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Abstract

Nanophotonic chiral sensing has recently attracted a lot of at-

tention. The idea is to exploit the strong light-matter inter-

action in nanophotonic resonators to determine the concen-

tration of chiral molecules at ultra-low thresholds, which is

highly attractive for numerous applications in life science and

chemistry. However, a thorough understanding of the under-

lying interactions is still missing. The theoretical description

relies on either simple approximations or on purely numeri-

cal approaches. We close this gap and present a general the-

ory of chiral light-matter interactions in arbitrary resonators.

Our theory describes the chiral interaction as a perturbation of

the resonator modes, also known as resonant states or quasi-

normal modes. We observe two dominant contributions: A

chirality-induced resonance shift and changes in the modes

excitation and emission efficiencies. Our theory brings new

and deep insights for tailoring and enhancing chiral light-

matter interactions. Furthermore, it allows to predict spec-

tra much more efficiently in comparison to conventional ap-

proaches. This is particularly true as chiral interactions are in-

herently weak and therefore perturbation theory fits extremely

well for this problem.

Introduction

The term “chirality” refers to objects that cannot be superim-

posed with their mirror image1. These two so-called enan-

tiomorphs (or, in case of molecules, enantiomers) differ only

in their handedness, which can be left or right. What sounds

like a purely mathematical concept has in fact a huge impact,

as life itself is chiral2,3. The outcome of most biochemical

interactions, where chiral biomolecules shake hands, strongly

depends on the mutual handedness of the reactants. In ex-

treme examples, the handedness of a molecule makes the dif-

ference between a drug and a toxin4,5. Therefore, detecting

the handedness of molecules is of crucial interest for count-

less applications in life science and chemistry, as well as for

the pharmaceutical industry6.

Conventional detection schemes rely on the fact that the

interaction of chiral media with light can differ among the

two circular polarizations and depends on the handedness of

the enantiomers. Assuming a homogeneous and isotropic

medium, this interaction is governed by the chiral constitu-

tive equations (below provided in Gaussian units)7,8:

D = εE − iκH,

B = µH + iκE.
(1)

Here, the permittivity ε and the permeability µ represent the

“nonchiral” properties of the medium, and the Pasteur pa-

rameter κ quantifies its chirality. Opposite handedness of the

medium results in an opposite sign of κ. A nonzero real part of

κ induces a difference in the phase velocities of left and right-

handed circularly polarized light, i.e., circular birefringence,

while a nonzero imaginary part induces a difference in their

absorption. Measuring this absorption difference – denoted as

the circular-dichroism (CD) signal – is the standard method

for optically characterizing the chirality of a medium.

Since chiral light-matter interactions are typically ex-

tremely weak (at optical frequencies, natural materials have

κ ≪ 1), this detection can be very challenging, especially

when only tiny amounts of substances are involved. Over-

coming this limitation would be highly attractive for numer-

ous applications. A promising approach consists in the use

of nanophotonic resonators to boost the chiral light-matter

interactions. For the sensing of “nonchiral” material prop-

erties, this is already a well-established technique. Applica-

tions include the ultra-sensitive detection of biomolecules9–15,

gases16,17, and much more18–20. In the past decade, a lot

of work, both experimental21–33 and theoretical30,34–58, has

been carried out to utilize the benefits of this technique for

the detecion of chiral substances. Different resonator de-

signs have been investigated, ranging from plasmonic anten-

nas21–28,38,42 to dielectric nanostructures29,49,52,54,55 or com-

binations50 to so-called “helicity-preserving” cavities53,56–58.

Another promising route is using structures that exhibit reso-

nances in the ultraviolet region31–33, where natural molecules

have particularly large κ values. Comprehensive overviews

can be found in corresponding review articles59–64.

The basic principle of nanophotonic chiral sensing is illus-

trated in Fig. 1a,b: The starting point is a nanophotonic res-
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Fig. 1. Principle of nanophotonic chiral sensing and underlying

contributions. a A nanophotonic resonator (example depicts an ar-

ray of Ω-shaped plasmonic antennas) with a chiral medium in its

center. b The circular-dichroism (CD) spectum is measured without

(gray) and with (light blue) chiral medium. The change in the spec-

trum (∆CD) contains information about the chirality of the medium.

c As shown in this work, the total interaction can be explained as a

combination of five different contributions: A nonresonant interac-

tion, changes in excitation and emission efficiencies of the modes,

modal resonance shifts, and intermodal crosstalk. Note that due to

similarities that will be discussed later, the contributions are catego-

rized into three different groups.

onator that can be brought into contact with which the chiral

medium. The resonator itself may also be chiral (e.g., due to

its shape), but does not have to be. As an example, we depict

an array of Ω-shaped plasmonic nanoantennas65–68 with the

chiral medium in their centers. First, the CD spectrum of the

resonator without the chiral medium is measured (gray), to

serve as a reference. Then, the resonator is brought into con-

tact with the chiral medium and the CD spectrum is measured

again (light blue). Note that for visualization, the spectral

changes in the plot are dramatically exaggerated. The differ-

ence between both spectra (we denote it as ∆CD) contains in-

formation about the handedness of the medium. Due to the en-

hanced light-matter interaction taking place in nanophotonic

resonators, the ∆CD signal is typically orders of magnitude

larger than the signal that would be obtained from the chiral

medium alone.

An important experimental detail in the above procedure

is not to use the plain resonator as reference, but rather the

resonator covered with a so-called racemic mixture28,29 (1:1

mixture of left-handed and right-handed enantiomers, which

is optically achiral) at the positions where the chiral medium

is supposed to be placed later. This ensures that only κ varies

between both measurements, while the other material param-

eters are constant. Note that there also exist variations of the

procedure that work without the need to use a racemic mix-

ture21,46; however, also in these cases, the key lies in tracing

the change of an optical signal induced by the interaction of

the resonator with the chiral medium.

For the case of a single chiral molecules, the above inter-

action is well understood36,37; however, in practice, one typ-

ically does not deal with single chiral molecules, but with

chiral media (i.e., a solution or a layer of many molecules).

In this case, describing the interaction with a resonator is

more sophisticated. The description relies on either simple

approximations or on purely numerical approaches: The in-

tuitive method21,30,39,41,44,47,48 consists in evaluating the opti-

cal chirality35 of the resonator’s near-field. This allows for

predicting the power absorbed in the chiral medium. How-

ever, while being very illustrative, this approach has severe

limitations29,62,69: First, it neglects any influence of the real

part of κ, which – albeit it would not contribute to the CD

of the chiral medium located outside a resonator – is known

to strongly contribute to the CD of the combined system29,69.

Second, it neglects the back action from the chiral medium

onto the fields of the resonator, known as induced CD37,69,70.

The rigorous method27,29,46,51,57,69–73 consists in directly in-

cluding the chiral medium into numerical calculations via

Eq. (1). However, while this approach accounts for all elec-

tromagnetic effects, it provides rather limited insights into the

interaction. As an alternative to numerical calculations, in

some cases, the interaction can be described analytically via

Mie theory74, or semianalytically via a simple closed-form

expression49. The former is, however, only applicable for sys-

tems with spherical or ellipsoidal symmetry, while the latter

only works for resonators that can be treated as an effective

medium.

We close the existing gap and present a general theory of

chiral light-matter interactions in arbitrary resonators. Our

theory retains the rigorousness of the numerical calculations,

while at the same time providing a deep intuitive insight. It

describes the chiral interaction as a perturbation of the modes

of the resonator, also known as resonant states75–80 or quasi-

normal modes81–86. We show that the entire chiral light-

matter interaction can be explained as a combination of five

different contributions (illustrated in Fig. 1c): a nonresonant

interaction, changes in the excitation and emission efficien-

cies of the modes, modal resonance shifts, and intermodal

crosstalk. Note that the contributions can be organized into

three different categories, due to similarities that will be dis-

cussed later. We quantify the impact of these contributions

in different sensor geometries. Furthermore, we show that –

contrary to common expectation – resonance shifts are often

not the dominating source of signal.

Describing nanophotonic resonators via their modes is a

highly efficient approach that is experiencing rapidly increas-

ing recognition in the community12,20,75–98. Our derivations

are based on previous works from the field: In Ref. [76],

a rigorous electrodynamic perturbation method was devel-

oped for predicting modal changes in systems containing bi-

anisotropic materials. References [77, 80, 95] demonstrate

how to construct the optical scattering matrix of a resonator

from its modes. Based on these works, we have derived a
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simple expression for the change of the optical scattering ma-

trix under chiral material perturbations.

Results

Theory. In the following, we give a brief summary of the

theory. A detailed derivation can be found in the Supporting

Information. We start from Maxwell’s equations for an opti-

cal resonator without any chiral medium. For compactness of

notations, we make use of the operator formalism introduced

in Ref. [76]. Thus, Maxwell’s equations read [Gaussian units,

frequency domain, time dependence exp(−iωt), no external

currents]:

[

k

(

ε(r; k) 0

0 µ(r; k)

)

−

(

0 ∇×

∇× 0

)]

︸                                       ︷︷                                       ︸

M̂(k)

(

E(r)

iH(r)

)

︸  ︷︷  ︸

F

= 0. (2)

Here, k represents the vacuum wavenumber (for brevity of

notations, we will consistently use k = ω/c instead of the

frequency ω); the permittivity ε(r; k) and permeability µ(r; k)

describe the spatial material distribution of the resonator, and

E and H denote the electric and magnetic field, respectively.

By combining the fields into a six-dimensional supervector F,

and summarizing all other quantities into the Maxwell oper-

ator M̂, Maxwell’s equations become a simple one-line equa-

tion: M̂F = 0. The modes of the resonator are defined as the

solutions of this equation that simultaneously satisfy outgoing

boundary conditions. One finds76

M̂(kn)Fn = 0, (3)

where n is an index that labels the modes, Fn denote the modal

field distributions, and kn are the corresponding wavenum-

ber eigenvalues. In general, kn are complex, with Re(kn)

representing the resonance wavenumbers of the modes and

−2 Im(kn) denoting their linewidths. Since nanophotonic res-

onators are typically open systems82 (they leak energy to the

environment), their modes are generally referred to as reso-

nant states or quasi-normal modes. For the sake of brevity,

we will continue to use the intuitive term modes. Note that

Eq. (3) defines Fn only up to an arbitrary scalar factor. In or-

der to be applicable for an expansion, they have to be normal-

ized. Valid normalization schemes can be found in Refs. [75,

76, 80, 82, 83, 93], and references therein.

A very convenient formalism to summarize the interaction

of a resonator with incident light is via the optical scatter-

ing matrix S 77,80,95,98. The idea is as follows: The resonator

has different so-called incoming channels N, via which it can

be excited, and different so-called outgoing channels M, via

which it can radiate light80,99. Here, the vectors N and M

each represent a set of quantum numbers that specify details

about the respective channel (e.g., polarization, propagation

direction,. . . ). Each element S MN of the scattering matrix

represents the transmission (or reflection) amplitude from one

particular input channel N into one particular output channel

M. The scattering matrix can be calculated from the modes

as77,80,95

S MN = S
bg

MN
+

∑

n

an,Mbn,N

k − kn

. (4)

Here, S
bg

MN
corresponds to a nonresonant background term,

while an,M and bn,N represent the emission and excitation co-

efficients, respectively, of the modes Fn (expressions provided

in the Supporting Information). Furthermore, k denotes the

wavenumber at which the resonator is excited. Note that

S
bg

MN
, an,M, and bn,N are considered here as k dependent. We

want to remark that there exist several alternative representa-

tions77,80,95,98 of Eq. (4), which differ in the definition of the

background term and the coefficients.

Now, let us assume the resonator is perturbed by locally

inserting a chiral medium. Mathematically, this can be ac-

counted for by changing the operator M̂ that describes the res-

onator to M̂ + δM̂, with the perturbation operator δM̂, which is

defined as76

δM̂ =






k

(

0 −κ

−κ 0

)

inside volume Vc,

0 outside.

(5)

Here, Vc represents the volume in which the chiral medium

is inserted, and κ is the Pasteur parameter. The above δM̂

corresponds to the most relevant scenario, where one tran-

sitions from a racemic mixture to a chiral medium, such that

only κ varies and the “nonchiral” material parameters ε and µ

stay constant. It is straightforward though, to extend δM̂ for

changes in ε and µ as well. Furthermore, instead of consid-

ering a scalar κ, it is also possible to include bi-anisotropic

contributions, originating, e.g., from molecular alignment ef-

fects27,73. The most general δM̂ can be found in the the Sup-

porting Information.

As a consequence of the perturbation, the scattering matrix

changes from S to S + δS , where δS denotes the change. In

the case of chiral media, one can safely assume that the per-

turbation is small compared to the unperturbed material pa-

rameters. Therefore, one can apply a first-order perturbation

theory. After some derivations (see Supporting Information),

we obtain the change of the scattering matrix as

δS = δS nr + δS ex + δS em + δS shift + δS cross, (6)

which contains five contributions defined as:

δS nr
MN =

∫

Vc

ikκ
(

ER
M ·HN +HR

M · EN

)

dV, (7)

δS ex
MN = −

∑

n

an,M

∫

Vc
ikκ

(

ER
n ·HN +HR

n · EN

)

dV

k − kn

, (8)

δS em
MN = −

∑

n

bn,N

∫

Vc
ikκ

(

ER
M
·Hn +HR

M
· En

)

dV

k − kn

, (9)

δS shift
MN =

∑

n

an,Mbn,N

∫

Vc
ikκ

(

ER
n ·Hn +HR

n · En

)

dV

(k − kn)2
, (10)

3



δS cross
MN =

∑

n,n′

an,Mbn′,N

∫

Vc
ikκ

(

ER
n ·Hn′ +HR

n · En′

)

dV

(k − kn)(k − kn′ )
.

(11)

Here, EM,HM, and EN,HN denote the background fields be-

longing to the M-th outgoing and the N-th incoming channel,

respectively (for details, see Supporting Information), while

En,Hn represent the fields of mode n. The superscript R indi-

cates reciprocal conjugation80, which is included for the sake

of generality and is, e.g., needed when dealing with periodic

systems under oblique incidence angles96. In most practically

relevant cases (for details, see Refs. [76, 80, 95]), one trivially

obtains ER=E and HR=H.

Equations (6) to (11) are the main result of this work. They

allow to predict the response of a resonator to chiral mate-

rial changes via simple overlap integrals of the unperturbed

fields over the region of the perturbation. We want to remark

that, although we are only interested in κ changes, the above

equations can be easily extended to account for changes in

ε, µ, and the bi-anisotropic parameters as well. The general

expressions are provided in the Supporting Information.

As shown above, the total change δS is composed of five

contributions. Every contribution describes the effect of a dif-

ferent perturbation-induced physical process on the scattering

matrix. The first one, δS nr, contains an overlap integral be-

tween incoming and outgoing background fields and repre-

sents a nonresonant interaction. The second, δS ex, and third

contribution, δS em, consist of overlap integrals of the modes

with the background fields, which describe changes in the ex-

citation and emission efficiencies, respectively. The relevance

of this overlap has been predicted by us in a previous numer-

ical study70. The above equations now rigorously prove this

prediction. The fourth contribution, δS shift, contains an over-

lap integral of the modes with themselves, which is associated

with a shift of their wavenumber eigenvalues. The fifth con-

tribution, δS cross, comprises an overlap integral between dif-

ferent modes, which describes perturbation-induced crosstalk.

Note that the shift and the crosstalk contributions are mathe-

matically very similar. Therefore, we categorized them into

a common group of effects in the illustrations of Fig. 1. We

will later investigate the significance of these contributions in

different example systems.

Let us now have a closer look at the shift contribution. As

already indicated, δS shift denotes the response of the scatter-

ing matrix to resonance shifts. The shift of the wavenumber

eigenvalue of an individual mode is given as

∆kn =

∫

Vc

iknκ
(

ER
n ·Hn +HR

n · En

)

︸                         ︷︷                         ︸

“∆kn per volume”

dV. (12)

This is the chiral analog of the eigenvalue shift that is well-

known from previous works on “nonchiral” sensing for ε and

µ changes20,75,79,81,82,96,97, where it is considered to be the cru-

cial quantity to maximize the sensitivity. The term under the

integral can be interpreted as a “shift per volume” density.

In general, ∆kn is complex, with Re(∆kn) corresponding to a

change in the resonance wavenumber and −2 Im(∆kn) repre-

senting a change in the linewidth.

The above equation reveals an interesting connection to the

optical chirality introduced by Tang and Cohen35: Let us as-

sume a typical chiral medium with |Re(κ)|≫| Im(κ)|, a res-

onator with low losses, i.e., |Re(kn)|≫| Im(kn)|, and further-

more restrict the considerations to a scenario where ER=E

and HR=H. In this case, one finds that the change of the res-

onance wavenumber Re(∆kn) is proportional to the integral

over Im(En·Hn). This quantity is closely related to the optical

chirality. Therefore, as a rule of thumb, one can deduce that

systems optimized for strong chiral modes are also sensitive

for resonance wavenumber changes.

Example 1: Rod antennas. In the following, we will ap-

ply our theory to different examples of nanoresonator sys-

tems. As a first example, we consider one of the most fre-

quently used structures in nanophotonic sensing: an array of

plasmonic rod antennas. The geometry is depicted in Fig. 2a.

The dimensions are chosen to achieve a resonance in the near-

infrared spectral range (for details, see Methods section). The

antennas consist of gold and are surrounded by water. Chi-

ral media patches are placed at the ends of each antenna,

i.e., in the regions where the strongest near-fields occur. The

chiral medium is accounted for with a Pasteur parameter of

κ = (1 + 0.01i) × 10−4. This value is deliberately chosen such

that it exhibits a large but still realistic magnitude29,100 and

contains a typical ratio between real and imaginary part29,70.

Figure 2b shows the spectral response of the antennas

around their fundamental plasmonic mode, which is found at

an energy of 1146.1 − 51.3i meV. As a representative quan-

tity, we plot the ∆CD signal. The corresponding matrices S

and δS with all their components can be found in the Sup-

plementary Figs. 1 and 2. Details on how the ∆CD signal is

obtained from S and δS are provided in the Supplementary

Information. The matrices were calculated from inserting the

fundamental mode into Eqs. (4) and (6). To improve the ac-

curacy of S , an additional cubic fit was used as background to

account for the influence of higher-order modes (for details,

see Methods section).

The top panel in Fig. 2b depicts the total ∆CD signal. The

line denotes the result of the modal theory, while the dots have

been obtained by exact full-wave calculations (for details, see

Methods section) and are plotted for comparison. It can be

seen that there is excellent agreement. The total ∆CD sig-

nal exhibits a Lorentzian line shape, with its highest absolute

value being located at the resonance energy of the mode (indi-

cated by a vertical dashed line). The lower panels display the

different contributions. For compactness, we have summed up

the change in the excitation and emission efficiency contribu-

tions to one curve. Furthermore, there is no crosstalk curve,

since only one mode is considered. Note that the curve for

the nonresonant interaction shows a zero crossing at exactly

the resonance energy of the mode. This might strike as a mis-

take, since δS nr does not contain any modal dependence [cf.

4
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Fig. 2. Optical response of plasmonic rod antennas. a We con-

sider an array of rod antennas with chiral media patches located at

each end. b Resulting ∆CD spectrum. The top plot denotes the total

signal (line: calculated with our modal theory; dots: exact full-wave

calculations). The individual contributions are depicted below. The

system is dominated by the changes in the excitation and emission

efficiencies, while the shift contribution is exactly zero.

Eq.(7)]. There is, however, a trivial explanation: As already

mentioned, we do not look at the contributions of δS , but at

their impacts on the ∆CD signal. These impacts contain an

additional modulation by the unperturbed scattering matrix S

(details, see derivation of ∆CD in the Supporting information)

and this matrix has a modal dependence.

The results in Fig. 2b paint a very clear picture: The system

is dominated by the change in the excitation and emission ef-

ficiencies of the mode. The nonresonant interaction contribu-

tion is very small and practically irrelevant. The shift contri-

bution is not only small but turns out to be strictly zero. This

result is quite surprising, since resonance shifts are widely

believed to be the driving mechanism behind nanophotonic

chiral sensing21,25,27,38.

In order to understand why the shift contribution is zero,

it is instructive to have a closer look at the mode. Its electric

field is visualized in Fig. 3a. By applying Eq. (12), one can de-

Re(Δ per volumeE
n

)

(
)

m
e

V
/

m
μ

3

7

-7

0

|
| (a

.u
.)

E

1

0

a b

1146.1 - 51.3i meV chiral medium

Mode

Fig. 3. Details on the resonance shift in the rod antennas. a Fun-

damental plasmonic mode. b “Shift per volume” of that mode. From

the figure, it is obvious that inside the volume of the chiral media

patches (displayed in panel b as bluish cubes), the “shift per volume”

is very weak, and furthermore, positive and negative contributions

cancel out each other.

rive the corresponding “shift per volume” density. The result

is plotted in Fig. 3b. Note that for consistency with the spec-

tra, we use units of energy (“∆En per volume”) instead units

of wavevector (“∆kn per volume”). The shift of the energy

eigenvalue ∆En (=c~∆kn) is obtained by integrating the “shift

per volume” density over the volume of the perturbation (the

chiral media patches are displayed in Fig. 3b as bluish cubes).

From the plot, it is obvious that the integral vanishes: First

of all, the “shift per volume” is very weak inside the region

of the patches. Second, and more importantly, positive (red)

and negative (blue) contributions are occurring symmetrically

such that they cancel out each other. It can be easily deduced

from the plot that this symmetry argument does not only ap-

ply when the chiral medium is positioned at the ends of the

antenna, but also holds for other distributions, e.g., when the

medium would completely surround the antenna.

In fact, it is straightforward to prove that any geometrically

achiral sensor will experience zero resonance shift. The ar-

gument is as follows: The electric field classifies as a vector

(it flips its direction under parity inversion), while the mag-

netic field classifies as a pseudovector (it does not flip its di-

rection under parity inversion)101. This makes the shift ∆En

defined by Eq. (12) a pseudoscalar (it does change its sign

under parity inversion), and therefore vanishing for geomet-

rically achiral sensors. f This derivation suggests, however,

that it can be possible to enforce a frequency shift in the rod

antennas by breaking the achiral symmetry of the patch ar-

rangement. An obvious choice consists in placing the chiral

medium only in regions with a uniform sign of the “shift per

volume” density40. To verify this, we have considered the rod

antenna with the chiral medium distributed over the positive

regions (red spots in Fig. 3b). The results (see Supplemen-

tary Figs. 3 and 4) confirm that this arrangement indeed pro-

vides a nonzero shift contribution. However, interestingly, it

can only be observed in the channels of δS , but not in the

∆CD spectrum, since the signals from different channels can-

cel out each other. Furthermore, it is quite obvious that such a

three-dimensional patch arrangement would be rather difficult

to realize in practice.
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Example 2: Ω antennas. As a second example, let us now

investigate a system that is specifically designed to generate a

strong shift. Before we discuss the structure, let us recapitu-

late the requirements dictated by Eq. (12): On the one hand,

the system needs to feature a mode with strong collinear elec-

tric and magnetic fields in some region of space. On the other

hand, the product between both fields should exhibit one pre-

dominant sign. Many systems discussed in the literature on

chiral sensing21,38,39,42,44,46 are already optimized for strong

optical chirality and – due to the connection discussed under

Eq. (12) – should intrinsically feature a strong shift. Rep-

resentatively for such structures, we choose a very intuitive

geometry: the Ω-shaped antennas depicted in Fig. 1a. They

can be understood as follows: Each Ω consists of an upright

standing split-ring resonator with two rod antennas attached to

its feet. While split rings are known to feature strong dipolar

magnetic fields, rod antennas do support strong dipolar elec-

tric fields. The particular arrangement of these components

promises collinearity of the fields within the center of the Ω.

Although they have never been utilized in the context of sens-

ing so far, such Ω antennas are known to exhibit a strong chi-

roptical far-field response65–68. We consider again a periodic

array of antennas. The materials are the same as in the previ-

ous example, and the dimensions are chosen comparably (for

details, see Methods section). Note, however, that the fabrica-

tion of such three-dimensional structures is in general not an

easy challenge (although there are approaches67,68,102,103).

Figure 4a displays the “shift per volume” density of the en-

ergetically lowest two excitable plasmonic modes. The results

confirm what was intuitively expected: There is a hotspot with

high uniform values in the center of the antenna. Note that

for the given configuration, mode 1 exhibits a negative sign,

while mode 2 exhibits a positive one. Let us now assume that

a patch of chiral medium is positioned in the hotspot (for visu-

alization, see Fig. 1a). Figure 4b displays the resulting energy

eigenvalue shifts ∆En (both the real and imaginary parts) as

a function of κ. On the x axis, κ is varied as a multiple of

κ0 = (1 + 0.01i) × 10−4. The lines show the prediction of the

modal theory, while the dots have been derived from exact

full-wave calculations and are depicted for comparison. It is

evident that there is an excellent agreement. As expected from

the “shift per volume” plots, the energy eigenvalues are very

sensitive to κ changes. In agreement with the sign of the “shift

per volume” density in the hotspot, mode 1 shows a negative

slope in the Re(∆En) plot, while mode 2 exhibits a positive

one.

To investigate the impact of the ∆En shifts, we evalu-

ate again the spectral response of the system. In order to

improve the accuracy, we include one further mode in the

calculation. This mode is found at an energy eigenvalue

of 1750.1 − 25.4i meV and contributes to the spectrum via

crosstalk. The calculation results are displayed in Fig. 5. As

in the rod antenna example, we depict only the ∆CD signal,

while the full matrices S and δS can be found in the Supple-

mentary Figs. 5 and 6, respectively. All calculations are anal-
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Fig. 4. Resonance shift in Ω antennas. The Ω antennas are ex-

pected to have a collinear electric and magnetic field at their centers,

which results in a nonzero resonance shift. a “Shift per volume” of

two plasmonic modes. Both modes exhibit hotspots with high val-

ues and a uniform sign in the center of the antenna. b Change in

the energy eigenvalues (lines: modal theory; dots: exact full-wave

calculations) of the modes as a function of κ for a chiral medium lo-

cated at the center of the antenna as shown in Fig. 1. The top and

bottom plots of each subpanel correspond to the change in the real

and imaginary part, respectively.

ogous to the case of the rod antennas, with the only difference

that three modes are considered instead of one. As before,

we take a fixed value of κ = (1 + 0.01i) × 10−4 (cf. Fig. 5a).

Figure 5b (top panel) displays the total ∆CD signal. One can

again observe an excellent agreement between the prediction

of the modal theory (line) and exact full-wave calculations

(dots). Two distinct features can be identified: A peak at the

resonance energy of mode 1, and a zero crossing surrounded

by large absolute values at the resonance energy of mode 2.

The lower panels depict the individual contributions, subdi-

vided into their modal origin. As it can be seen, in this system,

the shift contribution plays an important role for the total sig-

nal. However, in addition, also the changes in the excitation

and emission efficiencies are quite strong. One can quantify

the importance of the individual contributions for each mode

separately: For mode 1, the change in the emission efficien-

cies is dominating over the shift. This combination leads to

the peak shape in the ∆CD spectrum. For mode 2, the shift is

dominating over the efficiency changes, leading to the zero-

crossing behavior. The contributions associated with mode 3

only play a minor role. The same applies for the nonresonant

interaction. In summary, theΩ example demonstrates that it is

indeed possible to design a sensor with large resonance shifts.

However, interestingly, even in this sensor, the relevance of
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Fig. 5. Optical response of the Ω antennas. a An array of antennas

with chiral media patches in their center. b Resulting ∆CD spec-

trum. The top plot denotes the total signal (line: calculated with our

modal theory; dots: exact full-wave calculations). The individual

contributions are depicted below. As it can be seen, in this system,

the change in the excitation and emission efficiencies as well as the

shift are all relevant. Around mode 2, the resonance shift is domi-

nant.

the changes in the excitation and emission efficiencies should

not be underestimated. We do not see any reason that this

should be different for other structures optimized for strong

chiral near-fields. Thus, while an analysis of optical chirality

can yield promising nanostructure designs for sensing appli-

cations, all contributions must be taken into account for sensor

optimization

Discussion

After considering these two example systems, one might won-

der which one has the better overall performance. There-

fore, we evaluated their CD enhancement factors70 (defined

as |∆CD| of the system normalized to the |CD| of the chiral

patches without the antennas). The results are depicted in the

Supplementary Fig. 7. The answer might appear rather sur-

prising: The rod antennas exhibit a maximum value of 325

and thereby outperform the Ω antennas, which only provide a

maximum value of 250. Another advantage of the rod anten-

nas is that, since they are geometrically achiral, they do not

provide any CD signal in the absence of the chiral medium34.

In accordance with a previous numerical study70, our re-

sults suggest that changes in the excitation and emission effi-

ciencies (related to strong overlap of the incident fields with

the modes) have to be considered as a relevant mechanism for

nanophotonic chiral sensing rather than resonance shifts (re-

lated to strong overlap between the modes’ electric and mag-

netic fields). Furthermore, our derivations reveal that in gen-

eral, stronger near-fields – regardless of with or without high

optical chirality – lead to larger signals. There is no need for

designing systems such that they exhibit a strong optical chi-

rality with simultaneously weak electric fields, as it was sug-

gested in early works35,104. The difference is that these early

works focused on optimizing a quantity known as enantiose-

lectivity and not the absolute signal strength, which, however,

denotes the relevant factor that defines the detection limits in

nanophotonic sensing16.

All considerations made in this work are based on a first-

order approximation in κ. Therefore, it is quite natural to ask

what the limitations of this approach are. To systematically

investigate the validity range of the theory, we have varied κ

over many orders of magnitude and compared the predicted

∆CD spectra to exact full-wave calculations. Negative signs

were considered as well. The results are depicted in Support-

ing Fig. 8. They reveal that the first-order approximation is

accurate over a surprisingly huge range of values. Only when

the order of |κ| approaches unity, the deviations become rel-

evant. Such values would be, however, far beyond what is

known for any natural material.

Calculating the spectra for different values of κ reveals an

additional benefit of the modal theory: While conventional

full-wave simulations have to be repeated for multiple κ val-

ues, the modal theory allows to predict the output over the

whole range of values with one single calculation. This is

possible, because κ appears as a linear factor in the integrals

of δS [see Eqs. (6) to (11)]. Therefore, one only has to evalu-

ate the integrals with κ factored out and can multiply the result

with any complex value of interest, to directly obtain the de-

sired spectra. This even works when κ is not a constant, but

a function of frequency instead. There are at least two ap-

plications in sensor modeling: First, one is often interested

in the sensor response to different analyte media. Second,

even for one particular chiral analyte, one is typically inter-

ested in the response to both of its enantiomers (i.e., to both

values ±κ). Related to sensor modeling, there is a further ben-

efit of the perturbative approach: It should not be forgotten

that realistic κ values are typically extremely small. In full-

wave calculations, this sets high standards for the accuracy

of the simulations, so that the relevant signals do not vanish

within numerical noise51,70. The smaller the value of κ gets,
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the more computationally expensive the numerical simulation

becomes. In sharp contrast, the perturbative approach can ef-

fortlessly predict spectral changes for arbitrarily small values

of κ.

In conclusion, we have presented a general theory of chiral

light-matter interactions in nanophotonic resonators. Our the-

ory reveals the mechanisms behind nanophotonic chiral sens-

ing. There are exactly five contributions: a nonresonant inter-

action, changes in the excitation and emission efficiencies of

the resonator modes, modal resonance shifts, and intermodal

crosstalk. We have investigated the impact of these contribu-

tions in different sensor geometries. We have demonstrated

that – contrary to common expectation – resonance shifts are

often not the dominating source of signal. In the case of achi-

ral sensors, they are even strictly zero. Instead, it turns out

that the changes in the excitation and emission efficiencies

can be the driving mechanism for enhancing circular dichro-

ism spectroscopy. Besides enabling deep intuitive insights for

the understanding and tailoring of nanophotonic chiral light-

matter interactions, our theory also constitutes a highly effi-

cient computational tool, with clear advantages over conven-

tional approaches in terms of calculation time and efforts.

Methods

Calculations. All calculations were performed using the

commercial finite-element solver COMSOL Multiphysics.

The chiral constitutive equations were implemented accord-

ing to Ref. [70]. The modes were calculated and normal-

ized following the method provided in Ref. [83]. The gold

dielectric function was described by a Drude model with

plasma frequency ωp = 1.37 × 1016 rad/s and a damping con-

stant γ = 1.22 × 1014 rad/s (adopted from Ref. [105]). The

water was accounted for with its refractive index of 1.33. Cal-

culations have been cross-checked by an in-house implemen-

tation of the Fourier-modal method106.

Antenna dimensions. Rod antennas: The rods have a

length of 200 nm, a width of 40 nm, a height of 40 nm, and

are periodically arranged with a period of 600 nm. The sizes

of the chiral media patches are 40 × 40 × 40 nm3. Ω anten-

nas: The Ωs have a total length of 240 nm, a total width of

140 nm, and a total height of 140 nm. They are wound of a

quadratic wire with a lateral extension of 40 nm. The chiral

media patches in their centers are 40 nm in length, 60 nm in

width, and 60 nm in height. The period is 500 nm.

Unperturbed scattering matrix. To improve the accuracy

of the unperturbed scattering matrix S , the influence of

higher-order modes in Eq. (4) was accounted for with a cubic

fit, following the method provided in Ref. [80]. The fit was

evaluated at four energy points, equidistantly distributed over

the depicted spectral range. Note that S is only needed for the

calculation of the ∆CD spectra (see equations in the Support-

ing information), while for predicting the change δS , which

constitutes the main result of this work, it is not required at

all.

Visualization. The fields and the “shift per volume” den-

sities were displayed on selectively chosen slices through the

antennas. The slice plots were generated from simulation data

and then incorporated into a three-dimensional model of the

structure, which had been created with the open-source graph-

ics suite Blender. The transparency (alpha channel) of each

slice plot is proportional to the magnitude of the displayed

value. The slice positions were selected such that all relevant

features are visible: For the field plot of the rod antenna, the

slices are at half of the antenna’s width and height; for the

corresponding “shift per volume” plot, they are at one quar-

ter and three quarters of the antenna’s width and height; for

the plots of the Ω antenna, they are at half the Ω’s width and

length.
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46. Schäferling, M., Engheta, N., Giessen, H. & Weiss, T. Reducing the

Complexity: Enantioselective Chiral Near-Fields by Diagonal Slit

and Mirror Configuration. ACS Photonics 3, 1076–1084 (2016).

47. Poulikakos, L. V., Thureja, P., Stollmann, A., De Leo, E. & Norris,

D. J. Chiral Light Design and Detection Inspired by Optical Antenna

Theory. Nano Letters 18, 4633–4640 (2018).

48. Poulikakos, L. V., Dionne, J. A. & Garcı́a-Etxarri, A. Optical Helic-

ity and Optical Chirality in Free Space and in the Presence of Matter.

Symmetry 11. doi:10.3390/sym11091113 (2019).

49. Mohammadi, E., Tsakmakidis, K. L., Askarpour, A. N., Dehkhoda,

P., Tavakoli, A. & Altug, H. Nanophotonic Platforms for Enhanced

Chiral Sensing. ACS Photonics 5, 2669–2675 (2018).

50. Mohammadi, E., Tittl, A., Tsakmakidis, K. L., Raziman, T. V. &

Curto, A. G. Dual Nanoresonators for Ultrasensitive Chiral Detec-

tion. ACS Photonics 8, 17541762 (2021).

51. Lee, S., Kang, J.-H., Yoo, S. & Park, Q.-H. Robust numerical evalua-

tion of circular dichroism from chiral medium/nanostructure coupled

systems using the finite-element method. Scientific Reports 8, 8406

(2018).

52. Solomon, M. L., Hu, J., Lawrence, M., Garcı́a-Etxarri, A. & Dionne,

J. A. Enantiospecific Optical Enhancement of Chiral Sensing and

Separation with Dielectric Metasurfaces. ACS Photonics 6, 43–49

(2019).

53. Graf, F., Feis, J., Garcia-Santiago, X., Wegener, M., Rockstuhl, C. &

Fernandez-Corbaton, I. Achiral, Helicity Preserving, and Resonant

Structures for Enhanced Sensing of Chiral Molecules. ACS Photon-

ics 6, 482–491 (2019).

54. Droulias, S. & Bougas, L. Absolute Chiral Sensing in Dielectric

Metasurfaces Using Signal Reversals. Nano Letters 20, 5960–5966

(2020).

55. Lasa-Alonso, J., Abujetas, D. R., Nodar, l., Dionne, J. A., Senz,

J. J., Molina-Terriza, G., Aizpurua, J. & Garcı́a-Etxarri, A. Surface-

9



Enhanced Circular Dichroism Spectroscopy on Periodic Dual

Nanostructures. ACS Photonics 7, 2978–2986 (2020).
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Supplementary Figure 1. Unperturbed scattering matrix S of the rod antennas. Each element is represented by its absolute value

and its phase. We consider input channels from the top direction and output channels in the top and the bottom direction. The channels

are distinguished as left-handed circularly polarized (LCP) and right-handed circularly polarized (RCP). For comparison, we plot both the

results of the modal theory and the results of exact full-wave callculations.
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Supplementary Figure 2. Change of the scattering matrix δS of the rod antennas with chiral media patches at each end. As in

Fig. 2b (main manuscript), the lines depict the results of our modal theory (total signal, as well as the separation into individual contribu-

tions), while the dots have been obtained from exact full-wave calculations. Note that the (1,2) and the (2,1) matrix components have an

absolute value close to zero and hence their phase term is governed by numerical noise. As it can be seen, the shift contribution is zero in

all components.
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Supplementary Figure 3. Change of the scattering matrix δS of the rod antennas with the chiral medium distributed over chiral

hotspots. In order to enforce a resonance shift in the rod antennas, we take the chiral medium from the end of the antennas [cf. Fig 3b (main

manuscript) and Supplementary Fig. 2] and redistribute it over the regions with positive “shift per volume” values [red spots in Fig. 3b (main

manuscript)]. As it can be seen, this configuration results in a nonzero shift contribution in all matrix elements.
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Supplementary Figure 4. Optical ∆CD response of the rod antennas with the chiral medium distributed over chiral hotspots.

Remarkably, although all matrix elements in Supplementary Fig. 3 exhibit a nonzero shift contribution, the shift contribution in the ∆CD

spectrum remains zero. At first glance this might seem surprising; however, it can be understood by noting that the shift contributions in the

matrix are symmetric such that they affect left-handed and right-handed circularly polarized input the same way and hence cancel out each

other in the ∆CD signal.
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Supplementary Figure 5. Unperturbed scattering matrix S of the Ω antennas.
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Supplementary Figure 6. Change of the scattering matrix δS of the Ω antennas with chiral media patches in their centers.
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patches alone.
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Supplementary Figure 8. Validity range of the first-order approximation. a Rod antennas. b Ω antennas. The Pasteur parameter κ was

varied over many orders of magnitude. Negative signs were considered as well. As it can be seen, our approach works well over a huge

range of values. Only when the order of |κ| starts to approach unity, the deviations become clearly visible. However, such values would be

far beyond what is known for any natural material.
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Supplementary Notes

1 Details on the modal theory

In this section, we provide the details on the modal theory. First, we recap from literature2,3, how the scattering matrix of an

open optical resonator can be calculated from its modes. Afterwards, we derive an expression for the change of the scattering

matrix under material perturbations of the resonator.

1.1 General definitions

We start with curl Maxwell’s equations of the unperturbed resonator. By making use of the compact operator formulation

introduced in Ref. [4], they can be written as [Gaussian units, frequency domain, time dependence exp(−iωt)]

[

k

(

ε(r; k) −iξ(r; k)

iζ(r; k) µ(r; k)

)

︸                   ︷︷                   ︸

P̂(r;k)

−

(

0 ∇×

∇× 0

)

︸       ︷︷       ︸

D̂(r)

]

︸                                           ︷︷                                           ︸

M̂(r;k)

(

E(r; k)

iH(r; k)

)

︸     ︷︷     ︸

F(r;k)

=

(

JE(r; k)

iJH(r; k)

)

︸      ︷︷      ︸

J(r;k)

. (1)

Here, k = ω/c denotes the wavenumber, while ε, µ, ξ and ζ represent the material parameters, namely permittivity, permeabil-

ity, and possible bi-anisotropic contributions, respectively. The material parameters can in general be tensors. Note that ξ and

ζ are assumed to be zero in Eq. (2) of the main manuscript, since they are zero in most cases. Furthermore, we assume that the

materials are reciprocal4, leading to εT = ε, µT = µ, and ξT = −ζ, where the superscript T denotes the matrix transpose. The

vectors E and H represent the electric and magnetic fields, respectively, while the vectors JE and JH denote external electric

and magnetic currents, respectively. All material parameters are included in an operator P̂. In analogy, all curls are included

in an operator D̂. Furthermore, we introduced two six-dimensional supervectors F and J that consist of the fields and the

currents, respectively. By further abbreviating M̂ = kP̂ − D̂, the curl Maxwell’s equations become a simple operator equation

M̂(r; k)F(r; k) = J(r; k). (2)

For later convenience, we follow Ref. [2] and define two types of bilinear maps between two arbitrary field supervectors A

and B with

A =

(

EA

iHA

)

, B =

(

EB

iHB

)

. (3)

The first bilinear map represents a volume integral over a finite volume V:

〈A|B〉V ≡

∫

V

dV (EA · EB −HA ·HB) . (4)

The second one represents a surface integral over the surrounding surface ∂V of V:

[A|B]∂V ≡ i

∮

∂V

dS · (EA×HB−EB×HA) . (5)

It can be shown that2

[A|B]∂V = 〈B|D̂|A〉V − 〈A|D̂|B〉V , (6)

which will be useful later.

1.2 Green’s dyadic and modes

Now, let us come back to Eq. (2). One can introduce the so-called Green’s dyadic Ĝ of this equation, which is defined as the

solution of4

M̂(r; k)Ĝ(r, r′; k) = 1δ(r − r′), (7)

where 1 denotes the 6 × 6 unit matrix and δ(r) is the delta function. With the help of Ĝ, one can formally solve Eq. (2) for the

fields F induced by a given source source J via2,4

10



F(r; k) =

∫

V

dV ′Ĝ(r, r′; k)J(r′; k). (8)

The Green’s dyadic Ĝ can be expanded in terms of the modes. These are solution of Eq. (2) for J = 0 and outgoing boundary

conditions:

M̂(r, kn)Fn(r) = 0. (9)

Here, Fn represent the modes and their corresponding wavenumber kn eigenvalues. Note that Eq. (9) defines Fn only up to

an arbitrary scalar factor. In order to be used in an expansion, the resonant field distributions have to be normalized. Valid

normalization schemes can be found in Refs. [2, 4, 5] and references therein. With the normalized modes, the Green’s dyadic

can be written as2,4

Ĝ(r, r′; k) =
∑

n

Fn(r) ⊗ FR
n (r′)

k − kn

. (10)

Here, the superscript R denotes the reciprocal conjugate modes2. Note that, although the term may suggest otherwise, this has

nothing to do with the reciprocity of the medium. Reciprocal conjugate fields are solutions of the same Maxwell’s equations

at identical frequencies that have to be determined in dependence of the geometry in order to warrant the validity of the

resonant expansion in the case of degeneracy. For spherically symmetric systems, reciprocal conjugation means switching the

azimuthal order from m to −m. For planar periodic systems, this means switching the in-plane wave vector from k|| to −k||. In

the case of planar periodic systems with normal incidence (this applies for the example systems from the main manuscript),

one finds k|| = 0, which trivially results in FR
n = Fn.

Note that Eq. (10) neglects so-called cut contributions6–8, which represent a continuum of states that appears, e.g., in

two-dimensional systems. Furthermore, note that the expansion of Ĝ in terms of the modes is strictly speaking only complete

inside the resonant structure, but not in the distant surrounding9. In numerical calculations, it is possible to account for the

cut contributions, as well as to ensure completenes over the whole space by terminating the calculation domain with so-called

perfectly matched layers (PMLs) and include so-called PML modes in the expansion5,10. PML modes are included the same

way as other modes.

1.3 Scattered field formalism

Let us now introduce the so-called scattered field formalism2,11–14. In general, a nanophotonic resonator consist of a resonating

entity – from now on referred to as scatterer – and a background system, in which this scatter is embedded. Typical examples

for scatterers are nanoparticles, nanoantennas, arrays of nanoantennas, or gratings. Typical examples for background systems

are vacuum, homogeneous media, or substrate/superstrate interfaces. Consequently, one can split the material distribution P̂

of the resonator into a part P̂bg that describes the background system and a part ∆P̂ = P̂− P̂bg that describes the scatterer. Note

that P̂bg is nonzero everywhere in space, while ∆P̂ is nonzero only inside the scatterer. We then consider Maxwell’s equations

of the resonator without external currents (i.e., M̂F = 0). The total field F in the resonator can be separated into a background

field and a scattered field: F = Fbg + Fscat. The background field Fbg is defined as a solution of Maxwell’s equation in the

background system and satisfies

M̂bgFbg = 0, (11)

with M̂bg ≡ kP̂bg−D̂. The scattered field Fscat denotes the response of the scatterer to the background field. After some algebra,

one finds

M̂Fscat = −∆M̂Fbg, (12)

with ∆M̂ ≡ k∆P̂.

Equation (12) is formally identical to Eq. (2) (with Fscat taking the role of F and −∆M̂Fbg taking the role of a source J).

Hence, we can solve Eq. (12) for Fscat with the help of Eq. (8) using the Green’s dyadic provided in Eq. (10). This result in an

expansion of the scattered field2

Fscat = −
∑

n

Fn

〈FR
n |∆M̂|Fbg〉V

k − kn

, (13)

which will be used later.
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1.4 Scattering matrix

We now choose a surface ∂V that surrounds our scatterer. On this surface, one can construct a complete and orthogonal set

of incoming {IN} and outgoing {ON} basis functions of the background system that allows to decompose an arbitrary field2,15.

Here, the vector N denotes a set of quantum numbers that is used to label the basis functions. They satisfy the following

orthogonality relations2:

[IR
N|ON′ ]∂V = −[OR

N|IN′ ]∂V = δN,N′ ,

[IR
N|IN′ ]∂V = [OR

N|ON′ ]∂V = 0,
(14)

where the superscript R labels the reciprocal conjugate basis functions2. For single-particle scatteres, it is convenient to

take ∂V as a sphere around the scatterer. In this case, the appropriate basis functions are vector spherical harmonics. For

planar periodic scatterers, it is convenient, to take ∂V as two planes, one above and one below the scatterer. In this case, the

appropriate basis functions are plane waves. Details can be found in Ref. [2]. Incoming basis functions {IN} carry energy

towards the scatterer, while outgoing basis functions {ON} carry energy away from the scatterer. For every incoming basis

function IN there exists an outgoing counterpart ON. Each incoming basis function defines a so-called incoming channel,

while each outgoing basis function defines a so-called outgoing channel. For a given resonator, the relationship between

incoming and outgoing channels can be summarized via the so-called scattering matrix S . Each element S MN of the scattering

matrix represents the transmission (or reflection) amplitude from one particular input channel N into one particular output

channel M.

Let us now show how S MN can be calculated from the modes. Therefore, we assume that the resonator is excited by an

incoming channel N. This excitation generates a background field and scattered field, which we label as Fbg,N and Fscat,N,

respectively. The fields B and Fscat,N then excite outgoing channels of the resonator. The coupling into a particular output

channel M determines the element S MN of the scattering matrix. It can be calculated by projecting the fields onto the probe

function IR
M

(reciprocal conjugate of the incoming version of OM) via2

S MN = [IR
M|Fbg,N]∂V + [IR

M|Fscat,N]∂V . (15)

The first term on the right-hand side describes the direct coupling between incoming and outgoing channels in the background

system, while the second term describes the interaction between incoming and outgoing channels induced by the scatterer. In

the following, we will assume that the background field Fbg,N is known and only focus on the scattered field Fscat,N. Details on

how to obtain Fbg,N for an input channel IN in a given resonator can be found, e.g., in Ref. [3].

Let us now derive a more explicit expression for the second term on the right-hand side. Let FR
bg,M

be the resulting

background field that would be obtained by launching the probe function IR
M

into the background system. Then we can

convert:

[IR
M|Fscat,N]∂V

(∗)
= [FR

bg,M|Fscat,N]∂V
(∗∗)
= −〈FR

bg,M|∆M̂|Fbg,N〉V − 〈F
R
bg,M|∆M̂|Fscat,N〉V , (16)

where V denotes the volume that is surrounded by ∂V . For the first step (∗), we used that on the surface ∂V , the scattered field

Fscat,N is purely composed of outgoing basis functions2,3, while FR
bg,M

contains one incoming basis function (namely IR
M

) plus

some superposition of outgoing basis functions2,3, and applied the the orthogonality relations from Eq. (14). For the second

step (∗∗), we used Eq. (6) to convert the surface integral into volume integrals; then, we inserted D̂ = kP̂−M̂ and M̂ = M̂bg+∆M̂,

resulting in 〈Fscat,N|kP̂−M̂bg−∆M̂|F
R
bg,M
〉V−〈F

R
bg,M
|kP̂−M̂|Fscat,N〉V ; next, we applied Eqs. (11) and (12) and furthermore used

that the materials are reciprocal, which allows to switch the under the integrals as 〈Fscat,N|kP̂|F
R
bg,M
〉V = 〈F

R
bg,M
|kP̂|Fscat,N〉V and

〈Fscat,N|∆M̂|F
R
bg,M
〉V = 〈F

R
bg,M
|∆M̂|Fscat,N〉V .

Plugging Eq. (16) into Eq. (15) and inserting the expansion of the scattered field [Eq. (13)] results in Eq. (4) of the main

manuscript:

S MN = [IR
M|Fbg,N]∂V − 〈F

R
bg,M|∆M̂|Fbg,N〉V

︸                                     ︷︷                                     ︸

≡S
bg

MN

+
∑

n

≡an,M
︷             ︸︸             ︷

〈FR
bg,M|∆M̂|Fn〉V

≡bn,N
︷             ︸︸             ︷

〈FR
n |∆M̂|Fbg,N〉V

k − kn

. (17)

This equation allows to calculate the scattering matrix of an open optical resonator from the knowledge of its modes. Here,

S
bg

MN
corresponds to a nonresonant background term, while an,M and bn,N represent the emission and excitation coefficients,

respectively, of the modes Fn, and k denotes the wavenumber, at which the resonator is excited. Note that all quantities except

Fn and kn are k dependent. We want to remark that this equation is similar to Eq. (34) from Ref. [3]. Furthermore, we want

to point out that the first part of S
bg

MN
represents the scattering matrix of the background system, while the second part can be

associated with a Born-like scattering process3.
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1.5 Change of the scattering matrix

In the following, we derive an equation for the change of the scattering matrix under material perturbations of the resonator.

Let the operator M̂ as before represent the unperturbed resonator. Now let us assume the resonator gets perturbed by some

local material changes. The perturbed resonator is then described by a new operator

M̂pert = M̂ + ΛδM̂, (18)

where δM̂ is an operator that describes the perturbation and Λ is a dimensionless parameter that allows to switch the perturba-

tion on (Λ = 1) and off (Λ = 0). Although in the context of this work, we are only interested in perturbations connected to the

chirality parameter κ, we make our derivations more general and allow δM̂ to contain any kind of material perturbation. The

only assumption we make is that the change is restricted to some finite volume Vc and that Vc is close enough to the scatterer

that the expansion in Eq. (13) is still valid. The perturbation then reads as

δM̂ =






k

(

δε −iδξ

iδζ δµ

)

inside volume Vc,

0 outside,

(19)

where δε, δµ, δξ and δζ denote the changes in the permittivity, the permeability and the bi-anisotropic contributions, respec-

tively. Note that in general these quantities can be tensors. For the special case discussed in the main manuscript, where a

resonator with κ = 0 is changed to a resonator with κ , 0, one gets δε = δµ = 0 and −iδξ = iδζ = −1κ, where 1 denotes the

3 × 3 unit matrix.

Let Fpert now denote the total field in the perturbed resonator. In analogy to the unperturbed case discussed above, we

split Fpert into a background field and a scattered field. Only the scattered field is affected by the perturbation, while the

background field remains unaffected. As in conventional perturbative approaches (e.g., from quantum mechanics), we write

Fpert as a Taylor series in Λ:

Fpert = Fbg + Fscat + ΛF
(1)
scat + Λ

2
F

(2)
scat + . . . , (20)

where Fbg and Fscat denote the background and scattered field from the unperturbed case, respectively, and F
(1)
scat, F

(2)
scat, . . . are

correction terms for the scattered field. The total perturbed field Fpert fulfills M̂pertFpert = 0. Inserting the expressions for M̂pert

and Fpert and comparing the coefficients for every power of Λ results in:

M̂Fscat = −∆M̂Fbg (21)

M̂F
(1)
scat = −δM̂Fbg − δM̂Fscat (22)

...

This set of equations implicitly describes the scattered field and its correction terms. The first equation defines Fscat in the

unperturbed resonator and is already known from above [see Eq. (12)], where we had solved it with the help of the Green’s

dyadic to get an explicit expression for Fscat [see Eq. (13)]. The second equation defines the first-order correction term F
(1)
scat.

In analogy to above, we solve it with the help of the Green’s dyadic. This gives

F
(1)
scat = −

∑

n

Fn

〈FR
n |δM̂|Fbg〉V

k − kn

−
∑

n

Fn

〈FR
n |δM̂|Fscat〉V

k − kn

. (23)

Successively applying this method allows to derive expressions for all higher-order correction terms F
(2)
scat, . . . ; however, we

will now assume that our perturbation δM̂ is small compared to the unperturbed material parameters of the resonator. For the

case of chiral perturbations, this is a very justified assumption. Hence, it is enough to consider only the first-order correction

term, and the perturbed field can be approximated as Fpert ≈ Fbg + Fscat + F
(1)
scat. Let us now calculate the scattering matrix

of the perturbed resonator. As before in the unperturbed case, we assume that the resonator is excited by a channel IN, and

project the resulting fields onto the probe function IR
M

. Note that the integration surface ∂V for the projection has to be chosen

large enough to include all inhomogeneities of the resonator (i.e., the regions where ∆M̂ and δM̂ are nonzero). The perturbed

scattering matrix is then obtained as

S
pert

MN
≈ [IR

M|Fbg,N]∂V + [IR
M|Fscat,N]∂V

︸                              ︷︷                              ︸

S MN

+ [IR
M|F

(1)

scat,N
]∂V

︸          ︷︷          ︸

δS MN

. (24)
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The first two terms on the right-hand side represent the already known scattering matrix S MN of the unperturbed resonator,

while the third term represents the change δS MN of the scattering matrix due to the perturbation. Let us now evaluate this

term. In analogy to Eq. (16), we convert the surface integral into volume integrals:

[IR
M|F

(1)

scat,N
]∂V = [FR

bg,M|F
(1)

scat,N
]∂V = −〈F

R
bg,M|δM̂|Fbg,N〉V − 〈F

R
bg,M|δM̂|Fscat〉V − 〈F

R
bg,M|∆M̂|F

(1)
scat〉V . (25)

Here, we used the relations provided under Eq. (16), together with the fact that F
(1)

scat,N
is only composed of outgoing basis

functions on the surface ∂V , as well as Eq. (22).

We insert Eq. (25) into Eq. (24), plug in the expansions provided in Eqs. (23) and (13), exploit the fact that δM̂ is only

nonzero inside the volume Vc, and use the coefficients an,M and bn,N introduced in Eq. (17). All together, we obtain

δS MN =−〈F
R
bg,M|δM̂|Fbg,N〉Vc

︸                   ︷︷                   ︸

≡δS nr
MN

+
∑

n

an,M〈F
R
n |δM̂|Fbg,N〉Vc

k − kn
︸                         ︷︷                         ︸

≡δS ex
MN

+
∑

n

bn,N〈F
R
bg,M
|δM̂|Fn〉Vc

k − kn
︸                         ︷︷                         ︸

≡δS em
MN

−
∑

n

an,Mbn,N〈F
R
n |δM̂|Fn〉Vc

(k − kn)2

︸                              ︷︷                              ︸

≡δS shift
MN

−
∑

n,n′

an,Mbn′,N〈F
R
n |δM̂|Fn′〉Vc

(k − kn)(k − kn′ )
︸                                ︷︷                                ︸

≡δS cross
MN

. (26)

This equation constitutes the main finding of the paper and allows to predict the change of the scattering matrix under material

perturbations in the resonator. We can identify five different contributions: δS nr, δS ex, δS em, δS shift, and δS cross. The first one

contains an overlap integral between the background fields and represents a nonresonant interaction. The second and third one

contain overlap integrals of the modes with the background fields, which describe the change in the excitation and emission

efficiencies of these modes, respectively. The fourth one contains an overlap integral of the modes with themselves, which is

associated with a shift ∆kn of the wavenumber eigenvalue, well-known for permittivity and permeability perturbations from

previous works as5,16–21

∆kn = −〈F
R
n |δM̂(kn)|Fn〉Vc

. (27)

The fifth term contains an overlap integral between different modes, which describes intermodal crosstalk. Note that all

quantities in Eq. (26) except Fn and kn are k dependent.

We want to emphasize that Eqs. (26) and (27) are valid for any kind of material perturbation δM̂ and are not limited to the

chiral material changes that are discussed in the context of this work. Inserting the special δM̂, given by Eq. (5) of the main

manuscript, that is associated with a change from κ = 0 to κ , 0, and writing out the integrals 〈. . . 〉V results in Eqs. (6) to (12)

of the main manuscript.

2 Calculation of the ∆CD signals from the scattering matrices

This section provides the details on how the ∆CD signal and its contributions were calculated from the scattering matrices S

and δS . The ∆CD signal was defined as

∆CD = CDκ − CD0, (28)

where CDκ and CD0 represent the circular dichroism signals of the resonator with and without κ, respectively. The circular

dichroism signals were defined as the absorption difference between left-handed circularly polarized (LCP) and right-handed

circularly polarized (RCP) polarized light. The incidence direction was taken from the top. Under this definition, the circular

dichroism signals are related to the scattering matrices via

CD0 =



1 −
∑

M

∣
∣
∣S M,LCP top

∣
∣
∣
2





︸                      ︷︷                      ︸

Absorption for LCP top input

−



1 −
∑

M

∣
∣
∣S M,RCP top

∣
∣
∣
2





︸                      ︷︷                      ︸

Absorption for RCP top input

(29)

and

CDκ =



1 −
∑

M

∣
∣
∣S M,LCP top + δS M,LCP top

∣
∣
∣
2





︸                                        ︷︷                                        ︸

Absorption for LCP top input

−



1 −
∑

M

∣
∣
∣S M,RCP top + δS M,RCP top

∣
∣
∣
2





︸                                         ︷︷                                         ︸

Absorption for RCP top input

, (30)

where the sum goes over all energy-carrying output channels M. The contributions of the ∆CD signal were defined as

∆CDxxx = ∆CD
∣
∣
∣
δS=δS xxx , (31)
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where xxx = {nr, ex, em, shift, cross}.

In the end, let us consider the case |δS M,N| ≪ |S M,N|. With very few exceptions, this condition is automatically fulfilled

in scenarios, where the first-order perturbation theory is applicable. In particular, this condition holds for all example systems

discussed in this work. Under the above assumption, Eqs. (28) to (31) simplify to more intuitive expressions:

∆CD ≈
∑

M

2 Re
(

S ∗M,RCP topδS M,RCP top

)

−
∑

M

2 Re
(

S ∗M,LCP topδS M,LCP top

)

, (32)

∆CDxxx ≈
∑

M

2 Re
(

S ∗M,RCP topδS
xxx
M,RCP top

)

−
∑

M

2 Re
(

S ∗M,LCP topδS
xxx
M,LCP top

)

. (33)
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1. Nesterov, M. L., Yin, X., Schäferling, M., Giessen, H. & Weiss, T. The Role of Plasmon-Generated Near Fields for Enhanced Circular Dichroism

Spectroscopy. ACS Photonics 3, 578–583 (2016).

2. Weiss, T. & Muljarov, E. A. How to calculate the pole expansion of the optical scattering matrix from the resonant states. Phys. Rev. B 98, 085433

(2018).

3. Zhang, H. & Miller, O. D. Quasinormal Coupled Mode Theory 2020. arXiv: 2010.08650 [physics.optics].

4. Muljarov, E. A. & Weiss, T. Resonant-state expansion for open optical systems: generalization to magnetic, chiral, and bi-anisotropic materials. Opt.

Lett. 43, 1978–1981 (2018).

5. Lalanne, P., Yan, W., Vynck, K., Sauvan, C. & Hugonin, J.-P. Light Interaction with Photonic and Plasmonic Resonances. Laser & Photonics Reviews

12, 1700113 (2018).

6. Doost, M. B., Langbein, W. & Muljarov, E. A. Resonant state expansion applied to two-dimensional open optical systems. Phys. Rev. A 87, 043827

(2013).

7. Lobanov, S. V., Zoriniants, G., Langbein, W. & Muljarov, E. A. Resonant-state expansion of light propagation in nonuniform waveguides. Phys. Rev.

A 95, 053848 (2017).

8. Neale, S. & Muljarov, E. A. Accidental and symmetry-protected bound states in the continuum in a photonic-crystal slab: A resonant-state expansion

study. Phys. Rev. B 103, 155112 (2021).

9. Kristensen, P. T., Herrmann, K., Intravaia, F. & Busch, K. Modeling electromagnetic resonators using quasinormal modes. Adv. Opt. Photon. 12,

612–708 (2020).

10. Yan, W., Faggiani, R. & Lalanne, P. Rigorous modal analysis of plasmonic nanoresonators. Phys. Rev. B 97, 205422 (2018).

11. Martin, O. J. F. & Piller, N. B. Electromagnetic scattering in polarizable backgrounds. Phys. Rev. E 58, 3909–3915 (1998).

12. Perrin, M. Eigen-energy effects and non-orthogonality in the quasi-normal mode expansion of Maxwell equations. Opt. Express 24, 27137–27151

(2016).

13. Alpeggiani, F., Parappurath, N., Verhagen, E. & Kuipers, L. Quasinormal-Mode Expansion of the Scattering Matrix. Phys. Rev. X 7, 021035 (2017).

14. De Lasson, J. R., Mørk, J. & Kristensen, P. T. Three-dimensional integral equation approach to light scattering, extinction cross sections, local density

of states, and quasi-normal modes. J. Opt. Soc. Am. B 30, 1996–2007 (2013).

15. Yang, J., Hugonin, J.-P. & Lalanne, P. Near-to-Far Field Transformations for Radiative and Guided Waves. ACS Photonics 3, 395–402 (2016).

16. Doost, M. B., Langbein, W. & Muljarov, E. A. Resonant-state expansion applied to three-dimensional open optical systems. Phys. Rev. A 90, 013834

(2014).
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