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We use the functional Renormalisation Group (fRG) to describe the in and out of equilibrium
dynamics of stochastic processes, governed by an overdamped Langevin equation. Exploiting the
connection between Langevin dynamics and supersymmetric quantum mechanics in imaginary time,
we write down renormalisation flow equations for the effective action, approximated in terms of the
Local Potential Approximation and Wavefunction Renormalisation. We derive effective equations of
motion (EEOM) from the effective action (EA) Γ for the average position 〈x〉, variance 〈(x− 〈x〉)2〉
and covariance. The fRG flow equations outlined here provide a concrete way to compute the EA
and thus solve the derived EEOM. The obtained effective potential should determine directly the
exact equilibrium statistics, name the position, the variance, as well as all higher order cumulants
of the equilibrium Boltzmann distribution. This first paper of a two part series is mostly concerned
with setting up the necessary formalism while in part two we will numerically solve the equations
derived her and assess their validity both in and out of equilibrium.

I. INTRODUCTION

Stochastic processes appear in all kinds of contexts
in physics. From the Brownian motion of small parti-
cles in a thermal bath [1, 2] to scalar fields experiencing
quantum fluctuations in the early inflationary universe
[3], many problems of interest can be described by the
overdamped Langevin equation (4). However, the fluc-
tuations (thermal or effectively thermal) occur very fre-
quently and if one were to attempt to adequately simu-
late such a process a suitable small timestep size would
have to be chosen. This means we only have an imme-
diate understanding of the physics on small timescales.
Understanding long-time behaviour and finding the equi-
librium properties of the system from its initial out-of-
equilibrium state requires following the stochastic process
for times much longer than this fundamental timescale.
It is natural therefore to ask if a ‘coarse grained’ de-
scription in time would be beneficial in tracking the long
time behaviour at reduced computational cost. This de-
sire to coarse-grain time and examine physics on different
temporal scales lends itself naturally to the tools of the
Renormalisation Group (RG).

The renormalisation group was brought to full force
through the work of K. Wilson [4] who used it to un-
derstand phase transitions and since then the RG has
become a widely used technique in modern physics with
many applications in both particle physics [5] and con-
densed matter physics [6]. The RG is relevant whenever
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fluctuations significantly influence the state (static or dy-
namical) of a physical system. Its conceptual framework
as applied in condensed matter is perhaps most apt for
describing the goal in this work: the RG interpolates be-
tween a small lattice size, where the underlying physics is
known, to a much larger lattice size by including the ef-
fect of fluctuations on all intermediate length scales, pro-
viding an effective picture that averages over all such fluc-
tuations. In this work we apply this idea to the stochastic
dynamics of a Brownian particle. For us the small lat-
tice size corresponds to a small fundamental timescale
over which the dynamics is adequately described by the
Langevin equation (4). We seek an effective description,
valid over much longer timescales, that captures the ag-
gregate effect of fluctuations. The effective description
is embodied in an effective action Γ[χ(t)] of the average
position χ(t) ≡ 〈x(t)〉. In particular, one can use the
effective action to compute n-point correlation functions
of the particle’s position 〈x(t1)x(t2) . . . x(tn)〉, character-
izing the system’s statistical properties. To obtain this
effective long-time behaviour we will use a version of the
RG known as the functional or exact or non-perturbative
Renormalisation Group.

The functional Renormalisation Group (fRG) [7, 8] has
been applied successfully to many nonequilibrium prob-
lems [9–20]. However this tends to come with many
technical difficulties not present in equilibrium systems.
Typically one has to begin with an initial state and cal-
culate correlation functions from it using the Schwinger-
Keldysh closed time path, sometimes called the in-in for-
malism. For an introduction to the fRG as applied to
nonequilbirium using this technique see e.g. [21, 22].
What we will outline in this paper however is a much less
technically involved method to computing in and out of
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equilibrium dynamics in systems which exhibit classical
stochastic fluctuations. In particular we describe how the
fRG can be used to derive effective equations of motion
that will be solved in part two of this series. We preface
this derivation with a review of what is known and bring
together disparate elements from the literature into a co-
herent narrative. The busy reader is therefore directed
to sections IV & V for our main results.

The fRG offers advantages compared to other formula-
tions of the RG, including its ability to deal with theories
with strong couplings and its focus on a single object, the
effective action Γ. These features will allow us to study
stochastic motion in non-harmonic potentials with arbi-
trary shapes that do not offer themselves to be studied
straightforwardly via standard perturbative RG meth-
ods more commonly employed.1 The effective action can
be thought of as an analogue to the statistical free en-
ergy and can be derived from the partition function or
generating functional via a Legendre transform. Wet-
terich showed [7] - see also [8] - how one can define Γ at
some particular energy or momentum scale Λ in the UV
(small timestep/high frequency for us) where the theory
is known and then create an RG flow that interpolates
through all energy (frequency/momentum) scales down
to the IR (i.e. increasing timestep size/decreasing fre-
quency). This changing of the effective theory at differ-
ent energy scales or lattice sizes, the fundamental idea
behind the RG, can be formulated in a differential equa-
tion known as the Wetterich equation:

k∂kΓk =
1

2
Tr

[
k∂kRk

(
Γ

(2)
k +Rk

)−1
]

(1)

where Γk is the effective action at energy scale (fre-
quency/momentum) k, Tr denotes a trace over spatio-
temporal points (an integral over spacetime) and a trace
over all other relevant indices, Rk is an IR regula-
tor that acts as a cut-off for fluctuations below en-
ergy scale/frequency k, and Γ

(2)
k is the second functional

derivative of Γk – see [24] for a review and an entry point
to the literature on the subject, [25] for a comprehen-
sive overview of applications as well as e.g. [26, 27] for
more elementary introductions. A simple manifestation
of this flow equation, stemming from the Boltzmann equi-
librium distribution, is presented in Appendix B. In this
work we put equation (1) to use for studying the dy-
namics of particles under the influence of a deterministic
force, stemming from an arbitrary potential, and thermal
fluctuations.

We start in Sec. II by reviewing the connection be-
tween Langevin dynamics and Supersymmetric quantum

1 An example of a non-standard perturbative technique that can
deal with non-harmonic potentials (such as the doublewell) is the
self-consistent expansion [23] which can also compute equilibrium
correlation functions to good accuracy. We would like to thank
Eli Barkai for pointing this out to us.

mechanics in imaginary time first shown in [28] - see e.g.
[29] for a review of this connection. The path integral
formulation of section II then allows us to apply the fRG
program directly. We also include a brief summary of
how the Langevin equation can be reformulated in terms
of a probability distribution function whose evolution is
described by the Fokker-Planck equation (29) and how
the latter relates to a Euclidean Schrödinger equation.

In Sec. III we present the flow equations for the ef-
fective action utilising a slight modification of the results
of [30] for supersymmetric RG flows. As we explain, the
flow equation derived from the supersymmetric formu-
lation ensures compatibility with the equilibrium Boltz-
mann distribution, in contrast to a naive application of
the renormalisation group to the Onsager-Machlup form
of the generating functional. Recently, the fRG has been
applied for smoothing temporal fluctuations in Langevin
dynamics in [31] without direct use of supersymmetry.
As discussed in [32], the physically inspired conditions
the authors of [31] require of their flow equations are
straightforwardly imposed by the Supersymmetric flow.
The supersymmetric flow equation itself was first derived
in [30] but without making any connection to stochastic
dynamics. This connection was made independently in
[33] – see also [34] – which however considered a field
theory in extended spatial dimensions and smoothing of
spatial fluctuations, not temporal fluctuations as we do
here. In fact, the authors of [30] obtain a slightly dif-
ferent flow equation when wavefunction renormalisation
is included since they do not connect the action func-
tional they study to Brownian motion and the corre-
sponding equilibrium Boltzamnn distribution. This Su-
persymmetric fRG flow has only been very recently uti-
lized in the context of the stochastic dynamics of early
universe inflation [32, 35, 36]. To turn the functional
integro-differential equation (1) into a mathematically
more tractable form we employ two commonly used ap-
proximations for the effective action Γk: the Local Poten-
tial Approximation (LPA) as well as the LPA augmented
by Wavefunction Renormalisation (WFR). As we discuss,
the LPA offers a clear physical interpretation for the ef-
fective action: as the effect of fluctuations is progressively
taken into account during the flow, the effective potential
Vk(x) experienced by the particle is altered, compared to
the bare, fundamental potential V (x). This physical in-
terpretation is often under-emphasised or absent in the
literature hence our desire to highlight it here. Wavefunc-
tion Renormalisation (WFR) involves a second function
Zk(x) which can be interpreted as a redefinition of posi-
tion x→ Z(x).

In Sec. IV we demonstrate how the Effective Action Γ
allows one to naturally compute so-called effective equa-
tions of motion (EEOM) through variational derivatives
in a manner completely analogous to how one computes
the classical equations of motion from the classical action
S. We do this first for the one point function (or average
position χ) and show how its equation of motion sim-
ply reduces to an overdamped equation in an effective
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potential with no noise i.e. purely classical. We then
demonstrate how the evolution of the two point function
can be obtained by taking two variational derivatives of
Γ and solving this Green’s function equation (71) gives
the effective equation of motion for the Variance (74) and
Covariance (75).

In Sec. V we discuss the equilibrium limit and demon-
strate how the fRG can straightforwardly provide ob-
servable quantities that could be measured in simula-
tions. These are in the form of n-point connected cor-
relation functions, or Ursell functions, which can be ob-
tained from Γk=0 in a standard way. In particular, we
demonstrate how the effective potential and wave func-
tion renoromalization provide the equilibrium average
position, variance and the time dependence of the covari-
ance or connected 2-point function, while also discussing
how higher order correlation functions like the 3-point
and 4-point functions can in principle be obtained for
particles in equilibrium.

We conclude in Sec. VI by summarising our analytical
results. In Appendix A we show that our results also
apply for two mutually interacting particles in 2D and
3D. Appendix B derives the analogue of the Wetterich
equation (1) for the effective potential corresponding to
the equilibrium Boltzmann distribution. In Appendix C
we include a detailed derivation for solving (71) in order
to obtain the EEOM for the two-point function.

Part two of this series will explicitly solve the equa-
tions derived here numerically and assess their ability to
recover statistical correlators both in and out of equi-
librium. We find great agreement at moderate to high
temperatures (compared to typical barrier heights of the
relevant problem) with the low temperature regime be-
ing outside the validity of the fRG derivative expansion
approach.

II. BROWNIAN MOTION AS
SUPERSYMMETRIC QUANTUM MECHANICS

This section pedagogically reviews Brownian motion
and its path integral formulation that resembles Super-
Symmetric Quantum Mechanics. We exploit this link
to derive the flow equations in the next section but the
reader familiar with this formulation of Brownian Motion
can skip this section.

Brownian motion for a single particle of mass m mov-
ing in a potential V̄ (x), coupled to an external heat bath
with temperature T , can be described by the Langevin
equation:

mẍ+ γẋ = −∂xV̄ (x) + f(t) (2)

〈f(t)f(t′)〉 = 2Dγ2δ(t− t′) (3)

where γ is a frictional term due to the surrounding fluid,
f(t) is a gaussian “noise” term and V̄ (x) = mV (x) is the
particle’s potential energy. D = kbT/γ is the diffusion
constant with equality given so as to match the Boltz-

mann equilibrium distribution (should it exist). Here-
after, we will be concerned with the overdamped limit:

ẋ = −ε∂xV (x) + η(t) (4)

〈η(t)η(t′)〉 = 2Dδ(t− t′) (5)

to which the system settles over a timescale ε ≡ m/γ
which we assume to be short.2 Note that the overdamped
equations are a consistent approximation to the full dy-
namics as long as m2V ′′/γ2 � 1.

We will be examining the impact of changing the tem-
perature, and hence changing the strength of the fluctu-
ating force ξ, on the coarse-grained effective theory. Let
us therefore introduce a reference temperature T0 and a
dimensionless parameter Υ which allows us to dial the
temperature around T0. Writing D = D0Υ, we further
define dimensionless variables

x =
√

2D0ε x̂ , t = ε t̂ (6)

V (x) =
2D0

ε
V̂ (x̂) , η(t) =

√
2D0

ε
η̂(t̂) (7)

in terms of which the dynamical equation becomes

dx̂

dt̂
= −∂V̂

∂x̂
+ η̂(t̂) (8)

〈η̂(t̂)η̂(t̂′)〉 = Υδ(t̂− t̂′) (9)

From here onwards we will be dropping the hats for sim-
plicity of notation but generally refer to dimensionless
quantities unless otherwise stated.

A. The Brownian Motion Path Integral

In order to bring the powerful tools of Quantum Field
Theory such as the fRG to bear, we will need to reformu-
late the stochastic differential equation (8) in terms of a
path integral. In this subsection we will outline one way
to obtain this path integral, aiming to link this to Super-
symmetric Quantum Mechanics. Our final expression,
and the starting point of our subsequent analysis, is the
Brownian Motion transition probability (21), expressed
in terms of an integral over possible histories weighted by
the action (22), to which the busy reader may progress
if uninterested in the details of the derivation. We will
be using a condensed functional notation of infinite di-
mensional functional integrals but all expressions can be
considered as limits of large, finite dimensional ordinary
integrals. This derivation is based on the path integral
reformulation by De Dominicis, Peliti and Janssen [37–
39] of the well known Martin-Siggia-Rose approach for

2 These equation for a single particle in 1-D can also be used to
describe the radial separation of two particles moving in 2-D or
3-D – see Appendix A.
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stochastic dynamics, first developed in [40]. More details
on these path integrals, including the corresponding fi-
nite discretisation of the stochastic process can be found
in [41].

The dynamics of the (dimensionless) Langevin equa-
tion (8) can be captured in terms of the Probability Dis-
tribution Function (PDF) P(xf |xi) of observing the par-
ticle at xf at time t = tf given that initially at t = ti the
particle was at xi. By definition this can be expressed
as:

P(xf |xi) = 〈δ (x(tf )− xf )〉 (10)

where the expectation value is taken over all possible re-
alisations of the noise η(t) and δ (x(tf )− xf ) is the Dirac
delta function. Put another way, x(tf ) is the position at
tf for a given noise history η(t) and the brackets indicate
averaging over all possible noise histories, or stochastic
paths, which start at xi and end up at x(tf ) = xf at tf .
This is precisely a path integral so we can rewrite the
PDF using a gaussian measure for noise (5) and express
the average as

P(xf |xi) =

∫
Dη(t)δ (x(tf )− xf ) exp

[
−
∫

dt
η2(t)

2Υ

]
(11)

where each noise history is weighted by the exponential
factor in the above expression. We now consider the iden-
tity (see e.g. [29]):

1 =

∫
dxf

∫ xf

xi

Dx(t) δ (x(t)− xη(t)) (12)

=

∫
dxf

∫ xf

xi

Dx(t) δ (ẋ+ V,x − η(t)) detM

=

∫
xi

Dx(t) δ (ẋ+ V,x − η(t)) detM (13)

where the matrix M(t, t′) is:

M ≡ δη(t)

δx(t′)
=

(
d

dt
+ V,xx

)
δ(t− t′) . (14)

This identity expresses the obvious fact that, if the par-
ticle starts at some xi and follows a particular history
xη(t) dictated by the Langevin equation without disap-
pearing, it will end up somewhere after time tf . We have
used the standard subscript notation to denote deriva-
tive with respect to that variable e.g. V,xx = ∂xxV . Note
that the second path integral in (13) is over all paths
starting at xi at ti and ending at any x at tf . Inserting
our ‘fat unity’ factor (13) into (11) and noting that the
delta function there restricts x(tf ) to be xf we obtain:

P(xf |xi) =

x(tf )=xf∫
x(ti)=xi

DηDx δ (ẋ+ V,x − η) detM

× exp

[
−
∫

dt
η2(t)

2Υ

]
(15)

where the Dx(t) integral is taken over all paths beginning
at xi and ending at xf . We can rewrite the delta function
as a functional Fourier transform using a new variable x̃
which is usually called the response field :

δ (ẋ+ V,x − η) =

∫
Dx̃ exp

[
i

∫
dt x̃ (ẋ+ V,x − η)

]
(16)

There are a couple of standard ways we can incorporate
detM into an exponential. Formally writing

M =

(
d

dt

)(
1 +

(
d

dt

)−1

V,xx

)
≡
(
d

dt

)
M̃ , (17)

where the matrix
(
d
dt

)−1
(t, t′) = Θ(t− t′), we see that

detM = det

(
d

dt

)
× detM̃ ∝ exp

[
Tr log

(
M̃
)]

∝ exp

[
1

2

∫
dt V,xx

]
(18)

where we used the Stratonovich prescription (θ(0) =
1/2). Alternatively, and to make the link with SUSY
clearer, we can use anticommuting variables3 c and c̄ such
that:

det M =

∫
DcDc̄ exp

[∫
dt c̄ (∂t + V,xx) c

]
(19)

This Gaussian integral can be done explicitly also lead-
ing to (18). However it pays to keep the determinant
expressed in this form. Inserting equations (16) & (19)
into (15) we obtain:

P(xf |xi) =

∫
DηDxDx̃DcDc̄

exp

[∫
dt
{
− η2

2Υ
+ ix̃ (ẋ+ V,x − η)

+c̄ (∂t + V,xx) c
}]

(20)

We can now trivially perform the gaussian integral over
η to obtain the path integral in terms of the Brownian
Motion (BM) action SBM (x, x̃, c̄, c):

P(xf |xi) =

∫
DxDx̃DcDc̄ exp [−SBM (x, x̃, c̄, c)]

(21)

SBM (x, x̃, c̄, c) =

∫
dt

[
Υ

2
x̃2 − ix̃(ẋ+ V,x)

−c̄ (∂t + V,xx) c

]
(22)

3 These suggestively already look like fermionic fields which we
will see they are related to in the Supersymmetric picture
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Computing this path integral, which henceforth shall be
called the Brownian Path Integral (BPI), is in general im-
possible analytically. Instead we will be using the fRG to
compute it numerically using the appropriate flow equa-
tion. Redefining our fields as :

x(t) ≡
√

Υϕ(t)

V (x) ≡ ΥW (ϕ)

x̃ ≡ 1√
Υ

(iϕ̇− F )

c̄c ≡ iψ̄ψ
(23)

we obtain

SBM [ϕ, F, ψ̄, ψ] = [W (ϕf )−W (ϕi)] + SSUSY (24)

where

SSUSY [ϕ, F, ψ̄, ψ] =

∫
dt

[
1

2
ϕ̇2 +

1

2
F 2 + iFW,ϕ(ϕ)

− iψ̄(∂t +W,ϕϕ(ϕ))ψ

]
(25)

Action (25) describes the dynamics of Euclidean, or
imaginary time, Supersymmetric Quantum Mechanics
where ψ & ψ̄ are the fermionic fields and ϕ & F are the
bosonic fields [30]. We have shown that the same action
also describes Brownian motion and the BM action is
equivalent to the SUSY QM one up to a factor depend-
ing on the initial and final positions xi & xf . As the
integrand of the BPI (21) does not depend on the final
or initial states this (now exponential) factor can be sim-
ply taken outside the integral. Variation of SSUSY with
respect to F yields its “equation of motion” F = −iW,ϕ

which when substituted back into SSUSY yields the “on
mass-shell” action

SOM [ϕ, ψ̄, ψ] =

∫
dt

[
1

2
ϕ̇2 +

1

2
W,ϕ

2

− iψ̄(∂t +W,ϕϕ)ψ

]
(26)

It is illuminating to express the above action in terms of
the original dimensional variables and perform the inte-
gration over ψ̄ and ψ, leading to the alternative form of
the term stemming from the determinant:

SOM [x] =

∫
dt

2Dm

[
1

2
mẋ2 +

1

2
ε2mV,x

2 −DmεV,xx
]
(27)

Note that 2Dm has the dimensions of action and there-
fore plays in the thermal problem a role analogous to
~ in quantum mechanics - see also section II B in this
respect. Unlike ~ of course, it can be varied by chang-
ing the temperature, therefore controlling the strength of
fluctuations.

The fRG was first applied to a system governed by the
action (25) by Synatschke et. al [30] whose approach we

adopt in what follows - see also [33]. As the the relevant
manipulations are quite involved, we refer the reader to
[30] for technical details regarding the derivation of the
flow equations.

Before moving on to the fRG we outline how the
on-mass shell action (27) can be obtained from the
Fokker-Planck equation which resembles a Euclidean
Schrödinger equation.

B. The Fokker-Planck equation

Instead of working with the Langevin equation directly
once can deal directly with the probability distribution
of position:

P (x, t) = 〈δ(x− xη)〉 (28)

where xη is the solution to (4) for a given noise function
η (i.e. a specific trajectory). It can be shown that this
evolves according to the following PDE:

∂P (x, t)

∂t
= ∂x(P (x, t)∂xV ) +

Υ

2
∂2
xxP (x, t) (29)

which is known as the Fokker-Planck (F-P) equation. It
is usually more useful however to rescale the PDF like so:

P (x, t) = e−V/ΥP̃ (x, t) (30)

where the time independent solution P (x) = e−V/Υ

which corresponds to (the square root of) the equilib-
rium Boltzmann distribution, is scaled out. This enables
the F-P equation to take the form:

Υ

2

∂P̃ (x, t)

∂t
=

(
Υ

2

)2

∂2
xxP̃ (x, t) + Ū P̃ (x, t) (31)

Ū ≡ Υ

4
∂2
xxV −

1

4
(∂xV )2 (32)

which resembles a Euclidean Schrödinger equation with
Υ/2 playing the role of ~ to control the fluctuations as
one might expect. Following standard procedures, we
can then write solutions to this Schrödinger equation as
a path integral. For our F-P equation we can then ex-
press the propagator as (restoring the original dimen-
sional variables):

〈xf , tf |xi, ti〉 = N exp
( ε

2D
[V (xf )− V (xi)]

)
×
∫
Dx(τ) exp

(
−
∫

dτ

2Dm

{
1

2
m(∂τx)2 − Ū(x)

})
(33)

The exponential prefactor has come from the fact that
we redefined our physical probability P(x,t) in equation
(30) and we must rescale back in order to get the physi-
cal probability. We therefore recover the “on mass-shell”
path integral (27) obtained earlier. Note the importance
of treating the determinant (18) correctly in order to ob-
tain the ∂2

xxV term in the Schrödinger potential U .
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A benefit of working directly with the probability dis-
tribution is that it is straightforward to compute sta-
tistical moments. For instance the one- and two-point
functions at time T using the PDF are given by:

χ(T ) =

∫ ∞
−∞

x(T ) · P (x, T )dx (34)

Var[x(T )] =

∫ ∞
−∞

[x(T )− χ(T )]2 · P (x, T )dx

(35)

Higher statistical cumulants can be computed in a similar
manner. If one wants to compute how statistical quan-
tities such as average position evolve out of equilibrium
then the standard recipe is as follows:

1. Start with an initial probability distribution for the
particle’s position at t = 0: P0 = P (x, t = 0)

2. Evolve this probability distribution according to
(31) to the desired final time T

3. At each time increment compute your desired
statistic using e.g. (34) for average position

III. APPLYING THE FUNCTIONAL
RENORMALISATION GROUP

The formulation of the fRG involves a functional (infi-
nite dimensional) differential equation known as the Wet-
terich equation [7] that describes the ‘flow’ of the effective
action between the microscopic and macroscopic scale.
This ‘flow’ is described by a parameter k that ranges from
the UV cutoff Λ down to the IR regime as k → 0. In our
Brownian motion scenario, microscopic regime refers to a
small timestep and macroscopic to a long timestep. The
definition of Λ ∼ 1/∆t is analogous to the Condensed
Matter interpretation of the cutoff being inversely pro-
portional to the lattice size, the only difference here be-
ing that the Condensed Matter lattice is in space and
ours is in time. We will use the fRG ultimately to cal-
culate correlation functions of the particle position. As
this derivation uses known techniques and results we refer
the busy reader to our basic equations and main results
of this section: equation (51) for the Local Potential Ap-
proximation to the RG flow and when we also include
Wavefunction Renormalisation they are (58) and (59).
Before starting this derivation, we briefly recall how to
generate correlation functions in the standard Field The-
ory way.

In Euclidean Quantum Field Theory correlation func-
tions can be evaluated with the help of generating func-
tionals. The most straightforward of these is the par-
tition functional Z(J) which depends on a source term
J(x) (in analogy with a magnetic field source term M(x)
in spin systems). For example, the two point correlation

function is:

〈x(t1)x(t2)〉 ≡
∫
Dx x(t1)x(t2) exp [−S[x]]∫

Dx exp [−S[x]]
(36)

=
1

Z(0)

δ2Z(J)

δJ(t2)δJ(t1)

∣∣∣∣
J=0

(37)

where

Z(J) =

∫
Dx exp

[
−S[x] +

∫
t

Jx

]
, (38)

S[x] is the action and
∫
t

=
∫
dt. We have assumed in

the above that S depends only on a single variable x(t)
for notational brevity but the above formulae are mod-
ified straightforwardly for any number of variables xi(t)
which can be coupled to corresponding sources Ji(t). For
example xi(t) ≡ (x(t), x̃(t), c̄(t), c(t)) in (21).

We can store the information encoded in Z(J) better
in the object W[J ]:

W[J ] ≡ ln (Z(J)) (39)

which is the generator of connected correlation functions
(or Ursell functions):

〈x(t1)...x(tn)〉C =
δnW[J ]

δJ(t1)...δJ(tn)
(40)

So for instance the connected 2-point function (more
commonly known as covariance) G(t1, t2) is:

G(t1, t2) ≡ 〈x(t1)x(t2)〉C = 〈x(t1)x(t2)〉 − 〈x(t1)〉 〈x(t2)〉

=
δ2W[J ]

δJ(t1)δJ(t2)
(41)

ComputingW[J ] directly however is very difficult. Stan-
dard approaches involve perturbative expansions leading
to the well known diagrammatic Feynman rules. In this
work we will calculate a related object, the effective ac-
tion Γ[χ] given by the Legendre transform of W[J ]

Γ[χ] =

∫
t

Jχ−W[J ] (42)

where the field χ corresponds to the expectation value of
x in the presence of the source field J , satisfying

χ =
δW[J ]

δJ
= 〈x〉J (43)

The fRG formulation adds a regulating term to the
action in our definition of the generating functional:

Zk(J) =

∫
Dx exp

[
−S[x]−∆Sk[x] +

∫
t

Jx

]
(44)

where the regulating term ∆Sk[x] is quadratic in x:

∆Sk[x] =
1

2

∫
t,t′

x(t)Rk(t, t′)x(t′) (45)
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Crucially Rk is an IR regulator that depends on a Renor-
malisation scale k and the momentum/frequency p of the
modes. The precise form of Rk is not crucially impor-
tant and it is chosen in order to optimize calculations
but it should suppress IR modes and vanish as k → 0,
lim
k→0

Rk = 0, ensuring that the full effective action (42)

is recovered in this limit. By defining the mean position
as before χ(t) ≡ 〈x(t)〉 we can construct the Regulated
Effective Action:

Γk[χ] =

∫
t

Jχ−Wk[J ]−∆Sk[χ] (46)

where Wk[J ] = ln (Zk) is analogous to the non-regulated
case.

From the Regulated Effective Action one can obtain
obtain the Wetterich equation [7, 8]:

∂kΓk[χ] =
1

2

∫
t,t′

∂kRk(t, t′)
[
Rk + Γ

(2)
k

]−1

(47)

which is a functional equation determining how Γk
changes as k → 0. It interpolates Γk from the microscopic
scale (k = Λ), where ΓΛ = S, down to the IR regime
(k = 0) where the full effective action Γ[χ] = Γk=0[χ],
encoding the effect of all fluctuations, is obtained. A
simplified derivation for one degree of freedom at equi-
librium, which however captures all the relevant manip-
ulations, can be found in Appendix B.

As demonstrated in the previous section, our Brownian
motion problem is actually SUSY QM. We can therefore
apply the fRG technology and incorporate the effect of
thermal fluctuations by following the flow of the effective
action Γk via the Wetterich equation. Synatschke et. al
have analysed a system with action SSUSY in light of its
underlying symmetries in [30]. We adopt their results
here. They find that from a supersymmetric perspective,
the appropriate regulating term takes the form

∆Sk=

∫
ττ ′
r2(k,∆τ)

[
−φ̇(τ)φ̇(τ ′) + F (τ)F (τ ′)− iψ̄(τ)ψ̇(τ ′)

]
+ 2ir1(k,∆τ)

[
φ(τ)F (τ ′)− ψ̄(τ)ψ(τ ′))

]
(48)

where ∆τ ≡ τ − τ ′. Such a form was also suggested
in [31], however we will see that compatibility with the
Boltzmann distribution suggests setting r2 → 0. The
flow equations of [30] are discussed below.

A. Local Potential Approximation

In practice, calculating Γk exactly is usually impos-
sible and we must consider a truncation to make the
functional equation (47) tractable. The most common
approximation is the so-called derivative expansion. The
Local Potential Approximation (LPA), the leading order
in the derivative expansion, is the assumption that the
only part of the effective action that depends on our mo-
mentum scale k is the superpotential W . The effective

action then takes the form:

Γk[φ, F, ψ̄, ψ] =

∫
dτ

[
1

2
φ̇2 +

1

2
F 2 + iFWk,φ(φ)

− iψ̄ (∂t +Wk,φφ)ψ

]
(49)

such that Γk=Λ = SSUSY under the condition
Wk=Λ(φ) = W (φ) with φ ≡ 〈ϕ〉 being the mean field.
In this approximation the only thing changing with k
directly, progressively incorporating the effect of fluctua-
tions on different timescales, is Wk. This means we only
have one flow equation to solve which turns out to be
[30]:

∂kWk(φ) =

∫ ∞
−∞

dp

4π

(1 + r2)∂kr1 − ∂kr2 (r1 + ∂2
φWk(φ))

p2 + (r1 + ∂2
φWk(φ))2

We notice that if we set r2 = 0 and choose a local-in-
time r1(k, δτ) = kδ(τ−τ ′) the so-called Callan-Symanzik
regulator then this choice4 effectively adds a quadratic
term to the potential W → W + kφ2 and leads to a
relatively simple flow equation:

∂kWk(φ) =
1

4
· 1

k + ∂2
φWk(φ)

. (50)

In terms of the physical variables we have

∂kVk(χ) =
Υ

4
· 1

k + ∂2
χVk(χ)

, (51)

which shows explicitly the effect of dialling the tempera-
ture Υ: the higher the temperature the faster the flow as
a result of stronger thermal fluctuations. Equation (51)
can be discretised in the χ direction and become a set of
coupled ODEs that can be solved in the k direction in
order to obtain a numerical solution.

It is important to note that equation (51) is identical
to the flow of the effective potential that corresponds to
the equilibrium Boltzmann distribution, see [42] and Ap-
pendix C with R → k. We therefore see that the form
of SSUSY and deriving flow equations in a framework
which respects its symmetries is crucial for establish-
ing consistency with the equilibrium Boltzmann distribu-
tion. If one started directly from the Onsager-Machlup
functional (27) and naively treated it as an N = 1 Eu-
clidean scalar theory in one-dimension with the combi-
nation U = 1

2 (V,x)
2 − Υ

2 V,xx as the scalar potential to
be evolved along the RG flow, one would have obtained
a different flow equation

∂kUk(φ) =
1

2

∫ ∞
−∞

dp

2π

∂kRk
p2 +Rk + ∂2

φUk(φ)
. (52)

4 Physically speaking the final results should be independent of
the regulator chosen. This is a subtlety we will not address in
this work as it was shown in [30] that even for other choice of
regulators the difference in the final results was negligible, at
least for the LPA.
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The corresponding Callan-Symanzik regulator would be
Rk = k2, giving

∂kUk(φ) =
1

2

k√
k2 + ∂2

φUk(φ)
. (53)

It is unclear how or if the end-of-the-flow potential Uk=0

from this equation relates to the physical potential Vk=0

and the flow appears a-priori incompatible with the
Boltzmann distribution.

B. Wave Function Renormalisation

In the previous subsection we assumed that the effec-
tive action Γk only depends on the renormalisation scale
through the form of the potential. We now allow for the
field ϕ itself to be renormalised which results in a scaling
of the kinetic term. The new effective action in the SUSY
formalism is [30]:

Γk[φ, ψ̄, ψ] =

∫
dt

1

2
Z2
,φφ̇

2 +
1

2

(
W,φ

Z,φ

)2

−iψ̄
(
Z2
,φ∂t + Z,φZ,φφφ̇− Z,φφ

W,φ

Z,φ
+W,φφ

)
ψ (54)

where we have suppressed the explicit dependence on k
of W & Z to avoid overly cluttered notation. From now
on we will in general drop this explicit dependence on k
for W , V , Z & ζ, defined below, only restoring it when
we are directly comparing it to the original cutoff value.
We introduce an additional identification in addition to
(23):

ζ(x) =
√

ΥZ(φ)⇒ ζ,x = Z,φ (55)

c̄c = −iζ,xψ̄ψ (56)

such that the (on-shell) effective action for Brownian mo-
tion is now written as:

Γk[χ, c̄, c] =

∫
dt

1

2Υ
ζ2
,χχ̇

2 +
1

2Υ

(
V,χ
ζ,χ

)2

−c̄
(
ζ2
,χ∂t + ζ,χζ,χχχ̇− ζ,χχ

V,χ
ζ,χ

+ ·V,χχ
)
c (57)

The regulator term becomes more complicated for this
action and we do not reproduce it here, see [30] for details
of this. Following their approach one arrives at the LPA
+ WFR flow equations:

∂kVk(χ) =
Υ

4
· 1

k + ∂2
χχVk(χ)

(58)

∂kζ,χ =
Υ

4
· P
ζ,χ · D2

(59)

D ≡ V,χχ + k ζ2
,χ (60)

P ≡ 4ζ,χχV,χχχ
D

− (ζ,χχζχ),χ −
3ζ2
,χV

2
,χχχ

4D2
(61)

which now consist of the previous LPA equation for the
effective potential (51) as expected, augmented by one
more flow equation for the wavefunction renormalisation
ζ,χ.

As before we will integrate the LPA equation (51) by
discretising along the χ direction and solving the result-
ing set of coupled ODEs in k. Once the effective potential
Vk(χ) has been obtained the second PDE can be solved
for ζ,χ in a similar way. It is worth pointing out here
that our approach differs slightly from [30] in that the ef-
fective potential obeys the same equation as in the LPA
approximation even with the inclusion of WFR.5 This is
because the equilibrium state is described exactly by the
LPA equation [36, 42, 43], as we mentioned above and
explicitly recall in Appendix B. The LPA flow equation
was first solved in [30, 42, 43], while more recently WFR
was included for a double well potential in [36].

IV. THE EFFECTIVE EQUATIONS OF
MOTION

A standard formulation of classical mechanics involves
the principle of least action. If one considers the classical
action S:

S =

∫
dt L(x, ẋ) (62)

where L(x, ẋ) is the Lagrangian, then one can obtain the
equations of motion by taking the variational derivative
and setting it equal to zero:

δS
δx

= 0 (63)

The Effective Action (EA) Γ is so named because its
definition makes it look like a standard classical action
once fluctuations have been integrated out:

e−Γ =

∫
Dx e−S (64)

It is then natural to ask whether we can extend the vari-
ational principle used to obtain the classical equations
of motion from S to obtain effective equations of mo-
tion from Γ. As the fRG has Γ as its central object it
is ideally placed to calculate these effective equations of
motion. This is what we will demonstrate in the rest of
this section.

5 For the WFR approximation the authors of [30] use a spectrally
adjusted regulator which is evaluated on a background field φ̄.
They make the simple choice of identifying this background field
with the fluctuation field (i.e. φ̄ = φ). This approach how-
ever modifies the flow of Vk – i.e. equation (58) differs from the
LPA version (51) – which means the flow no longer correctly ap-
proaches the Boltzmann equilibrium distribution’s effective po-
tential and leads to deviations from the correct equilibrium po-
sition and variance. The only choice of φ̄ that prevents this from
happening is one where Z′k(φ̄) = 1 for all k which is what we
have done here.
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A. The EEOM for the one point function

In a similar way to how the classical action S(x) can
yield the classical equations of motion through varia-
tional derivatives, so too does Γ[χ] yield the effective
equation of motion for the one point function (or average
position) χ:

δΓ

δχ(t)
= 0 (65)

Here we have assumed there are no external sources6 (J
= 0).
Under the LPA equation (65) is:

δΓk=0

δχ(t)
= χ̈− ∂χVk=0(χ) ∂2

χVk=0(χ) = 0 (66)

where the final equality comes by assuming that source
terms have been set to zero (i.e J(t) = 0). The WFR
version of (65) reads:

(ζ,χχ̇)˙− ∂χVk=0

ζ2
,χ

(
∂2
χχVk=0 −

ζ,χχ
ζ,χ

∂χVk=0

)
= 0 (67)

where ∂χζ and ∂2
χζ are also evaluated at k = 0. Both of

these second order differential equations can actually be
reduced to a first order differential equation like so:

χ̇ = −Ṽ,χ(χ) (68)

where we have introduced the effective dynamical poten-
tial Ṽ defined by

Ṽχ(χ) ≡


Vχ(k = 0, χ), for LPA

Vχ(k = 0, χ)

ζ2
χ(k = 0, χ)

, for WFR
(69)

Here we can clearly see that for LPA the effective and ef-
fective dynamical potentials are equivalent whereas WFR
receives an additional factor.

Equation (68) tells us that the equation of motion for
the average position χ is an extremely simple first order
differential equation that appears like a Langevin equa-
tion with no noise. This means that once you have ob-
tained the effective dynamical potential you can compute
the evolution of the average position χ trivially from any
starting position. We will demonstrate this in part 2 of
this series.

B. The EEOM for the two point function

The connected 2-point function G(t, t′) =
〈x(t)x(t′)〉C = δ2W/δJ(t1)δJ(t2) and the second

6 N.B. this is not the same as assuming that the noise term (5) is
zero as this is true for Γ by definition

functional derivative of the effective action Γk=0 are
inverse to each other∫

dτ
δ2Γk=0

δχ(t)δχ(τ)

δ2Wk=0

δJ(τ)δJ(t′)
= δ(t− t′) (70)

Concretely this means that the connected 2-point func-
tion G(t, t′) satisfies the following equation:(

d2

dt2
− U(χ)

)
G(t, t′) = −2∆δ(t− t′) (71)

where U(χ) is:

U(χ) =



V 2
,χχ + V,χV,χχχ, for LPA

V 2
,χχ

ζ4
,χ

+
V,χV,χχχ
ζ4
,χ

−
V 2
,χζ,χχχ

ζ5
,χ

−5V,χV,χχζ,χχ
ζ5
,χ

+
5V 2

,χζ
2
,χχ

ζ6
,χ

, for WFR

(72)

and

∆ ≡


Υ

2
, for LPA

Υ

2ζ2
,χ

, for WFR

(73)

The derivation of the full solution to (71) can be found
in Appendix C but here we just highlight the two main
results:
The EEOM for the Variance t′ → t:

Var(x) ≡ G(t, t) =
Υ

2λP (t)
Ỹ1(t)Ỹ2(t)

+
P (0)

P (t)

[
G00 −

Υ

2λP (0)

]
Ỹ 2

2 (t)

(74)

and the EEOM for the Covariance t′ → 0, t > 0:

Cov(x(0)x(t)) ≡ G(t, 0) = G00Ỹ2(t) (75)

where Ỹi(t) ≡ Yi(t)/Yi(0) are the ‘normalised’ solutions
to the homogeneous equation (C2) which can be obtained
numerically. P (t) = 1 or ζχ(χ(t)) for LPA and WFR
respectively and λ is defined by (C4). G00 = G(0, 0) is
the initial variance at t = 0

V. THE EQUILIBRIUM LIMIT

While the Effective Equations of Motion derived in
Section IV are valid for non-equilibrium evolution it
is important to ensure that they converge to the cor-
rect equilibrium limit. At equilibrium the equations are
greatly simplified resulting in the equilibrium position
χeq and variance Vareq(x) becoming static quantities as
expected. We will also show how the covariance at equi-
librium is given by an exponential decay with exponent
predicted by the fRG.
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A. Equilibrium 1-point function

At equilibrium the average position of the particle
should not change, this means that χ̇ = 0. It naturally
follows from this condition and the EEOM for χ (68)
that equilibrium is defined for both LPA & WFR by the
condition

∂χVk=0(χeq) = 0 (76)

As the potential Vk=0(χ) should be convex (by definition
of Γ) equation (76) tells us that χeq corresponds to the
minimum of Vk=0(χ). Or more concretely:

lim
t→∞

〈x(t)〉 = x that minimises Vk=0(x) (77)

The equilibrium position is obviously the same for both
LPA and WFR as they both lead to the same effective po-
tential. As the equilibrium position is straightforwardly
computed from the Boltzmann distribution verifying that
the minimum of the effective potential matches the pre-
dicted equilibrium position is a good first test that the
procedure we have outlined here is valid.

B. Equilibrium 2-point function

If we now take the equilibrium limit χ → χeq of the
full EEOM for the 2-point function (71) we find that it
simplifies to:(

d2

dt2
− λ2

)
Geq(t1, t2) = −2∆|δ(t2 − t1) (78)

where

λ2 ≡


V 2
,χχ|, for LPA

V 2
,χχ|
ζ4
,χ|

, for WFR
(79)

and ∆ is defined as in (73). The notation | means we
have evaluated the function at k = 0 and at equilibrium
χ = χeq.

The appropriate solution to (78) providing the con-
nected correlation function at equilibrium is

Geq(t1, t2) = Coveq(x(t1)x(t2)) =
Υ

2V,χχ|
e−λ|t1−t2|

(80)

⇒ Geq(t, t) = Vareq(x) =
Υ

2V,χχ|
(81)

As the equilibrium variance is also easily computed from
the Boltzmann distribution, equation (81) gives us a sec-
ond test to verify that the effective potential and by ex-
tension fRG recipe we have outlined has physical signif-
icance. In the LPA approximation the variance and the
decay rate of the autocorrelation function are both di-
rectly given by the curvature of the effective potential

at its minimum. The inclusion of WFR however alters
the decay rate without changing the equilibrium vari-
ance. This is as it should since the latter is fixed by the
equilibrium Boltzmann distribution. As we will see in pa-
per two, where explicit results for various potentials are
given, WFR improves the decay rate which is indeed not
exactly determined by the effective potential’s curvature.

C. Equilibrium connected 3- & 4-point functions

While the EEOM for higher point functions become
very complicated out of equilibrium they are much sim-
pler in the equilibrium limit. The connected and 1PI cor-
relation functions can be calculated in a standard way
from Γ(see for e.g. pg 381-382 of [5]). Assuming that
t4 ≥ t3 ≥ t2 ≥ t1 then the connected 3-point function in
equilibrium for example is:

〈x(t1)x(t2)x(t3)〉C =
〈
x(t1)3

〉
C
e−λ(2t3−t2−t1)

(82)〈
x(t1)3

〉
C

= −
〈
x(t1)2

〉3
C

V,χχχ|
3λ

(83)

Where we have introduced the notion of the bosonic po-
tential V:

V(k, χ) ≡


V 2
,χ(k, χ), for LPA

V 2
,χ(k, χ)

ζ2
,χ(k, χ)

, for WFR
(84)

Similarly the connected 4-point function at equilibrium
is:

〈x(t1)x(t2)x(t3)x(t4)〉C =
〈
x(t1)4

〉
C
e−λ(3t4−t3−t2−t1)

(85)〈
x(t1)4

〉
C

=

〈
x(t1)2

〉4
C

4λ

(
V2
,χχχ|

〈
x(t1)2

〉
C

λ
− V,χχχχ|

)
(86)

From these connected correlation functions one should be
able to calculate the skewness and kurtosis of the equi-
librium distribution in a similar manner to what we did
for χeq and Var(x). We leave this calculation and com-
parison to the Boltzmann distribution for future work.

VI. SUMMARY

We have demonstrated how Brownian motion can be
formally described by a path integral involving a Eu-
clidean Supersymmetric action and how an effective av-
erage action functional Γ[χ] of the average position χ,
incorporating the effects of the fluctuating force and en-
coding all statistical properties of the process, can be cal-
culated using functional Renormalisation Group (fRG)
methods. The fRG flow equations were written down for
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the first two orders of the widely used derivative expan-
sion of the effective action, referred to as the Local Poten-
tial Approximation (LPA) and Wavefunction Renormali-
sation (WFR). We used a particular type of regulator,
the frequency independent Callan-Symanzik regulator,
for which the flow equations take on a relatively sim-
ple form. We further recalled that obtaining flow equa-
tions within the supersymmetric framework is crucial for
ensuring compatibility with the Boltzmann equilibrium
distribution, something that is not a priori guaranteed if
one starts with the Onsager-Machlup form of the action
(27) and and considers it a Euclidean N=1 scalar the-
ory in one dimension with the “Schrödinger” potential
U = 1/2 (V ′)2 −Υ/2V ′′.

We have shown how the Effective Action (EA) Γ allows
one to derive effective equations of motion (EEOM) in an
analogous manner to the classical equations of motion by
taking variational derivatives. The EEOM we computed
tell us how the average position χ and variance Var(x)
evolve out of equilibrium. In principle the EEOM for
higher statistical moments such as skewness and kurtosis
could also be derived by taking further variational deriva-
tives. For Brownian motion described by an overdamped
Langevin equation this EA can be computed using func-
tional Renormalisation Group (fRG) techniques under
the widely used approximations, the LPA and WFR.
We have also outlined how the more standard method
of evolving the Fokker-Planck (F-P) diffusion equation
can also compute χ and Var(x).

We also explored the equilibrium limit further empha-
sising the physical significance of certain aspects of the ef-
fective potential Vk=0. Namely how the minimum of Vk=0

corresponds to the equilibrium position and its second
derivative evaluated at this point to the variance through
equation (81). The fRG can also be used to compute the
exponential decay rate of the covariance in equilibrium
through equations (79) & (80). We concluded this sec-
tion with a computation of the connected 3- and 4-point
function in equilibrium.

In part two of this series we will explicitly solve the
equations derived here and demonstrate that the fRG
offers a practical, computationally faster alternative to
established techniques for describing dynamics in and
out of equilibrium. We will also explore the validity of
the physical relevance of the fRG derivative expansion as
temperature is lowered suggesting that it is only applica-
ble in the moderate to high temperature regime.
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Appendix A: 1-D Langevin equation as radial
separation of two particles in 2-D or 3-D

Consider two equal mass particles moving in the same
thermal bath with an even7 interaction potential between
them. The Langevin equations now look like in vector
notation:

~̇x1 + ε∇~x1
V (‖~x1 − ~x2‖) = ~η1(t) (A1)

~̇x2 + ε∇~x2
V (‖~x2 − ~x1‖) = ~η2(t) (A2)

〈~ηi(t)~ηj(t′)〉 = 2Dδijδ(t− t′) (A3)

Where ~xi is a 3D position vector:

~xi = (xi, yi, zi) (A4)

and the choice (A3) is made such that ηi(t) is white noise
with D = kbT/γ matching the equilibrium Boltzmann
distribution. We can now identify our centre of mass

vector ~X:

~X ≡
(
x1 + x2

2
,
y1 + y2

2
,
z1 + z2

2

)
= (X,Y, Z) (A5)

And spherical polar coordinates in terms of the relative
seperation of the two particles:

x1 − x2 = r · cos θ sinφ (A6)

y1 − y2 = r · sin θ sinφ (A7)

z1 − z2 = r · cosφ (A8)

r =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2(A9)

θ = arctan

(
y1 − y2

x1 − x2

)
, 0 ≤ θ < 2π (A10)

φ = arccos

(
z1 − z2

r

)
, 0 ≤ φ ≤ π (A11)

We can then rewrite equations (A1) & (A2):

ṙ + εr
∂

∂r
V (r) = ηr(t) (A12)

θ̇ · r sinφ = ηθ(t) (A13)

φ̇ · r = ηφ(t) (A14)

〈~ηi(t)~ηj(t′)〉 = 2Drδijδ(t− t′) (A15)

~̇X = ξ ~X(t) (A16)〈
~ξi(t)~ξj(t

′)
〉

= 2D ~Xδijδ(t− t
′) (A17)

Where we have introduced effective parameters related
to the original ones:

εr ≡ m/γr, γr ≡ γ/2⇒ Dr ≡ 2 ·Dphys =
kbT

γr
(A18)

DX ≡
1

2
·Dphys =

kbTX
γ
⇔ TX ≡

1

2
· Tphys (A19)

7 This precludes our polynomial and unequal LJ potentials
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Unfortunately equations (A13) & (A14) depend on r and
do not nicely decouple however equation (A12) is identi-
cal to (4). This means that the 1-D motion of a single
particle in a global potential is equivalent to the change in
radial seperation between two equal mass particles with
an equivalent interaction potential. The centre of the
mass of the two particles is described by a simple diffu-
sion equation i.e. the centre of mass goes on a random
walk in the dimension of the problem.

Appendix B: The equilibrium flow equation

In equilibrium, all equal-time expectation values can
be generated by the generating function

Z(J) =

∫
dx e−2V (x)/Υ+Jx (B1)

in a manner directly analogous to that described in the
text but with functional derivatives replaced by ordinary
derivatives w.r.t. J . In a spirit identical to the renormal-
isation group but in the simpler setting of one degree of
freedom, we can define a modified generating functional
[42]

Zk(J) =

∫
dx e−2V (x)/Υ− 1

2R(k)x2+Jx (B2)

with an additional quadratic term controlled by an
arbitrary function R(k) of a parameter k, satisfying
lim
k→0

R(k) = 0, giving back the original Z(J). Correla-

tion functions are generated by Wk(J) = lnZk(J) via

χk ≡ 〈x〉k =
∂Wk(J)

∂J
, 〈x2〉k − χ2

k =
∂2Wk(J)

∂J2
(B3)

e.t.c. In the limit k = 0 and after setting J = 0 the usual
predictions of the equilibrium Boltzmann distribution are
recovered.

The source J has been considered as an external, inde-
pendent variable controlling expectation values such as
χ and higher correlators. One could also consider χ as
the independent variable, solving χ = ∂W/∂J for J(χ)
and defining the effective potential U(χ) via a Legendre
transform

Γk(χ) +Wk(J) = Jχ− 1

2
R(k)χ2 (B4)

with

Γ(χ) ≡ 2U(χ)/Υ (B5)

Note that

∂Γk
∂χ

= Jk −R(k)χ (B6)

implying that the minimum of the effective potential de-
fines the equilibrium expectation value of x (at J = 0
and k = 0).

The dependence of the generating function Wk(J) on
k can be easily obtained as

∂kWk(J) = −1

2
∂kR

[
∂2Wk(J)

∂J2
+

(
∂Wk(J)

∂J

)2
]

(B7)

which is an “RG equation” for Wk(J). We can also ob-
tain an an equation determining how Γk(χ) runs with
k. Reciprocally, taking χ as the independent variable, J
becomes a function of χ and k. Taking a k derivative of
(B6) at fixed χ we obtain

∂kΓk(χ) =
1

2
∂kR

∂2Wk

∂J2
(B8)

To express the rhs in terms of Γk(χ), consider the first
relation of (B3). Taking a χ derivative we find(

∂2Γk
∂χ2

+R

)
∂2Wk

∂J2
= 1 (B9)

Hence, the “RG flow” of Γ is determined by

∂kΓk(χ) =
1

2
∂kR

(
∂2Γ

∂χ2
+R

)−1

(B10)

Note also that, at k → 0

〈x2〉 − χ2 =
Υ

2 ∂2
χU(χeq)

(B11)

and hence the variance at equilibrium is determined by
the curvature of the effective potential around its mini-
mum.

All the above manipulations can be generalized to
many or even infinite degrees of freedom and continuum
actions, leading to the Wetterich equation (1), which is
directly equivalent to (B10), and the relations of section
(V A). For this work it is important to note that the equi-
librium effective potential U(χ) discussed here obeys the
LPA flow equation exactly if we choose R(k) = k.

Appendix C: Derivation of the two point function

We start from equation (71) repeated here for clarity:(
d2

dt2
−Q(t)

)
G(t, t′) = − Υ

P (t)
δ(t− t′) (C1)

Where Q(t) = U(χ(t)) is given by (72) and P (t) = 1
or ζ2

χ(χ(t)) for LPA and WFR respectively. If we now
consider the homogeneous version of (C1):

f̈(t)−Q(t)f(t) = 0 (C2)

which generically will have two independent solutions
Y1(t) and Y2(t) which we would like to obtain. In or-
der to do this we consider what these solutions asymp-
tote to at late times. We know for large t (denoted by
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T) the system will reach equilibrium (or at least will be
asymptotically close to it) for which (C2) becomes:

f̈(T )− λ2f(T ) = 0 (C3)

as Q(t) asymptotes to λ2 as the system approaches equi-
librium. λ2 is defined as in (79):

λ2 ≡


V 2
,χχ|, for LPA

V 2
,χχ|
ζ4
,χ|

, for WFR
(C4)

The notation | means we have evaluated the function at
k = 0 and at equilibrium χ = χeq. Equation (C3) has
two solutions, one growing and one decaying:

Y1(T ) = A exp(λT ) (C5)

Y2(T ) = B exp(−λT ) (C6)

We can now consider the WronskianW which in our case
must be constant for all time:

W(t) ≡ Y1(t)Ẏ2(t)− Ẏ1(t)Y2(t) = constant (C7)

W(T ) = −2ABλ (C8)

⇒W(t) = −2ABλ (C9)

We will make use of this fact later.
Substituting the ansatz G(t, t′) = Y1(t)F (t, t′) where F
is some function to be determined into (C1) we obtain:

Ḟ (t, t′) =
1

Y 2
1 (t)

[
−Υ

Y1(t′)

P (t′)
θ(t− t′) + C1(t′)

]
(C10)

where θ(t− t′) is the Heaviside step function and C1(t′)
is a ‘constant’ of integration function to be determined.
If we now integrate (C10) we obtain the following expres-
sion for G(t, t′):

G(t, t′) = −Υ
Y1(t)

P (t′)

[
θ(t− t′)

∫ t

t′

Y1(t′)

Y 2
1 (u)

du+ C2(t′)

]
+ C1(t′)Y1(t)

∫ t du

Y 2
1 (u)

(C11)

where C2(t′) is another ‘constant’ of integration function
to be determined. To compute the integrals in (C11) we
note that by the definition of the Wronskian:

Y1(t)

∫ t W(u)

Y 2
1 (u)

du = µY1(t) + Y2(t) (C12)

where µ is simply a constant of integration. As the Wron-
skian is constant we simply write:

Y1(t)

∫ t du

Y 2
1 (u)

=
1

−2ABλ
[µY1(t) + Y2(t)] (C13)

Such that (C11) becomes:

G(t, t′) =
Υ

2ABλP (t′)

{
C̄1(t′)Y2(t) + C̄2(t′)Y1(t)

+ θ(t− t′) [Y1(t′)Y2(t)− Y1(t)Y2(t′)]
}

(C14)

where C1 and C2 have been rescaled to C̄1 and C̄2 in order
to absorb some irrelevant constant factors. We note that
the functions C̄i can only be linear combinations of Y1

and Y2:

C̄1(t′) ≡ α Y1(t′) + β Y2(t′) (C15)

C̄2(t′) ≡ γ Y1(t′) + δ Y2(t′) (C16)

where the constants α, β, γ and δ will be determined
later8. Combining all this together we obtain the most
general solution:

G(t, t′) =
Υ

2λP (t′)

1

AB

{
[α+ θ(t− t′)]Y1(t′)Y2(t)

+ β Y2(t′)Y2(t) + γ Y1(t′)Y1(t)

+ [δ − θ(t− t′)]Y2(t′)Y1(t)
}

(C17)

To obtain the values of the constants we must impose
physical conditions:

1. The variance G(t, t) should remain finite as t→∞
i.e. an equilibrium distribution exists at late times
⇒ γ = 0

2. Variance G(t, t) should approach the correct equi-
librium distribution Geq at late times T
⇒ α = 0

3. Covariance G(t, 0) should remain finite as t→∞
⇒ δ = 1

4. The initial condition is G(0, 0) ≡ G00

⇒ βΥ

2ABλ
=

P (0)

Y2(0)Y2(0)

[
G00 −

Y1(0)Y2(0)

AB

Υ

2λP (0)

]
Which gives us the two point function:

G(t, t′) =
Υ

2λP (t′)

[
θ(t− t′)Ỹ1(t′)Ỹ2(t) + θ(t′ − t)Ỹ2(t′)Ỹ1(t)

]
+
P (0)

P (t′)

[
G00 −

Υ

2λP (0)

]
Ỹ2(t′)Ỹ2(t) (C18)

where Ỹi(t) ≡ Yi(t)/Yi(0) are the ‘normalised’ solutions
to the homogeneous equation (C2). We have also set A =
Y1(0) and B = Y2(0) which we are free to do. Equation
(C18) has two important limits:
The Variance t′ → t:

Var(x) ≡ G(t, t) =
Υ

2λP (t)
Ỹ1(t)Ỹ2(t)

+
P (0)

P (t)

[
G00 −

Υ

2λP (0)

]
Ỹ 2

2 (t)

(C19)

8 N.B. the δ here should not to be confused with the dirac delta
function
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and the Covariance t′ → 0, t > 0:

Cov(x(0)x(t)) ≡ G(t, 0) = G00Ỹ2(t) (C20)

Equations (C19) & (C20) are the main results of this
appendix.
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