, volume 99, pages 229–238, 1999.

[172] Brian Russell and Drew Van Duren. Practical Internet of Things Security:

Design a security framework for an Internet connected ecosystem. Packt Pub-

lishing Ltd, 2018.

[173] Maheshkumar Sabhnani and Gürsel Serpen. Application of machine learning

algorithms to kdd intrusion detection dataset within misuse detection context.

In MLMTA, pages 209–215, 2003.

[174] Ahmed Saeed, Ali Ahmadinia, Abbas Javed, and Hadi Larijani. Intelligent in-

trusion detection in low-power iots. ACM Transactions on Internet Technology

(TOIT), 16(4):1–25, 2016.

[175] Leonel Santos, Carlos Rabadao, and Ramiro Gonçalves. Intrusion detection sys-

tems in internet of things: A literature review. In 2018 13th Iberian Conference

on Information Systems and Technologies (CISTI). IEEE, 2018.

[176] Navrati Saxena, Abhishek Roy, Bharat JR Sahu, and HanSeok Kim. Efficient

iot gateway over 5g wireless: A new design with prototype and implementation

results. IEEE Communications Magazine, 55(2):97–105, 2017.



188 Bibliography

[177] Pallavi Sethi and Smruti R Sarangi. Internet of things: architectures, protocols,

and applications. Journal of Electrical and Computer Engineering, 2017, 2017.

[178] Anuj Sharma and Shubhamoy Dey. Performance investigation of feature selec-

tion methods and sentiment lexicons for sentiment analysis. IJCA Special Issue

on Advanced Computing and Communication Technologies for HPC Applica-

tions, 3:15–20, 2012.

[179] Tariqahmad Sherasiya and Hardik Upadhyay. Intrusion detection system for

internet of things. International Journal of Advance Research and Innovative

Ideas in Education, 2(3).

[180] Dharmini Shreenivas, Shahid Raza, and Thiemo Voigt. Intrusion detection in the

rpl-connected 6lowpan networks. In Proceedings of the 3rd ACM International

Workshop on IoT Privacy, Trust, and Security, pages 31–38. ACM, 2017.

[181] Prachi Shukla. Ml-ids: A machine learning approach to detect wormhole attacks

in internet of things. In Intelligent Systems Conference (IntelliSys), 2017, pages

234–240. IEEE, 2017.

[182] Tobby Simon. Chapter seven: Critical infrastructure and the internet of things.

Cyber Security in a Volatile World, 93, 2017.

[183] Anna Kornfeld Simpson, Franziska Roesner, and Tadayoshi Kohno. Securing

vulnerable home iot devices with an in-hub security manager. In 2017 IEEE

International Conference on Pervasive Computing and Communications Work-

shops (PerCom Workshops), pages 551–556. IEEE, 2017.

[184] Jayveer Singh and Manisha J Nene. A survey on machine learning techniques

for intrusion detection systems. International Journal of Advanced Research in

Computer and Communication Engineering, 2(11):4349–4355, 2013.

[185] Arunan Sivanathan, Daniel Sherratt, Hassan Habibi Gharakheili, Adam Rad-

ford, Chamith Wijenayake, Arun Vishwanath, and Vijay Sivaraman. Charac-



Bibliography 189

terizing and classifying iot traffic in smart cities and campuses. In 2017 IEEE

Conference on Computer Communications Workshops (INFOCOM WKSHPS),

pages 559–564. IEEE, 2017.

[186] Vijay Sivaraman, Hassan Habibi Gharakheili, Clinton Fernandes, Narelle Clark,

and Tanya Karliychuk. Smart iot devices in the home: Security and privacy

implications. IEEE Technology and Society Magazine, 37(2):71–79, 2018.

[187] Vijay Sivaraman, Hassan Habibi Gharakheili, Arun Vishwanath, Roksana

Boreli, and Olivier Mehani. Network-level security and privacy control for

smart-home iot devices. In 2015 IEEE 11th International Conference on Wire-

less and Mobile Computing, Networking and Communications (WiMob), pages

163–167. IEEE, 2015.

[188] Tianyi Song, Ruinian Li, Bo Mei, Jiguo Yu, Xiaoshuang Xing, and Xiuzhen

Cheng. A privacy preserving communication protocol for iot applications in

smart homes. IEEE Internet of Things Journal, 4(6):1844–1852, 2017.

[189] Priyanshu Srivastava and Rizwan Khan. A review paper on cloud computing.

International Journal of Advanced Research in Computer Science and Software

Engineering, 8(6):17–20, 2018.

[190] R Stephen and L Arockiam. Intrusion detection system to detect sinkhole at-

tack on rpl protocol in internet of things. International Journal of Electrical

Electronics and Computer Science, 4(4):16–20, 2017.

[191] Biljana L Risteska Stojkoska and Kire V Trivodaliev. A review of internet of

things for smart home: Challenges and solutions. Journal of Cleaner Produc-

tion, 140:1454–1464, 2017.

[192] Basant Subba, Santosh Biswas, and Sushanta Karmakar. A neural network based

system for intrusion detection and attack classification. In 2016 Twenty Second

National Conference on Communication (NCC), pages 1–6. IEEE, 2016.



190 Bibliography

[193] Douglas H Summerville, Kenneth M Zach, and Yu Chen. Ultra-lightweight deep

packet anomaly detection for internet of things devices. In Computing and Com-

munications Conference (IPCCC), 2015 IEEE 34th International Performance,

pages 1–8. IEEE, 2015.

[194] Harald Sundmaeker, Patrick Guillemin, Peter Friess, and Sylvie Woelfflé. Vision

and challenges for realising the internet of things. Cluster of European research

projects on the internet of things, European Commision, 3(3):34–36, 2010.

[195] Zhiyuan Tan, Aruna Jamdagni, Xiangjian He, Priyadarsi Nanda, and Ren Ping

Liu. A system for denial-of-service attack detection based on multivariate

correlation analysis. IEEE transactions on parallel and distributed systems,

25(2):447–456, 2013.

[196] Nanda Kumar Thanigaivelan, Ethiopia Nigussie, Rajeev Kumar Kanth, Seppo

Virtanen, and Jouni Isoaho. Distributed internal anomaly detection system for

internet-of-things. In Consumer Communications & Networking Conference

(CCNC), 2016 13th IEEE Annual, pages 319–320. IEEE, 2016.

[197] Chih-Fong Tsai, Yu-Feng Hsu, Chia-Ying Lin, and Wei-Yang Lin. Intrusion

detection by machine learning: A review. expert systems with applications,

36(10):11994–12000, 2009.

[198] Mathy Vanhoef and Frank Piessens. Advanced wi-fi attacks using commodity

hardware. In Proceedings of the 30th Annual Computer Security Applications

Conference, pages 256–265, 2014.

[199] Mathy Vanhoef and Frank Piessens. All your biases belong to us: Breaking rc4

in wpa-tkip and {TLS}. In 24th {USENIX} Security Symposium ({USENIX}

Security 15), pages 97–112, 2015.

[200] Mathy Vanhoef and Frank Piessens. Predicting, decrypting, and abusing

wpa2/802.11 group keys. In 25th {USENIX} Security Symposium ({USENIX}

Security 16), pages 673–688, 2016.



Bibliography 191

[201] John R Venable, Jan Pries-Heje, and Richard L Baskerville. Choosing a design

science research methodology. 2017.

[202] Abhishek Verma and Virender Ranga. Machine learning based intrusion de-

tection systems for iot applications. Wireless Personal Communications, pages

1–24, 2019.

[203] Michael Vögler, Johannes Schleicher, Christian Inzinger, Stefan Nastic, Sanjin

Sehic, and Schahram Dustdar. Leonore–large-scale provisioning of resource-

constrained iot deployments. In 2015 IEEE Symposium on Service-Oriented

System Engineering, pages 78–87. IEEE, 2015.

[204] Ben Whitham. Canary files: generating fake files to detect critical data loss

from complex computer networks. In Second International Conference on Cy-

ber Security, Cyber Peacefare and Digital Forensic (CyberSec2013), Malaysia,

2013.

[205] David H Wolpert. The lack of a priori distinctions between learning algorithms.

Neural computation, 8(7):1341–1390, 1996.

[206] Miao Wu, Ting-Jie Lu, Fei-Yang Ling, Jing Sun, and Hui-Ying Du. Research

on the architecture of internet of things. In 2010 3rd International Conference

on Advanced Computer Theory and Engineering (ICACTE), volume 5, pages

V5–484. IEEE, 2010.

[207] Liang Xiao, Yan Li, Guoan Han, Guolong Liu, and Weihua Zhuang. Phy-

layer spoofing detection with reinforcement learning in wireless networks. IEEE

Transactions on Vehicular Technology, 65(12):10037–10047, 2016.

[208] Liang Xiao, Xiaoyue Wan, Xiaozhen Lu, Yanyong Zhang, and Di Wu. Iot se-

curity techniques based on machine learning. arXiv preprint arXiv:1801.06275,

2018.



192 Bibliography

[209] Teng Xu, James B Wendt, and Miodrag Potkonjak. Security of iot systems:

Design challenges and opportunities. In Proceedings of the 2014 IEEE/ACM

International Conference on Computer-Aided Design, pages 417–423. IEEE

Press, 2014.

[210] Shakiba Yaghoubi and Georgios Fainekos. Gray-box adversarial testing for con-

trol systems with machine learning components. In Proceedings of the 22nd

ACM International Conference on Hybrid Systems: Computation and Control,

pages 179–184, 2019.

[211] Xuanxia Yao, Xiaoguang Han, Xiaojiang Du, and Xianwei Zhou. A lightweight

multicast authentication mechanism for small scale iot applications. IEEE

Sensors Journal, 13(10):3693–3701, 2013.

[212] Ibrar Yaqoob, Ejaz Ahmed, Ibrahim Abaker Targio Hashem, Abdelmuttlib

Ibrahim Abdalla Ahmed, Abdullah Gani, Muhammad Imran, and Mohsen Guiz-

ani. Internet of things architecture: Recent advances, taxonomy, requirements,

and open challenges. IEEE wireless communications, 24(3):10–16, 2017.

[213] Ning Ye, Yan Zhu, Ru-chuan Wang, and Qiao-min Lin. An efficient authen-

tication and access control scheme for perception layer of internet of things.

Institute of Electrical and Electronics Engineers, 2014-07, 2014.

[214] Shan Yin, Yueming Lu, and Yonghua Li. Design and implementation of iot

centralized management model with linkage policy, 2015.

[215] Tianlong Yu, Vyas Sekar, Srinivasan Seshan, Yuvraj Agarwal, and Chenren Xu.

Handling a trillion (unfixable) flaws on a billion devices: Rethinking network

security for the internet-of-things. In Proceedings of the 14th ACM Workshop

on Hot Topics in Networks, page 5. ACM, 2015.

[216] Yongguang Zhang and Wenke Lee. Intrusion detection in wireless ad-hoc net-

works. In Proceedings of the 6th annual international conference on Mobile

computing and networking, pages 275–283, 2000.



Bibliography 193

[217] Yongguang Zhang, Wenke Lee, and Yi-An Huang. Intrusion detection tech-

niques for mobile wireless networks. Wireless Networks, 9(5):545–556, 2003.

[218] ZhiKai Zhang, Michael Cheng Yi Cho, ChiaWei Wang, ChiaWei Hsu, Chong-

Kuan Chen, and Shiuhpyng Shieh. Iot security: ongoing challenges and research

opportunities. In 2014 IEEE 7th international conference on service-oriented

computing and applications, pages 230–234. IEEE, 2014.

[219] Yan Ling Zhao. Research on data security technology in internet of things. In

Applied Mechanics and Materials, volume 433, pages 1752–1755. Trans Tech

Publ, 2013.

[220] Zhiyuan Zheng, Allen Webb, AL Narasimha Reddy, and Riccardo Bettati. Iotae-

gis: A scalable framework to secure the internet of things. In 2018 27th Interna-

tional Conference on Computer Communication and Networks (ICCCN), pages

1–9. IEEE, 2018.

[221] Yan Zhou, Murat Kantarcioglu, Bhavani Thuraisingham, and Bowei Xi. Ad-

versarial support vector machine learning. In Proceedings of the 18th ACM

SIGKDD international conference on Knowledge discovery and data mining,

pages 1059–1067, 2012.

[222] Giulio Zizzo, Chris Hankin, Sergio Maffeis, and Kevin Jones. Adversarial ma-

chine learning beyond the image domain. In 2019 56th ACM/IEEE Design Auto-

mation Conference (DAC), pages 1–4. IEEE, 2019.

[223] MZWM Zulkifli and Zaid W Mohd. Attack on cryptography. Comput. Secur,

12(5):33–45, 2008.



194 Bibliography



195

Appendix

Table A1: Packet features

Feature Description

len Total packet length

caplen Length of the capture

frame.encap_type Frame Encapsulation Type

frame.offset_shift Time shift for this packet

frame.len Frame length on the wire

frame.cap_len Frame length stored into the capture file

frame.marked Frame is marked

frame.ignored Frame is ignored

eth.lg Most significant byte of MAC Address

eth.ig Least significant byte of MAC Address

ip.version Internet Protocol (IP) version

ip.hdr_len IP Header Length

ip.dsfield.dscp Differentiated Services Codepoint

ip.dsfield.ecn Explicit Congestion Notification

ip.src IP Source Address

ip.dst IP Destination Address

ip.len Total Length

ip.flags IP Flags
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ip.flags.rb IP Reserved bit flag

ip.flags.df Don’t fragment flag

ip.flags.mf More fragments flag

ip.frag_offset IP Fragment Offset

ip.ttl IP Time to Live

ip.proto Protocol

ip.checksum.status IP Header Checksum

tcp.srcport TCP Source Port

tcp.dstport TCP Destination Port

tcp.stream TCP Stream Index

tcp.len TCP Segment Len

tcp.seq TCP Sequence Number

tcp.nxtseq TCP Next Sequence Number

tcp.ack TCP Acknowledgment Number

tcp.hdr_len TCP Header Length

tcp.flags.res TCP Reserved flag

tcp.flags.ns TCP Nonce flag

tcp.flags.cwr Congestion Window Reduced (CWR) flag

tcp.flags.ecn ECN-Echo flag

tcp.flags.urg TCP Urgent flag

tcp.flags.ack TCP Acknowledgment flag

tcp.flags.push TCP Push flag

tcp.flags.reset TCP Reset flag

tcp.flags.syn TCP Synchronisation flag

tcp.flags.fin TCP Finish flag

tcp.window_size_value TCP Window Value

tcp.window_size TCP Window Size

tcp.window_size_scalefactor TCP Window size scaling factor
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tcp.checksum.status TCP Checksum Status

tcp.urgent_pointer TCP Urgent Pointer

tcp.options.nop TCP No Option field

tcp.options.mss_val Largest amount of data in a single TCP segment

tcp.options.sack_perm TCP SACK Permitted Option

tcp.analysis.bytes_in_flight Bytes in TCP flight

tcp.analysis.push_bytes_sent Bytes sent since last PSH flag

tcp.time_delta Time since previous frame in this TCP stream

bootp.hw.type Hardware type

bootp.hw.len Hardware address length

bootp.hops Number of Hops

bootp.secs Seconds elapsed

bootp.flags.bc Broadcast flag

bootp.flags.reserved Reserved flags

bootp.dhcp The frame is marked as DHCP

icmp.resp_in Response frame

icmp.resp_to Request frame

data.len Length of data following TCP stream interpretation

ssl.record.content_type Content Type

ssl.record.version SSL Version

ssl.record.length SSL Record Length

arp.hw.type ARP Hardware type

arp.proto.type ARP Protocol size

arp.hw.size ARP Hardware size

arp.proto.size ARP Protocol size

arp.opcode ARP Opcode

http.response.code HTTP Response status code

http.content_length HTTP Content length
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http.response HTTP Response

http.response_number Response number

http.request HTTP Request

http.request_number Request number

classicstun.type Simple Traversal of UDP Through NAT/Type

classicstun.length Simple Traversal of UDP Through NAT/Length

udp.srcport UDP Source Port

udp.dstport UDP Destination Port

udp.length UDP Length

udp.checksum.status UDP Checksum Status

udp.stream UDP Stream index

dns.flags.response DNS Response

dns.flags.opcode DNS Opcode value

dns.flags.truncated Truncated field

dns.flags.recdesired Recursion desired Option

dns.flags.z Most significant bit of the Z field on header query

dns.flags.checkdisable Non-authenticated data option

dns.flags.rcode DNS Reply code

dns.count.queries Total number of DNS queries

dns.count.answers Total number of DNS answers

dns.count.auth_rr Authority of Resource Records

dns.qry.name.len Query Name

dns.count.labels DNS Label Count

dns.resp.type DNS Response Type

dns.resp.class Response Class

dns.resp.ttl DNS Time to live

dns.resp.len Data length

igmp.version IGMP Version
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igmp.type Type of IGMP

igmp.max_resp IGMP Maximum Response Time

igmp.checksum.status IGMP Checksum Status

ntp.flags.li NTP Leap Indicator

ntp.flags.vn Version number

ntp.flags.mode NTP Flag Mode

ntp.stratum Peer Clock Stratum

ntp.ppoll Peer Polling Interval

ntp.rootdelay Root Delay

ntp.rootdispersion Root Dispersion

ntp.precision Peer Clock Precision

bootp.type Bootstrap Message type

tcp.payload TCP payload

icmp.type ICMP Type

icmp.code ICMP Code

icmp.ident Identifier (Big Endian)

icmp.checksum.status Checksum Status

icmp.seq Sequence Number (Big Endian)

icmp.seq_le Sequence Number (Little Endian)
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Device Module Functions

Philips Hue philapi.py

show_hues() - lamps available,

light_switch() - turn on/off,

light_brightness() - adjust by x%

NC200 Camera ip_camera.py

take_snapshot() - takes a snapshot,

uploads it to a folder, and forwards the

folder url to the user

Samsung Smart Things smart_things.py

list_types() - show sensor types (e.g. switch)

list_devices() - show connected devices

toggle_switch() - Switch device

can be toggled on/off.

device_state() - Show device’s state

LG Smart TV lg.tv.py

get_volume() - Shows current volume

set_volume() - Sets volume to an x%

volume_up() - Turns volume up

volume_down() - Turns volume down

open_url() - opens the TVâs browser

get_apps() - Displays all the available apps on TV

launch_app() - Launches an app

current_app() - Returns name of current open app

close_app() - Closes an app

get_services() - Displays services (e.g. tv guide)

get_inputs() - shows available inputs (e.g.HDMI1)

set_input()- switch to a specific input

switch_3d_on - Turns on the 3D mode

switch_3d_off()- Turns the 3D off

power_on() - Turns the TV on

power_off() - Turns the TV off

Embedded device embedded.py

led_on() - Turns the LED light on

led_off() - Turns the LED light off

blink() - Blinks the LED light

Table A2: The add-on modules implemented for each IoT device along with the

functions they contained.
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