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Background: Despite the lack of objective evidence, spinal manual therapies have been 

common practice for many years, particularly for treatment of lower back pain (LBP). This 

exploratory study measured and analysed the effect of a spinal mobilisation intervention on 

muscle tissue quality in LBP sufferers. 

Methods: 40 people with LBP participated in a within-subject repeated measures cross-over 

study with intervention and control conditions. A myometer was used to assess the change 

in para-spinal muscle tissue quality before and after the intervention. Analysis considered 

the magnitude of muscle response together with individual covariates as potential 

contributors. 

Results: A significant post intervention reduction was observed in muscle stiffness (p = 

0.012, η 2 
partial = 0.15), tone (p = 0.001, η 2 

partial = 0.25) and elasticity (p = 0.001, η 2 
partial = 

0.24). Significant increases were seen in 2 variables post control: stiffness (p = 0.004, 

η 2 
partial = 0.19), tone (p = 0.006, η 2 

partial = 0.18) and a significant decrease in elasticity (p ˂ 

0.000, η 2 
partial = 0.3). Significant contributing covariates include baseline stiffness, BMI, 

waist circumference and sex. Baseline stiffness and tone were significantly correlated to 

their response levels. 

Conclusions: The significant reduction in all muscle tissue qualities following the 

intervention provide preliminary data for an evidence-based LBP therapeutic. Baseline 

stiffness, BMI, waist circumference and sex could act as significant contributors to 

magnitude of response. The results warrant further investigation into spinal mobilisation 

therapies to further build the objective evidence base. 
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Introduction 1 

 2 

Lower back pain (LBP) is one of the most common and economically debilitating pain 3 

conditions globally. It is associated with decreased levels of spinal mobility, limited lumbar 4 

muscle flexibility and altered spinal kinematics (Ferreira et al., 2009; Goertz et al., 2016; 5 

Powers et al., 2008). The likely result of this, is reduced function of the lumbar spine and 6 

increased stiffness. This can have an impact on body movement capability and lead to the 7 

development of chronic problems with posture, coordination and range of motion (RoM) 8 

(Shum et al., 2013, 2007). Manual therapy (MT) is a physical-based therapeutic reportedly 9 

used for LBP treatment which targets musculoskeletal structures through several different 10 

techniques (Bishop et al., 2015). Commonly reported benefits from MT-based techniques are 11 

improvements in RoM, pain relief and muscle stiffness. However, these are often subjectively 12 

assessed (Ferreira et al., 2009; George et al., 2006; Lopez-Lopez et al., 2015) with both positive 13 

(Chiradejnant et al., 2003; George et al., 2006; Haas et al., 2014; Sterling et al., 2001) and 14 

conflicting results (Assendelft et al., 2003; Childs et al., 2004; Goodsell et al., 2000; Stamos-15 

Papastamos et al., 2011; Thomson et al., 2009). These inconsistencies may be explained by 16 

methodological differences as well as variability in individual responses to treatment (Childs 17 

et al., 2004; Shum et al., 2013). Further, although commonly used in clinical practice to treat 18 

musculoskeletal pain, there is limited understanding of the mechanisms responsible for the 19 

reported benefits of MT (Goertz et al., 2016; Voogt et al., 2015). The rationale to establish the 20 

efficacy of such treatments is supported by the National Institute of Clinical Excellence, given 21 

their low risk of minor side effects and potential millions in economic savings (Carnes et al., 22 

2010; National Institute for Health and Care Excellence, 2016; Powers et al., 2008; Stamos-23 

Papastamos et al., 2011; Wong et al., 2016).  24 

 25 

Spinal mobilisations is a MT technique used to treat such chronic pain (Chiradejnant et al., 26 

2003; Goodsell et al., 2000; Sterling et al., 2001; Thomson et al., 2009), typically applied in a 27 

precise manner, using low velocity oscillatory movements to mobilise joints and passively 28 

stretch soft tissues (Maitland et al., 2013; Piekarz and Perry, 2015). While objective research 29 

on the efficacy of spinal mobilisations as an LBP treatment has been conducted in recent 30 
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years, more efficacy based evidence is needed (Piekarz and Perry, 2016), and a better 31 

understanding of the response to such treatment is required.  32 

 33 

Nonetheless, lower back muscle stiffness appears to be a meaningful contributor to reduced 34 

mobility and has seen a growth in investigative literature (Edgecombe et al., 2013; Ferreira et 35 

al., 2009). However, information about other aspects of muscle quality that collectively 36 

contribute to mobility are lacking but are required to aid improved muscle condition 37 

understanding (Kelly et al., 2018; Marusiak et al., 2012; Nair et al., 2016). The capacity of a 38 

muscle to resist deformation, either by contraction or external force can be objectively 39 

measured using a myometer to show stiffness or compliance. A muscle with higher stiffness 40 

has a higher resistance to contraction (Viir et al., 2006). Muscle stiffness can be assessed by 41 

palpation as well as characterised biomechanically. Muscle tone characterises the 42 

background tension of the muscle in a resting state. Background tension is required to retain 43 

stability, structure, and involuntary contractions. However, hypertonicity can cause high 44 

intramuscular pressure and have a harmful effect on muscle recovery. Elasticity of a muscle 45 

describes its ability to return to original shape after deformation and can be a used as a 46 

measure for mechanical stability and tissue changes (Kelly et al., 2018; Schneider et al., 2014). 47 

In this study we seek to measure these tissue property changes to contribute to the 48 

knowledge of the effectiveness of spinal mobilisation in people with LBP (Kelly et al., 2018; 49 

Nair et al., 2016).  50 

 51 

This study was an exploratory investigation of MT response and potential contributing factors. 52 

We measured the change in stiffness, tone and elasticity in response to a spinal mobilisation 53 

intervention within an LBP population to provide objective data for this. This is the first 54 

scientific investigation of a 30-minute sustained spinal mobilisation intervention and 55 

objective measures of muscular change. This is to provide a contribution to knowledge on MT 56 

effectiveness and their beneficial mechanisms within LBP and provide recommendations for 57 

further data collection to improve understanding.  58 

 59 

We hypothesised that a reduction in paraspinal muscular stiffness and tone and increase in 60 

elasticity after receiving a spinal mobilisation intervention could be objectively identified with 61 

a validated protocol when compared to a sedentary scenario.     62 
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Methods 63 

Participants 64 

40 participants were recruited for this study (male: n = 18, female: n = 22) in a repeated-65 

measures cross-over study design, similar to previous investigations (Goodsell et al., 2000; 66 

Jowsey and Perry, 2010; Pecos-Martín et al., 2017; Pentelka et al., 2012). Participants were 67 

recruited through posters and word of mouth advertised at Edinburgh Napier University and 68 

shared on social media.  69 

 70 

Inclusion criteria for participation were: age range 18 to 80 and suffering from any form of 71 

self-reported LBP (acute, chronic, diagnosed, undiagnosed, if pain was experienced in the 72 

region between the 12th rib and the gluteal folds within the time of recruitment). Participants 73 

were excluded if they responded positively to any absolute contraindications for spinal 74 

therapy (Liebenson, 2007; Olson, 2009). These include: segment instability, infectious 75 

disease, osteomyelitis, bone tumours, neurological deficit, upper motor neuron lesion, spinal 76 

cord damage, or cervical arterial dysfunction. Participants responding positively to relative 77 

contra-indications were asked to contact their GP and excluded based on severity. These 78 

include: osteoporosis, spinal instability, rheumatoid arthritis, inflammatory disease, active 79 

history of cancer, hypermobile syndrome, segment hypermobility, cardiovascular disease, 80 

cervical anomalies, nerve root disorder, spinal surgery, respiratory problems, thrombosis, 81 

open wounds, local infection and fractures or dislocations (Maitland et al., 2013). Ethical 82 

approval was obtained from the Edinburgh Napier University Research Integrity Committee, 83 

following the ethical guidelines stated by the Declaration of Helsinki.   84 

 85 

Procedure 86 

Participants attended a control and a spinal mobilisation intervention session one week apart, 87 

at the same time of day for each session. All participants were informed about study details 88 

and provided written consent. Participants were randomly allocated into one of two groups 89 

via a random group generator, alternating the order of session type they received. All data 90 

collection took place in the same treatment room and on the same standard physiotherapy 91 

plinth. Ambient room temperature was controlled (20°-23° Celsius) for all sessions. 92 

 93 
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All participants completed the Oswestry Disability Index (ODI) (Fairbank and Pynsent, 2000) 94 

prior to their first session to categorise their level of LBP (Chou and Huffman, 2007; Fritz et 95 

al., 2011; Kamali and Shokri, 2012; Savigny P Watson P, Underwood M, Ritchie G , Cotterell 96 

M, Hill D, Browne N, Buchanan E, Coffey P, Dixon P, Drummond C, Flanagan M, Greenough,C, 97 

Griffiths M, Halliday-Bell J, Hettinga D, Vogel S, Walsh D., 2009). Anthropometric measures of 98 

height, mass, waist circumference and sex were also recorded. These were taken as pre- 99 

measures to investigate correlations as potential influencers on response and focus on muscle 100 

tissue response as the main investigation.     101 

 102 

The chartered physiotherapist performing the treatment had extensive experience in spinal 103 

mobilisation therapy and as a working physiotherapist in practice at the time of the study. 104 

They performed a 30-minute spinal mobilisation intervention, working at a specific rate 105 

(0.37Hz) maintained by a metronome (on silent but within view of the therapist) set to the 106 

equivalent 22 beats per minute. The physiotherapist worked at a grade lower than grade 1 107 

and specific location (L1-L5), using posteroanterior (PA) mobilisations, oscillating the lumbar 108 

vertebra, with both hands working on one side of the lumbar spine. Contact remained 109 

consistent over the 30-minute period. These intervention parameters were based on previous 110 

physiotherapy practice with anecdotal evidence of success within LBP. The intervention was 111 

focussed on the lumbar spine to facilitate data collection.    112 

 113 

Outcome measures for muscle stiffness, tone and elasticity were taken immediately before 114 

and after both sessions, with participants lying prone. The intervention was performed on 115 

one side of the lumbar spine (determined by pre-intervention stiffness values). The control 116 

session involved no physical touch. The participant lay on the plinth and was encouraged to 117 

relax for 30 minutes. The outcome measures were taken by the lead researcher who was not 118 

involved in performing the intervention but was there to oversee the session.  119 

 120 

Outcome measures 121 

Measurements for para-spinal muscle stiffness, tone and elasticity were taken using a 122 

myometer palpation device (MyotonPRO, Myoton Ltd., London UK). This previously validated 123 

handheld device has been documented to give reliable results for muscle stiffness, tone and 124 

elasticity (Bizzini and Mannion, 2003; Marusiak et al., 2012; Pruyn et al., 2015; Schneider et 125 
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al., 2014; Sohirad et al., 2017; Zinder and Padua, 2011). The myometer uses a series of low 126 

force mechanical impulses (0.4N) registered as an oscillation in the form of an acceleration 127 

signal. The muscle quality parameters are reported as a mean of these impulses along with 128 

the coefficient of variation (CV), with recommended CV acceptance values of <3% (Kelly et al., 129 

2018; Schneider et al., 2014; Viir et al., 2006).   130 

 131 

Measures were repeated 3 times on each side of the spine, to determine which side had 132 

higher levels of stiffness and therefore the side to receive treatment. This was due to 133 

literature suggesting that greater initial stiffness levels were more likely to respond with a 134 

greater stiffness reduction (Childs et al., 2004; Shum et al., 2013). The location for 135 

measurements were identified on both sides of the spine on a central point of the erector 136 

spinae by asking the participant to lift their head and feet at the same time contracting their 137 

back muscles. This spot was then marked to ensure pre- and post-measures were taken at the 138 

same location. The distance and width from the base of the spine was measured to locate the 139 

same spot for their 2nd session. The myometer was held perpendicular to the identified spot 140 

and oscillations were sent through to the corresponding muscle. 141 

 142 

Analysis  143 

Analysis was exploratory and therefore carried out on each dependent variable (stiffness, 144 

tone and elasticity) in separate 2-way repeated measure within participant ANOVAs to 145 

determine any significant differences that occurred due to the independent variables; 146 

condition (control and intervention) and time (pre- and post-). Covariates were assessed in 147 

separate ANCOVAs to determine significant factors contributing to muscle changes. Due to 148 

previously reported differences in male and female muscle characteristics (Granata et al., 149 

2002; Owens et al., 2007), the sex variable was investigated further with independent t-tests 150 

and Pearson correlations, as well as within the ANCOVA analysis. All statistical analysis was 151 

carried out using SPSS (version 23) with the alpha level set at 0.05.  152 

Results  153 

Pre- intervention anthropometric measures and ODI scores presented in table 1 for 40 LBP 154 

participants and demonstrate a wide LBP population recruitment. Shapiro Wilk tests revealed 155 
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no normality violations in the dependent variable results. A post-hoc power calculation using 156 

G-power (version 3.1) revealed an accepted power level of 0.91 (alpha = 0.05, sample size = 157 

40, groups = 2, measurements = 3).  158 

 159 

Muscle stiffness 160 

A 2-way repeated measures ANOVA revealed a pre- to post- intervention significant main 161 

effect interaction (between condition and time). Pairwise comparisons were used to 162 

determine where specific differences lie in a pre- to post- comparison, revealing a significant 163 

stiffness increase within the control and a significant decrease within the intervention (table 164 

2, fig. 1).  165 

 166 

ANCOVA was performed using all covariates to explore their interaction with the change in 167 

stiffness post intervention. Change in stiffness was used as the dependent variable. Pre 168 

intervention stiffness, BMI, ODI, waist circumference, height and sex were added as 169 

covariates. A backward elimination was conducted based on highest p-value. The only 170 

covariate remaining with significant influence was pre-intervention stiffness (p = 0.002) with 171 

resultant model R2 = 0.22 (adjusted = 0.2). There was a significant bivariate correlation 172 

between pre intervention stiffness and change in stiffness (table 3). This results in a negative 173 

correlation due to the reduction in stiffness seen in figure 1. 174 

 175 

An independent t-test revealed a significant difference between male and female 176 

intervention stiffness change (p = 0.032). Bivariate correlations for pre-intervention stiffness 177 

and stiffness change carried out separately with male and female data displayed similar 178 

trends (table 3). 179 

 180 

Muscle tone 181 

A 2-way repeated measures ANOVA revealed a pre- to post- intervention significant main 182 

effect on muscle tone (condition) and the interaction (between condition and time). Pairwise 183 

comparisons revealed a significant tone increase within the control group and a significant 184 

tone decrease within the intervention group (table 2, fig. 2).  185 

 186 
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ANCOVA was performed using muscle tone as the dependent variable run in the same way as 187 

above. BMI (p = 0.048), waist circumference (p = 0.01) and sex (p = 0.005) were found to be 188 

significant contributors to tone change with resultant model R2 = 0.253 (adjusted = 0.19). 189 

There was a significant bivariate correlation between pre intervention tone and change of 190 

tone (table 3), resulting in a negative correlation due to the reduction in tone (fig. 2).  191 

 192 

An independent t-test revealed no significant difference between male and female tone 193 

change (p =0.052). Bivariate correlations for pre intervention tone and tone change 194 

conducted separately with male and female data show different patterns (table 3).  195 

 196 

Muscle elasticity 197 

A 2-way repeated measures ANOVA revealed a pre- to post- intervention significant main 198 

effect on muscle elasticity (time). Pairwise comparisons revealed a significant increase in 199 

muscle logarithmic decrement within the control from pre- to post-intervention and a 200 

significant increase within the intervention condition (table 2, fig. 3). This equates to a 201 

decrease in muscle elasticity due to its inversely proportional relationship to muscle 202 

decrement.  203 

 204 

ANCOVA was performed using changes in elasticity as the dependent variable, in the same 205 

way as above. There were no covariates with a significant influence on decrement change. A 206 

bivariate correlation between pre-intervention decrement in elasticity and decrement change 207 

was not significant (table 3).  208 

 209 

An independent t-test revealed no significant difference between male and female elasticity 210 

change (p = 0.162) and bivariate correlations for pre intervention decrement in elasticity and 211 

decrement change conducted for male and female data displayed no pattern (table 3).  212 

Discussion 213 

The previously reported benefits of MT range from reduced pain, stiffness, fatigue and 214 

improved RoM (Ferreira et al., 2009; Lopez-Lopez et al., 2015; Voogt et al., 2015). Greater 215 

knowledge of the mechanistic changes occurring due to MT will benefit LBP management and 216 
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inform treatment recommendations. The findings from this study suggest that a reduction in 217 

lower back para-spinal stiffness can be measured after a 30-minute treatment session and 218 

could be determined by initial stiffness levels. These results are an indication of an immediate 219 

effect on muscle tissue quality after this specific 30-minute spinal mobilisation treatment. 220 

However, differences in specific clinical practices should be taken into consideration for the 221 

application of results.  222 

  223 

We show for the first time an immediate, objective and significant reduction in para-spinal 224 

stiffness with a large effect size (table 2) after a 30-minute spinal mobilisation treatment (fig. 225 

1), supported by previous literature (Ferreira et al., 2009; Fritz et al., 2011; Shum et al., 2013; 226 

Wong et al., 2015). However, large SEM values could have resulted from the exploratory 227 

nature of the study and the wide recruitment. This reduces the confidence of the findings; 228 

therefore, we recommend this stiffness reduction is investigated further with distinct LBP 229 

population groups to achieve more meaningful results. Since stiffness characterises the 230 

muscle’s ability to resist deformation, and is associated with pain and reduced mobility (Fritz 231 

et al., 2011; Haas et al., 2014; Lopez-Lopez et al., 2015; Vicenzino et al., 2001), a reduction in 232 

stiffness of these muscles may allow greater compliance to muscle contraction and therefore 233 

improve movement fluidity (Ferreira et al., 2009). This study demonstrates the impact of lying 234 

stationary for 30 minutes can have on stiffness, reinforcing the recommendation to reduce 235 

sedentary behaviour, a known risk factor for developing LBP and chronic stiffness (Hartvigsen 236 

et al., 2018; Naraoka et al., 2017). 237 

 238 

Improved knowledge of muscular stiffness has been identified as crucial to understand 239 

underlying mechanistic changes in therapeutic interventions and apply them effectively to 240 

the populations at most need (Bailey et al., 2013; Kelly et al., 2018). Potential mechanisms 241 

responsible have been suggested to involve the activation of somatosensory signals. 242 

Mechanical induction of sensory nerves may cause adaptive signalling in the muscle spindles 243 

(stretch receptors) affecting  muscle fibre ability to respond to changes in shape (Pickar and 244 

Bolton, 2012; Reed et al., 2014). Differences between the mechanical induction of muscle 245 

stretch response verses an active muscle stretch response could be further investigated in an 246 

MT and stretching study to help decipher the benefits of each. Information on significant 247 

influencers on stiffness change, such as initial stiffness levels and anthropometric measures, 248 
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may help to inform these mechanistic theories through predictive modelling in large scale MT 249 

studies.  250 

 251 

While this exploratory study demonstrates the benefit of a single MT session, there is a lack 252 

of statistical power describing the influencing factors and warrants further investigation. The 253 

key influence of initial stiffness levels could be further investigated by taking into 254 

consideration prior environmental influences on stiffness. As no significant differences were 255 

found between the control and intervention condition pre-stiffness levels (fig. 1), it was 256 

concluded that the protocol design had been successful in controlling for this. Further studies 257 

investigating other stretching and movement related interventions may also contribute 258 

insight into mechanistic changes and influencing factors.  259 

 260 

Although the ANCOVA results showed that initial stiffness was a significant contributor to 261 

stiffness response (and a significant correlation, table 3), results for sex as a covariate were 262 

more complex. Sex did not account for the variance in stiffness within the ANCOVA model 263 

and suggests that initial stiffness values have greater influence than sex on stiffness response, 264 

supported by similar correlation trends for males and females (table 3). This could be further 265 

investigated in a sex comparison study, given the known difference between male and female 266 

muscle composition (Granata et al., 2002; Nair et al., 2016; Owens et al., 2007). It is important 267 

to note that, while ODI, BMI, waist or height measurements do not contribute to stiffness 268 

response, they could still influence the initial stiffness values. Though previous studies have 269 

also found similar baseline and stiffness change correlations (Ferreira et al., 2009; Shum et 270 

al., 2013) this correlation has not been defined objectively as a clinical predictor for 271 

intervention response (Fritz et al., 2011; Nim et al., 2020; Wong et al., 2015). The availability 272 

of objective measurement tools for muscle health, such as a myometer, will enable 273 

monitoring of intervention effectiveness for types of responders, potentially developing 274 

stiffness thresholds for responders.  275 

 276 

Similar results for muscle tone (fig. 2) and stiffness indicate that both variables respond to the 277 

intervention in a similar way. Pre- tone measures in the control and intervention conditions 278 

were very similar with less variation than pre- stiffness measures. Muscle stiffness and tone 279 

depict different aspects of muscle quality. The myometry form of muscle tone describes 280 
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resting muscle tension and is mechanically represented by the acceleration frequency of the 281 

oscillations induced and recorded. The reduced variation in tone baseline and SEM values 282 

compared to stiffness may be explained by its intrinsic nature (required for resting tension) 283 

as oppose to responsive (Bizzini and Mannion, 2003; Schneider et al., 2014; Viir et al., 2006).  284 

 285 

The ANCOVA results for tone response revealed BMI, waist circumference and sex as 286 

contributing factors, different to the contributing factors for stiffness response. Comparison 287 

of male and female trend lines demonstrated different patterns in their pre- intervention and 288 

tone change correlations (table 3) supporting sex as a contributing factor to muscle tone in 289 

the ANCOVA model. Though stiffness and tone display similar pattern changes in previous 290 

studies (Gervasi et al., 2017; Nair et al., 2016), the resultant difference in contributing factors 291 

between them may indicate key underlying differences in their response mechanisms. The 292 

electrical signals responsible for muscle tone, though likely still influenced by adaptive 293 

signalling, may result in a greater number of influencing factors compared to tissue stiffness.  294 

 295 

A reduction in both tone and stiffness can be beneficial to populations with chronic pain and 296 

limited movement (Chuang et al., 2012; Fröhlich-Zwahlen et al., 2014; Wong et al., 2015). 297 

Hypertonia is associated with mobility restrictions and chronic pain in conditions such as 298 

stroke and Parkinson’s (Fröhlich-Zwahlen et al., 2014). It will therefore benefit clinicians to 299 

monitor these variables and relate to functional output in rehabilitative interventions 300 

together with changes in their patients’ pain.  301 

 302 

Elasticity results show a higher degree of variance compared to stiffness and tone (fig. 3) 303 

which is consistent with previous literature (Gervasi et al., 2017; Schneider et al., 2014). An 304 

increase in dissipation of mechanical energy (logarithmic decrement) equates to a lower level 305 

of elasticity in the muscle and its ability to recover shape after deformation (Bailey et al., 306 

2013; Chuang et al., 2012). Both control and intervention conditions resulted in decreased 307 

elasticity in this study, suggesting that both stationary relaxing and MT affected the elasticity 308 

of para-spinal muscles in a similar way. A similar report (Schneider et al., 2014) found a 309 

decrease in stiffness and tone and an increase in decrement after testing muscles in 310 

weightlessness conditions. The reason for this is unclear and was suggested to be the result 311 

of a relaxed state. The passive nature of the therapy may have resulted in an elasticity 312 
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decrease because of the participant lying still with no active movements. Therefore muscles 313 

may require active movements to have an improved effect on elasticity and could be explored 314 

in future studies with MT compared to exercise type therapies to investigate this further.   315 

 316 

Limitations and Future Study 317 

The results in reduced muscle stiffness and tone after a 30-minute MT intervention are 318 

encouraging. This prospective study has provided promising preliminary data and warrants 319 

further investigation to better understand the influencing factors to this muscular response 320 

and the mechanisms responsible.  321 

 322 

Though BMI was measured in this study, this variable does not give an accurate depiction of 323 

muscle to fat ratio. Adipose tissue could be beneficial to measure in future studies as a 324 

covariate due to potential influence on stiffness results (Fröhlich-Zwahlen et al., 2014). 325 

Although the factorial, within-participant analysis should reduce this influence on stiffness 326 

due to the relative change within each participant between groups, it would be beneficial to 327 

accurately measure and investigate this variable.  328 

 329 

Increasing the number of participants recruited with higher levels of pain, together with more 330 

comprehensive methods to rate level of pain and post intervention pain, may assist in the 331 

development of this area of research to investigate the relationship between pain and 332 

stiffness. Physical activity levels were not controlled in this study and could be a factor in 333 

baseline levels of stiffness, tone and elasticity (Nair et al., 2016). Therefore, more 334 

investigation into potential lifestyle contributions to pain in LBP could give added information 335 

about potential influences on spinal stiffness. The previously reported optimum number of 336 

treatment sessions has been 12 (Ferreira et al., 2009; Haas et al., 2014), therefore, further 337 

investigation into treatment dose and number of sessions would contribute to knowledge on 338 

MTs.  339 

 340 

Conclusions 341 

The 30-minute spinal mobilisation intervention had a significant immediate effect on muscle 342 

quality showing a stiffness and tone reduction in sufferers of LBP when compared to a control 343 

intervention. Initial levels of stiffness contributed to reduction levels post intervention and 344 
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there was more variance in contributing factors for tone and elasticity. Although significant 345 

differences between male and female stiffness results were found, sex was not a significant 346 

contributor to stiffness reduction and likely affected initial baseline levels. Preliminary results 347 

show an immediate muscular response after a MT intervention and further study could 348 

investigate an accumulated effect after repeated sessions with further explanatory measures. 349 

 350 

Clinical Relevance  351 

• Findings reported of an exploratory investigation providing new objective evidence of 352 

a spinal mobilisation intervention.  353 

• Results reveal an immediate reduction in myometry measured muscle stiffness and 354 

tone with baseline stiffness, waist circumference, BMI and sex as significant 355 

contributors.   356 

• Objective muscle data provided for an evidence-based contribution towards manual 357 

therapy treatments.  358 

 359 
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