GARDY ORCA - Online Research @
CARDY® Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/148052/

This is the author’s version of a work that was submitted to / accepted for publication.
Citation for final published version:

Kaur, Amanjot, Auluck, Nitin and Rana, Omer 2023. Real-time scheduling on Hierarchical Heterogeneous
Fog Networks. IEEE Transactions on Services Computing 16 (2) , pp. 1358-1372.
10.1109/TSC.2022.3155783
Publishers page: http://dx.doi.org/10.1109/TSC.2022.3155783
Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may

not be reflected in this version. For the definitive version of this publication, please refer to the published
source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made
available in ORCA are retained by the copyright holders.




JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Real-Time scheduling on Hierarchical
Heterogeneous Fog Networks

Amanjot Kaur, Nitin Auluck and Omer Rana, Member, IEEE

Abstract—Cloud computing is widely used to support offloaded data processing for various applications. However, latency constrained
data processing has requirements that may not always be suitable for cloud-based processing. Fog computing brings processing
closer to data generation sources, by reducing propagation and data transfer delays. It is a viable alternative for processing tasks with
real-time requirements. We propose a scheduling algorithm RT H?S (Real Time Heterogeneous Hierarchical Scheduling) for a set of
real-time tasks on a heterogeneous integrated fog-cloud architecture. We consider a hierarchical model for fog nodes, with nodes at
higher tiers having greater computational capacity than nodes at lower tiers, though with greater latency from data generation sources.
Tasks with various profiles have been considered. For the regular profile jobs, we use least laxity first (LLF) to find the preferred fog
node for scheduling. In case of “tagged” profiles, based on their tag values, the jobs are split in order to finish execution before the
deadline, or the LLF heuristic is used. Using HPC2N workload traces across 3.5 years of activity, the real-time performance of RT H2S
versus comparable algorithms is demonstrated. We also consider Microsoft Azure-based costs for the proposed algorithm. Our
proposed approach is validated using both simulation (to demonstrate scale up) as well as a lab-based testbed.

Index Terms—Fog computing, cloud computing, real-time scheduling, fog node hierarchy.

1 INTRODUCTION

Og computing involves the use of a number of
F nodes/micro data centers located in close proximity to
users and data generation sources [1]. As there could be
significant propagation delays between the data generation
sources and the cloud data center, fog computing provides
computing capability closer to the data source. An example
of such a job could be a surveillance camera at a security
facility that detects an intruder and alerts relevant authori-
ties. For such jobs, processing times need to be in the sub-
second range — a constraint that a remotely located cloud
data center may not be able to guarantee. In contrast, fog
nodes, owing to their proximity to users and data generation
sources, can execute such critical tasks with a lower invoca-
tion latency. To support the diverse execution requirements
of real time applications, the fog node architecture may
be hierarchical [2]. Nodes in proximity to a user (lower
tier) are considered to have lower computational capability
compared to fog nodes at higher tiers, but at a greater
geographical distance (i.e. higher latency) from data sources.
A trade-off exists therefore between processing capability of
fog nodes and propagation delay to users.

“Smart” transportation provides a relevant scenario in
this context — as discussed by the Open Fog Consortium
[2]. The data volume generated by connected cars can be-
come challenging to transfer to the cloud for processing,
as this could result in network congestion and increase in
processing times — leading to missed deadlines for tasks
that process this data. A smart transportation scenario can
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involve a number of sensors present on roadside units,
such as weather sensors for ice, snow, water, and road-
side sensors for speed, volume and traffic monitoring (e.g
cameras) etc. Smart cars communicate with these roadside
sensors or with other cars in order to make specific decisions
— offering services like infotainment, supporting collision
avoidance, processing of prior information regarding poor
road conditions or traffic congestion. Note that these jobs
can have diverse execution requirements and deadlines. An
example of a small job with a tight deadline includes real
time “sensing” or monitoring of a parameter (or calculating
averages or max./min. across these parameters over a time
window), such as temperature, wind-speed, humidity, rain-
fall etc. These jobs are typically in the milliseconds range.
These jobs need to be scheduled on a tier-1 fog node located
in proximity to the user. On the other hand, jobs with
less stringent deadlines but greater execution requirements
could include control tasks, such as managing the properties
of an infotainment system. This is an example of a medium
sized job and may be executed at tier-2 or tier-3 fog nodes.
Finally, large jobs with loose deadlines could be executed at
the cloud. An example of such a job could be batch data
processing, e.g. determining how many vehicles crossed an
intersection (involving integration across multiple sensors),
analysis of traffic patterns at a junction or road intersection,
etc. It is pertinent to mention that these fog nodes would be
distributed and would be available even in the event of a
data comms. network outage. Hence, they would make the
system more resilient. The key contributions of the paper
are as follows:

(i) a multi-tier hierarchical fog-cloud real time scheduling
algorithm RTH?S taking account of device heterogeneity.
We propose a mathematical model for an n-tier fog cloud
architecture that schedules jobs onto fog/cloud processors
while meeting their deadline requirements.
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(ii) RTH?2S works for both regular and tagged job profiles.
The algorithm either finds a preferred fog node for job
execution, or splits the job based on a combination of its
size and deadline requirements.

(iif) Using both simulation and a prototype test bed, we
demonstrate the performance of the proposed algorithm
RTH?S in enhancing a key metric used to measure benefit:
Success Ratio (SR) — while considering task load, propa-
gation delay, heterogeneity and job profiles. Further, the
impact of the tiered fog architecture on the scheduling
performance is also discussed.

This paper is organized as follows. Section 2 includes a
discussion of related work. The system model, notation and
problem formulation is described in section 3. An orches-
tration protocol to support automatic system functioning is
discussed in Section 4. The proposed algorithm is presented
in section 5. Section 6 discusses results. Finally, section 7
concludes the paper and discusses future work.

2 RELATED WORK

The Open Fog Consortium (involving a number of industry
partners, e.g. Cisco, Intel, Microsoft, Dell etc.) has proposed
a reference architecture [2] with several use cases for fog
computing: smart transportation, smart buildings, airport
security, and so on. The extension of network resources from
cloud to fog nodes yields a rich environment which can
provide storage, computation and communication resources
over the network [18]. Capacity planning and optimisation
of a fog-based system may be analysed using the iFogSim
simulator [3], enabling various resource management strate-
gies in fog-cloud architectures to be considered. iFogSim
matches fog node capability (as Million Instructions Per
Second (MIPS), memory, and network connectivity) with
task capability (defined using similar metrics as fog node ca-
pability). The simulator enables understanding the trade-off
between computational capability and power consumption
of a fog node, and latency of executing an application task.

A survey of fog computing [4], [13] explores a number
of research trends — differentiating characteristics of fog and
cloud computing. In [16], the authors pitch fog computing
as a crucial element for Internet of Things (IoT), and de-
velop a mathematical model to assess the suitability of fog
computing in IoT [20]. In [5], the authors observe that fog
nodes/cloudlets provide an acceptable interactive response
in human cognition, owing to their physical proximity and
one-hop network latency. Several papers, given the context
of fog-based system usage, have focused on minimising
latency in such environments [21].

In our previous work, we consider the real-time schedul-
ing of single tier fog nodes [11] on homogeneous fog nodes,
i.e. all the fog nodes were assumed to have identical pro-
cessing capabilities, with the interpretation that a job will
have identical execution costs on all fog nodes. In [9], the
authors schedule tasks in real time on identical processors
based on their deadline requirements. An energy-efficient
fog computing framework has been proposed in [8]. The
computation resources are shared with multiple neighbor
helper nodes and an optimal scheduling decision is de-
termined for a task node. In [10], the authors proposed a
real time algorithm called DEBTS for achieving a balanced
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system performance in terms of service delay and energy
consumption. However, the authors have not considered
heterogeneous fog nodes in their work. In [17], a fog based
delay-optimal task scheduling algorithm has been pro-
posed. The authors consider a heterogeneous fog network
as a part of dynamic wireless networks in [19]. In [14], the
placement of tasks on heterogeneous fog nodes has been
explored, on the basis of privacy tags. In [33], the authors
discuss resource allocation by ranking fog devices based on
processing, bandwidth and latency, and assigning proces-
sors to deadline-based tasks. In [34], the authors propose
a dynamic request dispatching algorithm, which minimizes
energy consumption and timeliness by using the Lyapunov
Optimization Technique. The authors propose an adaptive
queuing weight (AQW) resource allocation and real-time
offloading technique in a heterogeneous fog environment
in [35]. In [36], the authors reduce the waiting time of delay-
sensitive tasks by using a multilevel-feedback queue and
minimizing the starvation problem of low priority tasks.
However, all these approaches focus on a single tier of fog
nodes between the edge and cloud systems, and cannot be
applied directly to multi-tier fog cloud architectures.

There has been some work in multi-tier hierarchical fog
cloud scheduling. In [24], the authors proposed a hierar-
chical edge computing architecture with identical resources
in each tier, however without consideration of real time
scheduling. In [27], the authors propose a multi-tier fog
cloud architecture, and divide tasks into low & high priority.
In [28], a hierarchical fog cloud architecture (limited to 2-tier
cloudlets) and a workload allocation scheme is proposed,
which attempts to minimise the response time of user
requests. In [29], [30] the authors proposed a multi-layer
heterogeneous architecture for task offloading to minimise
response time, without considering real time tasks. In [31],
a component based scheduler for a multi-tier fog cloud
architecture is proposed. However, authors consider only
two tiers of fog nodes in their work, and measure the
results using simulation — without taking account of a real
workload. The effective mapping of jobs to a group of
heterogeneous fog nodes is no doubt a challenging prob-
lem. To the best of our knowledge, no work has looked
into heterogeneous, hierarchical real time scheduling of
“regular” as well as “tagged” profiled tasks on fog cloud
architectures, supporting both “inter-level heterogeneity” as
well as “intra-level heterogeneity”.
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Fig. 1. Fog Architecture



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

TABLE 1
Key Notation
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needs to be executed consists of the set of all jobs in the
system is denoted by J, such that J = {J1, Jo, J3, J4, .....}.
Throughout this paper, we use the term job and task in-

3.1 Proposed architecture

The proposed architecture is illustrated in Fig. 1. Table 1
summarises the notation used in our approach — where a set
of fog nodes is given by F'N. We assume that a hierarchy
of fog nodes exists — as outlined in [2]. At the lowest level
(i.e. closest to the user), we have tier-1 fog nodes, followed
by tier-2 fog nodes at the next level, and then tier-3 fog
nodes at a higher level (i.e. closer to the data center). As a
general rule, as one moves up in the hierarchy, the execution
capacity of the fog nodes increases. However, on the flip
side, the communication distance to the data generation
sources also increases, increasing the propagation delay.
Note that Fig. 1 depicts n tiers of fog nodes. In this work,
we consider three tiers of fog nodes i.e n = 3. Based on the
system requirement, the architecture can be extended to n-
tiers of fog nodes.

3.2 Notation

The set of all tier-1 fog nodes is given by F'N;, the set
of all tier-2 fog nodes is given by F'Na, and the set of all
tier-3 fog nodes is given by F'N3. The k" fog node at tier
1,2, and 3 is given by fn¥, fnk, and fn} respectively. At
the top of the hierarchy, we have a cloud data center ¢ € C,
where C is the set of all cloud data centers. Each cloud data
center could potentially belong to a different cloud provider
e.g. Google, Amazon, Microsoft. In our work, we consider
a single cloud data center, but the proposed approach can
be generalised to multiple providers. The capacity of a
particular fog node or the cloud data center is given by
c. This execution capacity is given in terms of Millions of
Instructions per Second, or MIPS. The popular fog simulator
iFogSim [3] models computational node execution capacity
in MIPS, so we have chosen MIPS in our model — to make
our model compatible with iFogSim. An application that

CC; d(flllﬂugafj‘ t;f::rteczsgc terchangeably. The deadline of the k' job is denoted by
FN set of all fog nodes d(j%). The propagation delay between job j* and tier-1 fog
Ny set of tier-1 fog nodes node fn is given by pd(j*, fni). Likewise, pd(j*, fnz), and
fn] y'" tier-1 fog node € FIN, pd(j*, fn3) represents the propagation delay between job
FNo set of all tier-2 fog nodes % and tier-2 f de f ‘ob i* and tier-3 f de f
il 7T tier-2 fog node € FN, j* and tier-2 fog node fno, job j* and tier-3 fog node n;:,
FN3 set of tier-3 fog nodes respectively. Finally, the propagation delay between job j
fny 4™ tier-3 fog node € F N3 and cloud data center c, is represented as pd(j*, c,.). Note
J set of all jobs that fn; could be any tier-1 fog node € F'N;, fng could be
N total number of jobs any tier-2 fog node € F'Ns, and so on. The execution cost of
Js set of all small jobs € J the k' iob on a tier-1 foe node is denoted b T(’k F1)
j§ kthsmalljober e Job on a te og node 1s denote yTU, 1)
Jnr set of all medium jobs € J
jE k*" medium job € Jys TABLE 2
Jr set of all large jobs € J Representative smart car tasks
ir k" large job € Jp,
c(fn?) capacity of jt" fog node at i*" tier Job | Execution | Memory Job Job description
c(cz) capacity of cloud data center ¢, cost usage type
d(5%) deadline for k** job (MIPS) (GBs) '
pd(j*, fn1) propagation delay between job and tier-1 fog node J% 250 0.34 small rainfall
pd(5%, fno) propagation delay between job and tier-2 fog node J s 155 0.28 smal.l terpperature
pd(5*, fns) propagation delay between job and tier-3 fog node Im 3000 0.81 medium | object rec.
pd(5%, cz) propagation delay between job and cloud data center J e 1850 0.67 medium wiper cont.
(5%, fn) job execution cost on fog node I 6700 1.78 large traffic patt.
pfn, (5%) 2P preferred fog node of job j* Ji 7200 201 large non-crit.
updates

In order the classify the jobs based on their execution
requirements, we consider three sets of jobs: small (Jg),
medium (Jys), and large (Jr). So, jk could be any small,
medium, or large job €, Jg, Jur, Jr. Small jobs (Jg) are the
jobs that require less processing power to execute, medium
jobs (Jar) are the jobs that require moderate processing
power to run, and large jobs (Jr) are the jobs that need
high processing power for execution. Although there are a
number of smart car data sets that focus on speed, traffic
patterns, car images, we could not find any data set that
specifies the CPU execution requirements, or memory us-
age of various smart car tasks. Some representative tasks
from the smart automobile use case are given in table 2.
The nature of these jobs has been inspired from [22]. We
consider three types of deadlines: tight(T), moderate (M),
and loose(L). The deadline category is decided from Dead-
line Factor (DF) defined in Section VI-B Table 3 depicts
the priority assignment based on the job sizes and their
deadlines. We have considered 9 * 9 combinations of job
sizes and deadlines. In general, as deadlines may be a
directly proportional to execution costs, small jobs have
lower execution costs and tight deadlines. Hence, they are
assigned to tier-1 fog nodes located at the closest proximity
to users. Typically, medium jobs have higher execution costs
and looser deadlines than small jobs, and are assigned to the
tier-2 or tier-3 fog nodes. Finally, the cloud runs large jobs
with loose deadlines. All these jobs can be considered to
have regular job profiles. The set of regular job profiles are
denoted as R.

However, based on the user requirements, jobs may
not fit into the above profiles. We call such job profiles as
“tagged” — denoted as 7. For example, if a medium job
has a tight deadline, or a large job has a tight/ moderate
deadline, despite being medium/large, they need to execute
in the lower fog layers to meet their deadline requirements.
We propose to split such jobs so that they can be executed on
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lower capability resources. All these jobs are assigned tagl.
Such jobs need to be assigned a high priority. As another
example, small jobs may have moderate/loose deadlines
and medium jobs may have loose deadlines. These jobs are
tagged as tag2. Such jobs can be assigned a lower priority.
The set T has two subsets: T'1 subset for tagl jobs, and T2
subset for tag2 jobs. Table 4 depicts the tag assignment.

We consider various kinds of heterogeneity in our
model. By their nature, tier-1 fog nodes (¥'N;), tier-2 fog
nodes (F'Ny), tier-3 fog nodes (F'N3), and the cloud data
center (c;) are heterogeneous with respect to each other.
This means that execution capacity of F'N1 nodes is different
from that of F N5 and F' N3, which is further different from
¢z. In general, the order of execution capacity is: ¢, >
FN3 > FNy > FN;. Higher execution capacity implies
faster execution rates, so assigned tasks will finish earlier.
We call such heterogeneity “inter-level-heterogeneity”. In
addition, we consider “intra-level-heterogeneity”.

TABLE 3
Priority Level Assignment
tight (T) | moderate (M) | loose (L)
Small job 7, Py Py Py
Medium job j, Py Py Py
Large job j; Py Py P3
TABLE 4
Tag Assignment
tight (T) | moderate (M) | loose (L)
Small job js X tag2 tag2
Medium job j, tagl X tag2
Large job j; tagl tagl X

The total number of jobs is given by J. This is the sum
of all small, medium and large jobs: J = Jg + Jas + Jr.. The
commencement time of ajob j* € J on a fog node fn € FN
is denoted by ct(j*, fn). In this work, we consider that there
are no precedence constraints among various jobs, so all jobs
are independent of each other. However, if the jobs are split
on various fog nodes, then we consider the aggregate finish
time from the entry fog node to exit fog node. Hence, a job
may start at time 0. Note that, j* can be a whole job or a
part of split job. The execution cost of a job j* € .J on a fog
node fn € FN is given by 7(j*, fn). Since the processing
elements are heterogeneous, the execution cost of a job can
be different on different processing units FN, C.

3.3 Real-time constraints

The finish time of a job j* € .J on a fog node fn € FN
is denoted by ft(j*, fn). The finish time of a job j* on a fog
node fn may be modelled as:

ft(G%, fn) = ct(5%, fn) + (3%, fn) + pd(*, fn) (1)

The jobs are real-time and need to finish by their deadline.
For unsplit jobs, no overheads are there.

Ft(G*, fn) < d(5") (2)

Since this is a heterogeneous system, we need to exercise
caution while assigning jobs to fog nodes and the cloud. We
use the concept of a preferred fog node pfn of job j* —a
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node on which the job is most likely to meet its deadline
requirements. By selecting a pfn for j*, the algorithm takes
processor heterogeneity into account.

For jobs with regular or tag2 profiles, we use the job
laxity for finding the preferred fog node. The laxity of a
job j* is denoted by [(j*), and is the difference between its
finish time and its deadline [7]. Formally:

1(7*) = ftmin(3") = d(5") 3)

Since each job j* can have different finish times on different
fog nodes, we consider the finish time that has the minimum
value in our estimation of laxity. Hence, pfn;(j*) is given
as:

pfni (%) = pu s 1G*,pu) < 1, pu') (4)

In eq. (4) above, pu,pu’ € FN,C && pu # pu'. In other
words, assigning a job j* to its preferred fog node 1 pfn,
results in the minimum laxity value of the job. Likewise, the
fog node that results in the next lowest laxity value becomes
pfn,, and so on.

The following equation makes sure that the job’s require-
ment is not more than the fog node capacity:

R(fn) > r(j*, fn) (5)

Here, R(fn) represents the resource capability of fn and
(5%, fn) represents the resource requirement of j*.

3.4 Job splitting constraints

For tag1 jobs, it may not be possible to execute the whole
job on a single fog node due to their limited computational
capacity and strict deadline requirement. Hence, we propose
splitting such jobs and assigning the generated sub-jobs to
various fog nodes. While splitting the jobs, we need to take
care of the fog node’s propagation delay and computation
power. A fog node with less propagation delay (close to the
user) may have low computation power. On the other hand,
a fog node with high computation power may be located
a bit far from the user. So, we consider an inverse of both
parameters to calculate the value of Y (fn) for fn.

1 1
YU = Sagm i e )

To divide the job j* into sub-jobs w;, we use eq. 7:
wi(fn) = j* * Y (fn) (7)

The sub-job size w; is calculated by considering the propa-
gation delay pd and capacity c of fog node. The number of
sub-jobs depend upon the size of the job and characteristics
of the fog node. Job j* is calculated in eq. 8:

Wiepe =35 =) w; (8)

Overheads © involved in splitting large jobs into smaller
ones has three components: (i) delay involved in transmit-
ting jobs to fog nodes. Job j* is split into smaller chunks
denoted by w;; (ii) finish time ft of the job j¥; (iii) delay in
receiving results. The output of each sub-job with input w;
is denoted by w,. The bandwidth of the network connection
between user u; and fog node fn is denoted by bw.

O = X oy 10+ ey ©

(6)
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The jobs are real-time and need to finish by their deadline.
We need to take the overheads into account for split jobs.

e(j*) <d(j*) (10)

3.5 Job precedence model

A workflow is defined as a set of small interdependent
jobs modeled as a Directed Acyclic Graph (DAG). Each
DAG is defined by the tuple (J, E, 7, cc), where J is the set
of jobs, and £ is the set of edges defining data dependencies
between them. Let J = (j1,52,...., j*) be the set of ¢ jobs
in the workflow. 7 is the set of execution costs, and cost
for job j* € J is denoted by 7(j*). The set cc consists of
communication costs, and each edge from job j k to job j,
ek € E has a cost cc(j*, ji) associated with it. The data
flow dependency from job j* to job j is defined by an
edge e,; € E, with a precedence constraint that the job
4% can only start after the completion of job jk. Suppose,
a job j* is scheduled on a fog node fn. Let mst(j*, fn)
and mct(j*, fn) be the minimum start time and minimum
completion time for job j* on fn respectively, when fn is
available for the execution of job j*.

mst(j*, fn) = 0,if pred(j*) = ¢ (11)
mst(j*, fn) = mazx(act(57) + ec(57, %)),

for each j¥ € pred(jk) (12)

met(5*, fn) = mst(*, fn) + (5", fn) (13)

If both the parent and child jobs are assigned to the same
fog node, the cost cc will be zero. After a job is assigned to
a fog node, the mst and mct become the job’s actual start
time (ast) and actual completion time (act), respectively. At
last, the workflow’s finish time (ft) is equal to the actual

completion time of the last job , ¢

ft(DAG) = act(j**™) (14)

We take a DAG as input for the dependent tasks, convert
this into an ordered tasks list, and then submit these tasks
for execution. For workflow/DAG execution, a tool like
Pegasus [37] may be used.

3.6 Queuing delay

As the processing capability of the fog nodes F'N is con-
siderably less than the processing capability of the cdc ¢,
queuing can occur in fog nodes when the jobs are large in
number. The scheduled jobs on cdc ¢, can generally execute
without any queuing delay. Due to the limited processing
capability of fog nodes, we assume that each fog node
maintains a queue to buffer the jobs. The queue length of
fn at t + 1*" instance can be defined as follows [38]:

q(fn,t+1) = maz(q(fn,t) + a(fn,t) — p(fn,t),0) (15)

Here, q(fn,t + 1) is the queue of fn at (t + 1) instance,
and q(fn,t) is the queue of fn at t'* instance. q(fn,t)
represents the number of jobs leaving the queue of fn in the
t*" time slot (jobs processed by fog node). a(fn,t) denotes
the number of jobs arriving at fn in the ¢! time slot. We
add the queuing delay to equation (1) to calculate the finish
times.

3.7 Cost and objective function constraints

Monetary Cost (MC) is estimated by considering the
weighted average of the execution cost 7 and propagation
delay pd of j* on a fog node fn. This weighted average is
multiplied by the price of the fog node on which the jobs
are being offloaded [26].

_ price(fn) * (wy * (5%, fn) + wa * pd(j*, fn))

MC(j*
(3", fn) P
(16)
Similarly, the Monetary Cost (MC) of cloud data center
¢, can be defined as follows:

price(cg) * (w1 * T(5%, ¢z) + wa * pd(5%, cz))
w1 + w2

Mc(jk7cz) =

(17)
The overall Monetary Cost of the system is given by:

J N m

J C
Mcsystem - Z Z ZMC(J’CJ"%)"’Z Z MC(]ka Cx)

k=1n=1j =1 k=1z=1
(18)

Success Ratio (SR) at n'" fog tier is the percentage ratio
of n-tier jobs that finish execution before their deadline, to
the total number of jobs submitted to fog nodes F'N,,. The
Success Ratio of n'" tier fog nodes is given by:

7 (FNy,)

AN, = (FN,)

Here, j'(F'N,,) are the total number of F'N,, bound jobs

that finish before their deadlines, i.e. ft(j%, fn,) < d(j%).

j(FN,) are the total number of jobs submitted to the n'"
fog tier. Here, fn,, € FN,, and j%, d(j%) € j'.

The Success Ratio (SR¢) on the cloud data center can be
defined as follows:

%100 (19)

J"(cz)
j(cz)
Here, 7" are the total number of cloud bound jobs that have
finished before their deadlines, i.e. ft(j', c;) < d(j°). j(cz)
are the total number of jobs submitted to the cloud data

center. Here, ¢, is the only cloud data center and j, d(j*) €
-1/
.

SRc = * 100

(20)

Overall, the Success Ratio of the fog nodes is given by:
SRsystem = SRFN1+SRFN2+ ....... +SRFNH+SRC (21)

Given this context and set of definitions, we can formally
define the research problem as:

“Given a set of jobs J(Js,Jnm,JL), a set of fog nodes
FN(FN;y,FNy, FN3) and a cloud data center c,, with het-
erogeneous execution capacity schedule the jobs on their preferred
fog node pfns, or split the job onto fog tiers according to the
priority assignment of Table 3, and tag assignment of Table 4, s.t.
SRgystem is maximised”.

4 ORCHESTRATION PROTOCOL

We adopt a decentralised fog cloud architecture driven by
Orchestrating agents (O As), as proposed in [6]. Fig. 2 shows
the conceptual architecture of the orchestration mechanism
for the distributed fog cloud architecture. Here, F'N,, rep-
resents the n'" fog node tier of the architecture. In this
work, we considering n = 3, though n can be varied based
on the application requirement. An OA is present on each
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Fig. 2. Distributed fog cloud architecture

computing device. A job specific instance is created by O As.
The OAs cooperate with each other to achieve the goal of
the scheduling algorithm: minimising the overall latency of
the system, or increasing the success ratio of the system. As
demonstrated in the figure, a user can submit jobs to the
fog devices or cloud data center. Each user has a network
connection to the F'N;. The F'N; are the fog nodes which
can execute jobs in the least latency. The fog node tier F'IV; is
further connected to next tier of fog nodes i.e. "N, followed
by F'N3. Finally, we have a cloud data center at the top most
layer of the hierarchy.

5 PROPOSED ALGORITHM

In this section, we describe our proposed scheduling scheme
RTH?2S. As mentioned in section III, we consider three
types of jobs: small (Jg), medium (Jps), and large (Jr).
Likewise, we have resources of diverse execution capacities,
tier-1 fog nodes (F'N,), tier-2 fog nodes (F'N»), tier-3 fog
nodes (F'N3), and the cloud data center (c,), which are
heterogeneous with respect to each other. For a particular
job jk € J, the goal is to finish its execution within it’s
deadline. More specifically, for the regular profile jobs, the
aim is to minimise the laxity of the job by assigning the
job to its preferred fog node (pfn), while finishing the job
within it’s deadline. For the tagged profile jobs, we need
to make a call whether the job needs to be split or not. If
yes, the scaling up algorithm is invoked, which splits the
jobs among various fog nodes in order to finish within the
deadline. Otherwise, the jobs are assigned to the preferred
fog node (pfn).

Initially, we divide the job set J into small(Jg), medium
(Jar), and large (Jr) jobs. We use the k-means algorithm
to partition the jobs into small j;, medium j,,, and large j;
sizes [25]. We use job duration and memory usage of the jobs
as an input data. The k-means clustering is applied by using
k = 3, this results in providing the breakpoints to categorise
the jobs.

The algorithm RT H?2S works as follows. The input data
for the algorithm is the set of jobs. This set consists of
jobs of various sizes along with their deadlines. The first
step is to populate the set of jobs J into three queues
R1, 2, and @3, based on the priority level assignment of
Table 3. The queues @1, )2, 3 are sorted in ascending
order of deadlines. The rationale behind this sorting is to
align it with the Earliest Deadline First algorithm. We form
a list named scheduledlist S, which is initially empty. We

Algorithm 1: RTH2S

Input: Set of jobs
Output: Optimal Schedule
1 Populate Q1, Q2, and @3 with priority level P1, P>, and
Ps respectively;
2 Sort queue Q1, Q2, and @3 with ascending order of
deadlines;
3 Assign tags to the jobs;
4 scheduledlist S = empty, Qp; = empty;
5 fork =1 to size(Q1) do
6 | if tag(j*) — x then

7 | Preferred-fn(1);
8 end
9 if tag(j*) — tagl then
10 Preempt the currently scheduled jobs and add
the jobs to Qy;;
11 ScaleUp();
12 Resume the jobs present in Q;;;
13 end
14 end

15 for k =1 to size(Q2) do
16 if tag(j®) — 2 || tag(j*) — tag2 then

17 Preferred-fn(2);

18 if j* is unscheduled then

19 | Preferred-fn(3);

20 end

21 end

2 if tag(j*) — tagl then

23 Preempt the currently scheduled jobs and add
the jobs to Qy;;

24 ScaleUp();

25 Resume the jobs present in Q;;;

26 end

27 end

28 fork =1 to size(Q3) do
29 if tag(j*) — z || tag(j*) — tag2 then

30 | Preferred-fn(3);

31 else

32 schedule j* on cde;

33 estimate the M C' using eq.(17);

34 remove job j* from queue Q, add job j* to
scheduledlist .S;

35 end

36 end

37 Calculate SR(sys)VFN,C

consider a queue (),;, which queues the preempted jobs.
This queue is initially empty. The tags are assigned to the
jobs as per Table 4. The jobs are executed according to their
priority levels, i.e.,, P; being the highest priority, and P
being the lowest priority. Initially, the jobs present in Q1
are scheduled. As soon as the job arrives, we examine its
tag. If the job has no tag, i.e., small jobs with tight deadline,
then the preferred fog node of the algorithm is estimated.
In Preferred-fn(1), 1 stands for fog tier-1. Initially, the ft of
the job j* is calculated for the tier-1 fog nodes. We calculate
the minimum finish time ft,,;, among the calculated finish
times. We estimate pfn by using equation 4 for j*. In the
next step, we compare two conditions: whether the task’s
requirement is within the preferred fog node’s p fn capacity
and whether its laxity is less than zero or not. The latter
check implies whether the job j* is finishing before the
deadline or not. If both the conditions are satisfied, then
the job j* is scheduled on the pfn. After this, we calculate
the associated Monetary cost M C on the preferred fog node
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pfn. The job is added to the scheduledlist S. If the tag of the
job is tagl, then the jobs scheduled on tier-1 are preempted
and the ScaleUp algorithm is called. The preempted jobs
are added to ();. The ScaleUp algorithm works as follows.
First, we find the minimum MIPS required for finishing
the job before deadline. We form a variable sum which is
initialised to zero. We form a loop for the fog nodes at
fog node tier-1. The associated value of Y (fn) is estimated
using equation 6. If the fog node has spare capacity, then
we estimate the sub-job w; by using equation 7. After this
step, we calculate the finish time of sub-job over the selected
fog node. Once the job j* gets the minimal MIPS required
for execution, the loop breaks. The overhead for job j* is
estimated. If the job j* finishes before deadline, then the job
j* is scheduled. The job j* is removed from queue Q1 and
added to the scheduled list S. Otherwise, the job j k can’t be
submitted to the scheduler. The jobs in (),; are resumed on
the respective fog nodes. After traversing ()1, the algorithm
goes for Ps priority. For the incoming job, the tag is seen. If
there is no tag or tag2, then preferred-fn is run for fog tier-2.
If the job is still unscheduled, then the preferred fog node is
examined at tier-3. For the tagl, the preemption at fog node
tier-2 is done and ScaleUp algorithm is called. For the last
queue i.e ()3, the algorithm tries to run the jobs on fog tier-3.
If the queue still has some jobs unscheduled, then they are
scheduled on the cdc — only. Finally, SR for all the jobs is
calculated.

Algorithm 2: Preferred-fn(n)

Input: Job j* with tag — x or tag2

Output: pfn

for y=1 to m do

estimate ft of job % in fnY using eq.(1);
find pfn with ftmn forall ft using eq.(4);
nd

if R(pfn) > r(j*,pfn) and laxity(pfn) < 0 then
schedule job j* on preferred fog node fn;
estimate the M C on pfn using eq.(16);
add job j k to scheduledlist S;

end

[¢]

© ® N G R W N =
t

6 SIMULATION RESULTS

In this section, we discuss the simulation results that were
carried out for the performance evaluation of the proposed
algorithm RTH 2S. We consider sample scenarios that align
with our Fog Architecture depicted in Fig. 1. The jobs may
be run on: tier-1 fog nodes F' Ny, tier-2 fog nodes F' Ny, tier-3
fog nodes F'N3, or on the cloud data center c,. In our work,
we consider three tiers of fog nodes. The proposed model
can be readily extended to support more tiers, based on the
application requirements.

The jobs are executed on the basis of the priority as-
signed. Priority P; jobs run on F'N; nodes, priority P> jobs
run on F'N or on F'N3 nodes, priority P; jobs run on F'N3
nodes, or on the cloud data center c,. This ensures that
the utilization of all nodes is maximised. We compare our
proposed scheduling algorithm RT H?S with cdc—only and
a scheduling algorithm for Heterogeneous Fog Computing
Architectures proposed in [15]. In cdc — only, the fog nodes
have not been considered in executing jobs i.e. only the
cloud data center c, is used for executing all the jobs. In

Algorithm 3: ScaleUp

Input: Job j* with tag — tagl
Output: Optimal Schedule
Calculate min. MIPS for job j k to finish before deadline;
sum < 0;
for p=1 to m do
Get MIPS of p*” fog node;
sum = sum + MIPS(p'");
Estimate Y on p'”* fog node using eq.(6);
if equation (5) holds true then
| Calculate sub-job w; on fog nodes using eq.(7);
end
Estimate ft(w;) on p‘" fog node;
if sum > minimal MIPS then
| break;
end
end
Estimate ©(j*) using equation (9);
if ©(j*) < deadline then
schedule the job j* on the fog nodes;
estimate the M C on fog nodes using equation (16);
add job j* to scheduledlist S;
else
| job j* can’t be submitted;
end
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[15], the authors propose the LTF (Longest Time First)
scheduling algorithm for heterogeneous fog networks. We
compare our proposed algorithm RTH?2S with LTF. The
LTF algorithm schedules the jobs with the longest execu-
tion time to the fastest node. Prior to execution, LT F’ sorts
the jobs in a descending order based on their deadlines.

6.1 Workload

We have used a real workload called HPC2N (High Per-
formance Computing Center North) [23], [12]. This is a
joint operation between various facilities and educational
institutes. This workload is a result of about 3.5 years of
activity. This activity was carried on the Seth cluster of
the HPC center in Sweden. The Linux cluster consists of
120 dual CPU nodes. Each node in the cluster consists of
2 AMD Athlon MP2000+ CPUs, with a clock frequency of
1.67 GigaHertz. The peak performance of this cluster is 800
Gigaflops. Each node has access of 1 GB of RAM, which
is shared by both CPUs. The communication framework
consists of a 3D SCI intern-connect and fast Ethernet. This
workload consists of over 5,00,000 jobs, which are of various
lengths, and is suited to cloud, grid and fog computing.
Each task has various parameters associated with it — such
as Job ID, burst time (7), memory usage, and arrival time.
For each job, we take the arrival time as 0. We have divided
the jobs into three categories as per the job length by using
k-means: small, medium and large. The range of job lengths
considered for each category are as follows - small: 1-95,
medium: 96-205, large: 206-400. The fog network consists of
8 F'N1 nodes, 4 F'N5 nodes, 1 F'IN3 node and 1 cdc ¢,.. The
propagation delay (pd) from a user U; to a tier-1 fog node is
2 milliseconds, user U; to a tier-2 fog node is 6 milliseconds,
user U; to a tier-3 fog node is 12 milliseconds, and from
U; to a cdc is 137 milliseconds (12 milliseconds from the
U; to the proxy server and 125 milliseconds from the proxy
server to cdc). The capacity of each fog node present at tier-
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1, ¢(fnY) varies from 1000 MIPS to 2000 MIPS. Likewise,
the capacity of each fog node present at tier-2, c(fn}) varies
from 2500 MIPS to 4000 MIPS, the capacity of each fog node
present at tier-3, c(fn¥) has been taken as 5800 MIPS, and
the capacity of the cdc, ¢(c,;) has been taken as 70000 MIPS.
The number of jobs (i.e. Job Set JS) varies from 250 to 500
and the execution costs of these jobs (i.e. 7) varies from
100 to 8500 MIPS. The size-wise break up of the jobs is as
follows: small jobs make up 41% of the workload, medium
jobs make up 34% of the workload, and large jobs make
up 25% of the workload. Note that the values in Table 2
are representative values, and they can be changed, based
on the user requirements, without having an effect on the
working of the RTH2S algorithm.

6.2 Simulation Setup and Parameters

We have used the iFogSim [3] simulator for the imple-
mentation of our proposed algorithm RTH?S. iFogSim is
rooted in CloudSim — a very widely used discrete event
cloud simulator. iFogSim, therefore, allows us to model
the characteristics of a cloud platform more realistically
(CloudSim has >4K downloads) [32], a key basis for some of
the simulation that this work is based on. We have modelled
various features of fog nodes and the cdc in this simula-
tor. By using iFogSim, one can evaluate different fog and
cloud scheduling strategies. This simulator is appropriate
for fog enabled devices, as it follows a representation of
the sensor — processor — actuator model. A class named
Hierarchical Fog has been implemented in the simulator.
This class reads the dataset from a text file and stores the
job-id, the job-length, the deadline, and the priority. In
addition to this, the following quantities have also been
added to the class : the propagation delay (pd) of all FN
and C, execution capacity (¢) and the module allocation.
A FogDevice class present in iFogSim contains a function
named updateAllocatedMips. The task of this function
is to allocate the MIPS requirements of various execution
modules. In order to take job deadlines into account, certain
modifications have been made to this class. We have created
job queues @1, @2, and @3 in the simulator. The queues are
sorted in increasing of the deadlines, e.g. the task with the
tightest deadline appears at the head of the queue. As per
the priority assignment of Table 3, jobs are be allocated to
tier-1 F'Ny, tier-2 F'Ns, tier-3 F'N3, and cdc c,. Note that
each data point is an average of five simulation runs. A 95%
confidence interval is used in the graphs. We now describe
the parameters used in our simulations:

1) Success Ratio (SR): This is defined as (NW/)*lOO, ie. the
percentage of the number of jobs finishing execution before
their deadlines to the total number of jobs considered for
scheduling.

2) Task Load (T'L): There is a MIPS requirement associated
with all jobs considered for scheduling. The MIPS value of
each job was uniformly selected from the range (100, 8500).
Next, we calculated the average MIPS value for all jobs.
In order to get a range of Task loads, this MIPS value is
multiplied by 1 to 5.

3) Propagation Delay (PD) : This quantity is defined as
the range of delay factor between the jobs the fog nodes
and the cloud data centers (cdc). A lower value indicates
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smaller delay. We set the delay factor (pd) of 2, 6 and 12
milliseconds between the user and fog tier-1, tier-2, and
tier-3 respectively. A value of 137 milliseconds was set
between the user and the cdc. These values are added by
10 milliseconds in each iteration to get new values.

4) Deadline Factor (DF) : Job deadlines are changed over
a range to observe the effect of tight and loose deadlines on
performance. A higher value implies tight deadlines, and
vice versa. A job’s initial deadline is considered. Next, we
calculate the average of all such deadlines. To get a range
of deadline values, we divide this average deadline with
a factor of 1 to 5. The tight deadlines lie in the range 1-
24, moderate deadlines lie in the range 25-74, and loose
deadlines lie in the range 75+.

5) Heterogeneity Level (/L) : Heterogeneity Level (HL)
signifies the degree of heterogeneity of fog nodes — mea-
suring the variation in computational capacity of fog nodes
within each level. A low HL value implies that the execu-
tion capacities of the fog nodes are similar. The Heterogene-
ity level of any n'" tier fog node is given by:

_ e(fnpe®) — e(fnp™)

HL = :
o average(c(fni,))

(22)

n

c(fne*) represents a tier-n fog node with the maximum
capacity. _ _

frpte® = fnf, s e(frf) > e(fny) (23)
In eq. 23), fnd, fnX € FN, && X # j. c(fn™m) repre-
sents a tier-n fog node with the minimum capacity.

fopt = fud, s e(fnd,) < c(fny) (24)
Ineq.(24), fnd,, fnX € FN, && X # j. We can replace n

)

in F'N,, to get the heterogeneity level of a fog node. Finally,
the heterogeneity level of the system is given by:

HLsyste?n:HLFN1+HLFN2+ ...... +HLFNn+HLC
(25)
6) Monetary Cost (1/C) : This quantity is defined as the
cost associated with executing the job on fog nodes F'N,
or on cloud data center cdc. This metric depends upon the
execution cost and propagation delay of j* on fn.

6.3 Results and Discussion

In this section we describe results of various experiments to
evaluate and compare our approach across both real world
& synthentic datasets.

Effect of fog resources on Performance: We evaluate the
capacity improvement of using fog nodes with the cloud
data center cdc, using Success Ratio(SR) as the performance
metric. Scheduling algorithms: RTH?2S, 1TF (1-tier fog),
2TF (2-tier fog), cdc — only, LTF [15], and WALL [28] are
compared. In cdc—only, we forward all the jobs to the cloud
data center for execution. In RTH?S, the number of fog
nodes at tier-1, tier-2 and tier-3 has been fixed at 8, 4 and 1
respectively. We assume one cdc.

LTF considers two kinds of fog nodes: fast and slow.
In order to achieve parity, we consider one fast node and
two slow nodes in this section of the simulation. The com-
putation power of the fast nodes is more than that of the
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slow nodes. However, the fast nodes consume more power.
Our algorithm RT'H?S dispatches the jobs in an increasing
order of deadlines. On the other hand, LT F sorts the jobs
in decreasing order of deadlines and sends the jobs with the
largest execution time to the fastest node. The Workload
ALLocation algorithm, WALL is a hierarchical cloudlet
network that assigns jobs to suitable cloudlets/fog nodes,
such that the average response time is minimized. It sorts
the users based on decreasing workload size and schedules
the jobs to the cloudlet so as to minimise the response time.
We also consider various fog node tiers in our simulation.
The propagation delay (pd) from a user U; to cdc ¢, has been
fixed at 125 milliseconds. In 1-tier fog i.e. 1T F’, we consider
only one tier of fog nodes (F'N;) and a cloud data center
(cz). The ¢(fnY) of tier-1 fog nodes has been fixed at 3500
MIPS. The propagation delay (pd) from a user U; to tier-1
F'Ny in 1TF has been fixed at 2 milliseconds. In 2-tier fog
i.e. 2T'F, we consider two tiers of fog nodes (F'Ny), (F'N2)
and a cloud data center (c,). The propagation delay (pd)
from an user U; to tier-1 F'N;, and from user U; to tier-2
F' N5 has been fixed at 2 milliseconds, and 6 milliseconds
respectively. The propagation delay (pd) from an user Uj; to
tier-1 F'Ny, from user U; to tier-2 F'IN, and from user U;
to tier-3 F'N3 in 3TF has been fixed at 2 milliseconds, 6
milliseconds, and 12 milliseconds respectively.
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Fig. 3. Effect of DF on SR

In the first simulation scenario, we increase the Dead-
line Factor (DF), and observe it’s impact on the Success
Ratio (SR). The delay factor (pd) is taken as 2, 6, and 12
milliseconds between the user and fog tier-1, tier-2, and
tier-3 respectively. A value of 125 milliseconds is taken
between the user and the cdec in RTH?S. The deadline
factor (DF) of the jobs has been varied from 1 to 5. Tasks
have the loosest deadlines when DF' = 1, and the tightest
deadlines when DF = 5. The results of this simulation
are shown in Fig. 3. It is observed that as we increase the
DF value, deadlines become more “tight”, and we notice a
complementary decrease in the SR value for all scheduling
algorithms. As such, a large number of jobs are unable to
finish their execution before their deadlines, which reflects
in the decreased SR.

Our proposed algorithm RT'H?S provides a higher SR
values than the cdc — only algorithm. RTH?2S schedules
the jobs as per their size, priority and deadlines. On the
other hand, in case of the cdc — only algorithm, all jobs,
irrespective of their size and priority are forwarded to the
cloud data center (c,) for execution. This has an adverse
effect on both the tight or moderate deadline jobs, due to the
large propagation delay between the user U; and cloud data
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center (c;). Hence, the SR values of our proposed algorithm
RTH?S are higher than those offered by cdc — only. The
LTF algorithm sorts the jobs from longest to shortest, and
then assigns the long jobs to the fast nodes and the short
jobs to the slow nodes. Hence, short jobs will be executed at
the end, due to which they may have already missed their
deadlines. The large jobs execute at the fast nodes, whereas
the medium and small jobs execute at the slow nodes. Due
to the modest power of the slow nodes, a small number
of jobs are accommodated at the lower level. Hence, LT'F'
offers a smaller Success Ratio SR value than RTH?2S. In
2TF, jobs with P priority are executed at tier-1, jobs with
P, priority are executed at tier-2, and jobs with Ps priority
may get execute on the cloud data center c,, depending
on the size and deadline requirements. In the absence of
the third tier, more jobs are sent to the cloud for execution,
which leads to smaller SR values for 2I'F. On the other
hand, 1TF offer low SR values, despite having reduced
propagation delay between U; and fnY. This happens due
to the reduced overall computation capacity of tier-1 fog
nodes, which results in transferring more jobs to the cloud
data center c,. The WALL algorithm takes the user with
a maximum job size and assigns it to the fog node that of-
fers the minimum response time. This approach negatively
affects small and medium jobs with tight deadlines. Also,
the computation power of fog nodes is relatively modest
for executing large jobs, which further increases the finish
times, leading to deadline misses. In RTH 28, we split
the large jobs to complete jobs within the deadlines. The
SR ratio provided by different algorithms is as follows :
RTH?S >2TF>1TF> WALL > LTF > cdc — only.
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Fig. 4. Effect of Propagation Dglgly on SR

In the second simulation, we examine the impact of
Propagation Delay (pd) on the SR. The initial pd from the
users to fog nodes has been fixed as follows: 2 milliseconds
to tier-1, 6 milliseconds to tier-2, 12 milliseconds to tier-3
and 125 milliseconds to the cdec. In order to increase this
delay, we have added 10 milliseconds at tier-1, tier-2, tier-
3 and cdc in each iteration. Fig. 4 depicts the results. It is
observed that with an increase of the pd value, more time is
spend in communication. This results in an increase in the
commencement time (ct) at the fog nodes present at tier-
1 (FNy), tier-2 (F'Ny), tier-3 FN3 and at the cloud data
center (c;). Hence, the finish time (ft) of the jobs often
overshoots their deadlines (d), so a lesser number of jobs
finish execution before their deadlines, which results in a
low Success Ratio SR in all tiers. We observe similar results
in LTF. The induced delay between slow and fast fog nodes
results in smaller values for SR. Likewise, the increased pd
effects the SR in WALL. The pd added at each iteration
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increases the completion time of the jobs in both tiers and
cdc. Overall, we observe that an increase in the pd reduces
the SR in all six scheduling strategies.
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Fig. 5. Effect of Task Load on STﬁ

In the next simulation, we show the impact of Task load
(T'L) on Success Ratio (SR). Fig. 5 depicts the results for
this simulation. We increase the task load (T'L) from 1 to
5. As we increase the T'L value, more tasks are added to
the system. This results in reducing the SR, as a large
number of jobs start missing their deadlines. This behaviour
is shown by all six scheduling strategies: RTH?2S, 1TF,
2TF, cdc—only, LTF,and W ALL. However, RT H?S takes
advantage of the fog nodes present at tier-1, tier-2, and tier-
3 due to which, a larger number of jobs are able to meet
their deadlines. Note that these jobs are unable to meet their
deadlines on cdc — only. This happens as the fog nodes are
in closer proximity to the end users, and hence, the propaga-
tion delay (pd) from user to fog nodes is less. Contrarily, jobs
which are using cdc to execute face significant propagation
delays (pd), which results in deadline misses. The LTF
algorithm sorts jobs in a decreasing order of deadlines. It’s
SR values are lower than those of the proposed algorithm’s
SR values, as we sort in the opposite order: small deadline
— large deadline. Hence, a larger number of jobs are able to
meet their deadlines in a given time interval. The WALL
algorithm sorts jobs in descending order of sizes, which
effects the tight/moderate deadlines of small and medium
jobs. For 1TF node, due to less computation power, these
fog nodes are not able to finish the jobs before the deadlines.
It is tough for a single tier to finish the P; or P priority
jobs before their deadlines. On the other hand, in 2T'F, due
to addition of one more tier, more number of jobs can be
executed before the deadlines. However, once the tiers don’t
have sufficient capacity to execute, the jobs are transferred to
cloud data center cdc c,. Due to the significant propagation
delay between a user and the cloud data center, the jobs
start missing their deadlines. For 3-tier fog node i.e RT H2S,
more jobs can be accommodated on the fog node tiers with
less propagation delays which leads to higher success ratios
SR. It is important to note that as we add fog node tiers,
there is an addition of fog nodes in the network, leading
to an increase in the total computation power. Though, the
propagation delay increases as well, but this delay is smaller
as compared to sending jobs to the cloud.

We have observed that the 3-tier fog based algorithm
RTH?S outperforms all compared scheduling strategies,
for all metrics considered. The 2T'F' network and 1TF
network offer lesser computation power. Though, there is
an increased communication delay due to the presence of
more fog tiers in RT'H?2S, this delay is smaller as compared
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to sending jobs to the cloud data center for execution. Our
proposed algorithm outperforms cdc — only owing to the
large communication delay involved in sending the jobs
to cdc — only. It outperforms LTF due to their sorting
of jobs in an opposite direction, which leads to small jobs
being scheduled too late. RTH2S outperforms WALL as
it provides the splits of the large jobs with a tight deadline
rather than assigning them as a whole to the fog node, which
increases the finish time of the jobs. Also, W ALL selects the
users with the maximum job size first, giving less priority to
small/medium jobs with tight deadlines.

Effect of Heterogeneity Level (H L) on Success Ratio (SR):
We examine the impact of fog node heterogeneity on the
system performance. The results of this simulation are
shown in Fig. 6. We increase the Heterogeneity Level HL
from 0 to 1.2. The number of fog nodes at tier-1, tier-2, and
tier-3 have been fixed at 8, 2 and 1 respectively. The capacity
of fog nodes has been varied from 300 MIPS to 6000 MIPS.
We compare the performance of six scheduling algorithms:
RTH?S, 1TF, 2TF, LTF, WALL and cdc — only. As
cdc — only does not employ fog nodes, a significant number
of jobs miss their deadlines. Moreover, we observe a
constant Success Ratio for cdc — only, i.e. increasing fog
node heterogeneity has no effect on cdc — only’s SR. This
is because we consider only 1 cdc in our approach, so there
is no heterogeneity in the cde. Our proposed model can be
easily extended to consider heterogeneity in the cdc. We
omit this experiment due to space constraints. For RT H2S,
we observe that increasing [ L leads to an increase in the
SR. This is because increasing H L increases the variation in
the execution capacity of fog nodes. Hence, the probability
of picking a faster fog node increases. This behaviour is
observed in 1TF,2TF, WALL and LTF.

However, we observe that RTH?S offers a higher SR
than LT F. This is because LT F orders the jobs from longest
— shortest, i.e. it is non real-time. Hence, the short jobs start
late, and miss their deadlines. On the other hand, RTH?2S
sorts jobs from smallest — largest, in terms of deadlines. So,
the number of jobs meeting deadlines is maximised. WALL
performs better than LT F, as WALL has two tiers, while
LTF has just one-tier. Hence, RT H?S performs better than
1TF, 2T'F, c¢dc — only, WALL and LTF as it provides
higher SR values.
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Effect of Tag mix on Success Ratio (SR): we study the im-
pact of tag assignment on the success ratio SR of RTH?S,
WALL, LTF, and cdc — only. We consider two separate
tag mixes in this simulation: Tag Mix 1: the number of un-
tagged i.e. regular profiles & tag2 jobs are constant, and the
number of tagl jobs are periodically injected by 1/4 at every




JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

x-axis data point. Based on Table 4, all three types of tagl
jobs are increased in equal proportion by 1/12. Tag Mix 2:
the number of tagl & un-tagged jobs are constant, and the
number of tag2 jobs are periodically injected by 1/4 at every
x-axis data point. Based on Table 4, all three types of tag2
jobs are increased in equal proportion by 1/12.
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Fig. 7. Effect of tag mix 1 on SR

Initially, we considered 160 jobs. The results for tag mix 1
& mix 2 are shown in Fig. 7 and Fig. 8 respectively. The
format of each x-axis data point is as follows: (# of tagl
jobs, # of tag2 jobs, # of no tag jobs). Fig. 7 shows the result
of tag mix 1. Increasing larger & medium jobs (tagl) with
tight deadlines, and large jobs with moderate deadlines,
we are increasing the load on the lower tiers of fog nodes.
Due to an increase in tagl jobs, the algorithm preempts the
currently scheduled jobs. This negatively impacts regular
profile jobs: small jobs with tight deadlines, or medium
jobs with moderate deadlines. As large size tasks cannot
be directly accommodated on a single fog node, they need
to be split before scheduling on fog nodes. This increases
the commencement time of the jobs which may lead to a
deadline miss. This decreases overall success ratio SR of
RTH?S. The minimum SR is exhibited by the cdc — only
owing to the distance between user U; and cloud data center
c. Also, the cloud data center is not suitable for handling
jobs with tight deadlines. On the other hand, LTF' sorts
the job in decreasing order of deadlines which results in
missing most of the tight deadlines. W ALL sorts the users
in decreasing order of workloads. Moreover, it doesn’t do
any splitting of the jobs. Due to the modest capacity of fog
nodes, it takes more time to finish the large jobs. This results
in missing most of the job deadlines.
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Fig. 8. Effect of tag mix 2 on SR

Fig. 8 shows the result of tag mix2, where we increase
tag2 jobs, i.e., small jobs with moderate deadlines, small
jobs with loose deadline and medium jobs with moderate
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deadline. This results in decreasing the performance of the
RTH?S algorithm due to an increase in the number of jobs.
However, in this case, no job preemption is necessary as
job sizes are not so large and deadlines are not so tight.
The cdc — only algorithm performs the worst as it does not
employ any fog node tier for offloading the computation. On
the other hand, LT F' executes large jobs first by employing
fast fog nodes for job execution. This results in missing jobs
of small and moderate sizes. We observe a similar pattern in
WALL, as it gives preference to large jobs, resulting in the
performance degradation due to misses in tight deadlines
of small and medium jobs. We observe that as we increase
the number of tagl jobs, there is significant decrease in
the SR values. This happens because tagged jobs with
tight/moderate deadlines and large/medium sizes lead to
regular profile jobs being unable to execute before their
deadlines.

TABLE 5
Cost ($/hour, May 2021, Asia Pacific Region) of Microsoft Azure
Instance type | Cost per hour($)
tier-1 $0.034
tier-2 $0.34
tier-3 $3.4
cdc $0.08

Effect of task load on monetary cost (MC): We consider
task load on monetary cost M C for RT H2S using Microsoft
Azure pricing in our simulations, as shown in Table 5, with
results in Table 6. We have taken weights w; and ws as 0.75
and 0.25, respectively. As we increase the task load of the
system, we observe an increase in the monetary cost. As
more jobs are added to the system, more work has to be
done by the F'N and cdc. With the increase in the task load,
the jobs are sent to the higher tiers for execution. The price of
higher-tier fog nodes is more than the lower-tier fog nodes.
Also, this increases the propagation delay in the system.
As monetary cost is directly proportional to the execution
cost and propagation delay of jobs, this is reflected in the
results of RTH?S, WALL and LTF. The monetary cost
of LTF is more than RTH2S as LTF sends jobs with the
largest execution time to the fastest node. The monetary cost
of WALL is less than LTF, as LTF sends more jobs to
cde as task load increases. This increases the propagation
delay, which increases the overall monetary cost of LT'F'.
The monetary cost of WALL is higher than RTH?S, as
W ALL prefers the larger workloads initially. This algorithm
can finish a very number of small and medium jobs.

TABLE 6
Effect of task load on monetary cost
TL | RTH2S (TL}) | WALL (TL}) | LTF (ILT)
1 $1.02 $2.41 $3.29
2 $2.28 $4.02 $5.12
3 $3.53 $5.69 $7.93
4 $5.31 $8.23 $9.89
5 $7.31 $10.72 $13.23

Task deadline and monetary cost (M C): We investigate
the effect of deadline factor on monetary cost M C for the
proposed algorithm RTH?S, WALL and LTF. The results
are shown in Table 7. With the increase in the deadline
factor DF, the deadline becomes more tight and the jobs
have to run in the fog tiers to finish their execution before
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deadlines. As more and more jobs run on the fog tiers, the
monetary cost M C increases. Besides, as deadline become
tighter with increase in deadline factor, less number of jobs
are able to finish with cdc. This happens as jobs have to
travel farther to execute on the cdc. By the time the tight
deadline jobs reach the cdc, it is already too late. RTH 25
utilises the fog tier’s resources to finish the job execution
before the deadlines. This further increases the overall MC'
of our proposed algorithm RTH?S. RTH?S outperforms
LTF and WALL due to the usage of better heuristics. Both
LTF and WALL execute large jobs first, and the execution
cost of large jobs is higher than small and medium jobs.
With deadlines becoming tighter, both algorithms run a
significant portion of large jobs, leading to higher monetary
costs.

TABLE 7
Effect of deadline factor on monetary cost
DF | RTH?S (DFf) | WALL (DFt) | LTF (DF?)
1 $1.13 $1.91 $2.98
2 $1.5 $2.53 $4.08
3 $2.33 $3.45 $5.91
4 $4.98 $6.43 $7.18
5 $6.05 $8.49 $10.23

Task Success Ratio (SR) and queuing delay: We investi-
gate the effect of task load on system performance, while
considering queuing delay. In Fig. 9, we compare the per-
formance of three scheduling algorithms: RTH 28, WALL,
and LTF, by increasing task load 7'L from 1 to 5. We
calculate the finish time of the jobs with and without queu-
ing delay (g). Increasing queuing delay leads to jobs being
unable to meet their deadlines, and therefore a decreasing
system success ratio SR proportional to the number of
jobs. RTH?2S offers better performance, as it considers job
priority, size and deadline. On the other hand, LT F' sorts
jobs from largest to smallest, leading to higher deadline
misses. W ALL chooses a user having the largest job among
all the users — leading to short jobs missing most of the
deadlines.

B RTH’S
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Fig. 9. Effect of queuing delay on SR

6.4 Performance analysis using synthesized dataset

We consider synthesized datasets to evaluate the perfor-
mance of our proposed algorithm RTH 28, LTF, WALL,
and cdc — only. Our dataset comprises [100-300] jobs in job
set J.S. We randomly generate the job between 2000-45000
MI, with memory usge between 0.15GB-2.5GB and Deadline
range of 250ms-10000ms, based on [39], [40]

DF and Success Ratio (SR): We consider the impact on SR
while increasing DF from 1 to 5, higher values of DF makes
it difficult for jobs to finish execution within their deadlines.
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From Fig. 10 we observe a similar trend in the performance
of RTH?S, cdc — only, LTF, and W ALL.
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Fig. 10. Synthetic dataset: Effect of DF on SR

Propagation delay (pd) and Success Ratio (SR): We illus-
trate the impact of pd on SR. We take the delay factor (pd)
as 2, 6, and 12 milliseconds between the user and fog tier-1,
tier-2, and tier-3, respectively. We consider a value of 125
milliseconds between the user and the cdc. As we increase
the delay factor, we see a decrease in the success ratio for
all the jobs in all four scheduling strategies: RT'H?S, LTF,
WALL, and cdc — only. This happens as the jobs’ finish
time increases with the increase in the pd. This is visible in
the results shown in Fig. 11. Due to the reasons mentioned in
the previous sections, we observe the following SR among
the algorithms: RTH?S > WALL > LTF > cdc — only.

1001 m— RTH?S
= cdc - only
- LTF

- AL

1 2 3 4 5

PD

Fig. 11. Synthetic dataset: Effect of pd on SR
6.5 Fog cloud test-bed

Our prototype considers a single tier of fog nodes F'N;
followed by the cloud data center c,. Tier-1 F'N; consists
of two heterogeneous fog nodes. We used a RPi4 Model B
with 4GB RAM, and a desktop with Ubuntu 16.04 operat-
ing system as fnl, and fn? respectively. We used a VM
instance on Amazon EC2 as c,. The first fog node is a RPi4
(Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-
bit SoC 1.5GHz running raspbian OS). The second fog node
is an Intel i7-7700 CPU, 3.60GHz x 8, 64-bit OS with 7.7GiB
RAM. We used a cloud VM instance with 1 vCPU, 1 GiB
memory as ¢,. A regular IPv4 Internet connection is used
to connect the user to the cloud. We do not show the results
for the WALL algorithm, as its performance is similar to LTF,
due to the consideration of 1 tier of fog nodes.

Effect of TL on Success Ratio SR: In the first experiment,
we study the real time performance of proposed algorithm
RTH?S, LTF and c,. Three kinds of job priorities are
considered i.e. P1, P2, P3. Initially, we consider eight jobs.
We gradually increase the number of jobs (upto 48), and
observe the impact on the Success Ratio SR. The results
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are shown in Fig. 12. The SR decreases with the increase
of jobs in all three cases. However, our proposed algorithm
RTH?S outperforms the others due to the usage of supe-
rior heuristic. It incorporates fog nodes in job execution,
while following the earliest deadline first K DF' algorithm.
Moreover, the jobs are assigned according to their priority.
The cdc — only performs worst owing to the significant
propagation delay from user u; to c;.
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Fig. 12. Effect of TL on SR

Effect of DF on Success Ratio SR: The deadline factor for
the tight, moderate and large deadline is Os, 2s, and 10s
respectively. We increase all three deadlines by 1s in each
iteration. As shown in Fig. 13, the best performance is
offered by RTH 25. With a loose deadline, more jobs are
able to finish their execution leading to an increase in the
SR for all three approaches.
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Fig. 13. Effect of DF on SR

Effect of TL on Average Response Time: We estimate the
average response time by varying task load for RTH?2S,
LTF and cdc — only. Initially, we consider 7 jobs, followed
by an increase of 5 per iteration. The average response time
is the sum of execution time & communication delay. With
the increase in the number of jobs, the average response
time increases. The results of this experiment are shown in
Fig. 14. The highest average response time is provided by
cdc — only owing to the high communication delay from
user U; to c,. The lowest average response time is exhibited
by RTH?S followed by LTF, as LTF sorts the deadlines
in descending order leading to short deadline jobs executing
last. This also increases the average response time of the
all jobs. The average improvement in Success Ratio (SR)
offered by RTH?2S over cdc — only and LTF is shown in
Table 8.

Fig. 14. Effect of TL on Average Response Time

Avg response time(sec)

= RTH?S

w cdc— only

Ly

TABLE 8
Average Improvement
Performance metric cdc—only | LTF | WALL
Deadline Factor (DF) 81% 69% 46%
Propagation Delay (P D) 134% 107% 39%
Heterogeneity Level (HL) 106% 43.5% 29%
Task Load (T'L) 81% 64% 42%

7 CONCLUSION

Significant propagation delays between users and the cloud
data center may act as a deterrent for executing deadline
driven real-time jobs. This delay can be reduced by employ-
ing fog nodes for the execution of such jobs. In addition, it
may very well be the case that there is a hierarchy of fog
nodes [2]. Typically, fog nodes in various tiers (and even
within a particular tier) are heterogeneous. In this paper,
we propose RT'H?2S, an algorithm that schedules real-time
jobs on a multi-tiered fog network by taking diverse job
profiles into account. Using a real-life workload, RTH?S is
validated using a simulator as well as a prototype. We ob-
serve that RT'H?S offers better real-time results in terms of
higher Success Ratios, and reduced Monetary Costs. We also
observe that job profiles impact the real-time system perfor-
mance. An increase in number tagl profile jobs impact the
regular profile jobs, leading to deadline misses and lower
SR values. Our future work involves the use of multiple
cloud data centers. We also plan to develop “schedulability”
and performance bounds for real-time tasks on such multi-
tier fog-cloud architectures.
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