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Synopsis 

 

Low-Rank O-Space presents a scheme to incorporate O-Space imaging with Low-Rank matrix 

recovery. The Low-Rank reconstruction based on iterative nonlinear conjugate gradient algorithm 

is applied to substitute the previous Kaczmarz and Compressed Sensing (CS) reconstructions to 

recover highly undersampled O-Space data. The simulations and experiments illustrate the 

proposed scheme can remove artifacts and noise in O-Space imaging at high reduction factors, 

compared to results recovered by Kaczmarz and CS. Moreover, the proposed method does not need 

to modify the conventional O-Space pulse sequences, and reconstruction results are better than 

those in radial imaging recovered by Kaczmarz, CS, or Low-Rank methods. 

 

Audience 

 

Researchers interested in parallel imaging, nonlinear gradient encoding, or low-rank matrix recovery  

 

Purpose 

 

Nonlinear spatial encoding magnetic fields (SEMs), such as those used in O-Space imaging [1,2], have been 

shown to improve image reconstructions under high acceleration factors. Low-Rank reconstruction [3-7], 

based on the development of Low-Rank matrix completion in Compressed Sensing (CS) theory [8], has been 

shown to provide excellent image recovery from reduced data sets when applied to appropriate sampling in 

k-space. In this paper, we present a scheme to incorporate O-Space imaging with Low-Rank matrix 

recovery. The simulations and phantom experiments illustrate that the proposed scheme can greatly remove 

artifacts and noise in O-Space imaging at high reduction factors, compared to Kaczmarz [1,2] and CS 

reconstructions [9,10]. 

 

Theory 

 

Neglecting relaxation effects, the signal 𝑠𝑞 from the 𝑞-th RF channel can be expressed as: 

𝑠𝑞 = ∫ 𝑚(𝒙)𝐶𝑞(𝒙)𝑒−𝑖𝜙(𝒙,𝑡)𝑑𝒙
𝜔

, 

where 𝑚(𝑥) is the magnetization at location 𝒙 = (𝑥, 𝑦, 𝑧), 𝐶𝑞(𝑥) is the sensitivity of 𝑞-th coil, and the 

integral is over 𝜔, which is the region of interest; 𝜙(𝑥, 𝑡) is the spatially dependent encoding phase. For 
the O-Space echo corresponding to the 𝑙-th center placement (CP) at (𝑥𝑙 , 𝑦𝑙), the spatially dependent 

encoding phase 𝜙(𝑥, 𝑡) of the signal equation becomes, which is 

𝜙𝑙(𝒙, 𝑡) = 𝑘𝑥(𝑡)𝑥 + 𝑘𝑦(𝑡)𝑦 − 12𝑘𝑧2(𝑡)((𝑥 − 𝑥𝑙)2 + (𝑦 − 𝑦𝑙)2)   

where  

𝑘𝑥(𝑡) = 𝛾 ∫ 𝐺𝑥(𝜏)𝑑𝜏,
𝑡0

 

𝑘𝑦(𝑡) = 𝛾 ∫ 𝐺𝑦(𝜏)𝑑𝜏
𝑡0

, 

and  



𝑘𝑧2(𝑡) = 𝛾 ∫ 𝐺𝑧2(𝜏)𝑑𝜏.
𝑡0

 

 
𝐺𝑥(𝑡), 𝐺𝑦(𝑡) and 𝐺𝑧2(𝑡) are gradients waveforms on X, Y and Z2 directions; 𝛾 is the gyromagnetic ratio. To 

further improve image quality, we replace our standard Kaczmarz reconstruction or CS algorithm with 
Low-Rank matrix recovery. Similar to the previous work on CS reconstruction for O-Space imaging [9,10], 
we apply the Low-Rank reconstruction with O-Space imaging. Assuming a desired image in matrix 
form 𝑺 ∈ 𝐶𝑛×𝑚 in O-Space imaging, 𝑠 is the vectorized version of the desired image by row 

concatenation, 𝑠 = 𝑣𝑒𝑡(𝑺), and this convex optimization may be written as: 

𝑠 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝜆1𝑇𝑉(𝑺) + 𝜆2 ∥ 𝑺 ∥∗ +∥ 𝒇 − 𝑬𝒔 ∥2
2)), 

where 𝒇 is the measured signal; ∥∙∥2 and ∥∙∥∗ are ℓ2 and nuclear norm; 𝑣𝑒𝑡(∙) is the vectorization 

function; 𝑇𝑉(∙) is total variation function; 𝜆1 and 𝜆2 are the relaxation convergence parameters and is 

typically set for strongly under-relaxed reconstructions for gradual convergence; 𝐸 is the encoding matrix, 

with its inverse calculated by the Kaczmarz iterative algebraic reconstruction [9]. The iterative nonlinear 

conjugate gradient (NCG) method is applied to optimize the above problem. 

 

Methods 

 

The simulations used a geometric phantom with the 64×64 resolution to study the normalized mean-square-

error (NMSE) of reconstruction results at reduction factors of 4, 8, 16 and 32. Experiments were performed 

on a SIEMENS MAGNETOM 3.0T Trio scanner (Erlangen, Germany). The Z2 SEM gradient inserts [9] were 

built by Resonance Research, Inc. (Billerica, MA), which of 38cm diameter can run a maximum current of 

625 Ampere giving Z2 strength of 0.94 Gauss/cm2. Another SIEMENS 8-channel head coil was used inside 

the gradient coil. Images were reconstructed with the 128×128 resolution. 

 

Results 

 

Figure 1 shows simulation results, including reference, radial and O-Space imaging at reduction factors of 

8 and 16. Few improvements to reduce aliasing artifacts are observed if using the CS reconstruction in 

radial and O-Space imaging, but applying Low-Rank reconstruction clearly reduces undersampling artifacts, 

particularly for the O-Space encoded images. Figure 2 summarizes these results for a range of reduction 

factors and reconstruction methods applied to both radial and O-Space images. The proposed Low-Rank 

method improves NMSE over CS reconstruction, especially at high reduction factors, and the improvement 

is greater for O-Space encoded images. In Figure 3, experimental phantom results also show the proposed 

Low-Rank O-Space method reduces artifacts and recovers more detail (red arrows) than the either 

Kaczmarz or CS reconstruction of O-Space with pseudo-random disturbance. Moreover it is better than the 

best image attainable from radial encoding. 

 

Discussion and Conclusion 

 

In summary, the proposed method applies Low-Rank reconstruction to the problem of image reconstruction 

when imaging with nonlinear spatial encoding methods. The Low-Rank O-Space approaches can eliminate 

aliasing artifacts caused by undersampling in O-Space imaging. Moreover, the images are better than those 

achieved with radial data using either Kaczmarz, CS or Low-Rank reconstruction. It should also be noted 

that this method does not require modification of the O-Space acquisition strategy [9,10]. In the future, it may 

be beneficial to apply Low-Rank reconstruction to other nonlinear spatial encoding methods.  
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Figure 1: Simulations of geometric phantom with the 64×64 resolution including reference, radial imaging, 

O-Space imaging and their different images with the referent images at reduction factors of 8 and 16. 

 

 

 
Figure 2: NMSE (Normalized Mean Square Error) of simulations (64×64) at different reduction factors 
including corresponding reconstruction methods of radial and O-Space imaging. 



 
Figure 3. Experimental results with the 128×128 resolution including reference, radial imaging, and O-
Space imaging at a reduction factor of 8. 
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